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This work is concerned with the extension of some recent existence results proved for a class of nonsmooth dynamic frictional contact problem, to the case of a coefficient of friction depending on the slip velocity. Based on existence and approximation results for some general implicit variational inequalities, which are established by using Ky Fan's fixed point theorem, several estimates and compactness arguments, relaxed unilateral conditions with slip dependent friction between two viscoelastic bodies of Kelvin-Voigt type are analyzed.

Introduction

This paper deals with the analysis of a dynamic contact problem with some relaxed unilateral contact conditions, adhesion, and slip dependent pointwise friction, between two Kelvin-Voigt viscoelastic bodies.

The quasistatic unilateral contact problems with local Coulomb friction have been studied in [START_REF] Andersson | Existence results for quasistatic contact problems with Coulomb friction[END_REF][START_REF] Rocca | Existence and approximation of a solution to quasistatic Signorini problem with local friction[END_REF][START_REF] Rocca | Numerical analysis of quasistatic unilateral contact problems with local friction[END_REF] and adhesion laws based on the evolution of intensity of adhesion were investigated in [START_REF] Raous | A consistent model coupling adhesion, friction, and unilateral contact[END_REF][START_REF] Cocou | Existence results for unilateral quasistatic contact problems with friction and adhesion[END_REF]. Also, the normal compliance model, which can be seen as a particular regularization of the Signorini's conditions, has been considered by several authors, see e.g. [START_REF] Kikuchi | Contact Problems in Elasticity : A Study of Variational Inequalities and Finite Element Methods[END_REF][START_REF] Han | Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity[END_REF][START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF] and references therein.

A recent unified approach including unilateral and bilateral contact with nonlocal friction, or normal compliance conditions, in the quasistatic case and for a nonlinear elastic behavior, has been proposed in [START_REF] Badea | Internal and subspace correction approximations of implicit variational inequalities[END_REF].

In the dynamic case, viscoelastic contact problems with nonlocal friction laws were considered in [START_REF] Jarušek | Dynamic contact problems with given friction for viscoelastic bodies[END_REF][START_REF] Kuttler | Dynamic bilateral contact with discontinuous friction coefficient[END_REF][START_REF] Kuttler | Dynamic contact with Signorini's condition and slip rate depending friction[END_REF][START_REF] Eck | Unilateral Contact Problems -Variational Methods and Existence Theorems[END_REF][START_REF] Cocou | Existence of solutions of a dynamic Signorini's problem with nonlocal friction in viscoelasticity[END_REF][START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF] and the corresponding problems with normal compliance laws have been analyzed in [START_REF] Martins | Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws[END_REF][START_REF] Kikuchi | Contact Problems in Elasticity : A Study of Variational Inequalities and Finite Element Methods[END_REF][START_REF] Kuttler | Dynamic friction contact problems for general normal and friction laws[END_REF][START_REF] Chau | A dynamic frictional contact problem with normal damped response[END_REF][START_REF] Migórski | Nonlinear Inclusions and Hemivariational Inequalities[END_REF].

1 Dynamic frictionless problems with adhesion have been studied by several authors, see, e.g [START_REF] Sofonea | Analysis and Approximation of Contact Problems with Adhesion or Damage[END_REF] and references therein, and dynamic viscoelastic problems coupling unilateral contact, recoverable adhesion and nonlocal friction have been investigated in [START_REF] Cocou | A dynamic unilateral contact problem with adhesion and friction in viscoelasticity[END_REF][START_REF] Cocou | A class of implicit evolution inequalities and applications to dynamic contact problems[END_REF]. Using the Clarke subdifferential, various variational contact problems can be analyzed by using the theory of hemivariational inequalities, which represent a broad generalization of the variational inequalities to locally Lipschitz functions, see [START_REF] Migórski | Nonlinear Inclusions and Hemivariational Inequalities[END_REF][START_REF] Naniewicz | Mathematical Theory of Hemivariational Inequalities and Applications[END_REF][START_REF] Panagiotopoulos | Hemivariational Inequalities: Applications in Mechanics and Engineering[END_REF] and references therein.

Based on new abstract formulations and on Ky Fan's fixed point theorem, a static contact problem with relaxed unilateral conditions and pointwise Coulomb friction was studied in [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF]. The extension of this interesting approach to an elastic quasistatic contact problem was considered in [START_REF] Cocou | Sur la modélisation mathématique de conditions unilatèrales en mécanique du contact[END_REF] and to a dynamic viscoelastic contact problem with slip independent coefficient of friction was investigated in [START_REF] Cocou | A class of dynamic contact problems with Coulomb friction in viscoelasticity[END_REF].

This paper extends the results presented in [START_REF] Cocou | A class of dynamic contact problems with Coulomb friction in viscoelasticity[END_REF] to the case of a coefficient of friction depending on the slip velocity, which enables to treat more realistic situations.

The paper is organized as follows. In Section 2 the classical formulation of the dynamic contact problem is presented. In Section 3 two variational formulations are given as a two-field problem. In Section 4 a more general evolution implicit variational inequality is considered and some auxiliary results are proved. Section 5 is devoted to the study of a fixed point problem, which is equivalent to the previous variational inequality. Using the Ky Fan's theorem, the existence of a fixed point is proved. In Section 6 this abstract result is used to prove the existence of a variational solution of the dynamic contact problem with slip dependent friction.

The applications presented in this paper concern the contact between two linear viscoelastic bodies but these results can be extended to more general constitutive laws, as, for example, the ones characterizing some elastoviscoplastic materials investigated in [START_REF] Cristescu | Viscoplasticity[END_REF].

Classical formulation

Let Ω α be the reference domains of R d , d = 2 or 3, occupied by two viscoelastic bodies, characterized by a Kelvin-Voigt constitutive law. Suppose that the bodies have Lipschitz boundaries

Γ α = ∂Ω α , α = 1, 2. Let Γ α U , Γ α F and Γ α C be three open disjoint sufficiently smooth parts of Γ α such that Γ α = Γ α U ∪ Γ α F ∪ Γ α C
and, to simplify the estimates, meas(Γ α U ) > 0, α = 1, 2. We shall assume the small deformation hypothesis and we shall use Cartesian coordinate representations.

Let y α (x α , t) denote the position at time t ∈ [0, T ], where 0 < T < +∞, of the material point represented by x α in the reference configuration, and u α (x α , t) := y α (x α , t)x α denote the displacement vector of x α at time t, with the Cartesian coordinates u α = (u α 1 , ..., u α d ) = (ū α , u α d ). Let ε α , with the Cartesian coordinates ε α = (ε ij (u α )), and σ α , with the Cartesian coordinates σ α = (σ α ij ), be the infinitesimal strain tensor and the stress tensor, respectively, corresponding to Ω α , α = 1, 2. The usual summation convention will be used for i, j, k, l = 1, . . . , d.

Assume that the displacement U α = 0 on Γ α U × (0, T ), α = 1, 2, and that the densities of both bodies are equal to 1. Let

f 1 = (f 1 1 , f 2 1 ) denote the given body forces in Ω 1 ∪ Ω 2 and f 2 = (f 1 2 , f 2 2 ) denote the tractions on Γ 1 F ∪ Γ 2 F .
The initial displacements and velocities of the bodies are denoted by

u 0 = (u 1 0 , u 2 0 ), u 1 = (u 1 1 , u 2 1 
). Suppose that the solids can be in contact between the potential contact surfaces Γ 1 C and Γ 2 C which are parametrized by two C 1 functions, ϕ 1 , ϕ 2 , defined on an open and bounded subset Ξ of

R d-1 , such that ϕ 1 (ξ)-ϕ 2 (ξ) ≥ 0 ∀ ξ ∈ Ξ and each Γ α C is the graph of ϕ α on Ξ that is Γ α C = { (ξ, ϕ α (ξ)) ∈ R d ; ξ ∈ Ξ}, α = 1, 2.
Define the initial normalized gap between the two contact surfaces by

g 0 (ξ) = ϕ 1 (ξ) -ϕ 2 (ξ) 1 + |∇ϕ 1 (ξ)| 2 ∀ ξ ∈ Ξ
and suppose that this initial gap is sufficiently small. Let n α denote the unit outward normal vector to Γ α , α = 1, 2. We shall use the following notations for the normal and tangential components of a displacement field v α , α = 1, 2, of the relative displacement corresponding to v := (v 1 , v 2 ) and of the stress vector σ α n α on Γ α C :

v α (ξ, t) := v α (ξ, ϕ α (ξ), t), v α N (ξ, t) := v α (ξ, t) • n α (ξ), v N (ξ, t) := v 1 N (ξ, t) + v 2 N (ξ, t), [v N ](ξ, t) := v N (ξ, t) -g 0 (ξ), v α T (ξ, t) := v α (ξ, t) -v α N (ξ, t)n α (ξ), v T (ξ, t) := v 1 T (ξ, t) -v 2 T (ξ, t), σ α N (ξ, t) := (σ α (ξ, t)n α (ξ)) • n α (ξ), σ α T (ξ, t) = σ α (ξ, t)n α (ξ) -σ α N (ξ, t)n α (ξ),
for all ξ ∈ Ξ and for all t

∈ [0, T ]. Let g := -[u N ] = g 0 -u 1 N -u 2
N be the gap corresponding to the solution u := (u 1 , u 2 ). Using a similar method as the one presented in [START_REF] Boieri | Existence, uniqueness, and regularity results for the two-body contact problem[END_REF] (see also [START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF], [START_REF] Cocou | A class of implicit evolution inequalities and applications to dynamic contact problems[END_REF]) we obtain the following unilateral contact condition at time t in the set Ξ: [u N ] (ξ, t) = -g(ξ, t) ≤ 0 ∀ ξ ∈ Ξ. Let A α , B α denote two fourth-order tensors, the elasticity tensor and the viscosity tensor corresponding to Ω α , with the components A α = (A α ijkl ) and B α = (B α ijkl ), respectively. Assume that these components satisfy the following classical symmetry and ellipticity conditions:

C α ijkl = C α jikl = C α klij ∈ L ∞ (Ω α ), ∀ i, j, k, l = 1, . . . , d, ∃ α C α > 0 such that C α ijkl τ ij τ kl ≥ α C α τ ij τ ij ∀ τ = (τ ij ) verifying τ ij = τ ji , ∀ i, j = 1, . . . , d, where C α ijkl = A α ijkl , C α = A α or C α ijkl = B α ijkl , C α = B α ∀ i, j, k, l = 1, . . . , d, α = 1, 2.
Let µ = µ(ξ, uT ) be the slip rate dependent coefficient of friction and assume that µ : Ξ × R d → R + is a bounded function such that for a.e. ξ ∈ Ξ µ(ξ, •) is Lipschitz continuous with the Lipschitz constant, denoted by C µ , independent of ξ, and for every v ∈ R d µ(•, v) is measurable.

Let κ, κ : R → R be two mappings with κ lower semicontinuous and κ upper semicontinuous, satisfying the following conditions:

κ(s) ≤ κ(s) and 0 / ∈ (κ(s), κ(s)) ∀ s ∈ R, (2.1) 
∃ r 0 ≥ 0 such that max(|κ(s)|, |κ(s)|) ≤ r 0 ∀ s ∈ R. (2.2)
We consider the following dynamic viscoelastic contact problem.

Problem P c : Find u = (u 1 , u 2 ) such that u(0) = u 0 , u(0) = u 1 and, for all t ∈ (0, T ), üα -div σ α (u α , uα ) = f α 1 in Ω α , (2.3) 
σ α (u α , uα ) = A α ε(u α ) + B α ε( uα ) in Ω α , (2.4 
)

u α = 0 on Γ α U , σ α n α = f α 2 on Γ α F , α = 1, 2, (2.5) 
σ 1 n 1 + σ 2 n 2 = 0 in Ξ, (2.6) 
κ([u N ]) ≤ σ N ≤ κ([u N ]) in Ξ, (2.7) |σ T | ≤ µ( uT ) |σ N | in Ξ and
(2.8)

|σ T | < µ( uT ) |σ N | ⇒ uT = 0, |σ T | = µ( uT ) |σ N | ⇒ ∃ ϑ ≥ 0, uT = -ϑσ T ,
where σ α = σ α (u α , uα ), α = 1, 2, σ N := σ 1 N and σ T := σ 1 T . Some contact and friction conditions, corresponding to particular κ and κ, with a general coefficient of friction, are presented in the following examples. Example 1. (Adhesion and friction conditions) Let s 0 ≥ 0, M ≥ 0 be constants, k : R → R be a continuous function such that k ≥ 0 with k(0) = 0 and define

κ(s) =    0 if s ≤ -s 0 , k(s) if -s 0 < s < 0, -M if s ≥ 0, κ(s) =    0 if s < -s 0 , k(s) if -s 0 ≤ s ≤ 0, -M if s > 0.

Example 2. (Friction condition)

In Example 1 we set k = s 0 = 0 and define

κ M (s) = 0 if s < 0, -M if s ≥ 0, κ M (s) = 0 if s ≤ 0, -M if s > 0.
The classical Signorini's conditions correspond formally to M = +∞.

Example 3. (General normal compliance conditions)

Various normal compliance conditions, friction and adhesion laws can be obtained from the previous general formulation if one considers κ = κ = κ, where κ : R → R is some bounded Lipschitz continuous function with κ(0) = 0, so that σ N is given by the relation σ N = κ([u N ]), see e.g. [START_REF] Cocou | A class of implicit evolution inequalities and applications to dynamic contact problems[END_REF], where the intensity of adhesion was also considered.

Variational formulations

We shall consider two different variational formulations of problem P c . We adopt the following notations:

H s (Ω α ) := H s (Ω α ; R d ), α = 1, 2, H s := H s (Ω 1 ) × H s (Ω 2 ), v, w -s,s = v 1 , w 1 H -s (Ω 1 )×H s (Ω 1 ) + v 2 , w 2 
H -s (Ω 2 )×H s (Ω 2 ) ∀ v = (v 1 , v 2 ) ∈ H -s , ∀ w = (w 1 , w 2 ) ∈ H s , ∀ s ∈ R.
Define the Hilbert spaces (H, |.|) with the associated inner product denoted by (. , .), (V , . ) with the associated inner product (of H 1 ) denoted by . , . , and the closed convex cones L 2 + (Ξ), L 2 + (Ξ × (0, T )) as follows:

H := H 0 = L 2 (Ω 1 ; R d ) × L 2 (Ω 2 ; R d ), V := V 1 × V 2 ,
where

V α = {v α ∈ H 1 (Ω α ); v α = 0 a.e. on Γ α U }, α = 1, 2, L 2 + (Ξ) := {δ ∈ L 2 (Ξ); δ ≥ 0 a.e. in Ξ}, L 2 + (Ξ × (0, T )) := {η ∈ L 2 (0, T ; L 2 (Ξ)); η ≥ 0 a.e. in Ξ × (0, T )}.
Let a, b be two bilinear, continuous and symmetric mappings defined on

H 1 × H 1 → R by a(v, w) = a 1 (v 1 , w 1 ) + a 2 (v 2 , w 2 ), b(v, w) = b 1 (v 1 , w 1 ) + b 2 (v 2 , w 2 ) ∀ v = (v 1 , v 2 ), w = (w 1 , w 2 ) ∈ H 1 , where, for α = 1, 2, a α (v α , w α ) = Ω α A α ε(v α )•ε(w α ) dx, b α (v α , w α ) = Ω α B α ε(v α )•ε(w α ) dx. Assume f α 1 ∈ W 1,∞ (0, T ; L 2 (Ω α ; R d )), f α 2 ∈ W 1,∞ (0, T ; L 2 (Γ α F ; R d )), α = 1, 2, u 0 , u 1 ∈ V , g 0 ∈ L 2 + (Ξ)
, and define the following mappings:

J : L 2 (Ξ) × (H 1 ) 2 → R, J(δ, v, w) = Ξ µ(v T ) |δ| |w T | dξ ∀ δ ∈ L 2 (Ξ), ∀ v = (v 1 , v 2 ), w = (w 1 , w 2 ) ∈ H 1 , f ∈ W 1,∞ (0, T ; H 1 ), f , v = α=1,2 Ω α f α 1 • v α dx + α=1,2 Γ α F f α 2 • v α ds ∀ v = (v 1 , v 2 ) ∈ H 1 , ∀ t ∈ [0, T ].
Assume the following compatibility conditions:

[u 0N ] ≤ 0, κ([u 0N ]) = 0 a.e. in Ξ and ∃ p 0 ∈ H such that (p 0 , w) + a(u 0 , w) + b(u 1 , w) = f (0), w ∀ w ∈ V . (3.1)
For every ζ ∈ L 2 (0, T ; L 2 (Ξ)) = L 2 (Ξ × (0, T )), define the following sets:

Λ(ζ) = {η ∈ L 2 (0, T ; L 2 (Ξ)); κ • ζ ≤ η ≤ κ • ζ a.e. in Ξ × (0, T ) }, Λ + (ζ) = {η ∈ L 2 + (Ξ × (0, T )); κ + • ζ ≤ η ≤ κ + • ζ a.e. in Ξ × (0, T ) }, Λ -(ζ) = {η ∈ L 2 + (Ξ × (0, T )); κ -• ζ ≤ η ≤ κ -• ζ a.e. in Ξ × (0, T ) },
where, for each r ∈ R, r + := max(0, r) and r -:= max(0, -r) denote the positive and negative parts, respectively.

For each ζ ∈ L 2 (0, T ; L 2 (Ξ)) the sets Λ(ζ), Λ + (ζ) and Λ -(ζ) are clearly closed, convex and nonempty, because the bounding functions belong to the respective set. Since meas(Ξ) < ∞ and κ, κ satisfy (2.2), it follows that for all ζ ∈ L 2 (0, T ; L 2 (Ξ)) these three sets are also bounded in norm in L ∞ (Ξ × (0, T )) by r 0 , and in

L 2 (0, T ; L 2 (Ξ)) by r 1 = r 0 T 1/2 meas(Ξ) 1/2 .
A first variational formulation of the problem P c is the following.

Problem P 1 v : Find u ∈ C 1 ([0, T ]; H -ι )∩W 1,2 (0, T ; V ), λ ∈ L 2 (0, T ; L 2 (Ξ)) such that u(0) = u 0 , u(0) = u 1 , λ ∈ Λ([u N ]) and u(T ), v(T ) -u(T ) -ι, ι -(u 1 , v(0) -u 0 ) - T 0 ( u, v -u) dt + T 0 a(u, v -u) + b( u, v -u) -(λ, v N -u N ) L 2 (Ξ) dt (3.2) + T 0 {J(λ, u, v + k u -u) -J(λ, u, k u)} dt ≥ T 0 f , v -u dt ∀ v ∈ L ∞ (0, T ; V ) ∩ W 1,2 (0, T ; H), where 1 > ι > 1 2 , k > 0.
The formal equivalence between the variational problem P 1 v and the classical problem (2.3)-(2.8) can be easily proved by using Green's formula and an integration by parts, where the Lagrange multiplier λ satisfies the relation

λ = σ N . Let φ : (L 2 + (Ξ)) 2 × (V ) 2 → R be defined by φ(δ 1 , δ 2 , v, w) = -(δ 1 -δ 2 , w N ) L 2 (Ξ) + Ξ µ(v T ) (δ 1 + δ 2 ) |w T | dξ ∀ (δ 1 , δ 2 ) ∈ (L 2 + (Ξ)) 2 , ∀ v = (v 1 , v 2 ), w = (w 1 , w 2 ) ∈ V . (3.3) Since η ∈ Λ(ζ) if and only if (η + , η -) ∈ Λ + (ζ) × Λ -(ζ)
, it follows that the variational problem P 1 v is equivalent with the following problem.

Problem P 2 v : Find u ∈ C 1 ([0, T ]; H -ι )∩W 1,2 (0, T ; V ), λ ∈ L 2 (0, T ; L 2 (Ξ)) such that u(0) = u 0 , u(0) = u 1 , (λ + , λ -) ∈ Λ + ([u N ]) × Λ -([u N ]) and u(T ), v(T ) -u(T ) -ι, ι -(u 1 , v(0) -u 0 ) + T 0 {-( u, v -u) + a(u, v -u) + b( u, v -u)} dt + T 0 {φ(λ + , λ -, u, v + k u -u) -φ(λ + , λ -, u, k u)} dt ≥ T 0 f , v -u dt ∀ v ∈ L ∞ (0, T ; V ) ∩ W 1,2 (0, T ; H). (3.4)
The existence of variational solutions of the problem P c will follow from some general existence results that will be proved in the next sections.

Existence results for some variational inequalities

Let U 0 , (V 0 , . , . , . ), (U, . U ) and (H 0 , |.|, (. , .)) be four Hilbert spaces such that U 0 is a closed linear subspace of V 0 dense in H 0 , V 0 ⊂ U ⊆ H 0 with continuous embeddings and the embedding from V 0 into U is compact. Let B r (Ξ), B r (Ξ T ) denote the closed balls with center 0 and radius r in L ∞ (Ξ), L ∞ (Ξ T ), respectively, where Ξ T := Ξ × (0, T ) and r > 0.

Let a 0 , b 0 : V 0 × V 0 → R be two bilinear and symmetric forms such that

∃ M a , M b > 0 a 0 (u, v) ≤ M a u v , b 0 (u, v) ≤ M b u v , (4.1) 
∃ m a , m b > 0 a 0 (v, v) ≥ m a v 2 , b 0 (v, v) ≥ m b v 2 ∀ u, v ∈ V 0 . (4.2) Let l : V 0 → L 2 (Ξ) and φ 0 : [0, T ] × (L 2 + (Ξ)) 2 × (V 0 ) 2 →
R be two mappings satisfying the following conditions:

∃ k 1 > 0 such that ∀ v 1 , v 2 ∈ V 0 , l(v 1 ) -l(v 2 ) L 2 (Ξ) ≤ k 1 v 1 -v 2 U , (4.3) 
∀ t ∈ [0, T ], ∀ γ 1 , γ 2 ∈ L 2 + (Ξ), ∀ v, v 1 , v 2 ∈ V 0 , φ 0 (t, γ 1 , γ 2 , v, v 1 + v 2 ) ≤ φ 0 (t, γ 1 , γ 2 , v, v 1 ) + φ 0 (t, γ 1 , γ 2 , v, v 2 ), (4.4) φ 0 (t, γ 1 , γ 2 , v, θv 1 ) = θ φ 0 (t, γ 1 , γ 2 , v, v 1 ), ∀ θ ≥ 0, (4.5) φ 0 (t, γ 1 , γ 2 , v, w) = 0, ∀ w ∈ U 0 , (4.6) 
φ 0 (0, 0, 0, 0, v) = 0, (4.7)

∀ r > 0, ∃ k 2 (r) > 0 such that ∀ t 1 , t 2 ∈ [0, T ], ∀ γ 1 , γ 2 , δ 1 , δ 2 ∈ L 2 + (Ξ) ∩ B r (Ξ), ∀ v 1 , v 2 , w 1 , w 2 ∈ V 0 , |φ 0 (t 1 , γ 1 , γ 2 , v 1 , w 1 ) -φ 0 (t 1 , γ 1 , γ 2 , v 1 , w 2 ) +φ 0 (t 2 , δ 1 , δ 2 , v 2 , w 2 ) -φ 0 (t 2 , δ 1 , δ 2 , v 2 , w 1 )| ≤ k 2 (r)(|t 1 -t 2 | + γ 1 -δ 1 L 2 (Ξ) + γ 2 -δ 2 L 2 (Ξ) + v 1 -v 2 U ) w 1 -w 2 U , (4.8) if (γ n 1 , γ n 2 ) ∈ (L 2 + (Ξ T )) 2 for all n ∈ N and (γ n 1 , γ n 2 ) ⇀ (γ 1 , γ 2 ) in (L 2 (0, T ; L 2 (Ξ))) 2 , then T 0 φ 0 (s, γ n 1 , γ n 2 , v, w) ds → T 0 φ 0 (s, γ 1 , γ 2 , v, w) ds ∀ v, w ∈ L 2 (0, T ; V 0 ).
(4.9)

Remark 4.1 i) Since by (4.5) φ 0 (•, •, •, •, 0) = 0, from (4.8), for w 1 = w, w 2 = 0, we have

∀ t 1 , t 2 ∈ [0, T ], ∀ γ 1 , γ 2 , δ 1 , δ 2 ∈ L 2 + (Ξ) ∩ B r (Ξ), ∀ v 1 , v 2 , w ∈ V 0 , |φ 0 (t 1 , γ 1 , γ 2 , v 1 , w) -φ 0 (t 2 , δ 1 , δ 2 , v 2 , w)| ≤ k 2 (r)(|t 1 -t 2 | + γ 1 -δ 1 L 2 (Ξ) + γ 2 -δ 2 L 2 (Ξ) + v 1 -v 2 U ) w U . (4.10)
ii) From (4.7) and (4.8), for

t 1 = t, t 2 = 0, δ 1 = δ 2 = 0 and v 1 = v, v 2 = 0 we derive ∀ t ∈ [0, T ], ∀ γ 1 , γ 2 ∈ L 2 + (Ξ) ∩ B r (Ξ), ∀ v, w 1 , w 2 ∈ V 0 , |φ 0 (t, γ 1 , γ 2 , v, w 1 ) -φ 0 (t, γ 1 , γ 2 , v, w 2 )| ≤ k 2 (r)(t + γ 1 L 2 (Ξ) + γ 2 L 2 (Ξ) + v U ) w 1 -w 2 U . (4.11) iii) If v n → v, w m → w in L 2 (0, T ; U ), (γ n 1 , γ n 2 ) ∈ (L 2 + (Ξ T ) ∩ B r (Ξ T )) 2 , for all n ∈ N, and (γ n 1 , γ n 2 ) ⇀ (γ 1 , γ 2 ) in (L 2 (0, T ; L 2 (Ξ))) 2 , then lim n,m→∞ T 0 φ 0 (s, γ n 1 , γ n 2 , v n , w m ) ds → T 0 φ 0 (s, γ 1 , γ 2 , v, w) ds, (4.12) 
which can be proved by taking into account (4.11) in the following relations:

| T 0 {φ 0 (s, γ n 1 , γ n 2 , v n , w m ) -φ 0 (s, γ 1 , γ 2 , v, w)} ds| ≤ T 0 |φ 0 (s, γ n 1 , γ n 2 , v n , w m ) -φ 0 (s, γ n 1 , γ n 2 , v n , w)| ds + T 0 |{φ 0 (s, γ n 1 , γ n 2 , v n , w) -φ 0 (s, γ n 1 , γ n 2 , v, w)}| ds +| T 0 {φ 0 (s, γ n 1 , γ n 2 , v, w) -φ 0 (s, γ 1 , γ 2 , v, w)} ds| ≤ T 0 k 2 (r)( γ n 1 L 2 (Ξ) + γ n 2 L 2 (Ξ) + v n U ) w m -w U ds + T 0 k 2 (r)( γ n 1 L 2 (Ξ) + γ n 2 L 2 (Ξ) + v n -v U ) w U ds +| T 0 {φ 0 (s, γ n 1 , γ n 2 , v, w) -φ 0 (s, γ 1 , γ 2 , v, w)} ds|,
and passing to limits by using that (γ n 1,2 ) n are bounded and (4.9).

Assume that f 0 ∈ W 1,∞ (0, T ; V 0 ), u 0 , u 1 ∈ V 0 are given, and that the following compatibility condition holds: κ(l(u 0 )) = 0 and ∃ p 0 ∈ H 0 such that (p 0 , w) + a 0 (u 0 , w)

+ b 0 (u 1 , w) = f 0 (0), w ∀ w ∈ V 0 . (4.13)
We consider the following problem.

Problem Q 1 : Find u ∈ W 0 , λ ∈ L 2 (0, T ; L 2 (Ξ)) such that u(0) = u 0 , u(0) = u 1 , (λ + , λ -) ∈ Λ + (l(u)) × Λ -(l(u)) and u(T ), v(T ) -u(T ) U ′ × U -(u 1 , v(0) -u 0 ) + T 0 {-( u, v -u) + a 0 (u, v -u) + b 0 ( u, v -u)} dt + T 0 {φ 0 (t, λ + , λ -, u, v + k u -u) -φ 0 (t, λ + , λ -, u, k u)} dt ≥ T 0 f 0 , v -u dt ∀ v ∈ L ∞ (0, T ; V 0 ) ∩ W 1,2 (0, T ; H 0 ),
where

W 0 := C 1 ([0, T ]; U ′ ) ∩ W 1,2 (0, T ; V 0 ). The sets Λ + (ζ), Λ - (ζ 
) and Λ(ζ) have the following useful properties, proved in [START_REF] Cocou | A class of implicit evolution inequalities and applications to dynamic contact problems[END_REF], see also [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF].

Lemma 4.1 Let ζ ∈ L 2 (0, T ; L 2 (Ξ)) and (η 1 , η 2 ) ∈ Λ + (ζ) × Λ -(ζ). Then η 1 η 2 = 0 a.e. in Ξ T and there exists η ∈ Λ(ζ) such that η + = η 1 , η -= η 2 a.e. in Ξ T .
Based on the previous lemma, consider the following problem, which has the same solution u as the problem Q 1 , and the solutions λ 1 , λ 2 satisfy the relation

λ = λ 1 -λ 2 , where λ is a solution of Q 1 . Problem Q 2 : Find u ∈ W 0 , λ 1 , λ 2 ∈ L 2 (0, T ; L 2 (Ξ)) such that u(0) = u 0 , u(0) = u 1 , (λ 1 , λ 2 ) ∈ Λ + (l(u)) × Λ -(l(u)) and u(T ), v(T ) -u(T ) U ′ × U -(u 1 , v(0) -u 0 ) + T 0 {-( u, v -u) + a 0 (u, v -u) + b 0 ( u, v -u)} dt + T 0 {φ 0 (t, λ 1 , λ 2 , u, v + k u -u) -φ 0 (t, λ 1 , λ 2 , u, k u)} dt ≥ T 0 f 0 , v -u dt ∀ v ∈ L ∞ (0, T ; V 0 ) ∩ W 1,2 (0, T ; H 0 ). (4.14)
For the convenience of the reader, an existence and uniqueness result proved in [START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF] will be restated here under an adapted and more general form that will enable to study problem Q 2 .

Let β : V 0 → R and φ 1 : [0, T ] × V 3 0 → R be two sequentially weakly continuous mappings such that

β(0) = 0 and φ 1 (t, z, v, w 1 + w 2 ) ≤ φ 1 (t, z, v, w 1 ) + φ 1 (t, z, v, w 2 ), (4.15) 
φ 1 (t, z, v, θw) = θ φ 1 (t, z, v, w), (4.16 
)

φ 1 (0, 0, 0, w) = 0 ∀ t ∈ [0, T ], ∀ z, v, w, w 1,2 ∈ V 0 , ∀ θ ≥ 0, (4.17) 
∃ k 3 > 0 such that ∀ t 1,2 ∈ [0, T ], ∀ u 1,2 , v 1,2 , w ∈ V 0 , |φ 1 (t 1 , u 1 , v 1 , w) -φ 1 (t 2 , u 2 , v 2 , w)| ≤ k 3 (|t 1 -t 2 | + |β(u 1 -u 2 )| + v 1 -v 2 U ) w , (4.18) 
∃ k 4 > 0 such that ∀ t 1,2 ∈ [0, T ], ∀ u 1,2 , v 1,2 , w 1,2 ∈ V 0 , |φ 1 (t 1 , u 1 , v 1 , w 1 ) -φ 1 (t 1 , u 1 , v 1 , w 2 ) + φ 1 (t 2 , u 2 , v 2 , w 2 ) -φ 1 (t 2 , u 2 , v 2 , w 1 )| ≤ k 4 ( |t 1 -t 2 | + u 1 -u 2 + v 1 -v 2 U ) w 1 -w 2 . (4.19)
Let L ∈ W 1,∞ (0, T ; V 0 ) and assume the following compatibility condition on the initial data:

∃ p 1 ∈ H 0 such that (p 1 , w)+a 0 (u 0 , w)+b 0 (u 1 , w)+φ 1 (0, u 0 , u 1 , w) = L(0), w ∀ w ∈ V 0 . (4.20)
Consider the following problem. Problem Q 3 : Find u ∈ W 2,2 (0, T ; H 0 )∩W 1,2 (0, T ; V 0 ) such that u(0) = u 0 , u(0) = u 1 , and for almost all t ∈ (0, T )

(ü, v -u) + a 0 (u, v -u) + b 0 ( u, v -u) +φ 1 (t, u, u, v) -φ 1 (t, u, u, u) ≥ L, v -u ∀ v ∈ V 0 . (4.21) 
We have the following existence and uniqueness result. The proof, which will be presented in a forthcoming paper, is based on a similar method to that used to prove the Theorem 3.2 established in [START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF] and on a useful estimate, see [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF] or [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF], which, when applied to the spaces V 0 ⊂ U ⊆ H 0 , implies the following result: for every ǫ > 0 there exists C ǫ > 0 such that 

u U ≤ ǫ u + C ǫ |u| ∀ u ∈ V 0 . ( 4 
) ∈ (W 1,∞ (0, T ; L 2 (Ξ))) 2 ∩ (L 2 + (Ξ T )) 2 ∩ (B r (Ξ T )) 2 with γ 1 (0) = γ 2 (0) = 0, there exists a unique solution u = u (γ 1 ,γ 2 )
of the following evolution variational inequality: find u ∈ W 2,2 (0, T ; H 0 ) ∩ W 1,2 (0, T ; V 0 ) such that u(0) = u 0 , u(0) = u 1 , and for almost all t ∈ (0, T )

(ü, v -u) + a 0 (u, v -u) + b 0 ( u, v -u) +φ 0 (t, γ 1 , γ 2 , u, v) -φ 0 (t, γ 1 , γ 2 , u, u) ≥ f 0 , v -u ∀ v ∈ V 0 . (4.23)
Proof. We apply Theorem 4.1 to β = 0, L = f 0 and

φ 1 (t, z, v, w) = φ 0 (t, γ 1 (t), γ 2 (t), v, w) ∀ t ∈ [0, T ], ∀ z, v, w ∈ V 0 .
Since φ 0 satisfies (4.4), (4.5) and (4.7), one can easily verify the properties (4.15)-(4.17). Also, (4.13) and (4.17) imply the condition (4.20).

Using (4.8), for some k 2 = k 2 (r) > 0 we have

∀ t 1,2 ∈ [0, T ], ∀ u 1,2 , v 1,2 , w 1,2 ∈ V 0 , |φ 1 (t 1 , u 1 , v 1 , w 1 ) -φ 1 (t 1 , u 1 , v 1 , w 2 ) + φ 1 (t 2 , u 2 , v 2 , w 2 ) -φ 1 (t 2 , u 2 , v 2 , w 1 )| = |φ 0 (t 1 , γ 1 (t 1 ), γ 2 (t 1 ), v 1 , w 1 ) -φ 0 (t 1 , γ 1 (t 1 ), γ 2 (t 1 ), v 1 , w 2 )| +φ 0 (t 2 , γ 1 (t 2 ), γ 2 (t 2 ), v 2 , w 2 ) -φ 0 (t 2 , γ 1 (t 2 ), γ 2 (t 2 ), v 2 , w 1 )| ≤ k 2 (|t 1 -t 2 | + γ 1 (t 1 ) -γ 1 (t 2 ) L 2 (Ξ) + γ 2 (t 1 ) -γ 2 (t 2 ) L 2 (Ξ) + v 1 -v 2 U ) w 1 -w 2 U ≤ k 2 ((1 + C γ 1 + C γ 2 )|t 1 -t 2 | + v 1 -v 2 U ) w 1 -w 2 U , ≤ k 5 (|t 1 -t 2 | + v 1 -v 2 U ) w 1 -w 2 U ,
where C γ 1 , C γ 2 denote the Lipschitz constants of γ 1 , γ 2 , respectively, and

k 5 = k 2 (1 + C γ 1 + C γ 2 ). Thus, |φ 1 (t 1 , u 1 , v 1 , w 1 ) -φ 1 (t 1 , u 1 , v 1 , w 2 ) + φ 1 (t 2 , u 2 , v 2 , w 2 ) -φ 1 (t 2 , u 2 , v 2 , w 1 )| ≤ k 5 (|t 1 -t 2 | + v 1 -v 2 U ) w 1 -w 2 U ∀ t 1,2 ∈ [0, T ], ∀ u 1,2 , v 1,2 , w 1,2 ∈ V 0 , (4.24) 
and, since by the continuous embedding V 0 ⊂ U there exists

C U > 0 such that w U ≤ C U w ∀ w ∈ V 0 , it follows that φ 1 satisfies (4.19) with k 4 = k 5 C U .
Taking in (4.24) w 1 = w, w 2 = 0, by (4.16) with θ = 0, we obtain

|φ 1 (t 1 , u 1 , v 1 , w) -φ 1 (t 2 , u 2 , v 2 , w)| ≤ k 5 (|t 1 -t 2 | + v 1 -v 2 U ) w U ∀ t 1,2 ∈ [0, T ], ∀ u 1,2 , v 1,2 , w ∈ V 0 , (4.25) 
and using the continuous embedding V 0 ⊂ U , it follows that φ 1 satisfies (4.18) with k

3 = k 5 C U . inequality: u(0) = u 0 , u(0) = u 1 , u(T ), v(T ) -u(T ) U ′ × U -(u 1 , v(0) -u 0 ) + T 0 {-( u, v -u) + a 0 (u, v -u) + b 0 ( u, v -u)} dt (5.1) + T 0 {φ 0 (t, γ 1 , γ 2 , u, v -u + k u) -φ 0 (t, γ 1 , γ 2 , u, k u)} dt ≥ T 0 f 0 , v -u dt ∀ v ∈ L ∞ (0, T ; V 0 ) ∩ W 1,2 (0, T ; H 0 ).
The proof, based on Lemmas 4.2, 4.3 and on some compactness results established in [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF], is similar to the proof of Theorem 3.2 in [START_REF] Cocou | A class of dynamic contact problems with Coulomb friction in viscoelasticity[END_REF], so that will be not presented here. Now, let Φ :

(L 2 + (Ξ T ) ∩ B r 0 (Ξ T )) 2 → 2 (L 2 + (Ξ T )∩Br 0 (Ξ T )) 2 \ {∅} be the set-valued mapping defined by Φ(γ 1 , γ 2 ) = Λ + (l(u (γ 1 ,γ 2 ) )) × Λ -(l(u (γ 1 ,γ 2 ) )) for all (γ 1 , γ 2 ) ∈ (L 2 + (Ξ T ) ∩ B r 0 (Ξ T )) 2 , (5.2) 
where u (γ 1 ,γ 2 ) is the solution of the variational inequality (5.1) which corresponds to (γ 1 , γ 2 ) by the procedure described in Theorem 5.1.

It is clear that if (λ 1 , λ 2 ) is a fixed point of Φ, i.e. (λ 1 , λ 2 ) ∈ Φ(λ 1 , λ 2 ), then (u (λ 1 ,λ 2 ) , λ 1 , λ 2 ) is a solution of the problem Q 2 .
Consider a new problem, which consists in finding a fixed point of the set-valued mapping Φ, called also multivalued function or multifunction, which will provide a solution of problem Q 1 .

The existence of a fixed point of the multifunction Φ will be obtained by using a corollary of the Ky Fan's fixed point theorem [START_REF] Fan | Fixed points and minimax theorems in locally convex topological linear spaces[END_REF], proved in [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF] in the particular case of a reflexive Banach space. Note that since Y is a reflexive Banach space and D is convex, closed and bounded, we don't need to assume that Y is separable, see [START_REF] Browder | Nonlinear operators and nonlinear equations of eyolutionin Banach spaces[END_REF][START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF].

= | -(γ 1 -γ 2 , w 1N ) L 2 (Ξ) + Ξ µ(v 1T ) (γ 1 + γ 2 ) |w 1T | dξ +(γ 1 -γ 2 , w 2N ) L 2 (Ξ) - Ξ µ(v 1T ) (γ 1 + γ 2 ) |w 2T | dξ -(δ 1 -δ 2 , w 2N ) L 2 (Ξ) + Ξ µ(v 2T ) (δ 1 + δ 2 ) |w 2T | dξ +(δ 1 -δ 2 , w 1N ) L 2 (Ξ) - Ξ µ(v 2T ) (δ 1 + δ 2 ) |w 1T | dξ| ≤ |(γ 1 -γ 2 -δ 1 + δ 2 , w 1N -w 2N ) L 2 (Ξ) | +| Ξ (µ(v 1T ) -µ(v 2T )) (γ 1 + γ 2 ) (|w 1T | -|w 2T |) dξ| +| Ξ µ(v 2T )(γ 1 + γ 2 -δ 1 -δ 2 ) (|w 1T | -|w 2T |) dξ| ≤ ( γ 1 -δ 1 L 2 (Ξ) + γ 2 -δ 2 L 2 (Ξ) ) w 1N -w 2N L 2 (Ξ) + Ξ C µ |v 1T -v 2T | (|γ 1 | + |γ 2 |) |w 1T -w 2T | dξ + Ξ µ(v 2T ) (|γ 1 -δ 1 | + |γ 2 -δ 2 |) |w 1T -w 2T | dξ ≤ ( γ 1 -δ 1 L 2 (Ξ) + γ 2 -δ 2 L 2 (Ξ) ) w 1 -w 2 (L 2 (Ξ)) d +2rC µ Ξ |v 1 -v 2 | |w 1 -w 2 | dξ +M µ Ξ (|γ 1 -δ 1 | + |γ 2 -δ 2 |) |w 1 -w 2 | dξ ≤ ( γ 1 -δ 1 L 2 (Ξ) + γ 2 -δ 2 L 2 (Ξ) ) w 1 -w 2 (L 2 (Ξ)) d +2rC µ v 1 -v 2 (L 2 (Ξ)) d w 1 -w 2 (L 2 (Ξ)) d +M µ ( γ 1 -δ 1 L 2 (Ξ) + |γ 2 -δ 2 | L 2 (Ξ) ) w 1 -w 2 (L 2 (Ξ)) d ≤ (1 + M µ C tr )( γ 1 -δ 1 L 2 (Ξ) + γ 2 -δ 2 L 2 (Ξ) ) w 1 -w 2 H ι +2rC µ C 2 tr v 1 -v 2 H ι w 1 -w 2 H ι ,
and so (4.8) is satisfied with k 2 (r)=max(1 + M µ C tr , 2rC µ C 2 tr ), where M µ is an upper bound of µ.

Note that the same method can provide a unified approach to study more complex dynamic surface interactions, for which the evolution of the intensity of adhesion is governed by a variational inequality or a differential equation, see e.g. [START_REF] Sofonea | Analysis and Approximation of Contact Problems with Adhesion or Damage[END_REF], [START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF], [START_REF] Cocou | A dynamic unilateral contact problem with adhesion and friction in viscoelasticity[END_REF], [START_REF] Cocou | A class of implicit evolution inequalities and applications to dynamic contact problems[END_REF].

Theorem 4 . 1

 41 Under the assumptions (4.1), (4.2), (4.15)-(4.20), there exists a unique solution to the problem Q 3 .

Definition 5 . 1

 51 Let Y be a reflexive Banach space, D a weakly closed set in Y , and F : D → 2 Y \ {∅} be a multivalued function. F is called sequentially weakly upper semicontinuous if z n ⇀ z, y n ∈ F (z n ) and y n ⇀ y imply y ∈ F (z).

Proposition 5 . 1 (

 51 [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF]) Let Y be a reflexive Banach space, D a convex, closed and bounded set in Y , and F : D → 2 D \ {∅} a sequentially weakly upper semicontinuous multivalued function such that F (z) is convex for every z ∈ D. Then F has a fixed point.

Now, taking in (4.24) t 1 = t, t 2 = 0, u 1 = z, v 1 = v, u 2 = v 2 = 0, by (4.17) we have

(4.26)

As the embedding from V 0 into U is compact, from (4.25) and (4.26) it follows that φ 1 is weakly sequentially continuous. By Theorem 4.1 there exists a unique solution u = u (γ 1 ,γ 2 ) of the variational inequality (4.23).

Also, we have the following result, which is similar to Lemma 3.3 in [START_REF] Cocou | A class of dynamic contact problems with Coulomb friction in viscoelasticity[END_REF].

be the corresponding solutions of (4.23). Then there exists a constant

(4.27)

An equivalent fixed point problem

Since D(0, T ; L 2 (Ξ)) is dense in L 2 (0, T ; L 2 (Ξ)), which is classically proved by using the convolution product with suitable mollifiers, it follows that for every γ ∈ L 2 + (Ξ T ) ∩ B r 0 (Ξ T ), there exist r > 0 and a sequence (

Theorem 5.1 Assume that (4.1), (4.2), (4.4)-(4.9) and ( 4

be the solution of (4.23) 

) n is strongly convergent in W 0 , its limit, denoted by u = u (γ 1 ,γ 2 ) , is independent of the chosen sequence converging to (γ 

Proof. The proof is similar to the proof of Theorem 3.3 in [START_REF] Cocou | A class of dynamic contact problems with Coulomb friction in viscoelasticity[END_REF] but, for the convenience of the reader, we shall present it. By Lemma 4.

We apply Proposition 5.

The set D ⊂ (L 2 (0, T ; L 2 (Ξ))) 2 is clearly convex, closed and bounded. Since for each ζ ∈ L 2 (0, T ; L 2 (Ξ)) the sets Λ + (ζ) and Λ -(ζ) are nonempty, convex, closed, and bounded by r 0 , it follows that Φ(γ 1 , γ 2 ) is a nonempty, convex and closed subset of D for every (γ 1 , γ 2 ) ∈ D.

In order to prove that the multifunction Φ is sequentially weakly upper semicontinuous, let (

) and let us verify that (η 1 , η 2 ) ∈ Φ(γ 1 , γ 2 ). By Theorem 5.1, there exists a sequence (γ

where

is the solution of (4.23) corresponding to (γ n 1 , γn 2 ), u (γ n 1 ,γ n

2 ) is the solution of (5.1) corresponding to (γ n 1 , γ n 2 ) and to the procedure which enables to define Φ(γ n 1 , γ n 2 ). As (γ n 1 , γ n 2 ) ⇀ (γ 1 , γ 2 ) in (L 2 (0, T ; L 2 (Ξ))) 2 , Theorem 5.1 implies also that u (γ n 1 ,γ n 2 ) → u (γ 1 ,γ 2 ) in W 0 , and by (5.3) and the triangle inequality, we obtain

which may be rewritten as

for all n ∈ N, where

), and also under the following equivalent form:

for every measurable subset ω ⊂ Ξ T and for all n ∈ N.

Using (5.4), (4.3), the semi-continuity of κ and κ, the relation (2.2), the convergence property

, and passing to limits according to Fatou's lemma (see also [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF]), we obtain

for every measurable subset ω ⊂ Ξ T , which implies (η 1 , η 2 ) ∈ Φ(γ 1 , γ 2 ).

6 Existence of a solution to the contact problem Theorem 6.1 Under the assumptions of Section 3 there exists a solution of the problem P 1 v .

Proof. We shall prove that there exists at least a solution (u, λ + , λ -) of the problem P 2 v which will provide a solution (u, λ) of the problem P 1 v with λ = λ +λ -.

We apply Theorem 5.2 to

, we obtain (4.1).

The condition meas(Γ α U ) > 0, the ellipticity properties of the coefficients A α ijkl , B α ijkl and the Korn's inequality imply that there exist m α a , m α b > 0 such that

and we obtain

where m a = min(m 1 a , m 2 a ), m b = min(m 1 b , m 2 b ). Also, the properties (4.3)-(4.7), (4.9) and (4.13) can be easily verified. Now, let C tr be a positive constant such that v (L 2 (Ξ)) d ≤ C tr v H ι for all v ∈ H ι . Using (3.3), the following estimates hold: