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Abstract—In this paper we focus on the evaluation of the de-
formable part model (DPM) proposed by Felzenszwalb et al. [10]
in the context of vision-based people detection in heavy machines
applications. The proposed system uses a single fisheye camera to
provide a wide field-of-view (FOV) at low cost. However, the fisheye
optical distortions present several difficulties for image processing and
object recognition. The DPM approach shows important flexibility
when dealing with varying object’s form. It gives good performances
on people detection when images present strong fisheye distortions.
Base on the analysis of DPM in the context of fisheye image, we
proposed an adaptive detector which is more suitable.

Index Terms—Heavy machines, pedestrian detection, de-
formable part model, fisheye images, histogram of oriented
gradients, latent support vector machine.

I. INTRODUCTION

Construction sites are considered as a high risk working
environment. People who work near heavy machines are
constantly at risk of being struck by a working machine
or its components. Accidents between machines and people
represent a significant contribution to construction health and
safety hazards. It is hard for drivers to keep watching all
around their vehicle and fulfill their productive task at the same
time, due to the complicated shapes of these machines. It is
therefore mandatory to develop an advanced driver assistance
systems (ADAS) to help the driver monitor the surrounding
area and being able to raise a pertinent alarm when people are
threatened. Therefore the main required functionality by such
ADAS is the people detection. Notwithstanding many years
of progress, safety system for people working around heavy
machine is still an unresolved issue.

To solve the problem of safety on heavy machine, various
kinds of sensors have been tested and compared, individually
or combined. Range sensors, like radar, Light Detection And
Ranging (Lidar) and ultrasonic [1], which have good perfor-
mance in detecting obstacles, are usually unable to distinguish
between objects and people. Heavy machines often work in
complicated terrains with a lot of nearby objects. In these
situations, range sensors will trigger a permanent alarm, which
is useless and annoying for the drivers. The last commonly
used sensor is the camera. It offers the best option as a low-cost
and polyvalent sensor. Moreover, computer vision and image
processing tools provide the ability to recognize various kinds
of objects, including people.

Recently, people detection systems on automobile, which
share a lot of characteristics with the context of heavy ma-
chines, has known important progresses. Although the prob-
lematic is similar in both contexts, we can clearly distinguish
between the two. In the automobile field, cars need to stop
if there is an obstacle, no matter if it is a pedestrian or an
object. The task of recognizing people is more important for
heavy machines where the main requirement is human’s safety.
Besides, cars often operate at a higher speed and on straight
ways. While it is important for the system on automobile
to be able to detect people at far distances, heavy machines
need a larger field of view (FOV) to cover the nearby area.
Construction machines often have a complicated shape and
large size, which can also benefit from the large FOV. This
reason encourages us to use fisheye camera as the main
sensor in our system. Objects detection in fisheye images
is challenging. Unlike in perspective images, the appearance
of objects captured by these cameras is strongly distorted.
Wrapping the image into a local perspective image is the direct
way to avoid non-perspective deformations. Unfortunately,
besides adding computational load, this approach also creates
undesirable effects. Daniilidis et al. [6] and Bülow [4] are
the first researchers who argued that the warping of wide-
angle images should be avoided. Recently, there are others
researchers who proposed approaches to increase matching
rate of Scale-invariant feature transform (SIFT) for wide-angle
images [11], [15].

On the other side, the Deformable Parts Model (DPM) of
[10] and its variants have recently gained a lot of attentions
in object detection and recognition. The approach performs
especially well in detecting people in hard conditions. Indeed,
they are the winners of some recent Pascal-VOC detection
challenges [8], [9] and have obtained the best scores in others
benchmark [7]. This approach can be considered as the current
state of the art methods. The DPM can represent an object
model with different parts floating around their reference
locations and finding the optimal part-configuration at every
root position. This elegant way of representation brings a lot
of benefit in detecting a person in different postures.

Our contribution in this paper lies in the evaluation of the
DPM approach in the context of strong radial distortions in
fisheye images. The analysis focus on the influence of different



types of training dataset and in comparing the images features
used in the DPM approach with the histogram of oriented
gradient of Dalal and Triggs [5]. A fisheye images dataset in
the context of heavy machine has also been created for testing
purposes. A DPM-based people detector, adapted to fisheye
images is proposed as the result of all the analysis. The paper
is organized as follows. First, a brief description of the DPM
is presented in section II. Section III discusses the model of
fisheye camera and proposes an adaptive DPM-based detector.
The evaluation results are presented in section IV. Conclusions
and perspectives of our work will be presented in section V.

II. THE DEFORMABLE PART MODEL

We are mainly interested in 2 contributions proposed in the
DPM framework: the feature vector reduction method and the
deformable model trained by the latent SVM method. This
section will recall the main ideas and clarify some details of
these two methods in our research.

A. Histogram of oriented gradient dimensionality reduction

Histogram of oriented gradient (HOG) is undoubtedly the
most used image feature in people recognition. The feature
used in the DPM is a derived version. In this approach, the
authors use the Principal Component Analysis (PCA) to justify
the reduction of dimension of the HOG vector. In this paper, we
call it reduced-HOG feature to distinguished from the classical
HOG of Dalal and Triggs [5], denoted as conventional-HOG.
Most of the parameters of the reduced-HOG are the same as
the conventional-HOG. One cell includes 8 × 8 pixels, one
block includes 4 cells and the number of angular bins of the
vector gradient is 9.

Let C(i, j) the feature vector corresponding to the his-
togram of one cell before the block normalization. One cell
belongs to 4 blocks around it (Fig. 1 left). For each block, the
HOG vector of 9 cells C(i, j) is normalized with a different
factor called gradient energy of the block Nδ,γ = (‖C(i, j)‖2+
‖C(i+ δ, j)‖2 + ‖C(i, j + γ)‖2 + ‖C(i+ δ, j + γ)‖2 with
δ, γ ∈ {−1, 1}. The conventional-HOG vector represents one
cell after normalization and is thus a 36-dimensional vector,
where each 9 dimensions corresponds to one normalization
block (Fig. 1 and Eq. 1).

H(i, j) =

 H(i, j)−1,−1

H(i, j)+1,−1

H(i, j)+1,+1

H(i, j)−1,+1

 =

 C(i, j)/N−1,−1(i, j)
C(i, j)/N+1,−1(i, j)
C(i, j)/N+1,+1(i, j)
C(i, j)/N−1,+1(i, j)

 (1)

By applying PCA, Felzenszwalb et al. [10] proposed that
the 36-dimensional feature vector of one cell can be reduced
to 11 without sacrificing important information. For the reason
of simplicity, a method of projection to reduce the dimension
of HOG vectors has been proposed (Fig. 1-right). The reduced
vector includes 9 dimensions that correspond to 9 angular-bins
and 4 dimensions that reflect the overall gradient energy in
different areas around the cell C(i, j). The 9 bins in the HOG
vector are normally contrast-insensitive. Felzenszwalb et al.
suggest empirically that the detection performance on some

Figure 1: The dimensional-reduced-HOG computation process: Normaliza-
tion blocks around one cell in HOG (left). Transformation projection to reduce
dimension of the dimensional reduced HOG (right).

object categories is improved using contrast-sensitive features,
while other benefits from contrast-insensitive information [5].
Therefore they suggested the use of 31 dimensions feature
vector (9 bins contrast-insensitive + 18 bins contrast-insensitive
+ 4 gradient energy).

B. Deformable part model

The deformable parts model is the most important contri-
bution of the DPM over the conventional HOG. In the simple
model of the conventional-HOG, the score of the detector can
be considered as a scalar product between the feature map
Φ(x) and a vector of parameter β:

fβ(x) = β.Φ(x) (2)

where β is defined through the training process.
In the part-based model:

fβ(x) = max
x∈Z(x)

β.Φ(x, z) (3)

where the latent variable z = (p0, p1, ..., pn) with pi =
(xi, yi, li) is the specification of ith-part configuration at the
position xi, yi and scale li. The purpose of the training process
in the latent SVM process is also to learn the vector of the
model parameters β = (F0, P1, ..., Pn, b) where F 0 repre-
sents the root filter model and Pi = (Fi, vi, di) corresponds
to the parameters of different parts. Fi is denoted as the filter
model of part i, vi is the anchor position of ith-part in the
image frame and di is the deformation features, a 4D-vector
of coefficients, corresponding to x, y, x2, y2.

The idea behind the deformable part model is to represent
the object of interest model using a lower-resolution “root”
template F 0, and a set of spatially flexible higher-resolution
“part” template Pi = (F i,vi,di). Each part captures local
appearance properties of an object, and the deformations
are characterized by the deformation costs. The deformation
cost is calculated by a quadratic equation characterized by 4
coefficients di. This equation and the optimal positions of each
part in the model are obtained through the training process.
Once the vector β is defined, the score of one object hypothesis
can be computed as [10]:

score(p0, p1, ..., pn) =
n∑
i=0

F i.φ(H, pi)−
n∑
i=1

di.φd(dxi, dyi) + b (4)

where H is the feature pyramid and φ(H, pi) denotes the
vector obtained by concatenating the feature vectors in the
format of ith-part filter. (dxi, dyi) = (xi, yi)−(λ(x0, y0)+vi)



gives the displacement if the ith-part relative to its anchor po-
sition and the deformation features are typically φd(dx, dy) =
(dx, dy, dx2, dy2).

III. DPM ON FISHEYE IMAGE

A. Calibration model and field of deformation calculation

Wide-angle cameras have noticeable geometric distortions.
While these distortions may be artistically interesting, it is
generally desirable to remove them in many applications in
computer vision. The geometric distortions include two major
components: radial and tangential. Radial distortion causes
image points to be translated by an amount proportional to
their radial distance to the optical center. Tangential distortions
(or decentering distortion) are generally less significant than
radial distortions and are produced by the misalignment of the
optical centers of various lens elements.

Given a real point P = (X,Y, Z)T , the undistorted point
projected on the image sensor will be represented as p =

(u, v)T =
(
X fx

Z , Y
fy
Z

)T
with fx and fy the focal lengths

of the camera optic. In the case of a wide-angle camera, the
position of the distorted point on the image is given by:

p̃ =

(
ũ
ṽ

)
= p+ δp+ p0 (5)

where δp =

(
δu
δv

)
=

(
δu(r) + δu(t)

δv(r) + δv(t)

)
is the approximated

distortion and p0 = (u0, v0) is the principal point of the
camera. δu(r), δv(r) represent radial distortions and δu(t), δv(t)

are the tangential distortions along the two image axes.
Among different distortion models, the standard polynomial

model is the most popular [13]. In this paper, the standard
polynomial model of third degree is used:(

δu(r)

δv(r)

)
=

(
ũ(k1r

2
d + k2r

4
d + k3r

6
d)

ṽ(k1r
2
d + k2r

4
d + k3r

6
d)

)
(6)

(
δu(t)

δv(t)

)
=

(
2p1ũṽ + p2(r2d + 2ũ2)
p1(r2d + 2ṽ2) + 2p2ũṽ

)
(7)

The optimal values of (fx, fy, u0, v0) and
(k1, k2, k3, p1, p2) are estimated through a calibration
process. It is a prerequisite for any accurate geometric
measurements from image data. Most of calibration methods
use known geometric patterns, such as corners, dots, circles,
lines and other features that can be easily extracted from
images. The method described in [12] and implemented in
[2] was used in our work.

B. Adaptive DPM-based model

Two main remarks can be drawn from the observation of
the appearance of a person in fisheye images:
• The distortion in wide-angle camera is not identical over

all the image area. It is particularly strong at close range
and at the image boundaries.

• The distortion of body’s part is minor compared to the
full-body appearance.

Starting from these observations and our understanding of the
DPM (described in section II-B), we propose the following
improvements:
• Since the DPM approach has good performance on people

detection on perspective images, it should have equally
good performance in detecting the person at a long
distance to the camera in the fisheye context.

• In the extreme-cases, when people are staying very close
and at the border of the camera FOV, we will have low
response of the root-filters F0 but equally high response
on part-filter Fi. We could adjust the deformation features
di and vi (see Eq. 4) to adapt the deformable part model
to the radial distortion. This adaptation will depend on
the position of the object in the FOV of the camera.
We have also noticed that the radial distortions have
minor effects on small local region because the relative
dislocation between neighbor-points is small. Once the
anchor positions vi is well defined, the deformation
features di are not sensitive to distortions.

The second assumption has been developed into an adaptive
DPM-based approach where we relocate the anchor position
of each part in the deformation model. Wide-angle optics are
very different from one to another. Given the height hc of the
camera, an approximate size (W × H) of a person and his
position angle θ and distance d to the camera, the center point
of the person is given by

P0 =

 X0

Y0

Z0

 =

 d sin θ
H − hc
d cos θ

 (8)

The center point pi of the ith part in the model on a
perspective image is defined by pi = p0 +vi. Given a trained
DPM model with the root filter of size (w × h), the center
position pi of each part can be converted into a 3D position
as

P i = P0 + vi.

 W/w
H/h

1

 (9)

Both points P0 and P i can be projected on the fisheye
image using the camera projection equation and a given
distortion model as p̃0 and p̃i (section III-A). The distortion
of the fisheye optics can therefor be taken into account by
an estimate of the displacement of each part relatively to
the root part. We define ∆ṽi = p̃i − p̃0. The score of one
object hypothesis (Eq. 4) in the adaptive model will have
(dxi, dyi) = (xi, yi) − (λ(x0, y0) + vi + ∆ṽi) gives the
displacement if the ith− part relative to its anchor position.
The displacement of each part ∆ṽi depends on the position of
the person in the camera coordinate so it evolves in function of
the position of root filter and the scale in the feature pyramid.
Value of ∆ṽi can be computed offline and saved into lookup
tables. In online detection, this approach intervenes in the final
score computing using responses from the root by adding one
lookup table operation. The computing cost of this adaptation
is actually insignificant.



(a) (b)

(c) (d)

Figure 2: Our proposed sensors system. The Lidar Hokuyo UTM-30LX (a)
and its horizontal field of view (b). The camera PointGrey Firefly MV (c) and
its example image (d)

IV. ANALYSIS, EXPERIMENTS AND RESULTS

The dataset and the evaluation protocol are presented in
sections IV-A and IV-B. Our analysis on testing the DPM
approach in the context of fisheye images, begin with mod-
ifying the training database. The mix-training-dataset method
[3] combined with the DPM are also taken into consideration.
The dimensional-reduced-HOG is thorough evaluated in term
of computational resource and performance. We also present
the result of the adaptive DPM-based approach proposed in
section III.

A. The dataset

Datasets take a very important role in the process of the
development of a detection algorithm. A well defined dataset
is not only useful for evaluating the approach but it also takes
part in the training process to improve the performance of
the detector. To the best of our knowledge, there are no others
available dataset which provides at the same time synchronized
fisheye images and LIDAR data. The LIDAR data provide
precisely the distance of all objects present in the FOV. These
data can be combine with the image sequence to lower the
computation time of the detection algorithm and to reduce
the false detection rate. The heavy machine context has some
characteristics: outdoor light conditions, strong vibrations, and
the presence of brutal shocks might make the detection process
much harder. There are essential needs for a new dataset in
order to identify conditions under which current detectors fail
and focus the effort on these difficult cases.

The proposed dataset consists of images captured from
one fisheye camera (Point Grey Firefly MV USB2.0), one
conventional camera (Sony PlayStation Eye for PS3) and
one range-sensor (LIDAR Hokuyo UTM-30LX-EW). The used
sample frequencies are 10Hz for both cameras and 40Hz for
the LIDAR (Fig. 2).

Figure 3: Top: Real image of the acquisition system setup in the configu-
ration 1. Bottom: Sensor configurations map: h = 110cm and H = 210cm

These data are taken on board of a telescopic-forklift,
namely a Bobcat-TL470, as shown in Fig. 3 (a professional
driver has been recruited to operate the machine during the
experiments). In most of the data sequences, the machine
moves on a clear terrain. The scenarios defined within the
experiment aim to simulate frequently meet situations on
a construction site. People wore different kind of clothes,
including helmet, reflective vests and civil clothes. Different
situations of occlusion were also simulated. We defined 3
configurations sensors’ positions denoted by 1, 2 and 3 as
illustrated in Fig. 3. In the first configuration, all the sensors
are in front of the machine at position 1. In configuration 2, we
move the fisheye camera to position 2, pointing down to the
ground with an angle of 30°. In the last configuration, the three
sensors are positioned at the rear of the machine, at position
3.

The experiments are divided into 4 setups and 6 scenarios.
All of the scenarios are pre-defined and took place under
security control. The first three setups correspond to the three
configurations of the system (Fig. 3). The acquisitions in the
last setup were performed after sunset in order to simulate very
low light conditions. The main source of light comes from the
headlights of the machine in this experiments. In these lighting
conditions, the reflective safety clothes appears with a high
contrast on the image. Therefore it is an important image cue.

B. Evaluation protocol

The detection system takes an image and returns bounding
boxes with corresponding scores or confidence indicators. A
detected bounding box A and a ground truth bounding box
B form a match if they have a sufficient overlap area. In
the PASCAL challenge [9], the overlap criterion between the
two bounding box A and B is t = A∩B

A∪B > t0 where t0 is a
threshold. t0 = 0.5 is considered reasonable and is commonly
used. The protocol of evaluation is adapted from the tool
of Dollár which was used in [7]. As the context of heavy
machines requires reducing the false detection rate, the results
are presented in miss rate against false positive per image
(FPPI). Only bounding boxes with a height more than 50 pixels
are considered in the evaluation. Each detected bounding box



Training dataset Positive samples Negative sample
Inria 1371 samples from 614 images 1218 images

Inria-mix 1371 samples from 614 images 1218 images
fisheye 1520 samples from 810 images 1202 images

Table I: Training datasets characteristic

may be matched once with the ground truth and redundant
detections are considered as false positives (FP).

We plot miss rate versus FPPI (lower curves indicate
better performance) by varying the threshold of the detector.
Decreasing the threshold level results in reducing the miss
rate but in increasing the false positive per image rate. At a
given FPPI, it is easy to compare the performance of different
detectors. The log-average miss rate is used to summarize de-
tectors’ performance. The log-average miss rates is computed
by averaging miss rate at nine FPPI evenly spaced in log in
the range 10−2 to 100 (for curves that end before reaching
a given FPPI rate, the minimum miss rate achieved is used).
When curves are somewhat linear in this range, the log-average
miss rate is similar to the performance at 10−1 FPPI [7], [14].
The displayed legend entries are ordered by log-average miss
rate from the worst to the best.

In the scope of our analysis, 3 different training datasets
were taken into consideration: Inria [5], Inria-mix and Fisheye
(see table I). The fisheye images (presented in section IV-A)
are partially annotated and split into a train set and a testing
one. The annotation for the ground truth of these image
sequences are done by the labeling tool of Dollár et al. This
tool requires the bounding box around objects in some key-
frames and provides linear interpolation to infer the bounding
boxes of the same object in intermediate frames. The objects
can be labeled, in our case as: “person”, “person sitting” and
“occluded”. The Inria-mix set have been build based on the
Inria set. Starting from a training dataset without distortions,
we replaced randomly 50% of undistorted images by distorted
ones. The latter are simulated at different distortion angles.
The total number of positive and negative sample images in the
new training dataset is the same as the original one. For more
details about the process of artificially generating distorted
image samples, the reader is referred to [3].

The notation of different detectors used in this paper is
based on the name of the dataset used for training, the name
of the features extraction method and the name of the detection
algorithm. The testing dataset has 7 image sequences of 5747
fisheye images.

C. Results

a) The conventional HOG vs the dimensional reduced
HOG : In terms of computational cost, the reduction of the
feature vector dimension improves slightly the speed of the
DPM. From 36 to 32-dimentional vector, the gain is not
significant. As a result, we observed a gain of about 8% in
detection time (measured using 100 images at resolution VGA
480× 640 on a PC).

The results shown in Fig. 4 are inconsistent. While the
conventional-HOG feature works better with Inria and Inria-

Figure 4: Detection performance of the dimensional-reduced-HOG vs the
conventional-HOG using the root-filter only (left) and using the DPM approach
(right).

mix training dataset, the reduced-HOG features seems to work
better when fisheye images are used for training. The com-
bination of contrast-insensitive and contrast-sensitive features
does not give any benefit in the general case. Contrast-sensitive
features may be helpful when the object to background contrast
does not change sign. This is the case for example, when
the background color is always darker than the reflective-
vest. The goal of the DPM approach is to detect numerous
kind of objects so combining contrast-sensitive with contrast-
insensitive in the feature vector is a relevant solution.

b) The influences of the training dataset: The first
experiment involves the DPM approach trained with 3 different
datasets: Inria, Inria-mix and Fisheye Dataset. The differences
between the model trained with Inria and Inria-mix is not
visually noticeable (Fig. 6) but there is a small boost of
performance on the detection results (Fig. 5 left). This result
conforms with the conclusion in [3]. Enriching the training
dataset can handle the distortion on the people’s appearance,
even with the DPM approach.

Unfortunately, there is a trade-off between the image quality
and the amount of distortion added to the training examples.
This process has the drawback of introducing missing pixels
that have to be filled by interpolation. This phenomenon is
proportional to the amount of distortion and it has bad effects
on the performance of the detector. In practice, image samples
simulated at an angle superior to 60◦ are unusable because
the samples loose most of image details. The result of Inria-
mix detector in this experiment is the best that we can obtain
from the mix-training-dataset approach. The degradation of
image quality during the distortion process affects remarkably
the performance of the detection. The model trained by 100%
distorted sample images gives an unrecognizable person model
and in experiment, the detector does not work at all.

In the perspective camera model, the HOG responses are
strong on silhouette contours, especially the head, shoulders
and feet [5]. Based on this observation, the DPM defines the
anchor position of parts at the high respond region of the root
filter. In the case of the fisheye detector model, although we
can recognize the silhouette contours of a person but there are
very little correlation between the perspective person root-filter
and the fisheye person root-filter. The learned spatial model



Figure 5: Detection performance of the DPM approach trained with different
datasets(left) and the Adaptive DPM-based approach (right).

(a)

(b)

(c)

Figure 6: Visualization of DPM models trained with different datasets. From
left to right: Inria, Inria-mix, Inria-full-distorted and Fisheye. (a) The coarse
root-filter. (b) All the higher resolution part-filters superposed on the root-
filter. (c) The spatial model of the location of each part relative to the root.

with anchors position defined by the root filter is thus different.
Notice also the correspondence between human body parts and
the model parts is not clear anymore.

It is worth mentioning that in the case of the fisheye
detector, training and test images are extracted from the same
dataset. The images were captured with the same camera and
configuration. All these conditions improve the performance of
the fisheye detector. Taking into account these remarks, we still
believe that the classifier can learn to adapt to radial distortions.

c) Adaptive DPM-based model: Here, instead of enrich-
ing the perspective training dataset by simulating fisheye type
of distortions, we aim at taking into account the distortion in
the detection model. The result in Fig. 5-right show a minor
improvement in performance. Our proposed adaptive model
show an advantage only on extreme case. In fact, even in
the most extreme case, the dislocation of part’s anchor ∆ṽi

is smaller than 40% of the root filter’s size. Meanwhile, the
distortion cost is calculated in the local region up to 80% root
filter’s size around the anchor point. When the response of the
part-filter Fi is high, the value will be propagated far enough
to take part into the model. Relocating the anchor position is
therefore only useful in difficult cases of a weak filter response.

V. CONCLUSIONS

Given that the DPM has a very good performance in
detecting and recognizing objects on perspective images, we
built a fisheye image dataset and evaluated the DPM approach
in the context of people detection on fisheye images. It turned
out that the deformable models can handle very well the strong
radial distortions. We believe that it is possible to build an
adaptive DPM-based detector which can solve the problem
of object detection in all kinds of non-conventional cameras
with known calibration information. The experiments on the
proposed method show improvement in performance. One of
the drawbacks of all DPM-based approaches is the heavy
computational cost. We tent to improve it by combining the
camera with a range sensor (Lidar or ultrasonic) to reduce the
region of detection on the image. Indeed, this simple combina-
tion is helpful in accelerating the detection and reducing false
positives in complex texture backgrounds.
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