

Bank insolvency risk and time-varying Z-score measures Laetitia Lepetit, Frank Strobel

▶ To cite this version:

Laetitia Lepetit, Frank Strobel. Bank insolvency risk and time-varying Z-score measures. Journal of International Financial Markets, Institutions and Money, 2013, 25, pp.73 - 87. 10.1016/j.intfin.2013.01.004 . hal-01098721

HAL Id: hal-01098721 https://hal.science/hal-01098721

Submitted on 28 Dec 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Bank insolvency risk and time-varying Z-score measures

Laetitia Lepetit

LAPE, Université de Limoges

Frank Strobel

Dept. of Economics, University of Birmingham

Abstract

We compare the different existing approaches to the construction of timevarying Z-score measures, plus an additional alternative one, using a panel of banks for the G20 group of countries covering the period 1992–2009. We examine which ways of estimating the moments used in these different approaches best fit the data, using a simple root mean squared error criterion. Our results are supportive of our alternative time-varying Z-score measure: it uses mean and standard deviation estimates of the return on assets calculated over full samples combined with current values of the capital-asset ratio, and is thus straightforward to implement.

JEL classification: G21

Key words: insolvency risk, Z-score, time-varying, mean squared error

January 8, 2013

1. Introduction

The Z-score is a risk measure commonly used in the empirical banking literature to reflect a bank's probability of insolvency. It is generally attributed to Boyd and Graham (1986), Hannan and Hanweck (1988) and Boyd et al. (1993), and plays an important role in the assessment of both individual bank risk as well as overall financial stability. Its use in cross-sectional studies has become widespread due to its simplicity and the fact that it can be constructed using only accounting information; in contrast to market-based risk measures, it is also applicable to the substantial number of unlisted financial institutions. Starting with work by Boyd et al. (2006), Hesse and Čihák (2007) and Yeyati and Micco (2007), it is now also increasingly being implemented as a time-varying measure in panel studies. Despite this growing popularity, there appears so far to be a certain lack of consensus on what the best way of constructing such time-varying Z-score measures might be.

In this paper, we discuss the time-varying Z-score measures in use so far and propose a related alternative one; we then compare these measures using data on commercial, cooperative and savings banks for the G20 group of countries covering the period 1992–2009. We further examine which of the various ways of estimating the moments used in the different approaches to the computation of these time-varying Z-score measures best fit the data, using a simple root mean squared error criterion. Our results overall support the use of the alternative time-varying Z-score measure we propose, which uses mean and standard deviation estimates of the return on assets that are calculated over the full sample and combines these with current values of the capital-asset ratio. This approach to the construction of time-varying Z-score measures is furthermore straightforward to implement and does not drop initial observations, an inherent problem with rolling moments approaches.

Section 2 discusses the different approaches to the construction of timevarying Z-score measures considered, Section 3 evaluates them for a panel of commercial, cooperative and savings banks for the G20 group of countries, and Section 4 concludes the paper.

2. Different approaches to time-varying Z-score measures

To discuss the different approaches to the construction of time-varying Z-score measures currently in use in the literature, let us first recapitulate the established rationale for the use of Z-score measures more generally. As is common in the literature, we define bank insolvency as a state where $(car + roa) \leq 0$, with *car* being the bank's capital-asset ratio and *roa* its return on assets. Then, if *roa* is a random variable with mean μ_{roa} and finite variance σ_{roa}^2 , Hannan and Hanweck (1988) and Boyd et al. (1993) point out that the Bienaymé-Chebyshev inequality allows us to state an upper bound of the probability of insolvency as

$$p(roa \le -car) \le Z^{-2} \tag{1}$$

where
$$Z \equiv \frac{car + \mu_{roa}}{\sigma_{roa}} > 0$$
 (2)

The Z-score Z defined in Equation (2) is thus inversely related to an upper bound of the probability of insolvency $p(roa \leq -car)$, even for the weakest of distributional assumptions.¹

¹Strobel (2011) derives a related upper bound of the probability of insolvency for the special case where the bank's distribution of returns is unimodal.

The implementation of Z-score measures for cross-sectional analysis is largely uncontroversial; by comparison, the construction of time-varying Zscore measures to be used in panel analysis may appear less straightforward. However, it is sufficient to reiterate that the probabilistic interpretation of Z-score measures implies that μ_{roa} and σ_{roa} are moments of the distribution of roa that are possibly time-varying and need to be estimated as $\mu_{roa,t}$ and $\sigma_{roa,t}$ for time periods t. On the other hand, (-car) is simply a "safety first" level of returns (in the spirit of Roy, 1952) delimiting the insolvency case; it could therefore plausibly be made directly time-varying using current period t values of car_t , or otherwise be represented by its mean $\mu_{car,t}$ which then would also need to be estimated for time periods t. Taking those two elements together would thus suggest time-varying Z-scores of either of the two following forms

$$Z_t = \frac{car_t + \mu_{roa,t}}{\sigma_{roa,t}} \quad \text{or} \quad Z_t = \frac{\mu_{car,t} + \mu_{roa,t}}{\sigma_{roa,t}} \tag{3}$$

The various approaches to the construction of time-varying Z-score measures currently in use in the literature, together with their first exponents, can then be classified as follows:

- Approach Z1: Boyd et al. (2006, section III.A) use moving mean and standard deviation estimates $\mu_{car,t}(n)$, $\mu_{roa,t}(n)$ and $\sigma_{roa,t}(n)$ (with window width n = 3) that are calculated for each period $t \in \{1 \dots T\}$.
- Approach Z2: Yeyati and Micco (2007) use moving mean and standard deviation estimates $\mu_{roa,t}(n)$ and $\sigma_{roa,t}(n)$ (with window width n = 3) that are calculated for each period $t \in \{1 \dots T\}$, and combine these with current period t values of car_t .

- Approach Z3: Hesse and Čihák (2007) use standard deviation estimates σ_{roa} that are calculated over the full sample $[1 \dots T]$, and combine these with current period t values of car_t and roa_t .
- Approach Z4: Boyd et al. (2006, section III.B) use what might be called "instantaneous" standard deviation estimates $\sigma_{roa,t}^{inst} = |roa_t - \mu_{roa}|$, where the mean estimate μ_{roa} is calculated over the full sample $[1 \dots T]$, and combine these with current period t values of car_t and roa_t .

Clearly, all these approaches are consistent with the probabilistic interpretation of Z-score measures discussed above. A further approach that is also consistent with this interpretation, but does not seem to have been used in the literature so far, would be

• Approach Z5: One could use mean and standard deviation estimates μ_{roa} and σ_{roa} that are calculated over the full sample $[1 \dots T]$, and combine these with current period t values of car_t .

Which of these five approaches to constructing time-varying Z-score measures is then most appropriate in a given context is an inherently empirical question and will depend on the data under consideration; we will examine this issue further in the following section.

3. Evaluating different time-varying Z-score measures for the G20 countries

We now examine how the different ways of computing time-varying Zscore measures discussed in Section 2 compare when taken to the data. To this end, we examine a dataset of commercial, cooperative and savings banks for the G20 group of countries extracted from BvD Bankscope, covering the period 1992–2009. We manually clean for obvious outliers/erroneous data, and retain for each bank j the longest contiguous run of observations T_j while imposing a minimum of five observations; we end up with data for 14658 banks with an average of 10.4 years of observations. Table 1 gives a breakdown of the number of banks in our sample by country and bank type.

In Table 2 we give descriptive statistics of the five different time-varying Z-score measures. We observe three distinct clusters amongst these measures, consistently for all banks, for all three types of bank and for all G20 countries. Z1 and Z2 are very similar, with average means and standard deviations of these measures, as calculated per bank, in a medium range with an average coefficient of variation of 1.1. Z3 and Z5 are also very close to each other, with average means and standard deviations in a generally lower range and an also rather low average coefficient of variation of 0.1. Z4, on the other hand, gives results that are very different from the other measures, with average means and standard deviations in a much higher range, even running to four digits in the case of the US, and a much larger average coefficient of variation of 2.2. These three clusters are confirmed when examining the average correlation coefficients of these different measures, as presented in Table 3. In order to better understand the markedly different behavior of Z4, we examine some descriptive statistics of the components of these timevarying Z-score measures in Table 4. We note that the "instantaneous" standard deviation estimates $\sigma_{roa,t}^{inst}$ used in the calculation of Z4 can obtain extremely small values compared to the other measures, particularly for the

case of the US, leading consequently to potentially very large values of Zscores and quite substantial volatility in these measures, as observed in Table 2.

[Insert Tables 1–4]

We then take our investigation further by examining which of the various mean and standard deviation estimates that are used to compute the timevarying Z-score measures Z1–Z5 best fit the data, in the sense of producing minimum one-period-ahead forecast errors. Given the rather short time dimension of our panel, we opt for a simple root mean squared error (RMSE) criterion to evaluate which of the proposed approaches to calculate the means $\mu_{car,t}$ and $\mu_{roa,t}$ best fit the data. For this we explore which of the different estimates² $\mu_{car,t}^{est} \in {\mu_{car,t}(2), \mu_{car,t}(3), \mu_{car,t}(4), \mu_{car,t}(5), \mu_{car}, car_t}$ and $\mu_{roa,t}^{est} \in {\mu_{roa,t}(2), \mu_{roa,t}(3), \mu_{roa,t}(4), \mu_{roa,t}(5), \mu_{roa}, roa_t}$, respectively, minimize the (weighted) average RMSE of the N banks j given by

$$\sum_{j=1}^{N} \frac{T_j}{\sum_{j=1}^{N} T_j} \sqrt{\frac{1}{T_j} \sum_{t=1}^{T_j} \left(car_{j,t} - \mu_{car,j,t-1}^{est} \right)^2}$$
(4)

$$\sum_{j=1}^{N} \frac{T_j}{\sum_{j=1}^{N} T_j} \sqrt{\frac{1}{T_j} \sum_{t=1}^{T_j} \left(roa_{j,t} - \mu_{roa,j,t-1}^{est} \right)^2}$$
(5)

Note that we also examine rolling windows of size two, four and five in addition to the one of three most used in the literature previously.

²As defined in Section 2, moving mean estimates $\mu_{car,t}(n)$, $\mu_{roa,t}(n)$ (with window width n) are calculated for each period $t \in \{1 \dots T\}$, the mean estimates μ_{car} , μ_{roa} are calculated over the full sample $[1 \dots T]$, and car_t , roa_t are current period t values.

Finding a realized volatility measure is unfortunately much less straightforward when relying on (mostly annual) accounting data than in other contexts, where higher frequency data can normally be used to calculate these. We opt to rely on the "instantaneous" standard deviation estimates $\sigma_{roa,t}^{inst} = |roa_t - \mu_{roa}|$ introduced previously to represent realized volatility, and thus investigate which of the different standard deviation estimates³ $\sigma_{roa,t}^{est} \in \{\sigma_{roa,t}(2), \sigma_{roa,t}(3), \sigma_{roa,t}(4), \sigma_{roa,t}(5), \sigma_{roa}, \sigma_{roa,t}^{inst}\}$ minimizes the (weighted) average RMSE of the N banks j given by

$$\sum_{j=1}^{N} \frac{T_j}{\sum_{j=1}^{N} T_j} \sqrt{\frac{1}{T_j} \sum_{t=1}^{T_j} \left(\sigma_{roa,j,t}^{inst} - \sigma_{roa,j,t-1}^{est}\right)^2}$$
(6)

Results are presented in Tables 5–7; all these measures are calculated for the full sample of all G20 countries, and then further broken down by bank type and individual country. We also test whether the average RMSE are significantly different from the minimum ones using two-sided paired t-tests.

We find that current values of the capital-asset ratio car_t provide the lowest average RMSE for the full sample of G20 countries, for commercial, cooperative and savings banks, and all individual countries in the sample (Table 5). We further observe that the mean of the return on assets as calculated over the full sample (μ_{roa}) provides the lowest average RMSE for the full sample of G20 countries, for commercial and cooperative banks, and all countries in the sample except China, Indonesia, Turkey and the USA

³Analogously to footnote 2, moving standard deviation estimates $\sigma_{roa,t}(n)$ (with window width n) are calculated for each period $t \in \{1 \dots T\}$, whereas the standard deviation estimate σ_{roa} is calculated over the full sample $[1 \dots T]$.

(Table 6). Current values of the return on assets roa_t , on the other hand, give, or are indistinguishable from, the lowest average RMSE for these particular four countries, and savings banks overall. Lastly, the standard deviation of the return on assets as calculated over the full sample (σ_{roa}) provides the lowest average RMSE for the full sample of G20 countries, for all three bank types, and all individual countries except Turkey and Indonesia, the latter of which however gives results that are indistinguishable across all measures (Table 7).

Taken together, these results overall support the use of the time-varying Z-score measure Z5, which uses mean and standard deviation estimates of the return on assets that are calculated over the full sample and combines these with current values of the capital-asset ratio. For specific subsamples, such as savings banks, or banks in China, Indonesia or the USA, the time-varying Z-score measure Z3, which uses standard deviation estimates of the return on assets calculated over the full sample together with current values of the capital-asset ratio and the return on assets, might be more appropriate given our results. This is consistent with our previous observation that these two measures do in fact behave very similarly for the sample under consideration (see Tables 2 and 3). Both measures have the added advantage of allowing the construction of time-varying Z-scores that are available over the full sample; this compares favorably with the rolling moment approach used in measures Z1 and Z2, which requires some initial observations to be dropped. Lastly, they also represent very straightforward approaches to implement, making them practical yet well-founded ways of constructing time-varying Z-score measures for a wide range of empirical issues in the banking and financial

stability related literature.

[Insert Tables 5–7]

4. Conclusion

We discussed and compared different approaches to the construction of time-varying Z-score measures in use in the literature, proposing a related alternative one; for this we used a panel of commercial, cooperative and savings banks for the G20 group of countries covering the period 1992–2009. We also explored which ways of estimating the moments used in the different approaches to computing these time-varying Z-score measures best fit the data, using a simple root mean squared error criterion. Our results were overall supportive of the use of the alternative time-varying Z-score measure we proposed: this measure uses mean and standard deviation estimates of the return on assets that are calculated over the full sample and combines these with current values of the capital-asset ratio, making it a very straightforward measure to implement in the assessment of individual bank insolvency risk and financial stability more generally. This measure furthermore displays a fairly low level of intertemporal volatility on a per bank level, consistently for all three types of bank and for all G20 countries, stressing the importance of avoiding the introduction of potentially "spurious" volatility in the construction of such time-varying bank insolvency risk measures more generally.

References

- Boyd, J., De Nicoló, G., Jalal, A., 2006. Bank risk-taking and competition revisited: new theory and new evidence. IMF Working Paper 06/297, Washington DC: International Monetary Fund.
- Boyd, J.H., Graham, S.L., 1986. Risk, regulation, and bank holding company expansion into nonbanking. Quarterly Review - Federal Reserve Bank of Minneapolis 10, 2–17.
- Boyd, J.H., Graham, S.L., Hewitt, R.S., 1993. Bank holding company mergers with nonbank financial firms: effects on the risk of failure. Journal of Banking & Finance 17, 43–63.
- Hannan, T.H., Hanweck, G.A., 1988. Bank insolvency risk and the market for large certificates of deposit. Journal of Money, Credit and Banking 20, 203–211.
- Hesse, H., Čihák, M., 2007. Cooperative banks and financial stability. IMF Working Paper 07/02, Washington DC: International Monetary Fund.
- Roy, A.D., 1952. Safety first and the holding of assets. Econometrica 20, 431–449.
- Strobel, F., 2011. Bank insolvency risk and Z-score measures with unimodal returns. Applied Economics Letters 18, 1683–1685.
- Yeyati, E.L., Micco, A., 2007. Concentration and foreign penetration in Latin American banking sectors: impact on competition and risk. Journal of Banking & Finance 31, 1633 – 1647.

	Commercial	Cooperative	Savings	Total number	Average
	banks	\mathbf{banks}	banks	of banks	obs.
					per bank
Argentina	3	0	0	3	14.3
Australia	42	1	0	43	10.5
Brazil	144	2	0	146	9.5
Canada	59	20	3	82	10.2
China	13	1	0	14	9.5
France	267	100	30	397	11.2
Germany	248	1319	595	2162	11.5
India	66	6	0	72	11.7
Indonesia	16	0	0	16	9.9
Italy	182	512	64	758	11.5
Japan	152	521	1	674	11.1
Korea	28	2	2	32	9.9
Mexico	34	0	0	34	10.0
Russia	236	0	0	236	6.3
Saudi Arabia	11	0	0	11	14.2
South Africa	24	0	0	24	10.5
Turkey	39	2	0	41	7.4
UK	190	0	5	195	11.2
USA	8666	14	1038	9718	10.2
Total	10420	2500	1738	14658	10.4

Table 1. Number of banks by country and type for G20 countries and period 1992–2009 $\,$

 $\mathbf{Z1}$ $\mathbf{Z2}$ Z3 $\mathbf{Z4}$ Z5Mean St.dev. Mean Mean St.dev. Mean St.dev. Mean St.dev. St.dev. \mathbf{per} \mathbf{per} \mathbf{per} per per \mathbf{per} \mathbf{per} \mathbf{per} per \mathbf{per} bank G20 banks 174192175195454.918454126454.5Mean 389981 St.dev. 342634349646 7717174118 7717Min 0.810.0760.290.0570 0.370 0.0750 1 13180 23926 13121 24796 4789 17542.10E + 074.70E + 074789 1753Max Commercial banks 123120 120 37 37 4.2 4.5381879 Mean 123St.dev. 171316170306 422013215 39519 4220Min 1.1 0.11.60.380.0570 0.370 0.0750 Max 5921 122585939 125372017 17541338834 4015505 2017 1753Cooperative banks 326 402 332 412 73 5.8540 1095 74 5.4Mean St.dev. 601 1060 61510881558.94144 11260 1559 Min 1.50.151.20.290.250.0440.510.60.90.1213180 23926 13121 463650 4789 Max 24796 4789249142438 249Savings banks Mean 257321261328 515.612486 27917 515.4St.dev. 483 10345001065566.1504253 1127557 566.2Min 0.810.0761 0.30.430.0590.650.220.360.0628961 19434 9789 19654 1361 109 2.10E + 074.70E + 071360 110Max Argentina 36 Mean 57 565248 20 5.244 20530 66 294.7St.dev. 81 797363 4.452Min 7.14.67.64.92.1254.52.11.2Max 1501481371205410120975410Australia 73 74 74 76 21 5.293 126 204.8 Mean 8585 154.8124189154.7St.dev. 1511514.74.10.0570.130.550.380.140.29Min 1.41.5Max 529960 53296366245297116623Brazil 38 3538 37 14 4.2104 183 14 3.8 Mean 38 5339 57145.15011075 145.1St.dev. Min 2.50.642.70.850.110.491 1 0.180.115609 Max 21035122536287 561217588 55Canada Mean 95919592315151234314.7St.dev. 9419393 196296.8329618296.80.690.610.0003 Min 6.74.38.7 4.90.570.70.47Max 691 1662694 16901745828524787 17357China Mean 15512814812541111692594111113St.dev. 10298105249 184316249.3322236121.422121.9Min 1918370 35437935895670 980 95Max 3434France 1531613939Mean 1431477.52484637 St.dev. 165317173336 458.210052054458.10.731.61.1 0.460.481.90.380.520.17Min 1.1Max 12263547 1274 3763 411 7316750 2877341072Germany 8.6 4435681209 8.3 Mean 45358389 607 89 690 St.dev. 1335713137917644091195917644440.280.850.0910.12 Min 2.51.40.371.50.530.3910104 23926 24796 4789 1754142438 463650 4789 Max 11051 1753India 3.8Mean 94101102120284.21111792897181147327 41176391413.8St.dev. 3.8100.822.20.25Min 5.211 6 2.54.53.4Max 5011178 1108 2652303 251141 2866 30425

Table 2. Descriptive statistics of different time-varying Z-score measures (calculated per bank), for G20 countries and period 1992—2009

Indonesi	ia									
Mean	73	59	74	59	35	5.4	213	362	35	4.9
St.dev.	43	32	43	32	31	4.7	378	834	31	4.5
Min	30	18	32	16	5.9	1.5	22	9	6.3	1.3
Max	210	120	203	114	130	21	1526	3367	130	20
Italy	210	120	200	111	100	21	1020	0001	100	20
Moon	191	194	120	129	20	4.2	254	528	20	2.0
Mean Ct. 1	101	104	129	102	- 39 - 90	4.0	204	020 0001	- 39 - 00	3.9 2.C
St.dev.	130	294	133	288	20	3.3	102	2001	20	3.0
Min	2	0.36	1.6	0.29	0.47	0.044	1.2	0.31	0.075	0.13
Max	1831	5980	1825	5957	260	42	11514	28167	260	43
Japan										
Mean	179	265	181	268	28	3.2	241	535	28	2.6
St.dev.	575	994	574	991	32	2.9	1219	3778	32	2.9
Min	1.5	0.15	1.2	0.4	0.25	0.31	0.51	0.65	0.13	0.11
Max	13180	21419	13121	21312	229	39	24914	78574	229	38
Korea	•						•			
Mean	45	54	44	54	10	2.5	121	212	10	1.8
St dev	35	106	35	106	89	11	345	690	9	1.0
Min	35	0.75	4.3	17	0.11	0.78	0.37	1.6	0.28	0.23
Mor	109	616	4.5	1.7 617	26	5.5	1076	2020	0.20	4.5
Max	192	010	194	017	- 30	0.0	1970	9999	51	4.0
Mexico	49	50			10	~ 0	60	01	10	5.0
Mean	43	52	44	55	13	5.6	68	91	13	5.2
St.dev.	53	92	53	90	12	7	118	156	12	7
Min	5.7	2.6	5.2	2.9	2	0.8	4.2	3.5	2.1	0.39
Max	277	495	256	462	64	38	689	862	64	38
Russia										
Mean	88	95	83	83	31	7.8	613	1009	31	7.6
St.dev.	379	753	307	562	35	12	6995	12110	35	12
Min	6.3	0.63	6.2	0.89	2	0.28	5.7	2.9	2.3	0.14
Max	5808	11568	4669	8620	283	107	107441	185991	283	107
Soudi A	rabia	11000	1005	0020	200	101	101111	100001	200	101
Moon	101	164	192	164	- 0.2	28	00	101	02	0.0
Mean	121	104	123	104	20	2.0	00	101	20	2.2
St.dev.	82	151	88	155	21	1.9	82	(5 10	21	2
Min	54	50	54	47	5.2	1.5	19	18	5.2	0.81
Max	324	456	352	489	83	8	308	243	83	8.1
South A	frica									
Mean	102	108	104	111	31	5.3	137	194	31	4.9
St.dev.	149	235	156	257	33	4.7	180	306	33	4.8
Min	10	5.9	10	2.8	1.7	1.3	5	3	1.7	0.83
Max	722	1159	771	1282	122	21	762	1368	122	20
Turkev	•						•			
Mean	33	27	32	28	13	3	60	81	13	2.4
St dev	25	27	24	20	14	วัง	158	273	14	2.1
Min	20	17	24	0.07	0.71	0.40	15	0.75	0.28	0.31
Mor	108	1.7	104	115	64	0.49	1.022	1740	64	0.51
Max	100	100	104	110	04	9.0	1022	1740	04	0.0
United h	Aingdom	162	0.0	161		0.1	101		00	
Mean	100	103	99	104	28	6.1	191	414	28	5.7
St.dev.	157	246	159	250	29	5.2	644	2059	29	5.3
Min	2.1	0.31	2.5	1	0.6	0.1	1.8	0.91	0.3	0.14
Max	1959	2903	2005	2949	210	29	6379	23688	210	30
USA										
Mean	127	120	128	121	39	4	2574	5810	39	3.7
St.dev	147	281	147	281	34	4.3	213705	478636	34	4.4
Min	0.81	0.076	1	0.3	0.43	0	0.65	0	0.36	0
May	5921	12258	5939	12537	576	149	$2.10E \pm 0.05$	$4.70E \pm 07$	576	150
TATOL	0041	12200	0000	12001	010	1 T <i>U</i>		101 101	010	100

The time-varying Z-score measure Z1 uses three-period moving mean and standard deviation estimates $\mu_{car,t}(3)$, $\mu_{roa,t}(3)$ and $\sigma_{roa,t}(3)$; Z2 uses moving mean and standard deviation estimates $\mu_{roa,t}(3)$ and $\sigma_{roa,t}(3)$, combined with period t values of car_t ; Z3 uses standard deviation estimates σ_{roa} calculated over the full sample, combined with period t values of car_t and roa_t ; Z4 uses "instantaneous" standard deviation estimates $\sigma_{roa,t} = |roa_t - \mu_{roa}|$, where the mean estimate μ_{roa} is calculated over the full sample, combined with period t values of car_t and roa_t ; Z5 uses mean and standard deviation estimates σ_{roa} is calculated over the full sample, combined with period t values of car_t and roa_t ; Z5 uses mean and standard deviation estimates μ_{roa} and σ_{roa} calculated over the full sample, combined with period t values of car_t .

Table 3. Average correlation coefficients of different time-varying Z-score measures (calculated per bank), for G20 countries and period 1992-2009

	Z1	Z2	Z3	Z4
G20 banks				
Z2	0.98			
Z3	0.12	0.17		
Z4	0.13	0.13	0.11	
Z5	0.068	0.11	0.91	0.092
Commercial banks	01000	0111	0101	0.001
72	0.98			
73	0.12	0.17		
74	0.12	0.13	0.11	
Z4 75	0.12	0.15	0.11	0.080
Cooperative banks	0.054	0.11	0.5	0.003
	0.00			
72 72	0.99	0.15		
	0.12	0.15	0.14	
24 75	0.15	0.15	0.14	0.11
	0.11	0.14	0.93	0.11
Savings banks	0.00			
Z2	0.99			
Z3	0.13	0.17		
Z4	0.1	0.098	0.095	
Z5	0.093	0.13	0.93	0.081
Argentina				
Z2	0.93			
Z3	-0.11	0.093		
Z4	0.14	0.27	0.52	
Z5	-0.2	0.0017	0.95	0.41
Australia				
Z2	0.96			
Z3	0.18	0.26		
Z4	0.2	0.22	0.16	
Z5	0.13	0.22	0.9	0.14
Brazil				
72	0.92			
 Z3	0.068	0.21		
Z4	0.18	0.2	0.14	
Z5	0.041	0.2	0.9	0.13
Canada	01011	0.12	010	0.10
79	0.08			
73	0.50	0.13		
23	0.057	0.13	0.020	
24 75	0.15	0.14	0.029	0.018
Chino	0.0078	0.079	0.91	0.010
	0.07			1
Z2 72	0.97	0.00		
Z3	0.13	0.22	0.070	
Z4	0.082	0.1	0.058	0.040
Z5	0.16	0.25	0.97	0.042
France		-		1
Z2	0.97			
Z3	0.11	0.18		
Z4	0.11	0.12	0.12	
Z5	0.09	0.17	0.96	0.12
Germany				
Z2	0.99			
Z3	0.1	0.12		
Z4	0.13	0.13	0.11	
Z5	0.096	0.12	0.93	0.091

India				
Z2	0.96			
Z3	0.22	0.22		
Z4	0.094	0.1	0.11	
Z5	0.19	0.2	0.94	0.1
Indonesia				
Z2	0.99			
Z3	0.23	0.29		
Z4	0.02	0.026	0.32	
Z5	0.21	0.27	0.98	0.3
Italy				
Z2	0.98			
Z3	0.0069	0.053		
Z4	0.096	0.1	0.13	
Z5	-0.0086	0.037	0.94	0.11
Japan				
Z2	0.98			
Z3	0.34	0.37		
Z4	0.17	0.18	0.27	
Z5	0.31	0.35	0.9	0.19
Korea	-	•	•	•
Z2	0.99			
Z3	0.47	0.5		
Z4	0.36	0.35	0.23	
Z5	0.46	0.49	0.89	0.26
Mexico			•	
Z2	0.94			
Z3	0.3	0.39		
Z4	0.31	0.35	0.3	
Z5	0.26	0.36	0.96	0.28
Russia				
Z2	0.91			
Z3	0.11	0.28		
Z4	0.27	0.32	0.16	
Z5	0.047	0.23	0.92	0.15
Saudi Arabia				
Z2	1			
Z3	-0.076	-0.062		
Z4	-0.0052	-0.0099	-0.088	
Z5	-0.073	-0.051	0.89	-0.097
South Africa				
Z2	0.97			
Z3	-0.086	-0.022		
Z4	0.24	0.24	0.064	
Z5	-0.11	-0.046	0.95	0.057
Turkey			-	
Z2	0.93			
Z3	0.092	0.21		
Z4	0.019	0.076	0.36	
Z5	0.045	0.17	0.9	0.33
United Kingdom				
Z2	0.93			
Z3	0.019	0.13		
Z4	0.063	0.082	0.098	
Z5	0	0.11	0.94	0.11
USA		Γ	•	Γ
Z2	0.99			
Z3	0.12	0.16		
Z4	0.12	0.12	0.096	
Z5	0.05	0.093	0.9	0.078

Definitions of time-varying Z-scores Z1-Z5: see Table 2.

Table 4. Descriptive statistics of components of time-varying Z-scores, for G20 countries and period $1992\mathaccurrencement 2009$

	car_t	roa_t	σ_{roa}	$\sigma_{roa,t}^{inst}$	$\sigma_{roa,t}(3)$
G20 banks					
Mean	10.84	0.78	0.72	0.54	0.36
St. dev.	10.11	2.76	1.97	2.03	1.38
Min	0	-165.83	0.002	1.2e-07	0.000049
Max	100	193.57	72.47	176.21	91.97
Commercial ba	nks				1
Mean	12.06	0.95	0.86	0.65	0.43
St. dev.	11.04	3.03	2.12	2.21	1.49
Min	0	-165.83	0.0038	1.1e-06	0.0003
Max Commention 1 a	100	193.57	66.91	170.21	91.30
Moon	111KS 7 29	0.26	0.27	0.2	0.16
St dov	1.32	0.50	0.27	0.2	0.10
Min	4.52	-17.02	0.04	3.0e-06	0.00077
Max	100	17.54	8.55	16.48	10.33
Savings banks					
Mean	9.25	0.44	0.58	0.44	0.27
St. dev.	9.18	2.95	2.27	2.3	1.61
Min	0	-104.43	0.0044	1.2e-07	0.000049
Max	100	153.16	72.47	135.09	91.97
Argentina					
Mean	36.27	-0.73	3.39	2.71	2.09
St. dev.	31.58	3.98	1.77	2.71	2.08
Min	3.77	-14.43	1.29	0.25	0.08
Max	95.61	6.4	5.56	12.35	7.68
Australia	0.99	0.47	1.04	1 10	0.69
Mean	9.23	0.47	1.84	1.19	0.62
St. dev.	11.84	(.33 151 9	0.05 0.072	0.8	3.74
Max	100	-151.2	45.43	136.24	70.25
Brazil	100	10.09	40.40	150.24	10.25
Mean	20.17	2.12	3.23	2.36	2.02
St. dev.	18.39	5.81	4.03	4.59	3.98
Min	0.3	-97.18	0.07	0.00024	0.013
Max	99.52	58.15	36.23	92.25	57.28
Canada					
Mean	11.38	1.05	2.18	1.43	0.97
St. dev.	16.03	8.06	7.28	7.47	5.7
Min	0.45	-14.26	0.04	0.00051	0.0008
Max	100	193.57	55.72	176.21	91.36
China	20.51	0.71	0.55	0.44	0.95
Mean St. dow	20.51	0.71	0.55	0.44	0.20
Min	23.92	0.95	0.49	0.0	0.073
Max	99.46	4.28	1.6	4.36	2.59
France	00.10	1.20	1.0	1.00	2.00
Mean	10.39	0.64	0.94	0.7	0.47
St. dev.	12.82	3.65	2.11	2.21	1.48
Min	0	-79.92	0.03	0.000079	0.0004
Max	99.75	66.18	31.77	58.18	33.91
Germany					
Mean	6.11	0.28	0.26	0.19	0.14
St. dev.	6.5	1.47	1.19	1.27	0.96
Min	0	-111.32	0.002	3.0e-06	0.000049
Max	100	100.98	35.23	96.67	55.08
India	7 59	0.94	0.00	0.47	0.99
st dow	(.53 7 0	0.84	0.62	0.47	U.33 0 52
Min	0.06	-6 65	0.05	0.75	0.00 0.00073
Max	98 55	-0.00	3 50	6.03	1
TITON	00.00	0.00	0.00	0.00	Ŧ

Indonesia					
Mean	16.72	1.88	1.07	0.82	0.54
St. dev.	11.3	2.03	1.13	1.32	0.7
Min	3.87	-5.16	0.15	0.0012	0.04
Max	69.28	16.98	4.67	13.02	5.73
Italy					
Mean	11.94	0.73	0.52	0.39	0.26
St. dev.	6.75	1.35	1.01	1.07	0.63
Min	0.6	-42.34	0.05	0.000052	0.00037
Max	100	54.27	19.77	44.21	24.88
Japan					
Mean	5.72	0.03	0.5	0.37	0.3
St. dev.	4.34	1.17	0.87	0.93	0.6
Min	0	-59.84	0.03	0.000018	0.00014
Max	100	21.23	19.76	53.27	25.26
Korea					
Mean	5.09	0.14	1.09	0.77	0.6
St. dev.	2	1.48	0.82	1.12	0.86
Min	0.31	-9.2	0.11	0.00046	0.0036
Max	17.36	5.15	3.39	8.03	4.06
Mexico				1	1
Mean	18.46	0.86	2.35	1.89	1.41
St. dev.	17.43	4.41	2.3	2.7	1.89
Min	0.44	-24.59	0.23	0.01	0.01
Max	99.24	26.24	8.7	19.21	11.9
Russia					
Mean	20.92	1.59	1.43	1.11	0.91
St. dev.	14.49	2.58	1.65	1.89	1.36
Min	0.81	-31.12	0.06	0.000046	0.0013
Max	97.87	29.83	12.98	27.88	16.15
Saudi Arabia	11.00	1.00	1.00	0.70	0.40
Mean	11.20	1.92	1.09	0.76	0.49
St. dev.	2.99	1.44	0.85	1.10	0.84
Mar	2.01	-0.20	0.15	0.01	0.01
South Africo	21.05	12.55	3.10	10.04	4.99
Moan	16 71	1.64	1.89	1 31	1 10
St dov	15.02	1.04 3.67	2.30	2.51	2.15
Min	0.85	-26.82	0.11	0.002	0.0022
Max	81.05	25.61	8.64	26.01	14 61
Turkev	01.00	20.01	0.01	20.01	11.01
Mean	18.56	1.79	3.23	2.37	2.01
St. dev.	17.93	5.62	3.75	4.35	3.72
Min	1.87	-55.95	0.22	0.0011	0.03
Max	91.64	23.45	20.6	50.22	29.03
United Kingdon	m				
Mean	15.76	1.19	1.68	1.2	0.81
St. dev.	18.34	4.96	3.42	3.62	2.74
Min	0.14	-67.19	0.01	0.00015	0.00055
Max	100	80.99	29.24	74.58	37.38
USA					
Mean	11.88	0.92	0.75	0.57	0.36
St. dev.	9.93	2.84	1.94	2	1.28
Min	0	-165.83	0.01	1.2e-07	0.0003
Max	100	188.44	72.47	147.28	91.97

 car_t is banks' capital-asset ratio and roa_t their return on assets; σ_{roa} is the standard deviation estimate of roa over full samples; $\sigma_{roa,t}^{inst} = |roa_t - \mu_{roa}|$ is the "instantaneous" standard deviation estimate, where the mean estimate μ_{roa} is calculated over the full sample; $\sigma_{roa,t}(3)$ is the three-period moving standard deviation estimate of roa.

	Number	Average Root Mean Squared Error (RMSE)						
	of banks	$\mu_{car,t}(2)$	$\mu_{car,t}(3)$	$\mu_{car,t}(4)$	$\mu_{car,t}(5)$	μ_{car}	car_t	
G20 banks	14658	1.547	1.680	1.810	1.992	1.803	1.424	
Commercial banks	10420	1.874	2.022	2.168	2.388	2.131	1.738	
Cooperative banks	2500	0.654	0.738	0.816	0.895	0.873	0.570	
Savings banks	1738	1.131	1.253	1.371	1.511	1.427	1.018	
Argentina	3	12.796	13.125	13.018	13.039	12.335	11.105	
Australia	43	4.547	4.855	5.078	5.290	4.994	4.050	
Brazil	146	7.045	7.569	8.175	8.553	7.517	6.636	
Canada	82	4.642	5.120	5.533	5.831	5.448	4.088	
China	14	5.743	6.803	7.541	7.980	7.168	4.557	
France	397	2.740	2.958	3.141	3.326	3.087	2.515	
Germany	2162	0.763	0.849	0.929	1.010	1.019	0.689	
India	72	1.409	1.577	1.856	2.121	1.901	1.253	
Indonesia	16	3.593	3.878	4.347	4.806	4.371	3.339	
Italy	758	1.240	1.393	1.529	1.682	1.546	1.067	
Japan	674	0.726	0.791	0.865	0.931	0.835	0.671	
Korea	32	1.172	1.294	1.399	1.499	1.366	1.075	
Mexico	34	8.367	9.101	9.841	10.353	9.294	7.566	
Russia	236	$5.468^{ m NSD}$	6.021	6.672	7.196	6.092	5.175	
Saudi Arabia	11	1.744	1.821	1.843	1.898	1.821	1.577	
South Africa	24	5.004	5.542	5.810	6.202	5.529	4.332	
Turkey	41	$5.007^{ m NSD}$	5.547	6.082	6.331	$5.309^{ m NSD}$	4.927	
United Kingdom	195	4.505	5.004	5.471	5.931	5.339	4.284	
USA	9718	1.530	1.648	1.765	1.971	1.756	1.416	

Table 5. Average Root Mean Squared Error for various estimators of time-varying means of the capital-asset ratio, for G20 subsamples and period 1992--2009

Minimum average RMSE are highlighted in grey; the superscript NSD marks values not significantly different at the 5% level from the minimum ones using a two-sided paired t-test. μ_{car} is the mean of the capital-asset ratio *car* calculated over full samples; *car_t* is the period *t* value of *car*; $\mu_{car,t}(2)$ is the two-period moving average of *car*, analogously for $\mu_{car,t}(3)$ etc.

	Number	Average Root Mean Squared Error (RMSE)						
	of banks	$\mu_{roa,t}(2)$	$\mu_{roa,t}(3)$	$\mu_{roa,t}(4)$	$\mu_{roa,t}(5)$	μ_{roa}	roa_t	
G20 banks	14658	0.709	0.732	0.753	0.775	0.676	0.700	
Commercial banks	10420	0.860	0.888	0.913	0.940	0.820	0.846	
Cooperative banks	2500	0.293	0.289	0.290	0.293	0.253	0.307	
Savings banks	1738	0.525	0.553	0.581	0.602	0.534	0.507	
Argentina	3	3.897	3.774	3.822	3.968	3.400	4.060	
Australia	43	2.293	2.310	2.322	2.338	2.108	2.326	
Brazil	146	3.654	3.544	3.486	3.486	3.034	4.011	
Canada	82	2.986	2.890	2.887	2.890	2.556	3.399	
China	14	0.617	0.661	0.687	0.714	0.611	0.555	
France	397	0.909	0.909	0.935	0.971	0.850	0.926	
Germany	2162	0.255	0.258	0.260	0.267	0.230	0.269	
India	72	0.603	0.634	0.643	0.654	0.555	0.591	
Indonesia	16	$0.773^{ m NSD}$	0.766	0.819	0.950	0.869	$0.788^{ m NSD}$	
Italy	758	0.473	0.480	0.492	0.514	0.452	0.471	
Japan	674	0.532	0.518	0.518	0.516	0.438	0.563	
Korea	32	1.221	1.234	1.196	1.162	0.928	1.272	
Mexico	34	$2.434^{ m NSD}$	2.454	2.579	2.698	2.333	2.508	
Russia	236	1.704	1.721	1.755	1.836	1.552	1.746	
Saudi Arabia	11	1.365	1.412	1.405	1.388	1.279	$1.297^{ m NSD}$	
South Africa	24	2.580	2.560	2.500	2.471	2.167	2.847	
Turkey	41	1.443	1.928	2.286	2.407	1.919	$1.512^{\rm NSD}$	
United Kingdom	195	1.660	1.609	1.622	1.644	1.460	1.830	
USA	9718	0.747	0.784	0.813	0.840	0.734	0.711	

Table 6. Average Root Mean Squared Error for various estimators of time-varying means of the return on assets, for G20 subsamples and period 1992--2009

Minimum average RMSE are highlighted in grey; the superscript NSD marks values not significantly different at the 5% level from the minimum ones using a two-sided paired t-test. μ_{roa} is the mean of the return on assets *roa* calculated over full samples; roa_t is the period t value of roa; $\mu_{roa,t}(2)$ is the two-period moving average of *roa*, analogously for $\mu_{roa,t}(3)$ etc.

	Number		Average Root Mean Squared Error (RMSE)						
	of banks	$\sigma_{roa,t}(2)$	$\sigma_{roa,t}(3)$	$\sigma_{roa,t}(4)$	$\sigma_{roa,t}(5)$	σ_{roa}	$\sigma_{\scriptscriptstyle roa,t}^{\scriptscriptstyle inst}$		
G20 banks	14658	0.583	0.553	0.537	0.538	0.476	0.541		
Commercial banks	10420	0.704	0.668	0.650	0.652	0.579	0.656		
Cooperative banks	2500	0.227	0.220	0.217	0.216	0.191	0.225		
Savings banks	1738	0.457	0.428	0.411	0.403	0.351	0.398		
Argentina	3	2.795	2.255	2.209	2.103	1.861	2.870		
Australia	43	2.026	1.999	1.997	2.004	1.659	1.907		
Brazil	146	2.744	2.705	2.709	2.695	2.233	2.928		
Canada	82	2.564	2.543	2.544	2.537	2.000	2.675		
China	14	0.490	0.457	0.440	0.425	0.358	0.384^{NSD}		
France	397	0.751	0.741	0.711	0.706	0.636	0.735		
Germany	2162	0.212	0.206	0.204	0.205	0.180	0.207		
India	72	0.486	0.450	0.444	0.455	0.406	0.447		
Indonesia	16	$0.708^{ m NSD}$	0.682^{NSD}	$0.672^{\rm NSD}$	0.699^{NSD}	0.663^{NSD}	0.643		
Italy	758	0.384	0.361	0.348	0.354	0.325	0.353		
Japan	674	0.396	0.385	0.388	0.389	0.335	0.391		
Korea	32	0.809	0.848	0.868	0.895	0.768	1.085		
Mexico	34	1.861	1.757	1.692	1.661	1.451	1.716		
Russia	236	1.365	1.265	1.268	1.281	1.128	1.321		
Saudi Arabia	11	1.150	1.152	1.127	1.116	0.974	1.201		
South Africa	24	1.964	1.867	1.899	1.874	1.575	2.126		
Turkey	41	1.740	1.780	2.028	2.231	2.047	1.195		
United Kingdom	195	1.387	1.361	1.356	1.392	1.237	1.403		
USA	9718	0.618	0.580	0.558	0.557	0.497	0.557		

Table 7. Average Root Mean Squared Error for various estimators of time-varying standard deviations of the return on assets, for G20 subsamples and period 1992--2009

Minimum average RMSE are highlighted in grey; the superscript NSD marks values not significantly different at the 5% level from the minimum ones using a two-sided paired t-test. σ_{roa} is the standard deviation of the return on assets *roa* calculated over full samples; $\sigma_{roa,t}^{inst} = |roa_t - \mu_{roa}|$ is the "instantaneous" standard deviation, where the mean μ_{roa} is calculated over full samples of *roa*; $\sigma_{roa,t}(2)$ is the two-period moving standard deviation of *roa*, analogously for $\sigma_{roa,t}(3)$ etc.