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Abstract - This work is concerned with the extension of some recent ex-
istence results proved for a class of nonsmooth dynamic frictional contact
problem, to the case of a coefficient of friction depending on the slip veloc-
ity. Based on existence and approximation results for some general implicit
variational inequalities, which are established by using Ky Fan’s fixed point
theorem, several estimates and compactness arguments, relaxed unilateral
conditions with slip dependent friction between two viscoelastic bodies of
Kelvin-Voigt type are analyzed.
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1 Introduction

This paper deals with the analysis of a dynamic contact problem with some
relaxed unilateral contact conditions, adhesion, and slip dependent pointwise
friction, between two Kelvin-Voigt viscoelastic bodies.

The quasistatic unilateral contact problems with local Coulomb friction
have been studied in [1, 29, 30] and adhesion laws based on the evolution
of intensity of adhesion were investigated in [28, 10]. Also, the normal
compliance model, which can be seen as a particular regularization of the
Signorini’s conditions, has been considered by several authors, see e.g. [18,
16, 31] and references therein.

A recent unified approach including unilateral and bilateral contact with
nonlocal friction, or normal compliance conditions, in the quasistatic case
and for a nonlinear elastic behavior, has been proposed in [2].

In the dynamic case, viscoelastic contact problems with nonlocal friction
laws were considered in [17, 20, 21, 14, 6, 11] and the corresponding prob-
lems with normal compliance laws have been analyzed in [23, 18, 19, 5, 24].
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Dynamic frictionless problems with adhesion have been studied by several
authors, see, e.g [33] and references therein, and dynamic viscoelastic prob-
lems coupling unilateral contact, recoverable adhesion and nonlocal friction
have been investigated in [12, 8]. Using the Clarke subdifferential, vari-
ous variational contact problems can be analyzed by using the theory of
hemivariational inequalities, which represent a broad generalization of the
variational inequalities to locally Lipschitz functions, see [24, 25, 26] and
references therein.

Based on new abstract formulations and on Ky Fan’s fixed point theo-
rem, a static contact problem with relaxed unilateral conditions and point-
wise Coulomb friction was studied in [27]. The extension of this interesting
approach to an elastic quasistatic contact problem was considered in [7] and
to a dynamic viscoelastic contact problem with slip independent coefficient
of friction was investigated in [9].

This paper extends the results presented in [9] to the case of a coeffi-
cient of friction depending on the slip velocity, which enables to treat more
realistic situations.

The paper is organized as follows. In Section 2 the classical formulation
of the dynamic contact problem is presented. In Section 3 two variational
formulations are given as a two-field problem. In Section 4 a more general
evolution implicit variational inequality is considered and some auxiliary
results are proved. Section 5 is devoted to the study of a fixed point problem,
which is equivalent to the previous variational inequality. Using the Ky Fan’s
theorem, the existence of a fixed point is proved. In Section 6 this abstract
result is used to prove the existence of a variational solution of the dynamic
contact problem with slip dependent friction.

The applications presented in this paper concern the contact between two
linear viscoelastic bodies but these results can be extended to more general
constitutive laws, as, for example, the ones characterizing some elastovis-
coplastic materials investigated in [13].

2 Classical formulation

Let Ωα be the reference domains of Rd, d = 2 or 3, occupied by two vis-
coelastic bodies, characterized by a Kelvin-Voigt constitutive law. Suppose
that the bodies have Lipschitz boundaries Γα = ∂Ωα, α = 1, 2.

Let Γα
U , Γα

F and Γα
C be three open disjoint sufficiently smooth parts of

Γα such that Γα = Γ
α
U ∪Γ

α
F ∪Γ

α
C and, to simplify the estimates, meas(Γα

U ) >
0, α = 1, 2. We shall assume the small deformation hypothesis and we shall
use Cartesian coordinate representations.

Let yα(xα, t) denote the position at time t ∈ [0, T ], where 0 < T < +∞,
of the material point represented by xα in the reference configuration, and
uα(xα, t) := yα(xα, t) − xα denote the displacement vector of xα at time
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t, with the Cartesian coordinates uα = (uα1 , ..., u
α
d ) = (ūα, uαd ). Let εα,

with the Cartesian coordinates εα = (εij (u
α)), and σα, with the Cartesian

coordinates σα = (σα
ij), be the infinitesimal strain tensor and the stress

tensor, respectively, corresponding to Ωα, α = 1, 2. The usual summation
convention will be used for i, j, k, l = 1, . . . , d.

Assume that the displacement Uα = 0 on Γα
U × (0, T ), α = 1, 2, and

that the densities of both bodies are equal to 1. Let f1 = (f1
1,f

2
1) denote

the given body forces in Ω1 ∪Ω2 and f2 = (f1
2,f

2
2) denote the tractions on

Γ1
F ∪ Γ2

F . The initial displacements and velocities of the bodies are denoted
by u0 = (u1

0,u
2
0), u1 = (u1

1,u
2
1).

Suppose that the solids can be in contact between the potential contact
surfaces Γ1

C and Γ2
C which are parametrized by two C1 functions, ϕ1, ϕ2,

defined on an open and bounded subset Ξ of Rd−1, such that ϕ1(ξ)−ϕ2(ξ) ≥
0 ∀ ξ ∈ Ξ and each Γα

C is the graph of ϕα on Ξ that is Γα
C = { (ξ, ϕα(ξ)) ∈

R
d ; ξ ∈ Ξ}, α = 1, 2. Define the initial normalized gap between the two

contact surfaces by

g0(ξ) =
ϕ1(ξ)− ϕ2(ξ)
√

1 + |∇ϕ1(ξ)|2
∀ ξ ∈ Ξ

and suppose that this initial gap is sufficiently small. Let nα denote the
unit outward normal vector to Γα, α = 1, 2. We shall use the following
notations for the normal and tangential components of a displacement field
vα, α = 1, 2, of the relative displacement corresponding to v := (v1,v2)
and of the stress vector σαnα on Γα

C :

vα(ξ, t) := vα(ξ, ϕα(ξ), t), vαN (ξ, t) := vα(ξ, t) · nα(ξ),

vN (ξ, t) := v1N (ξ, t) + v2N (ξ, t), [vN ](ξ, t) := vN (ξ, t)− g0(ξ),

vα
T (ξ, t) := vα(ξ, t)− vαN (ξ, t)nα(ξ), vT (ξ, t) := v1

T (ξ, t)− v2
T (ξ, t),

σα
N (ξ, t) := (σα(ξ, t)nα(ξ)) · nα(ξ),

σα
T (ξ, t) = σα(ξ, t)nα(ξ)− σα

N (ξ, t)nα(ξ),

for all ξ ∈ Ξ and for all t ∈ [0, T ]. Let g := −[uN ] = g0 − u1N − u2N be the
gap corresponding to the solution u := (u1,u2). Using a similar method as
the one presented in [3] (see also [11], [8]) we obtain the following unilateral
contact condition at time t in the set Ξ: [uN ] (ξ, t) = −g(ξ, t) ≤ 0 ∀ ξ ∈ Ξ.
Let Aα, Bα denote two fourth-order tensors, the elasticity tensor and the
viscosity tensor corresponding to Ωα, with the components Aα = (Aα

ijkl)
and Bα = (Bα

ijkl), respectively. Assume that these components satisfy the
following classical symmetry and ellipticity conditions: Cα

ijkl = Cα
jikl = Cα

klij ∈
L∞(Ωα), ∀ i, j, k, l = 1, . . . , d, ∃αCα > 0 such that Cα

ijklτijτkl ≥ αCα τijτij
∀ τ = (τij) verifying τij = τji, ∀ i, j = 1, . . . , d, where Cα

ijkl = Aα
ijkl, C

α =
Aα or Cα

ijkl = Bα
ijkl, C

α = Bα ∀ i, j, k, l = 1, . . . , d, α = 1, 2.
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Let µ = µ(ξ, u̇T ) be the slip rate dependent coefficient of friction and
assume that µ : Ξ × R

d → R+ is a bounded function such that for a.e.
ξ ∈ Ξ µ(ξ, ·) is Lipschitz continuous with the Lipschitz constant, denoted
by Cµ, independent of ξ, and for every v ∈ R

d µ(·, v) is measurable.
Let κ, κ : R → R be two mappings with κ lower semicontinuous and κ

upper semicontinuous, satisfying the following conditions:

κ(s) ≤ κ(s) and 0 /∈ (κ(s), κ(s)) ∀ s ∈ R, (2.1)

∃ r0 ≥ 0 such that max(|κ(s)|, |κ(s)|) ≤ r0 ∀ s ∈ R. (2.2)

We consider the following dynamic viscoelastic contact problem.
Problem Pc : Find u = (u1,u2) such that u(0) = u0, u̇(0) = u1 and, for
all t ∈ (0, T ),

üα − divσα(uα, u̇α) = fα
1 in Ωα, (2.3)

σα(uα, u̇α) = Aαε(uα) +B
αε(u̇α) in Ωα, (2.4)

uα = 0 on Γα
U , σαnα = fα

2 on Γα
F , α = 1, 2, (2.5)

σ1n1 + σ2n2 = 0 in Ξ, (2.6)

κ([uN ]) ≤ σN ≤ κ([uN ]) in Ξ, (2.7)

|σT | ≤ µ(u̇T ) |σN | in Ξ and (2.8)

|σT | < µ(u̇T ) |σN | ⇒ u̇T = 0,
|σT | = µ(u̇T ) |σN | ⇒ ∃ϑ ≥ 0, u̇T = −ϑσT ,

where σα = σα(uα, u̇α), α = 1, 2, σN := σ1
N and σT := σ1

T .
Some contact and friction conditions, corresponding to particular κ and

κ, with a general coefficient of friction, are presented in the following exam-
ples.
Example 1. (Adhesion and friction conditions) Let s0 ≥ 0, M ≥ 0 be
constants, k : R → R be a continuous function such that k ≥ 0 with
k(0) = 0 and define

κ(s) =







0 if s ≤ −s0,
k(s) if − s0 < s < 0,
−M if s ≥ 0,

κ(s) =







0 if s < −s0,
k(s) if − s0 ≤ s ≤ 0,
−M if s > 0.

Example 2. (Friction condition)
In Example 1 we set k = s0 = 0 and define

κM (s) =

{

0 if s < 0,
−M if s ≥ 0,

κM (s) =

{

0 if s ≤ 0,
−M if s > 0.

The classical Signorini’s conditions correspond formally to M = +∞.
Example 3. (General normal compliance conditions)
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Various normal compliance conditions, friction and adhesion laws can be
obtained from the previous general formulation if one considers κ = κ = κ,
where κ : R → R is some bounded Lipschitz continuous function with
κ(0) = 0, so that σN is given by the relation σN = κ([uN ]), see e.g. [8],
where the intensity of adhesion was also considered.

3 Variational formulations

We shall consider two different variational formulations of problem Pc. We
adopt the following notations:

Hs(Ωα) := Hs(Ωα;Rd), α = 1, 2, Hs := Hs(Ω1)×Hs(Ω2),

〈v,w〉−s,s = 〈v1,w1〉
H

−s(Ω1)×H
s(Ω1) + 〈v2,w2〉

H
−s(Ω2)×H

s(Ω2)

∀ v = (v1,v2) ∈ H−s, ∀w = (w1,w2) ∈ Hs, ∀ s ∈ R.

Define the Hilbert spaces (H, |.|) with the associated inner product denoted
by (. , .), (V , ‖.‖) with the associated inner product (ofH1) denoted by 〈. , .〉,
and the closed convex cones L2

+(Ξ), L
2
+(Ξ× (0, T )) as follows:

H := H0 = L2(Ω1;Rd)× L2(Ω2;Rd), V := V 1 × V 2, where

V α = {vα ∈ H1(Ωα); vα = 0 a.e. on Γα
U}, α = 1, 2,

L2
+(Ξ) := {δ ∈ L2(Ξ); δ ≥ 0 a.e. in Ξ},

L2
+(Ξ× (0, T )) := {η ∈ L2(0, T ;L2(Ξ)); η ≥ 0 a.e. in Ξ× (0, T )}.

Let a, b be two bilinear, continuous and symmetric mappings defined on
H1 ×H1 → R by

a(v,w) = a1(v1,w1) + a2(v2,w2), b(v,w) = b1(v1,w1) + b2(v2,w2)

∀v = (v1,v2), w = (w1,w2) ∈ H1, where, for α = 1, 2,

aα(vα,wα) =

∫

Ωα

A
αε(vα)·ε(wα) dx, bα(vα,wα) =

∫

Ωα

B
αε(vα)·ε(wα) dx.

Assume fα
1 ∈ W 1,∞(0, T ;L2(Ωα;Rd)), fα

2 ∈ W 1,∞(0, T ;L2(Γα
F ;R

d)), α =
1, 2, u0, u1 ∈ V , g0 ∈ L2

+(Ξ), and define the following mappings:

J : L2(Ξ)× (H1)2 → R, J(δ,v,w) =

∫

Ξ
µ(vT ) |δ| |wT | dξ

∀ δ ∈ L2(Ξ), ∀v = (v1,v2), w = (w1,w2) ∈ H1,

f ∈ W 1,∞(0, T ;H1), 〈f ,v〉 =
∑

α=1,2

∫

Ωα

fα
1 · vα dx+

∑

α=1,2

∫

Γα
F

fα
2 · vα ds

∀v = (v1,v2) ∈ H1, ∀ t ∈ [0, T ].
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Assume the following compatibility conditions: [u0N ] ≤ 0, κ([u0N ]) = 0 a.e.
in Ξ and ∃p0 ∈ H such that

(p0,w) + a(u0,w) + b(u1,w) = 〈f(0),w〉 ∀w ∈ V . (3.1)

For every ζ ∈ L2(0, T ;L2(Ξ)) = L2(Ξ× (0, T )), define the following sets:

Λ(ζ) = {η ∈ L2(0, T ;L2(Ξ));κ ◦ ζ ≤ η ≤ κ ◦ ζ a.e. in Ξ× (0, T ) },

Λ+(ζ) = {η ∈ L2
+(Ξ× (0, T ));κ+ ◦ ζ ≤ η ≤ κ+ ◦ ζ a.e. in Ξ× (0, T ) },

Λ−(ζ) = {η ∈ L2
+(Ξ× (0, T ));κ− ◦ ζ ≤ η ≤ κ− ◦ ζ a.e. in Ξ× (0, T ) },

where, for each r ∈ R, r+ := max(0, r) and r− := max(0,−r) denote the
positive and negative parts, respectively.

For each ζ ∈ L2(0, T ;L2(Ξ)) the sets Λ(ζ), Λ+(ζ) and Λ−(ζ) are clearly
closed, convex and nonempty, because the bounding functions belong to the
respective set. Since meas(Ξ) < ∞ and κ, κ satisfy (2.2), it follows that
for all ζ ∈ L2(0, T ;L2(Ξ)) these three sets are also bounded in norm in
L∞(Ξ× (0, T )) by r0, and in L2(0, T ;L2(Ξ)) by r1 = r0 T

1/2meas(Ξ)1/2.
A first variational formulation of the problem Pc is the following.

Problem P 1

v
: Find u ∈ C1([0, T ];H−ι)∩W 1,2(0, T ;V ), λ ∈ L2(0, T ;L2(Ξ))

such that u(0) = u0, u̇(0) = u1, λ ∈ Λ([uN ]) and

〈u̇(T ),v(T )− u(T )〉−ι, ι − (u1,v(0)− u0)−

∫ T

0
(u̇, v̇ − u̇) dt

+

∫ T

0

{

a(u,v − u) + b(u̇,v − u)− (λ, vN − uN )L2(Ξ)

}

dt (3.2)

+

∫ T

0
{J(λ, u̇,v + ku̇− u)− J(λ, u̇, ku̇)} dt ≥

∫ T

0
〈f ,v − u〉 dt

∀v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;H), where 1 > ι >
1

2
, k > 0.

The formal equivalence between the variational problem P 1
v and the classical

problem (2.3)–(2.8) can be easily proved by using Green’s formula and an
integration by parts, where the Lagrange multiplier λ satisfies the relation
λ = σN .

Let φ : (L2
+(Ξ))

2 × (V )2 → R be defined by

φ(δ1, δ2,v,w) = −(δ1 − δ2, wN )L2(Ξ) +

∫

Ξ
µ(vT ) (δ1 + δ2) |wT | dξ

∀ (δ1, δ2) ∈ (L2
+(Ξ))

2, ∀v = (v1,v2), w = (w1,w2) ∈ V .

(3.3)

Since η ∈ Λ(ζ) if and only if (η+, η−) ∈ Λ+(ζ) × Λ−(ζ), it follows that the
variational problem P 1

v is equivalent with the following problem.
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Problem P 2

v
: Find u ∈ C1([0, T ];H−ι)∩W 1,2(0, T ;V ), λ ∈ L2(0, T ;L2(Ξ))

such that u(0) = u0, u̇(0) = u1, (λ+, λ−) ∈ Λ+([uN ])× Λ−([uN ]) and

〈u̇(T ),v(T )− u(T )〉−ι, ι − (u1,v(0)− u0)

+

∫ T

0
{−(u̇, v̇ − u̇) + a(u,v − u) + b(u̇,v − u)} dt

+

∫ T

0
{φ(λ+, λ−, u̇,v + ku̇− u)− φ(λ+, λ−, u̇, ku̇)} dt

≥

∫ T

0
〈f ,v − u〉 dt ∀v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;H).

(3.4)

The existence of variational solutions of the problem Pc will follow from
some general existence results that will be proved in the next sections.

4 Existence results for some variational inequali-

ties

Let U0, (V0, ‖.‖, 〈. , .〉), (U, ‖.‖U ) and (H0, |.|, (. , .)) be four Hilbert spaces
such that U0 is a closed linear subspace of V0 dense in H0, V0 ⊂ U ⊆ H0

with continuous embeddings and the embedding from V0 into U is compact.
Let Br(Ξ), Br(ΞT ) denote the closed balls with center 0 and radius r in

L∞(Ξ), L∞(ΞT ), respectively, where ΞT := Ξ× (0, T ) and r > 0.
Let a0, b0 : V0×V0 → R be two bilinear and symmetric forms such that

∃Ma, Mb > 0 a0(u, v) ≤ Ma ‖u‖ ‖v‖, b0(u, v) ≤ Mb ‖u‖ ‖v‖, (4.1)

∃ma, mb > 0 a0(v, v) ≥ ma ‖v‖
2, b0(v, v) ≥ mb ‖v‖

2 ∀u, v ∈ V0. (4.2)

Let l : V0 → L2(Ξ) and φ0 : [0, T ]×(L2
+(Ξ))

2×(V0)
2 → R be two mappings

satisfying the following conditions:

∃ k1 > 0 such that ∀ v1, v2 ∈ V0,
‖l(v1)− l(v2)‖L2(Ξ) ≤ k1‖v1 − v2‖U ,

(4.3)

∀ t ∈ [0, T ], ∀ γ1, γ2 ∈ L2
+(Ξ), ∀ v, v1, v2 ∈ V0,

φ0(t, γ1, γ2, v, v1 + v2) ≤ φ0(t, γ1, γ2, v, v1) + φ0(t, γ1, γ2, v, v2), (4.4)

φ0(t, γ1, γ2, v, θv1) = θ φ0(t, γ1, γ2, v, v1), ∀ θ ≥ 0, (4.5)

φ0(t, γ1, γ2, v, w) = 0, ∀w ∈ U0, (4.6)

φ0(0, 0, 0, 0, v) = 0, (4.7)
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∀ r > 0, ∃ k2(r) > 0 such that ∀ t1, t2 ∈ [0, T ],
∀ γ1, γ2, δ1, δ2 ∈ L2

+(Ξ) ∩Br(Ξ), ∀ v1, v2, w1, w2 ∈ V0,
|φ0(t1, γ1, γ2, v1, w1)− φ0(t1, γ1, γ2, v1, w2)

+φ0(t2, δ1, δ2, v2, w2)− φ0(t2, δ1, δ2, v2, w1)|
≤ k2(r)(|t1 − t2|+ ‖γ1 − δ1‖L2(Ξ) + ‖γ2 − δ2‖L2(Ξ)

+‖v1 − v2‖U )‖w1 − w2‖U ,

(4.8)

if (γn1 , γ
n
2 ) ∈ (L2

+(ΞT ))
2 for all n ∈ N

and (γn1 , γ
n
2 ) ⇀ (γ1, γ2) in (L2(0, T ;L2(Ξ)))2, then

∫ T

0
φ0(s, γ

n
1 , γ

n
2 , v, w) ds →

∫ T

0
φ0(s, γ1, γ2, v, w) ds ∀ v, w ∈ L2(0, T ;V0).

(4.9)

Remark 4.1 i) Since by (4.5) φ0(·, ·, ·, ·, 0) = 0, from (4.8), for w1 = w,
w2 = 0, we have

∀ t1, t2 ∈ [0, T ], ∀ γ1, γ2, δ1, δ2 ∈ L2
+(Ξ) ∩Br(Ξ), ∀ v1, v2, w ∈ V0,

|φ0(t1, γ1, γ2, v1, w)− φ0(t2, δ1, δ2, v2, w)|
≤ k2(r)(|t1 − t2|+ ‖γ1 − δ1‖L2(Ξ) + ‖γ2 − δ2‖L2(Ξ) + ‖v1 − v2‖U )‖w‖U .

(4.10)

ii) From (4.7) and (4.8), for t1 = t, t2 = 0, δ1 = δ2 = 0 and v1 = v, v2 = 0
we derive

∀ t ∈ [0, T ], ∀ γ1, γ2 ∈ L2
+(Ξ) ∩Br(Ξ), ∀ v, w1, w2 ∈ V0,

|φ0(t, γ1, γ2, v, w1)− φ0(t, γ1, γ2, v, w2)|
≤ k2(r)(t+ ‖γ1‖L2(Ξ) + ‖γ2‖L2(Ξ) + ‖v‖U )‖w1 − w2‖U .

(4.11)

iii) If vn → v, wm → w in L2(0, T ;U), (γn1 , γ
n
2 ) ∈ (L2

+(ΞT ) ∩ Br(ΞT ))
2, for

all n ∈ N, and (γn1 , γ
n
2 ) ⇀ (γ1, γ2) in (L2(0, T ;L2(Ξ)))2, then

lim
n,m→∞

∫ T

0
φ0(s, γ

n
1 , γ

n
2 , vn, wm) ds →

∫ T

0
φ0(s, γ1, γ2, v, w) ds, (4.12)

which can be proved by taking into account (4.11) in the following relations:

|

∫ T

0
{φ0(s, γ

n
1 , γ

n
2 , vn, wm)− φ0(s, γ1, γ2, v, w)} ds|

≤

∫ T

0
|φ0(s, γ

n
1 , γ

n
2 , vn, wm)− φ0(s, γ

n
1 , γ

n
2 , vn, w)| ds

+

∫ T

0
|{φ0(s, γ

n
1 , γ

n
2 , vn, w)− φ0(s, γ

n
1 , γ

n
2 , v, w)}| ds

+|

∫ T

0
{φ0(s, γ

n
1 , γ

n
2 , v, w)− φ0(s, γ1, γ2, v, w)} ds|

≤

∫ T

0
k2(r)(‖γ

n
1 ‖L2(Ξ) + ‖γn2 ‖L2(Ξ) + ‖vn‖U )‖wm − w‖U ds

+

∫ T

0
k2(r)(‖γ

n
1 ‖L2(Ξ) + ‖γn2 ‖L2(Ξ) + ‖vn − v‖U )‖w‖U ds

+|

∫ T

0
{φ0(s, γ

n
1 , γ

n
2 , v, w)− φ0(s, γ1, γ2, v, w)} ds|,
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and passing to limits by using that (γn1,2)n are bounded and (4.9).

Assume that f0 ∈ W 1,∞(0, T ;V0), u
0, u1 ∈ V0 are given, and that the

following compatibility condition holds: κ(l(u0)) = 0 and ∃ p0 ∈ H0 such
that

(p0, w) + a0(u
0, w) + b0(u

1, w) = 〈f0(0), w〉 ∀w ∈ V0. (4.13)

We consider the following problem.
Problem Q1 : Find u ∈ W0, λ ∈ L2(0, T ;L2(Ξ)) such that u(0) = u0,
u̇(0) = u1, (λ+, λ−) ∈ Λ+(l(u))× Λ−(l(u)) and

〈u̇(T ), v(T )− u(T )〉U ′×U − (u1, v(0)− u0)

+

∫ T

0
{−(u̇, v̇ − u̇) + a0(u, v − u) + b0(u̇, v − u)} dt

+

∫ T

0
{φ0(t, λ+, λ−, u̇, v + ku̇− u)− φ0(t, λ+, λ−, u̇, ku̇)} dt

≥

∫ T

0
〈f0, v − u〉 dt ∀ v ∈ L∞(0, T ;V0) ∩W 1,2(0, T ;H0),

where W0 := C1([0, T ];U ′) ∩W 1,2(0, T ;V0).
The sets Λ+(ζ), Λ−(ζ) and Λ(ζ) have the following useful properties,

proved in [8], see also [27].

Lemma 4.1 Let ζ ∈ L2(0, T ;L2(Ξ)) and (η1, η2) ∈ Λ+(ζ) × Λ−(ζ). Then
η1η2 = 0 a.e. in ΞT and there exists η ∈ Λ(ζ) such that η+ = η1, η− = η2
a.e. in ΞT .

Based on the previous lemma, consider the following problem, which has
the same solution u as the problem Q1, and the solutions λ1, λ2 satisfy the
relation λ = λ1 − λ2, where λ is a solution of Q1 .
Problem Q2 : Find u ∈ W0, λ1, λ2 ∈ L2(0, T ;L2(Ξ)) such that u(0) = u0,
u̇(0) = u1, (λ1, λ2) ∈ Λ+(l(u))× Λ−(l(u)) and

〈u̇(T ), v(T )− u(T )〉U ′×U − (u1, v(0)− u0)

+

∫ T

0
{−(u̇, v̇ − u̇) + a0(u, v − u) + b0(u̇, v − u)} dt

+

∫ T

0
{φ0(t, λ1, λ2, u̇, v + ku̇− u)− φ0(t, λ1, λ2, u̇, ku̇)} dt

≥

∫ T

0
〈f0, v − u〉 dt ∀ v ∈ L∞(0, T ;V0) ∩W 1,2(0, T ;H0).

(4.14)



10

For the convenience of the reader, an existence and uniqueness result
proved in [11] will be restated here under an adapted and more general form
that will enable to study problem Q2.

Let β : V0 → R and φ1 : [0, T ] × V 3
0 → R be two sequentially weakly

continuous mappings such that

β(0) = 0 and φ1(t, z, v, w1 + w2) ≤ φ1(t, z, v, w1) + φ1(t, z, v, w2), (4.15)

φ1(t, z, v, θw) = θ φ1(t, z, v, w), (4.16)

φ1(0, 0, 0, w) = 0 ∀ t ∈ [0, T ], ∀ z, v, w, w1,2 ∈ V0, ∀ θ ≥ 0, (4.17)

∃ k3 > 0 such that ∀ t1,2 ∈ [0, T ], ∀u1,2, v1,2, w ∈ V0,
|φ1(t1, u1, v1, w)− φ1(t2, u2, v2, w)|
≤ k3(|t1 − t2|+ |β(u1 − u2)|+ ‖v1 − v2‖U ) ‖w‖,

(4.18)

∃ k4 > 0 such that ∀ t1,2 ∈ [0, T ], ∀u1,2, v1,2, w1,2 ∈ V0,
|φ1(t1, u1, v1, w1)− φ1(t1, u1, v1, w2) + φ1(t2, u2, v2, w2)
−φ1(t2, u2, v2, w1)| ≤ k4 ( |t1 − t2|+ ‖u1 − u2‖+ ‖v1 − v2‖U ) ‖w1 − w2‖.

(4.19)

Let L ∈ W 1,∞(0, T ;V0) and assume the following compatibility condition
on the initial data: ∃ p1 ∈ H0 such that

(p1, w)+a0(u
0, w)+b0(u

1, w)+φ1(0, u
0, u1, w) = 〈L(0), w〉 ∀w ∈ V0. (4.20)

Consider the following problem.
Problem Q3 : Find u ∈ W 2,2(0, T ;H0)∩W

1,2(0, T ;V0) such that u(0) = u0,
u̇(0) = u1, and for almost all t ∈ (0, T )

(ü, v − u̇) + a0(u, v − u̇) + b0(u̇, v − u̇)

+φ1(t, u, u̇, v)− φ1(t, u, u̇, u̇) ≥ 〈L, v − u̇〉 ∀ v ∈ V0.
(4.21)

We have the following existence and uniqueness result.

Theorem 4.1 Under the assumptions (4.1), (4.2), (4.15)-(4.20), there ex-
ists a unique solution to the problem Q3.

The proof, which will be presented in a forthcoming paper, is based on a
similar method to that used to prove the Theorem 3.2 established in [11]
and on a useful estimate, see [22] or [32], which, when applied to the spaces
V0 ⊂ U ⊆ H0, implies the following result: for every ǫ > 0 there exists
Cǫ > 0 such that

‖u‖U ≤ ǫ ‖u‖+ Cǫ |u| ∀u ∈ V0. (4.22)

Lemma 4.2 Assume that (4.1), (4.2), (4.4), (4.5), (4.7), (4.8) and (4.13)
hold. If r > 0 then, for each (γ1, γ2) ∈ (W 1,∞(0, T ;L2(Ξ)))2 ∩ (L2

+(ΞT ))
2 ∩

(Br(ΞT ))
2 with γ1(0) = γ2(0) = 0, there exists a unique solution u = u(γ1,γ2)
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of the following evolution variational inequality: find u ∈ W 2,2(0, T ;H0) ∩
W 1,2(0, T ;V0) such that u(0) = u0, u̇(0) = u1, and for almost all t ∈ (0, T )

(ü, v − u̇) + a0(u, v − u̇) + b0(u̇, v − u̇)

+φ0(t, γ1, γ2, u̇, v)− φ0(t, γ1, γ2, u̇, u̇) ≥ 〈f0, v − u̇〉 ∀ v ∈ V0.
(4.23)

Proof. We apply Theorem 4.1 to β = 0, L = f0 and

φ1(t, z, v, w) = φ0(t, γ1(t), γ2(t), v, w) ∀ t ∈ [0, T ], ∀ z, v, w ∈ V0.

Since φ0 satisfies (4.4), (4.5) and (4.7), one can easily verify the proper-
ties (4.15)-(4.17). Also, (4.13) and (4.17) imply the condition (4.20).

Using (4.8), for some k2 = k2(r) > 0 we have

∀ t1,2 ∈ [0, T ], ∀u1,2, v1,2, w1,2 ∈ V0,

|φ1(t1, u1, v1, w1)− φ1(t1, u1, v1, w2) + φ1(t2, u2, v2, w2)− φ1(t2, u2, v2, w1)|

= |φ0(t1, γ1(t1), γ2(t1), v1, w1)− φ0(t1, γ1(t1), γ2(t1), v1, w2)|

+φ0(t2, γ1(t2), γ2(t2), v2, w2)− φ0(t2, γ1(t2), γ2(t2), v2, w1)|

≤ k2(|t1 − t2|+ ‖γ1(t1)− γ1(t2)‖L2(Ξ) + ‖γ2(t1)− γ2(t2)‖L2(Ξ)

+‖v1 − v2‖U )‖w1 − w2‖U

≤ k2((1 + Cγ1 + Cγ2)|t1 − t2|+ ‖v1 − v2‖U )‖w1 − w2‖U ,

≤ k5(|t1 − t2|+ ‖v1 − v2‖U )‖w1 − w2‖U ,

where Cγ1 , Cγ2 denote the Lipschitz constants of γ1, γ2, respectively, and
k5 = k2 (1 + Cγ1 + Cγ2).

Thus,

|φ1(t1, u1, v1, w1)− φ1(t1, u1, v1, w2) + φ1(t2, u2, v2, w2)

−φ1(t2, u2, v2, w1)| ≤ k5(|t1 − t2|+ ‖v1 − v2‖U )‖w1 − w2‖U

∀ t1,2 ∈ [0, T ], ∀u1,2, v1,2, w1,2 ∈ V0,

(4.24)

and, since by the continuous embedding V0 ⊂ U there exists CU > 0 such
that ‖w‖U ≤ CU‖w‖ ∀w ∈ V0, it follows that φ1 satisfies (4.19) with
k4 = k5CU .

Taking in (4.24) w1 = w, w2 = 0, by (4.16) with θ = 0, we obtain

|φ1(t1, u1, v1, w)− φ1(t2, u2, v2, w)| ≤ k5(|t1 − t2|+ ‖v1 − v2‖U )‖w‖U

∀ t1,2 ∈ [0, T ], ∀u1,2, v1,2, w ∈ V0,
(4.25)

and using the continuous embedding V0 ⊂ U , it follows that φ1 satisfies
(4.18) with k3 = k5CU .
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Now, taking in (4.24) t1 = t, t2 = 0, u1 = z, v1 = v, u2 = v2 = 0, by
(4.17) we have

|φ1(t, z, v, w1)− φ1(t, z, v, w2)| ≤ k5(t+ ‖v‖U )‖w1 − w2‖U

∀ t ∈ [0, T ], ∀ z, v, w1,2 ∈ V0.
(4.26)

As the embedding from V0 into U is compact, from (4.25) and (4.26) it
follows that φ1 is weakly sequentially continuous.

By Theorem 4.1 there exists a unique solution u = u(γ1,γ2) of the varia-
tional inequality (4.23). �

Also, we have the following result, which is similar to Lemma 3.3 in [9].

Lemma 4.3 Let r > 0, (γ1, γ2), (δ1, δ2) ∈ (W 1,∞(0, T ;L2(Ξ)))2 ∩ (L2
+(ΞT ))

2

∩ (Br(ΞT ))
2 such that γ1(0) = γ2(0) = δ1(0) = δ2(0) = 0 and let u(γ1,γ2),u(δ1,δ2)

be the corresponding solutions of (4.23). Then there exists a constant C0 >
0, independent of (γ1, γ2), (δ1, δ2), such that for all t ∈ [0, T ]

|u̇(γ1,γ2)(t)− u̇(δ1,δ2)(t)|
2 + ‖u(γ1,γ2)(t)− u(δ1,δ2)(t)‖

2

+

∫ t

0
‖u̇(γ1,γ2) − u̇(δ1,δ2)‖

2 ds

≤ C0

∫ t

0
{φ0(s, γ1, γ2, u̇(γ1,γ2), u̇(δ1,δ2))− φ0(s, γ1, γ2, u̇(γ1,γ2), u̇(γ1,γ2))

+φ0(s, δ1, δ2, u̇(δ1,δ2), u̇(γ1,γ2))− φ0(s, δ1, δ2, u̇(δ1,δ2), u̇(δ1,δ2))} ds.

(4.27)

5 An equivalent fixed point problem

Since D(0, T ;L2(Ξ)) is dense in L2(0, T ;L2(Ξ)), which is classically proved
by using the convolution product with suitable mollifiers, it follows that for
every γ ∈ L2

+(ΞT ) ∩ Br0(ΞT ), there exist r > 0 and a sequence (γn)n in
W 1,∞(0, T ;L2(Ξ)) ∩ L2

+(ΞT ) ∩ Br(ΞT ) such that γn(0) = 0, for all n ∈ N,
and γn → γ in L2(0, T ;L2(Ξ)).

Theorem 5.1 Assume that (4.1), (4.2), (4.4)-(4.9) and (4.13) hold. For
each (γ1, γ2) ∈ (L2

+(ΞT ) ∩ Br0(ΞT ))
2, let (γn1 , γ

n
2 )n be a sequence included in

(W 1,∞ (0, T ;L2(Ξ)))2 ∩ (L2
+(ΞT ))

2 ∩ (Br(ΞT ))
2, for some r > 0, such that

(γn1 , γ
n
2 ) ⇀ (γ1, γ2) in (L2(0, T ;L2(Ξ)))2, γn1 (0) = γn2 (0) = 0, and let u(γn

1
,γn

2
)

be the solution of (4.23) corresponding to (γn1 , γ
n
2 ), for every n ∈ N. Then

(u(γn
1
,γn

2
))n is strongly convergent in W0, its limit, denoted by u = u(γ1,γ2),

is independent of the chosen sequence converging to (γ1, γ2) with the same
properties as (γn1 , γ

n
2 )n and is a solution of the following evolution variational
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inequality: u(0) = u0, u̇(0) = u1,

〈u̇(T ), v(T )− u(T )〉U ′×U − (u1, v(0)− u0)

+

∫ T

0
{−(u̇, v̇ − u̇) + a0(u, v − u) + b0(u̇, v − u)} dt (5.1)

+

∫ T

0
{φ0(t, γ1, γ2, u̇, v − u+ ku̇)− φ0(t, γ1, γ2, u̇, ku̇)} dt

≥

∫ T

0
〈f0, v − u〉 dt ∀ v ∈ L∞(0, T ;V0) ∩W 1,2(0, T ;H0).

The proof, based on Lemmas 4.2, 4.3 and on some compactness results
established in [32], is similar to the proof of Theorem 3.2 in [9], so that will
be not presented here.

Now, let Φ : (L2
+(ΞT ) ∩ Br0(ΞT ))

2 → 2 (L2
+
(ΞT )∩Br0

(ΞT ))2 \ {∅} be the
set-valued mapping defined by

Φ(γ1, γ2) = Λ+(l(u(γ1,γ2)))× Λ−(l(u(γ1,γ2)))

for all (γ1, γ2) ∈ (L2
+(ΞT ) ∩Br0(ΞT ))

2,
(5.2)

where u(γ1,γ2) is the solution of the variational inequality (5.1) which corre-
sponds to (γ1, γ2) by the procedure described in Theorem 5.1.

It is clear that if (λ1, λ2) is a fixed point of Φ, i.e. (λ1, λ2) ∈ Φ(λ1, λ2),
then (u(λ1,λ2), λ1, λ2) is a solution of the problem Q2.

Consider a new problem, which consists in finding a fixed point of the
set-valued mapping Φ, called also multivalued function or multifunction,
which will provide a solution of problem Q1.

The existence of a fixed point of the multifunction Φ will be obtained by
using a corollary of the Ky Fan’s fixed point theorem [15], proved in [27] in
the particular case of a reflexive Banach space.

Definition 5.1 Let Y be a reflexive Banach space, D a weakly closed set in
Y , and F : D → 2Y \ {∅} be a multivalued function. F is called sequentially
weakly upper semicontinuous if zn ⇀ z, yn ∈ F (zn) and yn ⇀ y imply
y ∈ F (z).

Proposition 5.1 ([27]) Let Y be a reflexive Banach space, D a convex,
closed and bounded set in Y , and F : D → 2D \ {∅} a sequentially weakly
upper semicontinuous multivalued function such that F (z) is convex for ev-
ery z ∈ D. Then F has a fixed point.

Note that since Y is a reflexive Banach space and D is convex, closed and
bounded, we don’t need to assume that Y is separable, see [4, 27].
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Theorem 5.2 Assume that (2.1), (2.2), (4.1)-(4.9) and (4.13) hold. Then
there exists (λ1, λ2) ∈ (L2

+(ΞT ) ∩ Br0(ΞT ))
2 such that (λ1, λ2) ∈ Φ(λ1, λ2).

For each fixed point (λ1, λ2) of the multifunction Φ, (u(λ1,λ2), λ) with λ =
λ1 − λ2 is a solution of the problem Q1.

Proof. The proof is similar to the proof of Theorem 3.3 in [9] but, for the
convenience of the reader, we shall present it. By Lemma 4.1, if (λ1, λ2) ∈
Φ(λ1, λ2), then (u(λ1,λ2), λ) is clearly a solution to the problem Q1.

We apply Proposition 5.1 to Y = (L2(0, T ;L2(Ξ)))2, D = (L2
+(ΞT ) ∩

Br0(ΞT ))
2 and F = Φ.

The set D ⊂ (L2(0, T ;L2(Ξ)))2 is clearly convex, closed and bounded.
Since for each ζ ∈ L2(0, T ;L2(Ξ)) the sets Λ+(ζ) and Λ−(ζ) are nonempty,
convex, closed, and bounded by r0, it follows that Φ(γ1, γ2) is a nonempty,
convex and closed subset of D for every (γ1, γ2) ∈ D.

In order to prove that the multifunction Φ is sequentially weakly upper
semicontinuous, let (γn1 , γ

n
2 ) ⇀ (γ1, γ2), (γ

n
1 , γ

n
2 ) ∈ D, (ηn1 , η

n
2 ) ∈ Φ(γn1 , γ

n
2 )

∀n ∈ N, (ηn1 , η
n
2 ) ⇀ (η1, η2) and let us verify that (η1, η2) ∈ Φ(γ1, γ2). By

Theorem 5.1, there exists a sequence (γ̂n1 , γ̂
n
2 )n in (W 1,∞(0, T ;L2(Ξ)))2 ∩

(L2
+(ΞT ))

2 ∩ (Br(ΞT ))
2, for some r > 0, such that (γn1 , γ

n
2 ) − (γ̂n1 , γ̂

n
2 ) ⇀ 0,

γ̂n1 (0) = γ̂n2 (0) = 0 and

‖u(γ̂n
1
,γ̂n

2
) − u(γn

1
,γn

2
)‖W0

≤
1

n
for all n ∈ N, (5.3)

where u(γ̂n
1
,γ̂n

2
) is the solution of (4.23) corresponding to (γ̂n1 , γ̂

n
2 ), u(γn

1
,γn

2
) is

the solution of (5.1) corresponding to (γn1 , γ
n
2 ) and to the procedure which

enables to define Φ(γn1 , γ
n
2 ).

As (γn1 , γ
n
2 ) ⇀ (γ1, γ2) in (L2(0, T ;L2(Ξ)))2, Theorem 5.1 implies also

that u(γ̂n
1
,γ̂n

2
) → u(γ1,γ2) in W0, and by (5.3) and the triangle inequality, we

obtain
u(γn

1
,γn

2
) → u(γ1,γ2) in W0. (5.4)

By Lemma 4.1, the relation (ηn1 , η
n
2 ) ∈ Φ(γn1 , γ

n
2 ) is equivalent to

ηn1 − ηn2 ∈ Λ(l(u(γn
1
,γn

2
))) (5.5)

which may be rewritten as

κ ◦ ln ≤ ηn1 − ηn2 ≤ κ ◦ ln a.e. in ΞT , (5.6)

for all n ∈ N, where ln := l(u(γn
1
,γn

2
)), and also under the following equivalent

form:
∫

ω
κ ◦ ln ≤

∫

ω
(ηn1 − ηn2 ) ≤

∫

ω
κ ◦ ln, (5.7)

for every measurable subset ω ⊂ ΞT and for all n ∈ N.
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Using (5.4), (4.3), the semi-continuity of κ and κ, the relation (2.2),

the convergence property

∫

ω
(ηn1 − ηn2 ) →

∫

ω
(η1 − η2), and passing to limits

according to Fatou’s lemma (see also [27]), we obtain

∫

ω
κ ◦ l(u(γ1,γ2)) ≤

∫

ω
(η1 − η2) ≤

∫

ω
κ ◦ l(u(γ1,γ2)), (5.8)

for every measurable subset ω ⊂ ΞT , which implies (η1, η2) ∈ Φ(γ1, γ2). �

6 Existence of a solution to the contact problem

Theorem 6.1 Under the assumptions of Section 3 there exists a solution
of the problem P 1

v .

Proof. We shall prove that there exists at least a solution (u, λ+, λ−) of
the problem P 2

v which will provide a solution (u, λ) of the problem P 1
v with

λ = λ+ − λ−.
We apply Theorem 5.2 to U0 = H1

0 = H1
0 (Ω

1;Rd)×H1
0 (Ω

2;Rd), V0 = V ,
U = H ι, H0 = H, a0 = a, b0 = b, u0 = u0, u

1 = u1, φ0 = φ, f0 = f and to
the mapping l : V → L2(Ξ) defined by l(v) = [vN ] ∀v ∈ V .

Since Aα
ijkl, Bα

ijkl ∈ L∞(Ωα) ∀ i, j, k, l = 1, . . . , d, α = 1, 2, we obtain
(4.1).

The condition meas(Γα
U ) > 0, the ellipticity properties of the coefficients

Aα
ijkl, B

α
ijkl and the Korn’s inequality imply that there exist mα

a ,m
α
b > 0

such that

aα(vα,vα) ≥ mα
a ‖v

α‖2
V

α , bα(vα,vα) ≥ mα
b ‖v

α‖2
V

α ∀vα ∈ V α, α = 1, 2,

and we obtain

a(v,v) ≥ ma ‖v‖
2, b(v,v) ≥ mb ‖v‖

2 ∀v ∈ V , (6.1)

where ma = min(m1
a,m

2
a), mb = min(m1

b ,m
2
b).

Also, the properties (4.3)-(4.7), (4.9) and (4.13) can be easily verified.
Now, let Ctr be a positive constant such that ‖v‖(L2(Ξ))d ≤ Ctr‖v‖Hι for

all v ∈ H ι. Using (3.3), the following estimates hold:

∀ r > 0, ∀ γ1, γ2, δ1, δ2 ∈ L2
+(Ξ) ∩Br(Ξ), ∀v1,v2,w1,w2 ∈ V ,

|φ(γ1, γ2,v1,w1)− φ(γ1, γ2,v1,w2) + φ(δ1, δ2,v2,w2)− φ(δ1, δ2,v2,w1)|
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= | − (γ1 − γ2, w1N )L2(Ξ) +

∫

Ξ
µ(v1T ) (γ1 + γ2) |w1T | dξ

+(γ1 − γ2, w2N )L2(Ξ) −

∫

Ξ
µ(v1T ) (γ1 + γ2) |w2T | dξ

−(δ1 − δ2, w2N )L2(Ξ) +

∫

Ξ
µ(v2T ) (δ1 + δ2) |w2T | dξ

+(δ1 − δ2, w1N )L2(Ξ) −

∫

Ξ
µ(v2T ) (δ1 + δ2) |w1T | dξ|

≤ |(γ1 − γ2 − δ1 + δ2, w1N − w2N )L2(Ξ)|

+|

∫

Ξ
(µ(v1T )− µ(v2T )) (γ1 + γ2) (|w1T | − |w2T |) dξ|

+|

∫

Ξ
µ(v2T )(γ1 + γ2 − δ1 − δ2) (|w1T | − |w2T |) dξ|

≤ (‖γ1 − δ1‖L2(Ξ) + ‖γ2 − δ2‖L2(Ξ)) ‖w1N − w2N‖L2(Ξ)

+

∫

Ξ
Cµ |v1T − v2T | (|γ1|+ |γ2|) |w1T −w2T | dξ

+

∫

Ξ
µ(v2T ) (|γ1 − δ1|+ |γ2 − δ2|) |w1T −w2T | dξ

≤ (‖γ1 − δ1‖L2(Ξ) + ‖γ2 − δ2‖L2(Ξ)) ‖w1 −w2‖(L2(Ξ))d

+2rCµ

∫

Ξ
|v1 − v2| |w1 −w2| dξ

+Mµ

∫

Ξ
(|γ1 − δ1|+ |γ2 − δ2|) |w1 −w2| dξ

≤ (‖γ1 − δ1‖L2(Ξ) + ‖γ2 − δ2‖L2(Ξ)) ‖w1 −w2‖(L2(Ξ))d

+2rCµ‖v1 − v2‖(L2(Ξ))d ‖w1 −w2‖(L2(Ξ))d

+Mµ(‖γ1 − δ1‖L2(Ξ) + |γ2 − δ2|L2(Ξ)) ‖w1 −w2‖(L2(Ξ))d

≤ (1 +MµCtr)(‖γ1 − δ1‖L2(Ξ) + ‖γ2 − δ2‖L2(Ξ)) ‖w1 −w2‖Hι

+2rCµC
2
tr‖v1 − v2‖Hι ‖w1 −w2‖Hι ,
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and so (4.8) is satisfied with k2(r)=max(1 +MµCtr, 2rCµC
2
tr), where Mµ is

an upper bound of µ. �

Note that the same method can provide a unified approach to study
more complex dynamic surface interactions, for which the evolution of the
intensity of adhesion is governed by a variational inequality or a differential
equation, see e.g. [33], [31], [12], [8].
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