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1 Introduction
The present investigation is concerned with the nu-

merical modeling of the turbulent flow in a narrow gap
Taylor-Couette-Poiseuille (TCP) system. The flow is
confined between two coaxial cylinders of lengthh,
with an inner rotating cylinder (radiusR1) and a outer
stationary one (radiusR2). An axial thoughflow of
fluid is supplied within the gap. Such turbulent flows
have many applications in process engineering (dy-
namic membrane filtration) and also in the turboma-
chinery industry (rotating heat exchangers).

The effect of an axial throughflow in a Taylor-
Couette system has been considered experimentally
by Kaye and Elgar (1958), who showed the exis-
tence of four flow regimes depending on the incoming
flow velocity Wm and on the rotation rateΩ: lami-
nar and turbulent flows, with or without Taylor vor-
tices. Most of the experimental works so far have been
performed in systems characterized by a high aspect
ratio Γ = h/∆R > 50 (∆R = R2 − R1) and a
moderate radius ratio0.33 < η = R1/R2 < 0.66.
Thus, Nouri and Whitelaw (1994) then Escudier and
Gouldson (1995) provided very useful velocity mea-
surements for (Γ = 98, η = 0.496) and (Γ = 244,
η = 0.506) respectively.

Naser (1997) compared the predictions of ak − ε
model with the experimental data of Escudier and
Gouldson (1995). The model showed large discrepan-
cies for the mean velocity components, with a strong
dependence on the axial position not observed in the
experiments. Kuosa etal. (2004) performed a nu-
merical benchmark in a Taylor-Couette system with
a radial inlet. None of the two-equation models of-
fer satisfactory results even for the mean tangential
fluid velocity. Chung and Sung (2005) performed
Large Eddy Simulation (LES) using second-order spa-
tial schemes. They compared their numerical data to
the experimental ones of Nouri and Whitelaw (1994)
for η = 0.5 and three values of the rotation param-
eterN = ΩR1/Wm = [0.2145; 0.429; 0.858]. Re-
cently, Oguic etal. (2013) validated their code based
on fourth-order compact schemes in the inhomoge-
neous directions on the same reference data. Their re-
sults slightly improve those of Chung and Sung (2005)
highlighting the importance of high-order schemes.

One will focus our attention here on the narrow gap
case, which models quite faithfully flows in the rotor-
stator gap of electrical motors. The aim of the present
work is twofold : (i) providing some reference LES
data and (ii) questioning the capabilities of a hybrid
RANS / LES method, as well as the underlying RANS
model, in predicting such flow.

2 Flow configuration and parameters
The cavity shown in Figure 1 may be character-

ized by two geometrical parameters : its aspect ra-
tio Γ = h/∆R = 10 and its radius ratioη = 8/9.
The inner cylinder is rotating at a constant rateΩ,
while the outer one is stationary. An axial through-
flow is imposed within the gap at a constant bulk ve-
locity Wm. The main flow parameters are the rota-
tional Reynolds numberReΩ = ΩR1(R2 − R1)/ν
(in the range[8.4 × 103 − 2.5 × 104]) and the bulk
Reynolds numberReQ = Wm(R2 − R1)/ν (= 3745
or 5617), ν being the fluid kinematic viscosity. The re-
sults will be discussed in terms of the rotation param-
eterN = ReΩ/ReQ, which will take four different
values:N = 1.49, 2.98, 4.47 and6.71.

Figure 1: Sketch of the TCP system.

3 Numerical methods
The in-house code is based on semi-implicit and

second-order accurate temporal schemes. The deriva-
tives are approximated using fourth-order compact
formula in the radial and axial directions and a Fourier



approximation in the tangential direction. The time
splitting scheme is an improved projection method en-
suring the incompressibility at each time step. The
multidomain solver ensures the continuity of the so-
lution and its first normal derivative across the con-
forming interface using an influence matrix technique
(Abide and Viazzo, 2005). Periodic boundary condi-
tions are applied in the axial and circumferential (3π/4
periodicity) directions and no-slip boundary condi-
tions are imposed on the walls. The cavity has been de-
composed into two subdomains in the axial direction.
Two subgrid scale models will be tested in the follow-
ing: a dynamic Smagorinsky model (denoted LES-
SD) and the WALE model (LES-WALE). Two mesh
grids containing (Nr×Nθ×Nz)=(65×144×130) and
(65× 144× 130) points have been used forN = 6.71
andN ≤ 4.47 respectively. The time stepδt remains
in the range[3−8]×10−5 s. The present code has been
fully validated by Oguic etal. (2013) forη = 0.5.

The code used for RANS and hybrid RANS/LES
simulations is the open-sourceCode Saturne, devel-
oped by EDF (Archambeau etal., 2004). It is a fi-
nite volume solver written in cartesian coordinates.
A SIMPLEC algorithm, with the Rhie and Chow in-
terpolation, is used for pressure-velocity coupling.
Concerning hybrid RANS/LES calculations, convec-
tive fluxes are approximated by a second-order cen-
tered scheme for momentum and a first-order upwind
scheme for subfilter quantities. Time marching uses
a Crank-Nicholson second-order scheme. In RANS
mode, convective fluxes are approximated by a first-
order upwind scheme and a first-order time scheme.
For both approaches, the elliptic blending Reynolds
Stress Model of Manceau and Hanjalic (2005) is used.
The hybrid method is the equivalent DES of Manceau
et al. (2010). The hybrid RANS/LES mesh contains
603 cells assuming aπ/2-periodicity in the tangential
direction and a periodic flow in the axial direction. The
time step (normalized bytP = ∆R/Wm) is fixed to
1.4× 10−2. The RANS mesh is a 1D grid of60 cells.
No-slip boundary conditions are imposed on the walls.

4 Turbulence models
Various levels of modelling are presented. Empha-

sis is first put on the hybrid RANS/LES method. Af-
terwards, the subfilter closure and RANS model will
be briefly presented, as well as the subgrid-scale mod-
els used for LES.

Hybrid method
The hybrid method used for the present work is the

”Equivalent DES” of Manceauet al.(2010). This ap-
proach was first derived for the purpose of bridging
the PITM (Partially Integrated Transport Model) of
Chaouat & Schiestel (2005), and the DES (Detached
Eddy Simulation) method. Indeed, the first is fully jus-
tified from a theoretical point of view, while the second
one was developped on a rather phenomenological ba-

sis. First, the PITM was generalized by Fadai-Ghotbi
et al.to inhomogeneous flows, considering temporal
filtering, rather than spatial filtering. Indeed, inhomo-
geneous flows are more frequent. Since, in this kind of
flow, the RANS operator corresponds, by ergodicity, to
temporal averaging. Since any seamless (continuously
transitioning) RANS/LES method must tend to RANS,
at large filter width, inhomogeneous flow studies need
then to consider hybrid RANS / temporal LES. Nev-
ertheless, from a pragmatical point of view, consider-
ing RANS / TLES hybridization does not cause any
difficulty in implementing models or special terms,
since Fadai-Ghotbiet al.showed that applying Tem-
poral PITM (T-PITM) to a inhomogeneous stationary
flow is just equivalent to applying PITM to homoge-
neous, statistically unsteady flow. Actually, one must
just keep in mind that ”hybrid RANS/LES” is to be
understood in a general way, including temporal LES.
The advantage of Detached Eddy Simulation lies in
its simplicity and robustness. The idea of Manceauet
al.(2010), was thus to derive an approach bridging it
with T-PITM. This latter is, in spite of its theoretical
justification, not very easy to implement in any code,
showing some numerical issues. An equivalence crite-
rion was then determined between T-PITM and DES,
providing some theoretical justification to the latter,
and allowing to interprete it as a hybrid RANS / tem-
poral LES method. This equivalence criterion was de-
rived analytically for equilibrium flows, but was suc-
cessfully tested on a flow over a periodic hill, involv-
ing massive separation (Friess & Manceau, 2012).
The principle of DES is to magnify the dissipation
term of the transport equation for either subfilter turbu-
lent kinetickSFS energy or subfilter stressesτijSFS ,
damping the modelled energy and allowing large scale
eddies to be resolved:

εDES
ij =

k
3/2
SFS

εSFSL
εijSFS . (1)

While classical DES uses the local grid step to deter-
mine the length scale L in (1), equivalent DES uses the
ratio r defined as :

r =
km
k

, (2)

wherek is the total turbulent kinetic energy, andkm
its counterpart contained in the modelled (subfilter)
scales. At the RANS limit,r tends to 1, and at the
DNS limit, it tends to 0. The advantage ofr is that it
can be estimated using a spatial or a temporal energy
spectrum. As shown by Friess & Manceau (2012),r
can be evaluated as :
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1
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β0 being a constant derived from the Kolmogorov con-
stant (we used 0.3 here),US a sweeping velocity and
ωc the cutoff frequency of the considered filter. It can
be defined as :

ωc = min

(

π

dt
;
Usπ

∆

)

, (4)

wheredt and∆ are the time and grid steps, respec-
tively. Finally, following Manceauet al.(2010), the
length scaleL entering (1) is :

L =
r3/2

1 +
Cε2 − Cε1

Cε1
(1− rCε1/Cε2)

k3/2

ε
, (5)

RANS model and subfilter closure
In the temporally-filtered Navier-Stokes equation,

the subfilter stresses must be modeled such a way that,
making the temporal filter width go to infinity, the
equations tend to the RANS equations. In particu-
lar, one of the main objectives of hybrid methods is to
use RANS closures in the near-wall regions, to avoid
the very fine resolution required by LES. In that aim,
the RANS model proposed by Manceau & Hanjalić
(2002), the so-calledelliptic blending Reynolds-Stress
Model (EB-RSM), is adapted to the hybrid temporal
LES context. In this model, an elliptic relaxation equa-
tion is solved for a scalarα :

α− L2

SFS∇2α = 1 , (6)

which is a sensor of the distance to the wall (α = 0
at the wall, and 1 far away), and is used to blend near-
wall and homogeneous formulations for the redistri-
bution and dissipation terms of the transport equations
for subfilter stresses (see Fadai-Ghotbiet al., 2010, for
details) :

φ∗

ij−εij = α3(φ∗

ij−εij)wall+(1−α3)(φ∗

ij−εij)homogeneous.
(7)

Under its RANS form, EB-RSM was successfully ap-
plied to several flows, such as non-rotating and rotat-
ing channels, impinging jets or mixed and natural con-
vection flows. It was recently adapted by Fadai-Ghotbi
et al.. (2010) to serve as a subfilter-stress model in the
framework of T-PITM. In the present work, it is also
applied as a model for the equivalent DES, by simply
substituting the dissipation in the fashion of Eq. (1) in
the Reynolds-stress transport equations.

Subgrid-scale model
Eventually, LES calculations were performed us-

ing the Wall-Adapting Local Eddy Viscosity (WALE)
model of Nicoud & Ducros (1999). This choice was
motivated by a better numerical stability than the dy-
namic Smagorinsky model, and its quality in near-wall
treatment without damping functions. The subgrid vis-
cosity is given by :

νt = (Cw∆)
2

(Sd
ijS

d
ij)

3/2

(SijSij)5/2 + (Sd
ijS

d
ij)

5/4
, (8)

whereCw is a constant,∆ the grid step,Sij the fil-
tered strain-rate tensor, andSd

ij the deviatoric part of
the squared filtered velocity gradient tensor.

5 Results

(a) (b)

(c) (d)

Figure 2: Iso-values of the Q criterion along the ro-
tor (a,c) and along the stator (b,d) obtained by LES-
WALE for: N = 1.49 (a,b);N = 6.71 (c,d).

Figure 2 presents the iso-values of the Q criterion
obtained by LES-WALE for the two extrema values of
the rotation parameterN . It highlights the presence of
3D unsteady coherent structures within the two bound-
ary layers. They appear as thin negative spiral patterns
along the rotor as they roll up in the opposite sense
of the inner cylinder rotation. They are very similar
to those obtained in a middle gap cavity by Oguic et
al. (2013). The same spiral network is obtained along
the stator with a positive angle. ForN = 1.49, these
structures are more aligned with the axial direction as
the effect of the axial flow is comparable to the one
of rotation (N ≃ 1). They get progressively inclined
with the tangential direction when the rotation rate (or
N ) increases. As examples, along the rotor, the angle
formed by the spirals with the tangential direction is
equal to45◦ for N = 1.49 and to16◦ for N = 6.71.
From a numerical point of view, there is no evidence
of structures at the interface between the two subdo-
mains produced by a numerical artifact, which valids
the multidomain approach. These structures may play
a key role in the wall heat transfer process. They could
explain why most of the RANS models, which assume
the base flow as being stationary and axisymmetric,
fail to predict the right distributions of the heat trans-
fer coefficient.

Figure 3 presents the iso-values of the Q crite-
rion, obtained by the hybrid RANS/LES approach, for
the two highest values of the rotation parameterN .
Due to the use of a coarser mesh, only the rotor side is



N = 4.47 N = 6.71

Figure 3: Iso-values of the Q criterion, colored by the
radial coordinater, obtained by hybrid RANS/LES,
for N = 4.47 and6.71.

shown, contrary to LES results. Despite the structure
density is lower than for LES, net-shaped streaks are
captured, with angles very similar to the ones given
by LES. It is noticeable that some streaks are also ob-
tained within the boundary layers, but this approach is
unable to capture so well the thin coherent structures,
unlike LES. The reason whyN = 1.49 is not shown
for hybrid RANS/LES, is that the calculation ended up
to a RANS level, thus without capturing a ny coherent
structures.

Figures 4 through 9 show a comparison between
LES, RANS and hybrid RANS/LES statistics of the
flow, for each value of the rotation parameterN . Here-
after, the LES results will be commented first, then the
RANS results. Eventually, the hybrid RANS/LES will
be paid more attention to.

The two LES provide the same mean velocity
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Figure 4: Radial distribution of the mean tangential
V ∗

θ = Vθ/(ΩR1) velocity component for all four cases
; Comparisons between the LES-WALE (squares), the
LES-SD (circles), RANS (dashed lines) and hybrid
RANS/LES (solid lines).

profiles (Fig.4). The azimuthal velocity profiles, nor-
malized by the rotor’s speed,V ∗

θ = Vθ/(ΩR1) vary
very weakly with the rotation parameterN such that
V ∗

θ = 0.5 at mid-gap. One can just notice that, at low
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Figure 5: Radial distribution of the axialV ∗

z =
Vz/Wm velocity component. Same legend as Figure
4.
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√

v′2
r /Wm. Same legend as Figure 4.

N values,V ∗

θ varies with1/r in the gap and gets con-
stant at highN . In that case, the profile resembles
the Batchelor profile obtained in unmerged bound-
ary layer interdisk flows. The axial velocity profiles
is close to the turbulent Poiseuille profiles encoun-
tered in pipe flows and do not vary withN . Regard-
ing the distributions of the two Reynolds stress tensor
components, turbulence is mainly concentrated along
the walls where remarkably high turbulence intensity
peaks are observed. The LES-WALE may be consid-
ered as the reference data as it has been fully validated
by Oguic etal. (2013) for η = 0.5. The LES-SD
provides here very similar results. It slightly overesti-
mates theRθθ component within the gap atN = 6.71.
The LES-WALE is moreover less time consuming as
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the time per iteration is16.09 s for N = 6.71 to be
compared to18.53 s for the LES-SD, with similar wall
coordinates.

The RANS model predicts reasonably the statis-
tics of the flow, though the normalized tangential ve-
locity profilesV ∗

θ seem quite insensitive to the value
of N . However, the near-wall peaks predicted by
the reference LES, for most of Reynolds stresses, are
rather well captured by the EB-RSM model, especially
their radial location. The asymmetry of the aforemen-
tionned peaks, is not well reproduced by EB-RSM, but
this may be due to numerics, rather than the model it-
self. A further study is needed, on that point. Even-
tuially, those quite satisfactory results may be linked
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to the fact that the EB-RSM model is supposed to be
well suited for wall-bounded flows involving attached
boundary layers and exhibiting three-dimensional fea-
tures.

The hybrid RANS/LES approach’s success is
mixed, with a significant dependance, not only on
N , but also on the effective Reynolds numberReeff.
This latter is based on the effective velocityVeff =
√

W 2
m + 0.5 (ΩR1)

2, which is a rough estimate of the
resulting bulk velocity, in the plane tangential to the
walls.
Table 1 summarizes the values of the three Reynolds
numbers : axial, rotational and effective, Reynolds
numbers. It is important to note that, despite 6.71 is
the highest value forN , this case has the lowest ax-
ial Reynolds number, which is 3745. This value is
rather low. Recalling that hybrid RANS/LES meth-
ods are rather designed for predicting high-Reynolds
flows, one can explain why the caseN = 1.49, hav-
ing the lowest effective Reynolds number, the hybrid
RANS/LES approach exhibits a bad overall prediction
quality, for the flow statistics. Concerning other cases,
the prediction quality of the hybrid RANS/LES ap-
proach is more contrasted.
Indeed, a low value of the axial Reynolds numberReQ
(caseN = 6.71) leads to a quite bad description
of statistics involving the axial componentz. Simi-
larly, a low value of the rotational Reynolds number
ReΩ results in a particularly poor prediction of statis-
tics involving the azimuthal componentθ. Recipro-
cally, more satisfactory results are obtained for higher
Reynolds values : e.g. the peaks ofR∗

zz
1/2 are better

described by the hybrid approach, than by RANS, for
casesN = 2.98 andN = 4.47. Similarly, there is a
real gain in the prediction ofV ∗

θ andR∗

θθ
1/2, for cases

N = 4.47 andN = 6.71. The prediction ofR∗

rr
1/2



seems rather sensitive to the effective Reynolds num-
berReeff.
It is worth mentioning that the overstimation of
Reynolds stress components is certainly due to the
value of the constantβ0 entering Eq (3).
Eventually, one can guess there are thresholds for
those Reynolds numbers. Below those thresholds,
the hybrid RANS/LES approach does not improve the
prediction of the flow statistics, in comparison with
RANS. Above those thresholds, significant bettering
is observed. ConcerningReQ, the value of 5617
seems above, and 3745 unsufficient, whereas, forReΩ,
16755 seems above the threshold, and 8378 below it.

N 1.49 2.98 4.47 6.71
ReQ 5617 3745
ReΩ 8378 16755 25133
Reeff 8164 13112 18368 18162

Table 1: Values of axial, rotational and effective
Reynolds numbers, for all four cases.

6 Conclusions
The present work is a step forward in the modeling

of turbulent Taylor-Couette-Poiseuille flows in a nar-
row gap cavity. Four values of the rotation parameter
N have been considered in the framework of a bench-
mark including two LES implemented in an in-house
code and RANS and hybrid RANS/LES approach im-
plemented inCode Saturne. Assuming that Large
Eddy Simulation results can be considered as refer-
ence data (Oguic etal., 2013), the hybrid RANS/LES
approach does not really improve the predictions of
the RANS model for both the mean and turbulent
fields, especially for the cases with lower values of the
Reynolds numberReeff based on the effective veloc-
ity. This tendency has already been observed by Fadai-
Ghotbi et al. (2010) for turbulent channel flows at
moderate Reynolds numbers. The LES models high-
light the presence of 3D coherent structures along both
walls, appearing as two spiral networks whose angles
strongly vary withN . In spite of the contrasted results
of the hybrid RANS/LES approach on the statistics of
the flow, instantaneous fields show similar features as
LES, especially net-shaped streaks with acceptable an-
gles.
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