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Abstract—Supervised classification algorithms such as Boost-
ing and SVM have achieved significant success in the field
of computer vision for classification and object recognition.
However, the performance of the classifier decreases rapidly if
there are insufficient labeled training samples. In this paper,
a semi-supervised boosting algorithm is proposed to overcome
this limitation. First, a few labeled instances are use to estimate
probabilistic class labels for unlabeled samples using Gaussian
Mixture Models after a dimension reduction step performed via
Principal Component Analysis. Then, we apply a boosting strat-
egy on decision stumps trained using the soft labeled instances
thus obtained. The performances of our strategy are evaluated
on several state-of-the-art classification datasets, as well as on
a pedestrian detection and recognition problem. Experimental
results demonstrate the interest of taking into account additional
data in the training process.

I. INTRODUCTION AND RELATED WORK

In the last decade, machine learning techniques have proven

their interest for vision-based object detection. The success of

these methods own to both the advance in machine learning

and the breakthrough of object descriptors. Advances in image

processing have established local [1] and context-based [2]

features as key approaches for object detection and recognition.

Besides, recent works have shown the great interest of using

Support Vector Machines (SVMs) [3], Boosting [4], Random

Forests [5] and Neural networks [6] for this purpose. Note,

however, that all of these methods are sensitive to the size

of the training set. More precisely, due to the phenomenon

known as ”curse of dimensionality”, the amount of training

data at hand may need to be huge.

In some practical problems there are insufficient labeled

training samples, whereas labeling training data is tedious

and time consuming. Many approaches have been proposed to

overcome this problem by introducing an amount of unlabeled

samples to help construct the classifier. This type of approach

is referred to as semi-supervised learning (SSL) [7]. The

essential idea of SSL is to utilize the knowledge from both la-

beled and unlabeled training samples to build a better decision

boundary between different classes. A number of approaches

have been proposed e.g., self-training [8], co-training [9],

transductive support vector machines [10], graph-based meth-

ods [11], semi-boosting [12], [13], [14] and semi-supervised

Random Forests [15]. In most of the SSL approaches, one

or several semi-supervised assumptions, such as smoothness,

cluster and manifold assumptions, are used to assign pseudo

labels to the unlabeled samples. Then pseudo-labeled training

instances are used to build the classifier. Note that SSL may be

formalized using soft labels [16]: for example, each training

instance may be associated with a probability distribution over

the set of classes. The probability of a given class label may

be interpreted in a frequentist setting as the proportion of

similar training instances having this label. Obviously, 0/1

probabilities may be used when the class label is known with

certainty.

In a way, assigning soft labels to the (unlabeled) training

instances corresponds to integrating some prior knowledge in

the training set. In [17] and [18], the authors propose to design

an objective function before using boosting. Alternatively, soft

labels may be estimated from the distribution of the data. In

[16], soft class labels are estimated using a kernel density

estimation (KDE) approach.

In this work, we use HOG descriptors to obtain training

instances from the raw images. Since clustering techniques are

known to be sensitive to the lack of available data, especially in

high dimensions, we first select a limited amount of relevant

features using PCA. We experimentally show that this step

has very little influence on the clustering step. Then, we fit a

Gaussian Mixture Model (GMM) [19] to the training data, and

we use the posterior probabilities as soft labels. Note that as a

parametric density estimation technique, GMM are known to

be more robust to the lack of training data than kernel density

estimation. Eventually, in the classification step, we propose

to boost decision stumps trained from the probabilistic labeled

training instances [20].

Our paper is organized as follows. Section II presents the

soft label estimation step using PCA and GMM. In Section

III, we remind how probabilistic labels may be used in

decision tree inference, and we present our boosting strategy

for such a base classification algorithm. Section IV details

our experiments. Eventually, we conclude the paper with some

perspectives of work in Section V.

II. SOFT CLASS LABEL ESTIMATION

In our approach, the training data are expressed as D =
DL+DU , where DL and DU are the labeled and unlabeled in-

stances respectively. DL = {(x1, y1), · · · , (xn, yn)} ⊆ X×Y ,

in which xi ∈ R
d stands for the d- dimensions feature

of ith instance, yi ∈ Y is the class label and n is the



number of labeled instances. Here, we only focus on the binary

classification problem, therefore Y = {1, 2}. The unlabeled

samples are expressed as DU = {x1, · · · ,xm} ⊆ X , in

which m is the number of unlabeled instances. We also use

N = m + n to represent the number of all the training

instances.

A. HOG Feature Extraction

HOG features have been recognized as one of the most

significant features for pedestrian detection. Owing to its

excellent performance, it is also widely used for other object

detection in computer vision. As described in [1], the standard

HOG descriptor for a 64*128 window size pedestrian sample

will have 3780 dimension, in which we chose block-size as

16×16, cell-size as 8×8 and block-stride as (8, 8). Compare to

the original image pixels, this high dimension HOG descriptor

is also acceptable. However, according to [3], the extracted

HOG features also include a lot of redundant information.

They have proved that a classifier trained by PCA-based

reduced low dimension features has a similar performance

with the classifier trained with the high dimension features.

Moreover, a lower dimensional features leads to a model with

fewer parameters and speeds up the learning and detection

algorithms. PCA-HOG feature has also been used in [21]

and [22] for pedestrian detection and people counting. In our

approach, we first extract standard HOG descriptors from all

the training samples, then PCA is applied to generate lower

dimension features. Experimental results detailed in Section

IV, show that a PCA-HOG feature with 20−dimension can

achieve good clustering results.

B. GMM based Class Label Estimation

A Gaussian Mixture Model (GMM) is a parametric density

estimation technique, in which the distribution of the data is

supposed to be a mixture of g multivariate Gaussians:

p(x|Ψ) =

K∑

k=1

θkN (x|µi,Σi) (1)

where, θk is the prior probability of the kth component of

the model satisfying that
∑K

k θk = 1 and θk > 0; x

is a d−dimensional data feature. Each component model is

parametrized by a d×1 mean vector µk and a d×d covariance

matrix Σk. Classically, a set of unlabeled instances is consid-

ered, and maximum likelihood estimates of the parameters are

computed using the EM algorithm [23], [24]. This algorithm

considers, for each instance xi, g latent (random) variables

zik indicating from which component the instance was gen-

erated. Given a set of initial parameters Ψ = {θk,µk,Σk},

k = 1, . . . ,K, the algorithm iterates two successive steps:

• in the E step, the expectation of zi is computed given the

current fit of the parameters: πik = θkN (x|µk,Σk)∑g

l=1
θlN (x|µl,Σl)

.

• in the M step, new estimates of the parameters are

computed.

When labeled instances are available, the corresponding latent

variables are assumed to be known, and the expectations

πik need not to be estimated. The advantage of using such

labeled instances is twofold. First, they can be used to compute

(nontrivial) starting values for the parameters. Furthermore,

they may guide the algorithm towards a desired solution. After

the optimal parameters (Ψo = {θok, µ
o
k,Σ

o
k}) of the GMMs

model have been obtained, the optimal posterior probabilities

of the unlabeled samples for both classes can also be computed

via Bayes formulas:

p(yi = k|xi) =
θokN (x|µo

k,Σ
o
k)∑2

l=1 θ
o
l N (x|µo

l ,Σ
o
l )

For the covariance matrices Σ, both diagonal and full co-

variance matrices have been investigated in our study. A GMM

using diagonal matrices typically need less training data and is

faster than a GMM with full matrices. The experimental results

given in Section IV, also show that the diagonal matrices

outperforms the full matrices for the class label estimation.

III. SEMI-SUPERVISED BOOSTING WITH PROBABILISTIC

LABEL

After obtaining class probabilities for all the unlabeled

samples, our classification problem can be expressed in the

following form: D = {(x1,π1), · · · , (xN ,πN ), where πi =
{πi,k}, k = 1, 2, πi,k = P̂ (Y = k|x) being the probabilistic

label estimated by GMM for class k.

A. Soft Decision Tree

Decision stumps are commonly used as base classification

algorithm (or weak learner) in boosting algorithm for object

detection. Here, we describe how such classifiers (and more

generally decision trees) may be trained using probabilistic

labeled data. More details may be found in [20], [18]. We

remind that this classification algorithm aims at classifying

the data by splitting the feature space into subsets. For a

given node, the frequency of each class is first estimated, as

the proportion of the instances belonging to this class falling

into the node. Then, the Gini index is computed over this

distribution of frequencies. The index thus obtained may be

used to evaluate the quality of a split. Let sd be a candidate

split value according to the dth feature (instances such that

xd
i < sd, resp. xd

i ≥ sd, thus fall in the left-hand child

node, resp. right-hand one). Then, the best split is the one that

maximizes the purity criterion of both left-hand and right-hand

children.

In the case of probabilistic labeled instances, the Gini index

may still be used: indeed, the frequencies of the classes are

obtained by averaging the probabilistic labels of the instances

falling into the node. In the following text we take this soft

decision stump as the weak learner algorithm.

B. Soft Label based Boosting

Boosting aims at training an accurate classifier (or strong

learner) by combining a number of simple classifiers (or weak

learners). Each weak learner is chosen so as to optimally

reduce the training error. In this paper, we focus on the

AdaBoost algorithm [25] for binary classification problems



here. In AdaBoost, the decision H(x) made by the strong

learner for a given instance x is obtained by combining the

weak learners outputs ht(x) ∈ {0, 1} in the following way:

H(x) =

{
1,

0

if
∑T

t=1 αtht(xi) ≥
1
2

∑T

t=1 αt

otherwise

where αt > 0 the weight of the tth weak learner (t =
1, . . . , T ), and T is the number of weak learners. During the

training process, a set of weights are assigned to the train

samples. In order to use the soft labeled training instances

in the AdaBoost algorithm, several parts should be modified:

1) the weak learner should be able to handle both hard and

soft labeled training instances, 2) the classification error of

the weak learner should be computed for both hard and soft

labeled samples. The first issue may be tackled using the soft

decision tree algorithm in Section III-A. In the following, we

will introduce how to calculate the classification error for soft

labeled instances.

The cost-weighted misclassification error for instance x

can be written as:

EY |X=xL(y|ht(x)) = η(x).Iht(x)≤0.5 + (1− η(x)).Iht(x)>0.5

(2)

where Icondition stands for the indicator function (it is equal to 1

if the condition given is met, and 0 otherwise). In Eq. (2), we

only consider the probability of class 1 estimated by the GMM,

noted as η(x) = P̂ (Y = 1|x) (since we consider a two-class

problem, the probability of class 2 is directly deduced). In

the boosting algorithm, we need to compute the classification

error ǫ(t) for each weak learner, which we define as a weighted

version of the misclassification cost:

ǫ(t) =
1

N

N∑

i=1

wt
i .ǫxi

(3)

where wt
i is the weight associated with instance xi at the tth

iteration, and ǫxi
= πi1Iht(xi)<0.5+(1−πi1)Iht(xi)≥0.5 is the

misclassification cost for instance xi. Note that der(xi) is also

used for updating the weight wt
i along the iterations of the

boosting algorithm:

wt+1
i = wt

iβ(t)
1−ǫxi (4)

where β(t) is defined as β(t) = ǫ(t)
1−ǫ(t) . Eventually, the weight

αt of the weak learner is classically defined as αt = log 1
β(t) .

Algorithm 1 summarizes the main steps of our soft label based

boosting algorithm.

Remark that the proposed soft label based boosting algo-

rithm can take both hard and soft labeled samples as inputs. If

all the samples are hard labeled, it degrades into the original

AdaBoost algorithm. Note furthermore that an instance with a

probabilistic label close to the uniform probability distribution

will have a significant classification error even if it is well

classified. This reflects the difficulty to learn from instances

from uncertain information. In order to let the classifier focus

on the training instances classified with confidence, we set the

initial weights of the instances to w1
i = 2 ∗ abs(πi1 − 0.5).

Algorithm 1 Soft label based Boosting algorithm.

Inputs:Training data (xi,πi), i = 1, · · · , N , πi,1 = P̂ (yi =
1|xi). T , number of weak learners, weak learner

algorithm .

Initial: sample weight vector: w1
i = 2 ∗ abs(πi,1 − 0.5).

For t=1:T

1) Normalization sample weight: wt
i =

wt
i∑

N
i=1

wt
i

;

2) Call WeakLearner with distribution wt
i , get back a

hypothesis ht : X → {0, 1};

3) Calculate the expected classification error for sample xi:

ǫxi
= πi,1Iht(xi)≤0.5 + (1− πi,1)Iht(xi)≥0.5

4) Calculate the expected error for weak learner t:

ǫt =

N∑

i

wt
i .ǫxi

5) Set β(t) = ǫt
1−ǫt

and αt = log 1
β(t) ;

6) Update new weight to each sample:

wt+1
i = wt

i .β(t)
1−ǫxi

end
Output:The final decision:

H(xi) =

{

1,

0,

if
∑

T

t=1
αt.ht(xi) ≥

1

2

∑

T

t=1
αt

otherwise

For a hard labeled sample, the initial weight is 1, while a 0
initial weight will be given to a sample who has equal classes

probabilities.

IV. EXPERIMENTS AND ANALYSIS

A. Performance of Probabilistic Label Estimation

In order to evaluate the performance of the GMM based

probabilistic class labels estimation, we test our algorithm on

the CVC [26] and INRIA [1] pedestrian dataset. The CVC

dataset has 3172 positive (pedestrian) and 15150 negative

(non-pedestrian) samples while the INRIA dataset has 3542

positive and 4560 negative samples (randomly extracted from

the negative images). In these experiments, all the samples

are randomly separated into labeled and unlabeled with a

ratio value γ, which is defined as: γ = m

n+m
, where, n and

m represent the number of labeled and unlabeled samples

respectively. First, the HOG features [1] are computed for each

sample, then PCA is applied to reduce the features dimension

to a lower one denoted as d. In this experiment, we also

compare the GMM performances with diagonal and full co-

variance matrices. Details about the two different experiments

are described below:

• Experiment 1: Only CVC dataset is used. The γ values

range from 0.15 to 0.95. At each value, four different

feature dimensions d have been used.

• Experiment 2: Both the CVC and INRIA datasets are used

in this experiment. We always consider the samples from
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Figure 1: Performances of GMM based probabilistic class

labels estimation.

the CVC dataset as the labeled data. Then we randomly

divide the INRIA dataset into two parts with a ratio γ.

We keep a proportion of γ as the unlabeled data, while

the rest is considered as labeled data.

In order to evaluate the performance of the label estimation,

we use a simple and rough method. A class label with the

highest probability is assigned to each unlabeled sample. All

the experiments have been repeated five times, and the average

error rate is defined as: F−ave = mmis

m
, where, mmis is the

number of samples that have been misclassified by the GMM.

Fig. (1) describes the average error rates of the two exper-

iments. In the figure, the solid and dotted lines represent the

results with full and diagonal covariance matrix respectively.

In experiment 1, the full matrix performs a little better than

the diagonal matrix when there are enough labeled samples,

but it decreases rapidly with the decreasing of labeled samples.

However, the diagonal matrix keeps stable with the decreasing

of labeled samples. In the experiments 2, we have found

something different. The performance of the diagonal matrix

highly depends on the feature dimension, and we obtained that

the diagonal matrix together with 20−dimension feature gives

the best result.

Fig. (2) shows more details about the GMM based probabil-

ity label estimation results. Here, due to space limitations, we

just show the results in experiment 2 with d = 20 and λ = 1.0.

The red and blue columns represent the actual class of the
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Figure 2: Distribution of estimated probabilistic class labels.

sample that can be positive or negative. The X-axis values are

the estimated probabilities of a sample obtained by the GMMs

model. In order to properly display the distribution of the

estimated class probabilities, we uniformly divide interval [0, 1]
(the class probability belongs to [0, 1]) into 10 equal parts and

record the number of samples falling into each sub-interval.

The Y-axis represents the ratio of the samples that fall into

the corresponding sub-interval. From Fig. (2), we can see that

the full matrix works well for the positive samples compared

to the diagonal matrix. However, it gives worse performances

for the negative samples, especially when some of them have

been set with high probabilities for the incorrect class (left-

most side of Fig. (2)-(b)). Compared to the full matrix, one can

notice that the diagonal matrix gives an eclectic result. It has a

weaker ability to classify the positive samples while it makes

less clustering errors on the negative samples. Additionally, the

diagonal matrix gives less average error for all the samples (see

in Fig. (1)).

B. Pedestrian Recognition

We also took the INRIA pedestrian dataset to evaluate

the algorithm for pedestrian recognition. Firstly we randomly

separated the data into training and testing with a ratio 3 : 1.

Then we randomly selected a part of the training data as the

labeled sample and left the remaining data as unlabeled data.

We followed the method in [1] to represent each sample by a

3780−dimensional HOG feature. Then a PCA has been applied

to the resulting vector to obtain a 20−dimension feature for

each sample. Guided by the labeled samples, the probabilistic

class labels for unlabeled training samples are estimated by

GMM using the EM algorithm. Here, the reduced 20− di-
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Figure 3: Recognition rates of four different classifiers. We

choose T = 500 for all boosting classifiers in this experiment.

mension features are only used for estimating the soft class

labels. In boosting algorithm, the original HOG features are

used for recognition. The AdaBoost algorithm is used as the

baseline and is trained with few labeled samples. Four different

kinds of classifiers have been designed in this experiment: 1)

classifier 1 is a classical AdaBoost classifier trained using only

few labeled samples, 2) classifier 2 is a GMM classifier using

both the labeled and unlabeled samples, 3) classifier 3 is the

proposed semi-supervised boosting classifier trained using all

the hard and soft labeled samples, 4) classifier 4 is also the

proposed semi-supervised boosting classifier trained using all

the labeled and some selected unlabeled samples. Classifier 1,

3 and 4 use stump decision tree as the weak learner. Hard label

decision tree is used in Classifier 1, while soft decision tree is

applied in both Classifier 3 and 4.

All the experiments have been repeated five times and we

calculated the average recognition rate to draw the Fig. (3).

From this figure, we can see that the recognition rate of

Classifier 1 (blue line) increases obviously with the increasing

of labeled training samples, however, the recognition rate of

Classifier 2 does not increase with the increase of the labeled

samples. The green line represents the performance of Clas-

sifier 3. Although it increases with the increasing of labeled

samples, it gives worse performance than Classifier 1 which

has been trained using only few labeled samples. Through

additional experiments we found that the weak performance

of Classier 3 is mainly caused by the training samples who

have been assigned with wrong probabilistic class labels. The

GMM can give the right probabilistic class label for most of

the unlabeled samples, while it also gives wrong label to some

training samples. These wrong probabilistic labeled samples

have a great influence on the recognition rate of Classifier 3.

In order to reduce this negative effect, we should remove

some of unlabeled samples with wrong probabilistic labels.

A effective strategy has been proposed as: we can predict

the class labels for all the unlabeled training samples using

GMM method (Classifier 2) and at the same time we can

also predict another class label for each unlabeled training

sample using Classifier 1 (because it is trained using only

the labeled samples). For an unlabeled sample, we consider

its probabilistic class label is reliable if its predicted class

labels from Classifier 1 and 2 are consistent. Otherwise, it

is considered as unreliable. Classifier 4 is trained using all

the labeled samples and some selected unlabeled samples with

reliable probabilistic class label. Although our strategy was

not to get rid of all the wrong probabilistic samples from the

training data, it still improve the recognition rate obviously.

This improvement can be seen from the red line of Fig. (3). By

comparing the red and blue lines in Fig. (3), we can find that

our proposed boosting algorithm with additional soft labeled

sample gives a better recognition rate than AdaBoost trained

with only labeled samples.

C. Data Classification

In order to evaluate the proposed semi-supervised boosting

algorithm further, we test our approach on public binary

classification datasets in the LibSVM repository [27]. Four

different dataset have been chosen to test our algorithm. A

general description of the data is in the following table.

Dataset Size of the data Attribute dimension

Australian 690 14

Diabetes 768 8

Heart 270 13

Ionosphere 351 34

As in the previous section, all the data have been randomly

divided into training and testing data with a proportion 3:1.

In the training data, a small part of the training samples are

selected as labeled samples and the rest are considered as

unlabeled samples. In this experiment, only three classifiers

are designed: 1) classifier 1 is a classical AdaBoost classifier

trained using only few labeled samples, 2) classifier 2 is a

GMM classifier using both the labeled and unlabeled samples,

3) classifier 3 is the proposed semi-supervised boosting classi-

fier trained using all the labeled and some selected unlabeled

samples and the selection strategy is the same as in Sec. IV-B.

For each dataset, the ratio of labeled samples changed from

0.05 to 0.55. Fig. (4), show the classification rate of the four

different datasets in each sub-figure respectively. From the

figure we can easily find that our proposed semi-supervised

boosting algorithm (red line) has a higher classification rate

than classical AdaBoost algorithm (blue line) most of the

time. The additional unlabeled samples help to improve the

classification rate in our semi-supervised boosting algorithm.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a semi-supervised boosting

algorithm that uses few labeled samples and an amount of

unlabeled samples. Our approach provides a novel framework

to take hard and soft labeled samples into the boosting al-

gorithm. In this paper, the soft class labels of the unlabeled

samples are estimated from GMM using the labeled samples.

Experimental results on public datasets have shown that the

performance of a boosting classifier could be improved by

adding soft labeled samples. We also have found that PCA-

based HOG features dimension reduction has a little influence
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Figure 4: Classification rate of four different Dataset. All the

experiments have been repeated 50 times. We choose T = 100
for all boosting classifiers in this experiment.

on the results of probabilistic class labels estimation. This

interesting phenomena makes it is possible to estimate soft

class labels for pedestrian samples with HOG features. Finally,

the results show that the recognition rate can be improved by

adding an amount of soft labeled samples.

On the other hand, the soft class labels could be replaced

by other prior information. In the future, we plan to design

our approach to improve the classifier’s performance by using

additional samples with weak prior knowledge (e.g., human

beliefs or uniform class probabilities). For the pedestrian

detection problem, we can apply our approach to improve a

generic pedestrian detector (which is trained on one or several

generic public datasets) by adding plentiful unlabeled samples

from some specific scenes.
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