
HAL Id: hal-01098823
https://hal.science/hal-01098823

Submitted on 16 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A college admissions game for uplink user association in
wireless small cell networks

Walid Saad, Zhu Han, Rong Zheng, Merouane Debbah, Harold Vincent Poor

To cite this version:
Walid Saad, Zhu Han, Rong Zheng, Merouane Debbah, Harold Vincent Poor. A college admissions
game for uplink user association in wireless small cell networks. INFOCOM, 2014 Proceedings IEEE,
Apr 2014, Toronto, Canada. �10.1109/INFOCOM.2014.6848040�. �hal-01098823�

https://hal.science/hal-01098823
https://hal.archives-ouvertes.fr


A College Admissions Game for Uplink User Association

in Wireless Small Cell Networks

Walid Saad1, Zhu Han2, Rong Zheng3, Mérouane Debbah4, and H. Vincent Poor1

1Electrical and Computer Engineering Department, University of Miami, USA, walid@miami.edu.
2Electrical and Computer Engineering Department, University of Houston, USA, zhan2@uh.edu.

3Department of Computing and Software, McMaster University, Hamilton, ON, Canada, email: rzheng@mcmaster.ca.
4Alcatel-Lucent Chair in Flexible Radio, Supelec, Gif-sur-Yvette, France email: merouane.debbah@supelec.fr.

1Electrical Engineering Department, Princeton University, USA, poor@princeton.edu.

Abstract— In this paper, the problem of uplink user association
in small cell networks, which involves interactions between users,
small cell base stations, and macro-cell stations, having often
conflicting objectives, is considered. The problem is formulated
as a college admissions game with transfers in which a number
of colleges, i.e., small cell and macro-cell stations seek to recruit
a number of students, i.e., users. In this game, the users and
access points (small cells and macro-cells) rank one another based
on preference functions that capture the users’ need to optimize
their utilities which are functions of packet success rate (PSR) and
delay as well as the small cells’ incentive to extend the macro-cell
coverage (e.g., via cell biasing/range expansion) while maintaining
the users’ quality-of-service. A distributed algorithm that combines
notions from matching theory and coalitional games is proposed to
solve the game. The convergence of the algorithm is shown and the
properties of the resulting assignments are discussed. Simulation
results show that the proposed approach yields a performance
improvement, in terms of the average utility per user, reaching up
to 23% relative to a conventional, best-PSR algorithm.

I. INTRODUCTION

Meeting the stringent quality-of-service (QoS) requirements

of emerging wireless services warrants substantial changes in

current cellular infrastructure. In this respect, the introduction

of small cell base stations (SCBSs) (picocells, microcells, fem-

tocells, etc.) is seen as a promising, cost-effective solution [1–3].

Small cells are low-cost, low-power, access points that can be

overlaid on any existing wireless technology (e.g., 2G, 3G, LTE,

WiMAX, etc.) and can be of different types that include outdoor,

operator-deployed picocells, metrocells and microcells, as well

as indoor, user-deployed femtocells [1]. These SCBSs are seen

as a key approach for offloading traffic from the macro-cell

network while providing high capacities by bringing the users

and their access points closer to one another [2].

For reaping the benefits of small cell deployment, numer-

ous technical challenges must be addressed such as resource

management, interference avoidance, and user association [2],

[4–9]. In [5], the authors formulate a hierarchical power control

game between the macro-cellular base station and the small cells

so as to reduce the interference. The authors in [10] study the

problem of cell range expansion in picocell networks and derive

fundamental results. Further, a novel approach for spectrum

allocation in two-tier networks is proposed in [11]. In [6], a new

approach for resource allocation in heterogeneous networks is

developed via auctions. Other aspects of small cell networks are

studied in [7–9]

One key challenge in small cell networks that remains rela-

tively unexplored, as outlined in [1] and [12] (and references

therein), is the problem of associating the users to their serving

access point for uplink transmission, in particular. Inherently,
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within a small cell network, the problem of user association

in the uplink faces a number of pertinent challenges that are

significantly different from classical cellular user association

problems such as those in [13] and [14]. On the one hand,

unlike macro-cell base stations, SCBSs are resource-constrained

in nature (e.g., can service only a small number of users and

have limited coverage) which can significantly impact the user

association problem. On the other hand, within a small cell

network, the outcome of any access point selection process must

account for the preferences of three node types (and not just the

users as in cellular networks): the users, the SCBSs, and the

macro-cell stations, having different, often conflicting, goals.

From the users’ perspective, the goal is primarily to select a

serving station, irrespective of its type (macro-cell or SCBS),

that optimizes a certain QoS requirement. For the SCBSs, the

objective is not only to select the users with certain desired QoS

requirements, but also to improve the coverage of the macro-cell

network and alleviate the load on its stations. Offloading data

is, in fact, viewed as the primary role of SCBSs, particularly

those deployed by an operator in outdoor environments such

as picocells [1], [2], [15]. Finally, the macro-cell stations

aim at improving the QoS of their users while ensuring that

every user gets a chance to transmit. Often, these objectives

are intertwined and can lead to conflicting user assignment

choices. For example, the most preferred access point of a

certain user might be interested in assigning other users that are

more aligned with its own utility metrics (e.g., allow a better

offloading) and vice versa. These new challenges motivate the

design of novel approaches for user-to-access point assignment

tailored to small cell networks, which is our main focus. In fact,

it has been recently shown [12] that, in the downlink, applying

classical macro-cell oriented schemes to small cell networks can

lead to highly unequal loads and operating inefficiencies. The

work in [12] developed an optimization problem for maximizing

capacity during user association in the downlink of small cell

networks. To our best knowledge, beyond [12], which is focused

on downlink problem and on centralized optimization, little

work has been done to address the SCBSs user to access point

association problem in the uplink while accounting for the

aforementioned challenges.

The main contributions of this paper are to study and design,

using analytical techniques from game theory, novel strategies

for assigning users to their serving access points within the

uplink of a small cell network. Here, we exploit the striking

analogy between the small cells’ user association problem and

the college admissions game that is studied in the game theory

literature. We formulate a college admissions game in which

colleges, i.e., access points (SCBSs and macro-cells) that have a

fixed quota (number of students to admit) and students, i.e., net-
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work users, rank one another based on preference functions that

capture, for the users, the R-factor which is a well-known metric

capturing the packet success rate and delay guarantees and, for

the access points, the need to service users with good quality of

service while extending the macro-cell coverage (e.g., similar

to the emerging idea of biasing or cell range expansion [1],

[12], [15]). To solve this game, we propose an algorithm that

takes into account the interdependent users’ preferences and that

allows each node to optimize its specific utility needs. Using

analytical techniques based on the college admissions game and

coalitional game theory, we provide a novel formulation for the

problem of access point selection tailored to the unique features

of small cell wireless networks (e.g., different decision makers,

conflicting goals, limited SCBS capacity, etc.). We show that,

using the proposed approach, the users, SCBSs, and macro-cells

can agree on a user association outcome, given their different

preferences. We show the convergence of the algorithm and we

analyze the properties of the resulting assignment. We assess

the performance of the algorithm using simulations and show

that it yields significant performance gains for all nodes.

The rest of this paper is organized as follows. In Section II,

we present the proposed system model. In Section III, we

formulate the problem as a college admissions game with

transfers while in Section IV we propose an algorithm for net-

work assignment. Simulation results are presented in Section V.

Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

A. Network Model

Consider a wireless network composed of M cells with

their associated base stations, i.e., macro-stations. N wireless

users are deployed and seek to transmit in the uplink direction.

Hereinafter, we refer to this main network as the macro-cell

network. K SCBSs are overlaid on the macro-cell network to

increase coverage and improve the performance of the users. We

let M, K, and N , denote, respectively, the set of all macro-cell

base stations, all SCBSs, and all users.

Each SCBS k ∈ K is a low-cost access point that can

serve a limited number of users, i.e., has a maximum quota

of qk users. We mainly focus on outdoor SCBSs such as

picocells/microcells/metrocells that are used by the operator to

offload data by serving any of the N macro-cell users when

needed [1], [2]. We note that the quota of an SCBS can be either

fixed or controlled by the SCBS operator who may decide to

allow less or more users to connect [1]. Further, we consider

that all SCBSs and macro-stations use a time-division multiple-

access scheduler with each time slot having a duration θ. Note

that, using such a transmission for the uplink implies that the

users which are assigned to the same SCBS or macro-station do

not interfere with one another, i.e., there no intra-access point

(SCBS or macro-station) interference. Note that the analysis

done in this paper is equally applicable to other multiple access

and scheduling schemes, e.g., advanced QoS-aware schedulers

such as those in [1] and references therein. For brevity, we use

the term access point to refer to a macro-station or an SCBS if

the explicit distinction is not needed.

A key problem in small cell networks is to associate the users

to their serving access points which are either macro-stations

or SCBSs [1]. An illustrative figure of this problem is shown in

Fig. 1 for a network with M = 3 macro-stations, K = 3 SCBSs,

Fig. 1. An illustration of a small cell network network with M = 3 macro-
stations, K = 3 SCBSs, and N = 16 users.

and N = 16 users. Fig. 1 shows how the SCBSs can extend the

coverage of the macro-stations, notably, SCBSs 2 and 3 enable

servicing users that are far away from macro-stations 3 (e.g.,

user 12) and 1 (e.g., user 7), respectively. At SCBS 1, which can

service at most 4 users, we can see how the different objectives

of the nodes and the limitations of the SCBSs impact the user

assignment. For example, although user 4 prefers to connect

to SCBS 1 over macro-station 1 due to proximity, this user is

eventually assigned to macro-station 1. This assignment is a

result of the fact that SCBS 1 needs to also assist in offloading

traffic from the macro-cell network by servicing users that are

further away from the macro-stations, e.g., users 1, 2, 3, and 6.

Also, Fig. 1 shows how some users, such as user 8, prefer lightly

loaded stations such as SCBS 2 over closer, yet congested access

points such as macro-station 1. Thus, Fig. 1 sheds light on the

challenges of designing assignment schemes in the uplink of

small cell networks.

B. Objectives of the Nodes

Users’ goals: In the uplink, each user i ∈ N chooses an

access point a ∈ A , M ∪ K, and, thus, achieves a signal-

to-interference plus noise ratio γia and perceives a delay τa.

Each user i ∈ N wants to select an access point a ∈ A so

as to optimize its probability of successful transmission and its

perceived delay. The packet success rate (PSR) ρia of any user

i ∈ N that needs to transmits packets of B bits each to an

access point a ∈ A is

ρia = (1− P e
ia(γia))

B , (1)

where P e
ia(γia) is the bit error rate (BER) from user i to its

serving station a and is a function of γia = Pigia
σ2+Ia

with Pi

being the transmit power of user i, σ2 the noise variance, Ia the

inter-access point interference temperature1 at a, and gia = 1

dα
ia

the channel gain between user i and access point a with dia
the distance between i and a, and α the path loss exponent2.

Essentially, the expression for the BER depends on the coding

and modulation schemes adopted by user i. The analysis done

in the remainder of this paper is applicable to any coding

and modulation scheme. Note that, in practice, interference
1
Ia is a measure of the average interference temperature at a incurred from

potential uplink transmissions at other access points that can interfere with a

(e.g., share the spectrum with a) that is commonly used in dimensioning small
cell networks [1].

2We note that the choice of this channel model is made for convenience and
without loss of generality since the proposed game-theoretic approach is also
applicable when the channel gain encompasses other propagation characteristics
such as shadowing effects and multi-path fading.
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between SCBSs is often considered to be well-managed (e.g.,

by allowing the SCBSs to perform sensing so as to avoid using

the same part of the spectrum or using other methods) such as

in [4], [16], [17]. Hence, Ia is mostly a measure of the macro-

to-femto interference temperature which can also be improved

or canceled by having a macro-cell that uses a dedicated band

such as in [1] or using techniques such as in [16]. Hereafter,

we consider a slowly varying block fading channel model with

a long coherence time that is constant over the slot duration θ.

Given an access point a ∈ A that serves a subset of users

Na ⊆ N , each user i ∈ Na experiences a delay τa that is

mainly dominated by two components, a wireless access delay

τw
a and a backhaul delay τ b

a , such that

τa = τw
a + τ b

a. (2)

The wireless access delay τw
a depends primarily on the number

of users connected to a, i.e., Na = |Na| where | · | denotes the

set cardinality. Given the considered users’ scheduler, we have

τw
a = (Na − 1) · θ, (3)

where θ is the slot duration. The delay over the backhaul τ b
a at an

access point a depends on several factors such as the capability

of the backbone, its connectivity (e.g., to the Internet), the

backbone topology, as well as the traffic which is generated, not

only by the users in Na but also from third-party applications

or service providers. Hence, providing accurate models for the

delay over the backhaul network is a challenging research

problem that is solved often using empirical measurements

[18] and is beyond the scope of this paper. Since our focus

is mainly on the user association problem, we consider that

the delay τ b
a over the backhaul during a given time period is

a random variable having a certain observed distribution. Due

to the technical differences between the backbone connecting

the macro-stations (which can be a high-speed network, e.g.,

fiber) and the one connecting the SCBSs (which is a standard IP

backaul, e.g, DSL), we distinguish between the characteristics

of the distribution of the backhaul delay at a macro-cell, i.e.,

τ b
m,m ∈ M and at a small cell, i.e., τ b

k , k ∈ K.

Each user i ∈ N selects an access point a ∈ A so as

to optimize its PSR in (1) and its delay in (2). One suitable

metric that captures both PSR and delay is the R-factor which

is popular within voice over IP (VoIP) services [19]. For a user

i, the R-factor is an expression that links the delay and packet

loss to the voice quality as follows:

Ui(ρia, τa) = Ω− ε1τa − ε2(τa − α3)H − υ1

−υ2 ln (1 + 100υ3(1− ρia)), (4)

where τa is the delay given by (2) expressed in milliseconds,

and 100(1 − ρia) represents the packet loss percentage. The

remaining parameters are constants defined as: Ω = 94.2, ε1 =
0.024, ε2 = 0.11, ε3 = 177.3, H = 0 if τj < ε3, H = 1
otherwise [19]. The parameters υ1, υ2, and υ3 depend on the

codec as per the e-model [19]. The relationship between the R-

factor and the VoIP service quality is such that as the R-factor

increases, by increments of 10, from 50 to 100, the voice quality

is poor, acceptable, good, high, and best, respectively [19].

SCBSs and macro-stations goals: The SCBSs have two

objectives: 1) to offload traffic from the macro-cell, extend

its coverage, and load balance the traffic (e.g., use cell range

expansion or biasing) and, 2) to select users that can potentially

experience a good R-factor. For exploiting the full potential of

SCBS deployments, it is desirable to actively “push” wireless

users onto the SCBSs while maintaining a good QoS, when

possible due to two reason: (i) the SCBSs will often be lightly

loaded, thus a better load balancing strategy is required; and (ii)

this allows offloading of traffic and reducing the load on the

main macro-cell network. To assist the macro-cell by extending

its coverage and offloading users, an SCBS k benefits from

selecting the users in poor macro-cell coverage areas, i.e., users

that experience the largest packet drop at the macro-stations

(e.g., far from these stations). However, at the same time, an

SCBS k also extracts more utility by selecting users that can

potentially experience a good QoS when connected to k. Many

techniques have recently been studied to allow efficient offload.

In particular, the idea of cell biasing or cell range expansion

which has been recently proposed suggests forcing users to

maintain their connections at smaller tiers (e.g., at SCBSs) by

“biasing” their transmit power with a multiplicative factor [12],

[20].

From the perspective of an SCBS, the dominating indicator

on the R-factor of a given user i ∈ N is the PSR as per (1).

Therefore, in general, the benefit (utility) that any SCBS k ∈ K
obtains by serving a user i ∈ N , can be written as

hk(i) = f(ρik, ρim), (5)

where ρik is the PSR from user i to SCBS k, ρim is the

PSR from user i to its best macro-station m, i.e., m ∈
argmaxl∈M ρil, and f(·) is a function that is increasing in ρik,

i.e., better PSR at k implies higher benefit, and decreasing in

ρim, i.e., a bad PSR at a macro-station m implies that SCBS k
gets more benefit by offloading i from the macro-cell network.

Although the analysis in the rest of this paper applies to any

function f(·), we use the following function which represents

a cell range expansion-oriented metric:

hk(i) = β
ρik
ρim

, (6)

with β a price per PSR ratio that allows the operator to control

the “bias” for offloading traffic. Clearly, the utility in (6) is in

line with the recent efforts on cell biasing/range expansion [12],

[20] and presents an interesting way to control and quantify this

bias.

Finally, the benefit that any macro-station m ∈ M extracts

from a user i ∈ N is simply an increasing function of the PSR

achieved by i at m as follows:

wm(i) = ρim. (7)

Having laid down the main components of the studied model,

in the next section, we formulate the access point assignment

problem as a college admissions game.

III. A COLLEGE ADMISSIONS GAME FOR ACCESS POINT

SELECTION

A. Game Formulation and Preferences

To formally model the studied problem, we use the frame-

work of college admissions games, also known as many-to-one

matching games [21], [22]. The college admissions problem, as

introduced in [21], models the interactions between a number

of students wishing to apply to a number of colleges, each of

which has a fixed quota on the number of students that it can

admit. Given often conflicting preferences between the students

and the colleges, it is of interest to study how one can assign

the students to colleges while satisfying, as much as possible,

all preferences [21], [22]. This framework is suitable for the
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proposed problem as it allows capture of the heterogeneous

nature of a small cell network while characterizing stable

and desirable association points. Within the studied small cell

network, we formulate a college admissions game, referred to as

the small cell admissions game, defined by three components:

1) the set N of wireless users acting a students, 2) the set A
of access points acting as colleges, each access point having

a certain quota on the maximum number of users that it can

admit, and, 3) preference relations for the access points and

users allowing them to build preferences over one another. The

solution of this game is an assignment between the users and

the access points that satisfies their preferences and constraints.

We consider that all players (users, SCBS, macro-station) are

honest nodes that do not cheat during the association process.

The case in which one or more nodes are cheating can constitute

an interesting topic for future work that is out of the scope of

the current paper. Here, we note that matching games have been

recently used in basic wireless resource allocation [23], [24]

and cognitive radio [25]. However, unlike the work done here,

these existing approaches do not deal with the specifics of small

cell networks and are focused mostly on one-to-one matching.

Moreover, they do not explore the idea of college transfers,

needed to handle the coupling between users’ strategies.

Due to its low cost nature, any SCBS k ∈ K can service

only a maximum number (quota) qk of users (typically a

small value [1]). For the macro-stations, although no physical

constraints impose a maximum quota, each macro-station m ∈
M sets a certain quota of users qm that it is willing to accept.

Specifically, in order to ensure that every available user will

eventually be serviced, each macro-station m ∈ M chooses its

quota qm to be equal to the maximum number of users that will

potentially connect to m, in the absence of SCBSs and based

on a standard assignment in which each user chooses its closest

macro-station.

A preference relation �i for a college (student) is defined as

a complete, reflexive, and transitive binary relation over the set

of all students (colleges)3. Using these preferences, the access

points and the users can rank one another. For an SCBS k ∈ K,

we define a preference relation �k over the set of users N ,

such that, for any two users i, j ∈ N , i 6= j, we have

i �k j ⇔ hk(i) ≥ hk(j), (8)

where hk(·) is given by (6). In other words, the SCBSs can

rank their users by giving a preference to the ones that generate

a higher benefit as per (6). For any macro-station m ∈ M, a

preference relation �m over the set of users N , is defined as

follows, for any two users i, j ∈ N , i 6= j:

i �m j ⇔ wm(i) ≥ wm(j), (9)

where wm(·) is given by (7). Thus, the macro-stations simply

rank the users based on the PSR. Note that, in a college

admissions game it is often desirable to have strict preferences,

denoted by �, and, thus, hereinafter, we consider that whenever

any player is indifferent between two choices, it will randomly

rank one before the other (e.g., toss a coin).

While for the access points, one can build preferences based

on the utilities in (6) and (7), dealing with the users’ preferences

introduces some complications. In particular, the R-factor of the
3Variants of this game allow the colleges to build preferences over subsets

of students [22]. However, in wireless networks, such a model would be
undesirable since its complexity for building preferences grows exponentially
with the network size as per the Bell number [22].

users as in (4) depends on the number of other users admitted

at a given access point through the delay component. Thus, if

one defines a preference relation for the users based on (4), this

relation will depend on the choices of the other users, due to

the interdependence in the delay. In this respect, most literature

that deals with the college admissions game [21], [22] assumes

that the preferences of the students do not depend on other

students’ choices. Although such an assumption is reasonable

within game theory, it does not hold in the proposed small cells

game. As discussed in [22], when dealing with interdependent

preferences, finding acceptable solutions for the general college

admissions game becomes complex. Even though putting some

restrictions on the preferences can make these solutions more

tractable, the additional constraints often require computing

preferences over all subsets of the users or access points [22],

which yields an exponential complexity that is unsuitable for

wireless communication problems in which the number of users

can grow significantly.

To overcome this challenge, we divide our proposed game

into two interdependent subgames: a small cell admission

subgame with R-factor guarantees and an access point transfers

subgame. In the first subgame, the users build their preferences

based on the potential R-factor guarantees that each access point

can guarantee. Based on the results of the first subgame, in the

second subgame, some of the users can request to transfer to

other access points (perform a college transfer) if possible (e.g.,

if some access points did not fill up their entire quotas).

B. Admissions Game with Guarantees

In the first subgame, the users build their preferences based on

the R-factor level that each access point a ∈ A can guarantee.

This R-factor guarantee depends on the maximum delay that

is experienced at a. Since, within a certain time period, each

access point is aware of an estimate of its backhaul delay, the

maximum delay τ̄a in (2) at an access point a ∈ A depends on

the maximum wireless access delay τ̄w
a given by

τ̄w
a = (qa − 1) · θ, (10)

where qa is the quota of access point a. As a result, the

maximum delay at an access point a is simply τ̄a = τ̄w
a + τ b

a .

In consequence, based on the maximum potential delay, every

user i ∈ N , can define a preference relation �i such that, for

any two access points a, b ∈ A, a 6= b
a �i b ⇔ ui(a) ≥ ui(b), (11)

where ui(a) = Ui(ρia, τ̄a), with Ui(ρia, τ̄a) as in (4), is a

preference function that assigns for each access point a the

R-factor in (4) that a guarantees for user i.
Using the preferences in (8), (9), and (11), we can define the

first subgame as a college admissions problem with R-factor

guarantees. The solution of this subgame is a matching µ which

is a mapping defined on the set A ∪ N and satisfying, for all

access point a ∈ A and user i ∈ N , 1) µ(a) ∈ 2N , and,

2) µ(i) ∈ A×Bi∪{∅, ∅}, where 2N is the set of all subsets of

N and Bi is the set of all subsets of N that contain user i. In

other words, µ is a mapping that assigns for every access point a

subset of users and for every user an access point. Alternatively,

the solution of this subgame can be seen as a partition Π of the

set N such that Π = {S1, . . . , SM+K}, Sa ∩ Sb = ∅, a 6=
b, ∪M+K

l=1
Sl = N and each Sa ⊆ N is a coalition of users

that are using access point a. If, for a given l ∈ {1, . . . ,M +
K}, Sl = ∅, then access point l has no users assigned to it.
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C. A Coalitional Game for College Transfers

Upon learning of the partition Π resulting from the small

cell admissions game with guarantees, the access points and

the users might have an incentive to negotiate potential user

transfers, depending on the actual perceived R-factor as per

(4). For example, if some access points within Π have used

very small fractions of their quotas, it can be beneficial to

transfer some users from highly loaded access points to the

lightly loaded access points. To study these inter-access point

transfers, we use the framework of coalitional game theory [26].

Formally, we define a coalitional game among the users that is

identified by the pair (N , V ) where N is the set of players,

i.e., users, and V is a mapping that assigns for every coalition

Sa ⊆ N , formed around an access point a, a payoff vector U in

which each element Ui(ρia, τa) is the R-factor of user i as per

(4). Here, each coalition Sa ⊆ N represents a group of users

that are connected to an access point a ∈ A.

In this (N , V ) coalitional game, one can see that the grand

coalition, i.e., all users forming a single coalition at a certain

access point, can never form due to the increased delay and the

fact that no access point can accommodate all the users in the

network. Instead, disjoint coalitions, each of which is centered

at a given access point, need to form. As a result, this game

is classified as a coalition formation game [26] in which the

objective is to enable the users to change from one coalition

to another, depending on their utilities, the acceptance of the

access points, and the different quotas. In order to achieve this

objective, for every user i, we formally define the following

transfer rule:

Definition 1: Transfer Rule - Consider any partition Π =
{S1, . . . , SM+K} of N , where Sa is a coalition served by an

access point a ∈ A. A user i has an incentive to transfer from

its current coalition Sa, for some a ∈ {1, . . . ,M+K} and join

another coalition Sb ∈ Π, Sa 6= Sb, if: 1) user i improves its

R-factor in (4) by transferring, i.e., Ui(ρib, τb) > Ui(ρia, τa),
and, 2) access points a and b approve of the transfer.

The acceptance of a transfer by the access points is dependent

upon their quotas and their willingness to allow the transfer. A

pair of access points a, b ∈ A are willing to accept the transfer

of a user i from a to b, if:

1) Access point b that is serving the users in Sb and which

will potentially accept the transfer Sb does not exceed its

quota qb, i.e., |Sb ∪ {i}| ≤ qb.

2) The social welfare, i.e., the overall R-factor, perceived at

both access points a and b is increased. Thus, we have

v(Sa\{i})+v(Sb ∪ {i}) > v(Sa)+v(Sb), where we define

v(Sa) =
∑

i∈Sa
Ui(ρia, τa) as the total utility generated by

a coalition Sa.

The motivation behind this acceptance rule is two-fold: 1) it

provides a way for the access points to participate and have

some control on the users coalitional game, and, 2) it enables a

collaboration between the access points that values the overall

social welfare of the network. Given that the coalitional transfers

game occurs after the first subgame, the transfer rule and its

corresponding acceptance criteria, enable the access points to

maintain some control over their initially preferred and accepted

users’ list. At this stage, any pair of access points a and b that

are involved in a transfer have an incentive to be cooperative,

i.e., to accept the transfer only in agreement, since, in the future,

they can be involved in other transfers in an opposite direction,

and, hence, require their peers’ potential future cooperation.

IV. GAME SOLUTION AND ALGORITHM

Thus far, we have modeled the access point game as a college

admissions game with transfers and decomposed it into two

subgames: an admissions game with R-factor guarantees and

a coalitional transfers game. As a solution, we propose an

algorithm, shown in Algorithm 1, having two main phases, each

of which solves a corresponding subgame.

First subgame solution: For the first subgame, a suitable

solution would be a stable and optimal matching µ∗, defined as

follows [21]:

Definition 2: A user-access point matching µ∗ is said to be

stable, if there does not exist any pair of users i, j ∈ N that

are assigned (using µ∗), respectively, to access points a, b ∈ A,

although j prefers a to b, i.e., a �j b and a prefers j to i, i.e.,

j �a i. Further, a matching µ∗ is said to be optimal, if every

user is at least as well off under it as under any other stable

assignment.

To find such a stable and optimal matching for our first

subgame, we use the Gale and Shapley deferred acceptance

method, first introduced in [21], and shown to reach a stable and

optimal matching between the colleges and the students. The

deferred acceptance method is described in details in Phase I

of Algorithm 1. In essence, after ranking one another using the

preferences in (8), (9), and (11), the users start by submitting

their applications for assignment to their top preferred access

point. Then, each access point a ∈ A receives the requests,

e.g., over a control channel, and places the top ranked qa
users/applicants on a waiting list, while rejecting the rest. The

procedure repeats as the rejected applicants submit requests

for admission to their next preferred access point. Again, each

access point a places, on a new waiting list, the top ranked qa
users among the previous waiting list and the new applicants,

and rejects the rest. This procedure is repeated and converges

to a stable and optimal matching µ∗ once every applicant in

N is placed on a certain waiting list [21] (or has been rejected

from every access point, but, this case is unlikely to happen

in the proposed model since the macro-stations’ quotas can fit

all users, if adequate resources are available) in which case

the access points make their initial admissions lists as per the

matching µ∗, which constitutes the solution to the first subgame.

The matching µ∗ resulting from the deferred acceptance

method is stable and optimal for networks in which the users

are mainly interested in guaranteeing a certain R-factor level,

as per (11). One example is a network in which the users

are interested in voice messaging services or interactive voice

response (IVR) services in which the service quality is not

sensitive to variations in the R-factor above a certain guaranteed

value. In such networks, it is possible to consider the matching

µ∗ as a suitable solution for the overall admissions game.

Second subgame solution: As soon as Phase I con-

verges to a matching µ∗ equivalent to a partition ΠDA =
{S1, . . . , SM+K} of N , the access points open a window

for transfers to the users, which indicates the start of the

second subgame. Basically, the second subgame enables the

users to explore possibilities for improving their R-factors by

transferring to other access points, within the matching µ∗,
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Algorithm 1 One round of the proposed algorithm for the studied small
cell admissions game with transfers

Initial network

The network starts with an initial assignment (at the beginning of all time no user is

assigned to any access point).

Phase I - Admissions Game with R-factor Guarantees:

This phase is based on the deferred acceptance algorithm.

a) Each user builds a preferences list based on its guaranteed R-factor as per (11).

b) Each SCBS and macro-station builds its preference list based, respectively, on

(8) and (9).

c) Each user applies to its most preferred access point.

d) After all users submit their applications, each access point a ranks its applicants

and creates a waiting list based on the top qa applicants while rejecting the rest.

repeat

a) The rejected applicants re-apply to their next best choice.

b) Each access point a creates a new waiting list out of the top qa applicants,

among its previous list and the set of new applicants, and rejects the rest.

until Every user is on a waiting list, and, thus, we have convergence to a stable matching

µ∗ that can be seen as a partition ΠDA.

Phase II - Transfers Coalitional Game:

Within the partition ΠDA = {S1, . . . , SM+K} from Phase I, the access points

open a window for transfers to the users.

repeat

a) Each user indicates its most preferred transfer.

b) The access points implicated in transfers, receive the applications, and,

sequentially:

b.1) An access point that receives a single transfer application decides whether

or not to accept the transfer based on the acceptance rule as per Section III-C.

b.2) An access point that receives multiple transfer requests will select the top

preferred users and decides whether to accept its transfer or not, as per

Section III-C.

until Convergence to a final Nash-stable partition Πfinal.

Phase III - Data Transmission:

The users are assigned to their access points and can transmit.

based on the actual R-factor in (4). The need for the transfers

is primarily important in networks in which the outcome of the

deferred acceptance method does not fill all (or a significant

part of) the quotas of the SCBSs and macro-stations (e.g.,

medium-sized networks). Inherently, the transfers coalitional

game enables a better load balance at the access points and

improves the performance of the network and users.

For solving the second subgame, we propose a coalition

formation algorithm based on the transfer rule as described

in details in Phase II of Algorithm 1. In this phase, starting

with the partition ΠDA resulting from the deferred acceptance

method, each user makes its most preferred transfer request,

i.e., the transfer that increases most its R-factor as per (4).

The transfer requests are then received by the access points

and, based on (8) and (9), each access point a ∈ A chooses

its most preferred applicant i wishing to transfer from another

access point b. Access points a and b negotiate, in a pairwise

manner, whether or not the transfer can be accepted given the

current partition, i.e., the quota of a is not exceeded and the

overall utility of the two involved access points increases. If

the acceptance conditions are satisfied, then a and b agree on

the transfer of i. In this process, the acceptance of the transfers

occurs at the level of the access points, sequentially, in any

arbitrary order. The process is repeated until convergence, which

is guaranteed, as follows:

Theorem 1: Starting from any initial partition ΠDA, the pro-

posed coalition formation algorithm for transfers is guaranteed

to converge to a final partition Πfinal.

Proof: Given a partition ΠDA resulting from the deferred

acceptance phase of Algorithm 1, the coalition formation pro-

cess can be seen as a sequence of transfer operations that

transform the network’s partition, e.g.,

Π0 = ΠDA → Π1 → Π2 → . . . , (12)

where Πl = {S1, . . . , SM+K} is a partition, composed of at

most M +K coalitions (since each coalition forms at a given

access point) that is formed after l transfers. Recall that every

transfer operation from an access point a to an access point b
yields

v(Sa \ {i}) + v(Sb ∪ {i}) > v(Sa) + v(Sb). (13)

As a transfer between two access points a and b in a partition

Πl, does not affect the total utility generated by coalitions in Πl\
{Sa, Sb} (since advanced interference management techniques

such as in [4], [16], and [17] are used), then, every transfer

Πl → Πk, forms an order such that

Πk → Πl ⇔
∑

Sm∈Πk

v(Sm) >
∑

Sp∈Πl

v(Sp), (14)

which is transitive and irreflexive. Therefore, for any two

partitions in the sequence (12), we have Πl 6= Πk, l 6= k.

As the number of partitions of a set is finite and equal to the

Bell number [22], then, the sequence in (12) is guaranteed to

converge to a final partition Πfinal.

Partition Πfinal is the final access point assignment, after

which the users start their data transmission in the last phase

of Algorithm 1. Although the partition Πfinal results from

the transformation of a stable matching µ∗, it is difficult to

guarantee analytically that this stability is preserved within

Πfinal after transfers. Intuitively, one can see that, whenever the

number of transfers is small, such as in a dense network, the

stability of the matching will be maintained. Nevertheless, we

can guarantee a weaker for of stability for Πfinal [26]:

Definition 3: A partition Π = {S1, . . . , SM+K} of a players

set N is Nash-stable if for every user i ∈ N , i ∈ Sa, Sa ∈ Π,

having a preference relation Bi over its possible coalitions at

access points in A, we have ∀i ∈ N , Sa �i Sb ∪ {i} for all

Sb ∈ Π ∪ {∅}, i /∈ Sb.

A coalition partition Π is Nash-stable, if no user has an

incentive to move from its current coalition to another coalition

in Π based on a well-defined preference order Bi. The transfer

operation as per Definition 1, can be mapped into such a

preference order Bi, such that, for any user i, a coalition

Sa, i ∈ Sa is preferred over another coalition Sb ∪ {i},

i.e., Sa Bi Sb if Ui(ρib, τb) > Ui(ρia, τa), |Sb| ≤ qb, and

v(Sa \{i})+v(Sb∪{i}) > v(Sa)+v(Sb). With this definition,

a Nash-stable partition becomes a partition in which no user

has an incentive to execute a transfer rule, and, consequently,

we can state the following lemma:

Lemma 1: Starting from any initial assignment (including

the case in which no user is assigned to any access point),

Algorithm 1 always converges to a Nash-stable partition in the

preference order Bi.

Proof: First, Phases I and II of Algorithm 1 are guaranteed

to converge as per [21] and Theorem 1, respectively. Assume

that a partition Πfinal resulting from Algorithm 1 is not Nash-

stable; then there exists a user i ∈ Sa, Sa ∈ Πfinal and a

coalition Sb ∈ Πfinal, such that Sb ∪ {i} Bi Sa, and user i
can transfer from Sa to Sb (given the approval of the SCBSs).

However, this contradicts the convergence result of Theorem 1

and, thus, Πfinal must be Nash-stable.

In a practical network, to implement Algorithm 1, each

macro-station or SCBS will broadcast a pilot signal over a

control channel that contains information on its delay guarantees

and will discover the users using any common technique used

in cellular networks [14]. Meanwhile, the users will monitor

the pilot channel, obtain the delay information and estimate

the PSR to each access point, using standard signal processing
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Fig. 2. Performance, in terms of average utility per user (i.e., R-factor as per
(4)), as the number of users N increases for a network with K = 10 SCBSs.

techniques. The use of such pilot signals for user-to-access-point

interaction is common in many standard wireless systems [1].

Then, the users and access points can build their preferences

based on (8), (9), and (11). Subsequently, the users and ac-

cess points engage in the deferred acceptance method while

signalling their preferences over control channels. The access

points can start finalizing their initial waiting once they note

an absence of new requests. Then, the access points inform the

users of the admitted lists, convey their potential delay using the

pilot signal, and open a window for transfer. Afterwards, users

that are interested in improving their actual rates investigate

potential transfers by monitoring, once again, the pilot signal.

Subsequently, the transfer process can be performed in a manner

analogous to the deferred acceptance procedure. We note that

the transfer process would require pairwise interactions, over

the backbone, between involved access points. With regards to

complexity, although no known results exist for the deferred

acceptance procedure in the general many-to-one case [22],

experimental analysis and complexity bounds suggest that the

algorithm, in general, has a reasonable complexity which mo-

tivates its adoption in several settings [22]. For the transfers

algorithm, the complexity lies in the process of identifying

transfer operations which, from a user’s perspective, has a worst

case complexity of O(M + K). However, the users can, in

practice, look for potential transfers progressively by exploring

some specific network characteristics, e.g., starting with the

closest, or with assistance from the access points.

V. SIMULATION RESULTS AND ANALYSIS

For simulations, we consider a macro-cell network composed

of M = 2 adjacent cells, with each cell being a square area

of 1 km × 1 km with the macro-station at the center. In this

macro-cell network, we randomly deploy the SCBSs and the

users. We set all users’ transmit powers to 20 mW, the noise

plus interference level to an average of −110 dBm (at all access

points), the slot duration to θ = 20 ms, the propagation loss to

α = 3, the modulation scheme used is BPSK, and β = 1. Unless

stated otherwise, the packet size to B = 256 bits and the quota

of the SCBSs is set to a typical value of qk = 4, ∀k ∈ K [1].

The backhaul delay is based on a Pareto distribution with a

Pareto index of 1.16 (80-20 rule) which is known to be one

suitable delay model for backbone traffic [18]. We select the

1 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 : 2 2: 21 23 24 25 26 27 2
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Fig. 3. Worst-case user utility (averaged over random locations of SCBSs and
users) for a network with K = 10 SCBSs as the number of users N varies.

backhaul delay’s scale factors of the SCBSs and macro-stations

as 40 ms and 15 ms, respectively. For services, we select the

G.729 codec; hence υ1 = 12, υ2 = 15 and υ3 = 0.6 [19].

All statistical results are averaged, via about 10, 000 runs, over

possible locations of the SCBSs and users and realizations of

the backhaul delay.

In Fig. 2, we show the average utility per user resulting from

the proposed small cell admissions game, with and without

transfers, for a network with K = 10 SCBSs, as the number of

users N increases. The performance is compared with a best-

PSR algorithm that is commonly used in practical networks [1]

and in which each user selects the access point with the best

PSR while respecting the quotas [1]. Note that this scheme has

been selected for comparison purposes since, to the best of our

knowledge, this paper is the first in the literature that deals

with the assignment problem in the context of uplink small

cell networks and our studied model is significantly different

from those used in classical cellular networks such as in [13]

and [14]. Fig. 2 shows that, as N increases, the performance,

i.e., R-factors as per (4), of all three algorithms decreases,

due to the increasing delay. Fig. 2 demonstrates that, at all

network sizes, the proposed game with and without transfers,

yields a performance advantage over the best-PSR algorithm.

This advantage reaches up to 23% of utility improvement

relative to the best-PSR algorithm at N = 100 users. Also,

Fig. 2 corroborates the fact that the use of transfers presents

an advantage mainly for low-to-medium sized networks, i.e.,

between N = 40 and N = 70. This advantage starts decreasing

beyond N = 70 users, as the quotas start to fill up.

We further assess the performance of the proposed algo-

rithm by showing, in Fig. 3, the average utility achieved by

the worst-case user, i.e., cell-edge users, for a network with

K = 10 SCBSs, as the number of users N varies. Fig. 3

shows that, at all values of N , the proposed admissions game

with and without transfers yields a significant advantage over

the best-PSR algorithm. This advantage is increasing with the

network size N . This is due to the fact that, as more users

are deployed, the proposed admissions game handles efficiently

the preferences of the users and, hence, yields a performance

advantage reaching, for the games with and without transfers,

respectively, up to 93.5% and 50.8% relative to the best-PSR
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Fig. 4. Worst-case user utility (averaged over random locations of SCBSs and
users) for a network with K = 10 SCBSs and N = 60 users as the quota per
SCBS varies.

algorithm, at N = 100 users. Furthermore, Fig. 3 demonstrates

that the use of college transfers significantly improves the

performance of the worst-case user as the proposed game with

transfers has a performance advantage increasing with N and

reaching up to 28.5% relative to the game with no transfers.

Combining this result with the results of Fig. 2 demonstrates

that, as the network size increases, the benefit from using college

transfers is more pronounced for the users experiencing poor

performance and who are more apt to transfer to another access

point, if and when possible.

Fig. 4 shows the achieved average utility for the worst-

case user as the quota per SCBS varies for a network with

K = 10 SCBSs and N = 60 users. In this figure, we can see

that, as the quota increases, the average utility for the worst-case

user increases for all three schemes. This result is due to the

fact that, as the quota increases, the assignment possibilities for

the users increase (even in the best-PSR scheme), and, thus, a

better utility can be achieved. As the quota becomes larger, the

best-PSR algorithm’s performance improves; however, it is still

outperformed by the proposed admissions game at all quotas.

In fact, Fig. 4 demonstrates that, at all quotas, the proposed

admissions game with transfers yields a performance advantage

between 21.4% for a quota of 10 users per SCBS and 51%
for a quota of 2 users per SCBS, relative to the best-PSR

scheme. The advantage of the proposed game is larger for small

quotas which demonstrates the fact that the proposed algorithm

is well-adapted to the resource-constrained nature of small cells.

Fig. 4 also shows that, as the quota increases, the potential for

performing transfers increases, thus improving the advantage

of the game with transfers over the game with no transfers.

This performance advantage reaches up to 15% as the quota is

around 10 users per SCBS.

Fig. 5 shows, for the proposed game with transfers and the

best-PSR scheme, the average number of users that achieve a

certain R-factor level for K = 10 SCBSs and N = 60 users.

The histogram of Fig. 5 clearly shows that the small cell

admissions game enables the shifting of a significant number of

users to better R-factor levels relative to the best-PSR algorithm.

For example, compared to the best-PSR scheme, about 22% of

the networks users improve from an “acceptable” service level

(range of ]60−70]) to a “good” service level (range of ]70−80])
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Fig. 5. A histogram on the number of users within each range of average R-
factor (service quality level) for a network with M = 2 macro-cells, K =

10 SCBSs, and N = 60 users.

  ¡ ¢ ¡ £ ¡ ¤ ¡ ¥ ¡ ¡ ¥   ¡ ¥ ¢ ¡ ¥ £ ¡ ¥ ¤ ¡   ¡ ¡¡¦¥ ¡¥ ¦  ¡  ¦§ ¡
¨ © ª « ¬  ® ¯ © ° ¬  ° ± ¨ ²³ µ́¶·̧µ¹º»¼ µ¶½¾ ¿À µ¶·À¿ ½¹Á Â Ã ¥ ¡ Ä Å Æ Ä °Â Ã   ¡ Ä Å Æ Ä °

Fig. 6. Average number of iterations till convergence of the deferred acceptance
algorithm (Phase I) in Algorithm 1 as the number of users and SCBSs varies.

with a small fraction having a “high” R-factor above 80. Also,

while for the best-PSR algorithm, an average of 10 users have

a poor service quality (R-factor below 60), using the proposed

game, less than 2 users (on the average) experience such poor

service. Hence, the proposed game yields, not only average

utility gains, but also an improved users’ service quality.

Fig. 6 shows the average number of iterations needed for

convergence of the deferred acceptance algorithm in Phase I of

Algorithm 1 as N and K vary. Fig. 6 shows that, for medium

sized networks with N ≤ 50, the average number of iterations

till convergence at K = 10 and K = 20 is comparable.

But, as N increases above 50, we can see in Fig. 6 that the

average number of iterations increases, from about 4 iterations

at N = 20 at all K to around 15.6 and 26.7, for K = 10 SCBSs

and K = 20 SCBSs, respectively (at N = 200). In fact, Fig. 6

shows that, as the number of users becomes large relative to the

number of SCBSs, i.e., at N > 80 for K = 10 SCBSs and at

N > 120 for K = 20 SCBSs, the average number of iterations

becomes almost constant. This is due to the fact that, as N
becomes large relative to M +K, it is likely that each access

point’s preferred users would still submit their applications

at about the same iteration, hence, not requiring many extra

rounds till convergence. Thus, Fig. 6 shows that the deferred

acceptance algorithm presents a reasonable convergence time

and its complexity grows relatively slowly with N and K.

Fig. 7 shows the average utility achieved by each SCBS
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Fig. 7. Performance, in terms of average SCBS utility as per (6), as the packet
size B varies for a network with K = 10 SCBSs and N = 100 users

as per (6) as the packet size B varies for a network with

K = 10 SCBSs. First, we can seen from Fig. 7 that, as B
increases, the average SCBS utility achieved by the proposed

game increases while that of the best-PSR algorithm decreases.

In essence, as B increases, the possibility of having users

experiencing low macro-cell PSRs due to their traffic and

distances from their macro-stations becomes large. As a result,

the proposed game enables the SCBSs to better offload these

users from the macro-station as corroborated by the increase

in the utility with B shown in Fig. 7 (recall from (6) that the

SCBS utility is a function, not only of the users achieved PSR

but also of its potential best PSR with respect to the macro-

cellular network). In contrast, assignments resulting from the

best-PSR algorithm do not account for the SCBSs preferences

at all, as intuitively expected. Fig. 7 shows that the proposed

game presents a significant performance advantage, in terms of

average SCBS utility, increasing with the packet size B and

reaching up to 69% improvement at B = 2048 bits relative to

the best-PSR scheme. In summary, Fig. 7 demonstrates that

the proposed game enables, not only the users to improve

their preferences, but also the SCBSs’ hence ensuring that all

involved decision makers satisfy, as much as possible, their

preference.

VI. CONCLUSIONS

In this paper, we have studied the problem of user assignment

within a small cell wireless network, given the preferences and

capabilities of the three involved nodes: the users, the small cell

base stations, and the macro-stations. To do so, we have for-

mulated a college admissions game with transfers in which the

access points and the users rank one another, in an effort to reach

an agreement over a user-to-access point assignment, given the

nodes’ preferences. We have defined well-suited preferences

that capture the users’ need to optimize their packet success

rates and delays as well as the SCBSs’ incentive to offload

traffic from the macro-cell network and extend its coverage. To

solve the game, we have proposed a two-phase algorithm: a

first phase based on the deferred acceptance algorithm, which

finds a stable matching with R-factor guarantees; and a second

phase, based on coalition formation games, which enables the

users to transfer from one access point to another, when and

if possible. We have shown the convergence of the algorithm

and have discussed the properties of the resulting partition.

Using simulations, we have demonstrated the effectiveness of

our proposed college admissions game with transfer. Future

work can address a number of interesting open questions and

directions, including extending the work to a dynamic-game

setting to handle handovers or enabling the users to simulta-

neously connect to multiple access points (e.g., for diversity)

and to account for advanced communication techniques such as

cooperative communications or interference alignment.
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