
HAL Id: hal-01098506
https://hal.science/hal-01098506v1

Submitted on 26 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inversion and uncertainty of highly parameterized
models in a Bayesian framework by sampling the

maximal conditional posterior distribution of parameters
Thierry A. Mara, Noura Fajraoui, Anis Younes, Frederick Delay

To cite this version:
Thierry A. Mara, Noura Fajraoui, Anis Younes, Frederick Delay. Inversion and uncertainty
of highly parameterized models in a Bayesian framework by sampling the maximal conditional
posterior distribution of parameters . Advances in Water Resources, 2015, 76, pp.1 - 10.
�10.1016/j.advwatres.2014.11.013�. �hal-01098506�

https://hal.science/hal-01098506v1
https://hal.archives-ouvertes.fr


Inversion and uncertainty of highly parameterized

models in a Bayesian framework by sampling the

maximal conditional posterior distribution of

parameters∗

Thierry A. Maraa,∗, Noura Fajraouib, Anis Younesb, Frederick Delayb

aPIMENT, EA 4518, Université de La Réunion, FST, 15 Avenue René Cassin, 97715
Saint-Denis, Réunion

bLHyGeS, UMR-CNRS 7517, Université de Strasbourg/EOST, 1 rue Blessig, 67084
Strasbourg, France

Abstract

We introduce the concept of Maximal Conditional Posterior Distribution

(MCPD) to assess the uncertainty of model parameters in a Bayesian frame-

work. Although, Markov Chains Monte Carlo (MCMC) methods are par-

ticularly suited for this task, they become challenging with highly parame-

terized nonlinear models. The MCPD represents the conditional probability

distribution function of a given parameter knowing that the other param-

eters maximize the conditional posterior density function. Unlike MCMC

which accepts or rejects solutions sampled in the parameter space, MCPD

is calculated through several optimization processes. Model inversion using

MCPD algorithm is particularly useful for highly parameterized problems

because calculations are independent. Consequently, they can be evaluated

simultaneously with a multi-core computer. In the present work, the MCPD

approach is applied to invert a 2D stochastic groundwater flow problem where
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the log-transmissivity field of the medium is inferred from scarce and noisy

data. For this purpose, the stochastic field is expanded onto a set of or-

thogonal functions using a Karhunen-Loève (KL) transformation. Though

the prior guess on the stochastic structure (covariance) of the transmissiv-

ity field is erroneous, the MCPD inference of the KL coefficients is able to

extract relevant inverse solutions.

Keywords: Inverse modeling, Bayesian parameter estimation, Model

parameter identification, Highly parameterized model, Heterogeneous

transmissivity field, Karhunen-Loève expansion.
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1. Introduction

Models are tools on which environmental risk-assessment and decision-

making strategies can rely, provided it is proved that the models are relevant

to the problem under investigation. This relevance can be addressed by facing

a model prediction to observation data knowing that the whole procedure also

requires assigning model parameter values. Some parameters can be directly

measured while some others ought to be indirectly estimated by comparing

model predictions with observations. The present work addresses the issue

of parameter identification for highly parameterized models. The notion of

identification encompasses seeking the parameter values and assessing the

uncertainty on parameters and on model predictions.

During the past two decades, the increasing power of computers was con-

ducive to emphasize and promote the so-called Bayesian parameter estima-

tion techniques. In essence, the Bayesian framework leads to the definition of

the parameter joint posterior probability density function (pdf), for instance

inferred by means of Markov Chain Monte Carlo (MCMC) samplings ([1–4]).

The notion of posterior pdf is associated with the fact that the parameter’s

pdf is conditioned both on plausible (prior) parameter values and on ob-

servation data. MCMC provides draws directly sampled from the posterior

pdf which leads to exploration of the plausible areas in the parameter space.

The Bayesian estimation using MCMC has been subject to many develop-

ments and improvements during the last decade (e.g. [5–8] among others).

However, MCMC samplers remain computationally expensive because many

draws are rejected by the statistical test embedded in the sampler. Further-

more, with MCMC, the parameters marginal posterior distributions cannot

be investigated independently. Recently, several strategies have been pro-

posed to increase MCMC efficiency (see [9–13]).
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In the present work we propose a new method, partly grounded in op-

timization techniques, to cope with the identification of model parameters.

The first step of this approach is to seek all the probable local optima of the

joint posterior pdf of the whole set of parameters (including the maximum

a posteriori estimate). Next, several maximizations of the conditional pdf

are performed for different prescribed values of one selected parameter. The

values assigned to this parameter are picked from a range around its optimal

value(s). The value of the other parameters is investigated by maximizing the

conditional pdf. This provides what we call the Maximal Conditional Poste-

rior Distribution (MCPD) of the selected parameter. It actually corresponds

to a discrete approximation of the pdf of a single parameter conditioned on

data such that the conditional pdf is maximized.

The MCPD returns information about the model parameter values sup-

ported by the data and any correlations between parameters. The MCPD

sample also allows uncertainty bounds to be assigned to the model predic-

tions. The main advantage of the approach is that MCPD inferences for

different parameters are independent and can be evaluated simultaneously

by easily distributing the calculations over a multi-core computer (or several

computers). This feature drastically decreases the computation time and

makes the inversion of highly parameterized problems feasible.

The main topics addressed in the present paper are organized as follows. A

short outline on inverse modeling within a Bayesian framework is proposed in

Section 2, and then followed by the details on the MCPD sampling in Section

3. The first exercise testing the MCPD approach is proposed in Section 4

and addresses the ability of the sampler to retrieve a multimodal probability

density function. The second test in Section 5 applies the MPCD approach to

identify the Karhunen-Loève expansion ([14]) of a stochastic transmissivity
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field for a two-dimensional steady-state groundwater flow problem.

2. Bayesian inference

In inverse modeling, the parameter set (of size s) θ = {θ1, . . . , θs} of a

given model is estimated from a set of observation data d. In the following,

we assume that the model does not suffer from misconceptions. The model is

therefore supposed to be exact regarding the processes and the system that

it mimics. However, observation data remain uncertain (random variables)

making the model parameters to be also random and characterized by a joint

probability density function p(θ). We denote by Ωi the probable prior un-

certainty range of θi. In a Bayesian framework, the parameter joint posterior

pdf is defined by

p(θ|d) =
p(d|θ)p(θ)

p(d)
(1)

where p(d) is a scaling factor called evidence, p(θ) is the prior density cor-

responding to a first guess on parameters before collecting the observations,

while p(d|θ) is called the likelihood function measuring how well the model

describes the data.

The parameter set that maximizes Eq. (1)

θ
MAP = argmax

θ
p(θ|d) (2)

is called the maximum a posteriori estimate. It is the most probable param-

eter set given our knowledge about the system (i.e. the data d and the prior

pdf of the parameters p(θ)) and it is sought by appropriate optimization

algorithms (e.g., descent methods, evolutionary algorithms, etc...). Unfor-

tunately, finding θ
MAP does not allow to (fully) characterize the posterior

uncertainty of the parameters (except for linear models, see [15]). This un-

certainty should be assessed by calculating the marginal posterior density for

6



each parameter, defined as follows

p(θi|d) =

∫

p(θi,θ−i|d)dθ−i, ∀i = 1, . . . , s (3)

where θ−i represents the vector of parameters θ without θi. The integral in

(3) can be approximated by a multidimensional quadrature method or by a

sampling-based method such as the Markov Chain Monte Carlo (MCMC).

Nevertheless, the computational effort can be prohibitive and sometimes un-

affordable for problems with a large number of parameters.

In the present work, we propose an optimization-based method in order

to assess the parameter uncertainty for models post-conditioned on avail-

able observation data. For this purpose, we introduce the concept of max-

imal conditional posterior distribution. One could raise that relying on an

optimization-based method will require solving many problems, as is classical

with standard inversion techniques when obtaining a large set of solutions is

contemplated. As shown hereafter, the maximal conditional posterior distri-

bution has some specific features diminishing the calculation loads.

3. Maximal conditional posterior distribution

3.1. The concept

We define the maximal conditional posterior distribution (MCPD) of θi

as

Pi(θi) = max
θ

−i

(p(θ−i|d, θi))× p(θi|d) (4)

Pi(θi) is interpreted as the posterior probability function that maximizes

the conditional posterior distribution p(θ−i|d, θi) and encompasses the MAP

probability (i.e. Pi(θ
MAP
i ) = p(θMAP |d)). By using the Bayes theorem,

one can write, max (p(θ−i|d, θi))× p(θi|d) = max (p(θi|θ−i,d)× p(θ−i|d)).

Therefore, the MCPD in (4) can also be viewed as the distribution of the
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parameter θi, knowing that the other parameters θ−i are at their optimal

values. The MCPD of θi is assessed in a discrete form by sampling Eq. (4).

A parameter θi is frozen at a prescribed value and the other parameters

θ−i are optimized to find (according to the Bayesian definition) the maximal

probability of these parameters. Changing the prescribed value of θi allows

scanning the distribution of θi. In practice, the sampled values of θi (denoted

below θ∗
i ) are picked around the MAP estimate θMAP

i (estimated beforehand)

within its prior uncertainty range Ωi (see Fig. 1). This gives,

θ
∗
−i = argmax

θ
−i

p(θ−i|d, θi = θ∗
i ) (5)

Pi(θ
∗
i ) = p(θ∗

−i|d, θ
∗
i )× p(θ∗

i |d) = p(θ∗|d) (6)

On the one hand, if θi is globally identifiable, one expects that the fur-

ther the parameter value is from θMAP
i , the more Pi(θ

∗
i ) < Pi(θ

MAP
i ). On

the other hand, if θi is not identifiable, varying its sampled values θ∗
i , will

not change the joint posterior distribution in (1). Then, max (p(θ−i|d, θi)) =

p(θMAP
−i |d) and the MCPD of θi will be equal to its marginal prior distribu-

tion (i.e. Pi(θi) ∝ p(θi), see Eq. (4)). This is the case for instance of the

unimodal multi-Gausian probability density function.

In the event of multimodality of p(θ|d), θMAP is not unique or its search

is hampered by the existence of local maxima. It is advisable to first acquire

all the possible maxima of p(θ|d) by starting optimization processes from

different locations in the parameter space (a multi-start procedure). Note

that these prior searches do not ensure that all maxima will be identified.

When the local maxima are known, the MCPD calculation principle evoked

above is generalized by sampling θ∗
i in all the subareas of the parameter space

enclosing the local maxima. Finally, note that, by definition, the MCPD

Pi(θi) and the marginal posterior density p(θi|d) are different. However,
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these densities would be exactly the same whenever max (p(θ−i|d, θi)) is

constant ∀θi ∈ Ωi.

It can be questioned on the relevance of the MCPD if the latter is not

the marginal posterior density. We remind that the aim of the MCPD is

to evaluate uncertainties on both the parameters and the model predictions

given some observation data. The key point is less to know whether one can

approach the marginal posterior density rather than providing uncertainties

for valuable solutions to the inverse problem. As told above, by construction

an MCPD samples the distribution of a parameter θi knowing that the others

are optimal. This new way brought by the MCPD to envision the uncertainty

associated with a parameter seems to be an interesting alternative to more

classical definitions. One can mention however that a Markov chain Monte

Carlo sampler tries to draw all the probable solutions to the inverse problem

while only some of these solutions are inferred by the MCPD sampling. In

some situations, this can represent a drawback of the MCPD sampling.

3.2. MCPD assessment

For the sake of clarity, the algorithm inferring the MCPD assumes that

the posterior density p(θ|d) has only one mode. The occurence of multi-

modal densities is just an adaptation of the procedure depicted below. The

procedure starts by seeking the maximum a posteriori θMAP (Eq. (2)). Then,

the algorithm sketched by the flowchart in Fig. 2 is launched. Calculation of

MCPD for each parameter takes place in two stages. The first stage identifies

the relevant range within which the parameter θi will be made to vary. For

this purpose, we define a large sampling step, for θi, e.g. ∆ × θMAP
i , with

∆ = 0.5. Then, θi is successively set to θ±k
i = θMAP

i (1± k∆), k = 1, 2, 3, · · ·

and the associated optimization in Eq. (5) is solved. Increments of k are

stopped when:
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1. the two current probability values p(θ+k|d) and p(θ−k|d) decrease be-

low a prescribed threshold which may be expressed thus: p(θ±k|d) <

p(θMAP |d)/100; or

2. the sampled values θ±k
i are beyond Ωi, i.e. the prescribed prior uncer-

tainty range on θi.

Usually, the first stopping criterion is reached before the second one, thus

leading to a narrower sampling range of θi compared to its prior uncertainty

range Ωi. The second stage of the algorithm resamples the values of θi to

increase the refinement of the discrete MCPD. Before proceeding, the results

from the first sampling step are re-ranked by increasing values of θi. We

denote {θki ,Pi(θ
ki
i ) = p(θki|d), ki = 1, · · · , ni} the re-ranked first sample

with θki
i < θki+1

i . We seek in this sample the interval where the difference

Pi(θ
ki+1
i )− Pi(θ

ki
i ) is maximal, i.e., we seek the index km verifying

km = argmax
ki

∣

∣Pi(θ
ki+1
i )−Pi(θ

ki
i )

∣

∣ (7)

Then, the optimization in Eq. (5) is solved for θ∗
i =

θkm+1
i + θkm

i

2
and the

pair (θ∗
i ,Pi(θ

∗
i )) joins the set {θki,Pi(θ

ki
i )}. The latter is then sorted again

by increasing value of θi and the search of the index km is resumed. This

procedure makes that one resamples θi and amends the set {θki,Pi(θ
ki
i )}

progressively (iteratively) at locations in the set where the MCPD is the

most coarsely discretized. Usually, a few iterations on km (i.e. Nit = 10) are

enough to obtain a good discrete depiction of the whole MCPD of θi.

In the case of multimodal densities p(θ|d), the algorithm is adapted so

that it repeats the first and second steps of sampling around each "optimal"

θopt value (see the example in Section 4).

At this stage, it is interesting to note that the optimization procedures

to identify optimal vectors θ−i for prescribed values of θi are completely
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independent of the optimizations identifying θ−j for prescribed values of

θj . Therefore, the MCPD samplings for each parameter of the investigated

problem are independent and can be handled easily with parallel computing

streams. There can be as many sessions as the number of parameters, which

strongly reduces the total computation time. Obviously, other inverse tech-

niques can be parallelized, for example, the Markov Chain Monte Carlo (see

[16], [17], [18]). In this case, several chains are launched in parallel to explore

the parameter space. The chains will generate independent subpopulations

of solutions and exchange good individuals between the subpopulations to

accelerate the convergence (the benefit of some emigration between subpop-

ulations). The parallel calculations are no longer independent and a master

computer is needed to analyze the independent subpopulations and generate

new ones. In the end, the ease of parallelization brought by the MCPD in-

ference is suited to the inversion of highly parameterized problems (see the

example in Section 5).

3.3. Predictive density of an MCPD sample

Let us denote by n =
∑s

i=1 ni the total number of MCPD draws. A

specific MCPD sample (θk,Pi(θ
k
i )), k = 1, · · · , n corresponds to a point

location on the hypersurface described by the parameter joint probability

density p(θ|d). The density function of the model predictions conditioned

on observed data d allows assigning uncertainty bounds to the prediction of

a new observation d∗. If we assume that d∗ is independent of d conditional

on θ (i.e. p(d∗|d,θ) = p(d∗|θ), see [19]), we can write

p(d∗|d) =

∫

p(d∗|θ)p(θ|d)dθ (8)

Given that, Pi(θ
k
i )) = p(θk|d), Eq. (8) is simply approximated by

p̂(d∗|d) =

∑n

k=1Pi(θ
k
i )p(d

∗|θk)
∑n

k=1Pi(θk
i )

(9)
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where p(d∗|θk) is the likelihood function defined in Eq. (1) evaluated at d∗

and conditioned onto θ = θ
k.

4. Inference of a multimodal distribution with MCPDs

The first case study deals with the ability of MCPD samplings to retrieve

a three-modal probability density function with connected and disconnected

modes. The test function to be retrieved is inspired from a case study pro-

posed by Laloy and Vrugt who state that inferring a density function with

disconnected modes by means of MCMC is very challenging ([20]). In the

present work, the density function also encloses modes that differ for each

parameter. The density function to retrieve has 25 parameters and is the

sum of three multiGaussian density functions expressed as

p(θ) =
1

6
N (µ1, 5C) +

2

6
N (µ2, 5I25) +

3

6
N (µ3, 5I25) (10)

where N (µi, I25) is the multiGaussian distribution of mean vector µi. I25

is the 25-dimensional identity matrix which indicates that the parameters

(θ1, . . . , θ25) are independent in the second and third Gaussian distributions

in (10). C is a correlation matrix with null off-diagonal elements except

for C1,11 = C11,1 = −0.5 and C1,13 = C13,1 = 0.8. These non-null terms

impose, for the first Gaussian distribution in Eq. (10), a negative correlation

between θ1 and θ11 and a strong positive correlation between θ1 and θ13.

The three modes of each parameter are grouped in the vectors of means

µ1 = [−12, . . . , 12], µ2 = [1, . . . , 25] and µ3 = [25, . . . , 1]. Thus, θ13 has

two modes located at θ13 = 13. To compute the MCPDs, and specifically

to seek optimal vector θ
∗
−i knowing the value of θ∗

i , we use the MATLAB

optimization toolbox, especially the fminunc.m function based on the so-

called trust-region method. This function minimizes − log(p(θ)) and the
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convergence velocity is accelerated by providing the values of the derivatives

of − log(p(θ)) with respect to the θ components.

The first hurdle in this exercise is to identify the 3 local maxima of the

density function. For all parameters, the maximal mean values are located

in the third multiGaussian distribution with µ3 as the vector of means. For

this purpose we ran the optimization procedure twenty times, using initial

solutions uniformly sampled from the parameter space. This calculation

required about 6 500 evaluations of the density function (Eq. (10)). Subse-

quently, MCPD sampling was carried out in the vicinity of each optimum

requiring an additional computation effort of about 3 000 runs for Nit = 20

iterations of MCPDs refinements (see Section 3).

In Fig. 3 we compare the maximal conditional posterior density of some

parameters to their marginal posterior density. The MCPDs were computed

numerically while the marginal posterior densities were assessed analytically

by computing p(θi) =
∫

p(θ)dθ−i. Interestingly, when the modes are discon-

nected the two densities are equal (e.g. θ1) whereas they can be very different

when the modes are superimposed (e.g. θ13). This is due to the fact that the

marginal posterior pdf is an integral making that the superimposed modes

are summed-up. Note that because the MCPDs are calculated by several op-

timization procedures in the vicinity of each mode, the superimposed modes

produce overlapping MCPD curves.

It is noticeable that with only a few point estimates of the MCPD, the

densities obtained are accurate enough (e.g. with only Nit = 10 refinement

iterations, not reported in Fig. 3). The "off-diagonal" scatterplots in Fig. 3

for a column i and a row j correspond to the pairwise MCPD draws (θki
i , θ

ki
j )

and (θ
kj
i , θ

kj
j ). The first one corresponds to the optimal sought value of the

parameter θj for sampled (prescribed) values of θi and the second one to
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optimal values of θi for sampled θj . The first observation is that one can

find several distinct values of a parameter θi for the same draws of θj. This

is specific to the targeted pdf with overlapping modes. For example in Fig. 3,

θ13 has its three modes in (0, 13, 13), i.e. two overlapping modes, whereas

modes of θ1 at (-12, 1, 25) do not overlap. When seeking the MCPD of θ13,

one identifies two local optima (θ1 = 1, θ13 = 13) and (θ1 = 25, θ13 = 13),

i.e., several distinct values of θ1 (around 1 and 25, respectively) are found

for the same draws of θ13 around the value 13.

The scatterplots also prove that the MCPD sampler is able to retrieve the

correlation structure of the pdf. One can easily check that, in the vicinity

of the first mode (for which θ1 = 1, θ11 = 11 and θ13 = 13), a negative

correlation between (θ1, θ11) and a positive correlation between (θ1, θ13) are

observed. It can also be noted that no correlation is observed elsewhere, as

assumed by the targeted density function (see Eq. (10)). Hence, the plots of

θ13 versus θ11 draw orthogonal crosses (see scatterplot at row 3, column 2).

To conclude on this first exercise, we note that finding out the local op-

tima is the most expensive stage. Identifying the multiple local optima is

performed via a multi-start procedure launching searches from different ini-

tial locations in the parameter space. This procedures does not guarantee

that all the local optima will be found. Our empirical experience shows how-

ever that the MCPD sampling (second stage) can identify some missed modes

or improve the evaluation of some others. In this first stage, it is hard to

state whether an optimization technique is a mark above the others. The use

of gradient-based methods or evolutionary algorithms such as genetic algo-

rithms or shuffled complex evolution methods are possible choices ([21]). For

the second stage dealing with MCPDs sampling, the starting points in the

parameter space are not far from the optimal locations. The calculations are
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fast and optimizations relying on gradient-based methods are recommended

because they converge rapidly when started close to the solution. In the

present example, the computation time was also strongly reduced by launch-

ing independent MCPDs samplings using 25 processors. This resulted in a

cost of 260 computational time units (CTU) for the step identifying the local

optima, whereas MCPDs sampling took only 120 CTU.

5. Inverting a stochastic field with MCPDs

We consider here an inverse problem with a two-dimensional random field

as the unknown parameters.The two-dimensional random field of scalar val-

ues is denoted by Y (x,ω) with x the location in the Euclidean bounded

space D and ω a realization index of the random field equivalent to a coordi-

nate in the probability space Ω. Let us also consider a model response vector

G(Y (x,ω)) and some observation data d. The inverse problem consists of

finding an optimal estimate Ŷ MAP of the random field and its uncertainty

range given the data. At first glance, the problem is ill-posed because there

are an infinite number of unknowns, or at least, as many unknowns as the

number of grid cells discretizing the domain D for numerically evaluating

G(Y ). Hence, the first task is to reduce the dimensionality (regarding pa-

rameters) of the problem.

5.1. Karhunen-Loève expansion

Several authors have suggested using Karhunen-Loève (KL) transforma-

tion of the random field ([13, 22–24]) to reduce the dimensionality of the

problem. It is assumed that the random field obeys a second-order station-

ary Gaussian process, making that Y (x,ω) ∼ GP (µY , CY (x1,x2)), where

µY is the mean of the process, (x1,x2) is a pair of different locations in the

Euclidean space D, and CY (x1,x2) is the two-point covariance of the random
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process. This covariance is a scalar continuous and positive-definite function

corresponding to CY (x1,x2) = E [(Y (x1)− µY ) (Y (x2)− µY )], with E[ ] the

mathematical expectation. Provided that Y (x,ω) is a real-valued random

field with finite second moments, its KL expansion is

Y (x,ω) = µY +
+∞
∑

i=1

√

λiξi(ω)ϕi(x) (11)

where the douplets (λi,ϕi(x)), ∀i ∈ N
∗ are a set of eigenvalues (λ1 ≥ λ2 ≥

· · · > 0) and the associated eigenfunctions of the covariance kernel CY while

{ξi}∞i=1 are independent Gaussian random variables of zero mean and unit

variance (ξi ∼ N (0, 1)). The doublets eigenvalues-eigenfunctions are ob-

tained by solving the Fredholm equation

∫

D

CY (x1,x2)ϕi(x2)dx2 = λiϕi(x1) (12)

When ranked by decreasing values, the eigenvalues tend more or less

rapidly to zero, thus allowing truncation of the KL development to the Kth

order

Ŷ (x,ω) = µY +
K
∑

i=1

√

λiξi(ω)ϕi(x) (13)

where K is chosen so that
∑K

i=1 λi ≥ (1− ǫ)
∑+∞

i=1 λi. Given that the eigen-

functions {ϕi(x)}
∞
i=1 are continuous and form a complete orthonormal system

in L2(D), i.e.
∫

D
ϕi(x)ϕj(x)dx = δij with δij the Kronecker delta function,

Eq. (13) is therefore an expansion of Y (x,ω) onto an orthogonal basis. Pro-

vided the parameters µY and CY (·) are fixed (guided by previous investiga-

tions), identifying Ŷ (x,ω) essentially involves seeking the plausible Gaussian

random variables ξ∗ that explain the observation data d. The dimensionality

of the inverse problem is therefore reduced to K parameters, i.e. the number

of eigenvalues-eigenvectors chosen to expand Y (x,ω). The problem is also

partly regularized since ξ is a vector of independent Gaussian variables, i.e.
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p(ξ) = N (0, IK). Note also that one can include the mean µY in the sought

parameters, as done in the sequel where one defines the parameter vector

θ = (µY ,ξ) of dimension s = K + 1.

If we compare the above parameterization of a multiGaussian field with,

for example a pilot point method, the reduction of dimensionality when solv-

ing the inverse problem is of the same order. Obtaining several plausible

solutions in a Bayesian framework will finally require several optimizations

procedures. On the one hand, a classical pilot point technique will duplicate

the optimization of the pilot point values to modify different prior guesses

on the parameter field. On the other hand, calculating MCPDs for the

parameters of the Karhunen-Loève decomposition will also require multiple

optimizations (see Section 3). Further studies handling carefully designed

comparisons would be needed to identify advantages and drawbacks of both

approaches.

5.2. Problem statement

Let us now illustrate the approach mixing a Karhunen-Loève decomposi-

tion and MCPD calculations. It must be first emphasized that the Karhunen-

Loève decomposition is well known to depict accurately any second-order

stationary random field ([23, 24]). Along this line, our study does not pro-

vide new insights on the KL decomposition. The main aim here is to assess

the capability of MCPD samplings to correctly identify a large number of

parameters that do not directly enter in the forward problem. As is the case

with a lot of parameterization techniques, the optimized parameters serve

as seeds to recompose the parameter field that enters in the calculation of

the forward problem. In addition, the parameters of a Karhunen-Loève de-

composition before inversion are independent because the eigenvectors of the

decomposition are orthogonal. After inversion and post-conditioning, these
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parameters may become correlated. It appears interesting to see how MCPD

samplings will cope with this modification and which kind of uncertainty can

be derived for parameters that are the seeds of a parameterization technique.

Let us now illustrate the approach by considering the following steady-

state two-dimensional flow problem in a heterogeneous medium


























∇ · (T (x)∇h(x)) = 0,x = (x, y) ∈ D = [0, 1]× [0, 1]
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∣

∣
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= 0

T (x)
∂h(x)

∂x

∣

∣

∣

∣

x=0

= 0.02; h(1, y) = 0

(14)

where, h(x) [L] is the hydraulic head and T (x) [L2T−1] is the transmissivity

of the aquifer. The forward problem (14) is numerically solved by means of

the mixed-hybrid finite element method ([25]) for a domain discretized into

104 triangular meshes.

The inverse problem consists of finding the log-transmissivity field Y (x) =

log(T (x)) conditioned on a vector d of data enclosing 25 measurements of

hydraulic head spread all over the domain and 25 log-transmissivity values lo-

cated at the same points as the observed heads. These data were obtained af-

ter running the flow scenario in Eq. (14) over a multiGaussian field Y (x) with

a mean of zero and an isotropic Gaussian covariance Cy(x1,x2) = 2e−6|x1−x2|2,

yielding an effective correlation length of the random field Y (x) of 0.7. The

data where then corrupted by a Gaussian white noise of standard deviation

σm
h = 1 for the heads and σm

Y = 0.1 for the log-transmissivity. The refer-

ence field Y (x) and the measurement locations are reported in Fig. 4(a) and

Fig. 4(d) respectively.

5.3. Posterior distribution

First, let us assume, as a prior guess, that the log-transmissivity field

Y (x) has a mean of zero and an isotropic Exponential covariance Cy(x1,x2) =
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10e−8|x1−x2| yielding an effective correlation length of 0.375. This choice of

an erroneous covariance function compared with that of the reference prob-

lem is twofold. First, we want to show that it is still possible to obtain a

good estimation of the random field even though the prior guess on its spa-

tial structure is flawed. For instance, the correlation length of the guess is

here half the correlation length of the reference field, and the prior variance

is five times the variance of the reference field. One can also mention to

justify this discrepancy that the model of covariance in practical applica-

tions is often more conjectured than really known. Second, the Fredholm

equation in (12) has well-known analytical solutions for an exponential co-

variance kernel (see [26]) which simplify and accelerate the calculations of

the eigenvalues−eigenfunctions. It is of course possible to choose another

covariance kernel. In that case, one can make use of the calculation method

proposed in [27] to estimate the eigenmodes. In the present study, the KL

expansion is performed by keeping the first 103 modes representing 84% of

the variance associated with the field Y (x). In the end, 104 parameters are

sought (including the mean µY ), which is still a highly parameterized prob-

lem but far less than the initial problem that had a number of parameters

equal to the number of meshes (104) discretizing the domain.

Given the way the 50 local data were obtained, the likelihood function is

written

p(d|θ, σm
h , σ

m
Y ) ∝ exp

(

−
SSh(θ)

2(σm
h )

2
−

SSY (θ)

2(σm
Y )

2

)

(15)

where SSh and SSY are the sum of squared errors on the hydraulic head

and log-transmissivity respectively. In the present inversion exercise, we

cannot include (σh, σY ) in the parameters to be estimated. The optimization

algorithm overfits the data because the number of unknowns (s = 104) is

much greater than the number of data (i.e. 50). Hence, they are fixed to
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their exact presumed value.

Keeping in mind that in the KL expansion, ξ ∼ N (0, IK) and assuming

a uniform prior density function for µY allows to write (by using Eq. (15))

the parameter joint posterior density function as

p(θ|d, σm
h , σ

m
Y ) ∝ exp

(

−
SSh(θ)

2(σm
h )

2
−

SSY (θ)

2(σm
Y )

2

) K
∏

i=1

exp

(

−
ξ2
i

2

)

(16)

Maximizing the above density function amounts to minimize the following

weighted sum of squares,

J(θ) =
SSh(θ)

(σm
h )2

+
SSY (θ)

(σm
Y )2

+
K
∑

i=1

ξ2
i (17)

The parameters ξ being normally distributed a priori, we did not prescribe

any restrictive variation ranges. Regarding the parameter µY , we prescribed

a very large variation range [−100, 100] making in practice µY free of any

constraint. The type of objective function in Eq. (17) is rapidly minimized

with gradient-based methods if the Jacobian matrix
∂h(x,θ)

∂θ
is calculated

accurately ([28, 29]). A close look at the forward problem in (14) shows that

its differentiation with respect to any parameter θ parameter yields
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(18)

where the notations hθ(x,θ), Tθ(x,θ) stand for the derivatives
∂h(x,θ)

∂θ
,

∂T (x,θ)

∂θ
, respectively. Provided the forward problem has been solved and

one can analytically differentiate the terms Tθ(x,θ), the calculation of (18)

is very similar to that of the forward problem (14). It can be handled with

the same code, the same discretization, resulting in comparable accuracy for

evaluating both h(x,θ) and hθ(x,θ).
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5.4. Results and discussion

With 104 coefficients kept in the KL expansion, MCDPs were calculated

on an eight-core computer, each core calculating 13 MCPDs. On average,

each core ran the model (forward flow problem + calculation of the Jacobian

matrix) about 6 500 times (CTU) for a total over the eight cores of 54

560 runs. 105 spatially distributed problems were solved, one being the

calculation of the head variable (Eq. (14)), and 104 evaluating sensitivities

to parameters θ−i for a prescribed value of θi (Eq. (18)). As a comparison, in

[13], the authors handled a similar problem by means of MCMC and following

the approach proposed in [12]. To lower the computational load, a surrogate

model was used in a two-stage approach in which a new candidate must first

pass the surrogate likelihood successfully before undergoing the statistical

test of the original model. Three dependent chains were launched in parallel.

The chains started to converge after 4 000 calls of the forward (i.e. original)

model for a total of 10 000 calls (CTU).

The reference log-transmissivity field is reported in Fig. 4(a). The log-

transmissivity field stemming from the KL expansion using the maximum a

posteriori estimate of the parameter vector θ
MAP = (µY ,ξ)

MAP is reported

in Fig. 4(c). Both fields in 4(a) and 4(c) closely resemble each other, despite

the fact that the covariance kernel of the KL expansion differs from that of the

reference field (see above). Note also that we deliberately chose an erroneous

covariance kernel for the KL expansion. However, the sampled covariances

of the reference field and of the MAP estimates are very similar, implying

that initial errors on the type of covariance and on the correlation length can

be amended by inverting the KL coefficients and mixing eigenfunctions to

recompose a relevant random field.

Fig. 4(b) also reports on the kriged map of the 25 local transmissivity
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values. Though the patches of high and low values are correctly located, the

kriged map differs from the reference field (Fig. 4(a)) and the MAP solution

(Fig. 4(c)). For example, the effective correlation length seems overestimated

and the overall map is smoother than the reference field. As shown later,

the sampled variogram of the kriged map differs from that of MCPD solu-

tions and confirms the preceeding visual appraisals. Stated differently, the

local transmissivity values do not conceal all the information and it makes

sense inverting a flow problem conditioned on head data to retrieve the log-

transmissivity field. It can also be noted that the inverse problems solved to

calculate the MCPDs overfit the data, the number of parameters being larger

than the conditioning data. The consequence is that the terms enclosed in

the objective function Eq. (17) become lower than the prior measurement

errors on heads and transmissivity data.

The uncertainty on the predicted log-transmissivity (or hydraulic head)

can be estimated with Eq. (9). The uncertainty (the 95% confidence interval

size) associated with the log-transmissivity field is shown in Fig. 4(d). The

crosses mark the (co)locations of heads and transmissivities data used for

the inversion. We can note that the uncertainty is not constant over the

domain and is lower at the measurement locations where the 95% confidence

interval size is about 0.4 (i.e. ∼ ±1.96σm
Y ). This makes sense because the

model prediction was anticipated to be more accurate at the measurement

locations. Moreover, most of the domain is assigned an uncertainty range

less than 0.8 (∆ log(T ) < 0.8) which is quite narrow except in the areas that

contain no data (see North and South-West boundaries of the domain).

It is interesting to check whether the parameter uncertainty inferred via

MCPDs yields a set of log-transmissivity fields including the reference (true)

field. Fig. 4(e) maps the areas (in black) where the local value Y (x) of the
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reference field is outside the 95% probable uncertainty range calculated by

MCPDs (the width of these local uncertainty ranges are given in Fig. 4(d)).

As expected, the areas where the uncertainty ranges do not include the local

values of the reference field are those where no prior information was collected

to solve the inverse problem. In the present case however, the uncertainty

ranges are relatively narrow (Fig. 4(e)) and the non-matching areas represent

30% of the total domain. They reach 13% for the 99% predicted uncertainty

range. Interestignly, the uncertainty bounds encompass the true field in the

vicinity of observed data where the uncertainty range is smaller (∆ log(T ) <

0.8). This is the consequence of a well-conditioned problem. Observation

data are rather evenly spread over the whole domain and very few sub-areas

are not documented by at least a transmissivity value giving the order of

magnitude of the parameters. Finally, it is worth noting that increasing the

variance of the postulated Exponential covariance kernel (e.g. σ2
Y = 20)

provides slightly wider uncertainty bounds that finally encompass the true

field (not shown). This artificial increase of the σ2
Y value to obtain increased

uncertainties on the transmissivity field is not a consequence of flawed MCPD

samplings. The handled problem is here highly regularized by the Karhunen-

Loève decomposition which controls the freedom of action onto the tuned

parameters (i.e. the eigenvalues of the decomposition).

The MCPD estimates of the first KL coefficients are reported in Fig. 5

("diagonal" plots). We notice that the density of µY has a bell-shaped curve

centered on zero, though a prior uniform density was postulated. Fig. 5 also

reports, in its "off-diagonal" plots, on the various draws of parameters θ to

build MCPDs. A plot in column i and row j corresponds to the optimal values

of the parameter θj for sampled (prescribed) values of θi and optimal values

of θi for sampled θj . These plots for the pair (µY , ξ1) yield a unique straight
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line of non-null slope indicating a strong negative correlation between these

two parameters. Notably, µY and ξ1 are also closely correlated with ξ6 (row

#7, columns #1-2 of Fig. 5) meaning that these parameters have dependent

effects on the state variable calculated by the flow model. We remind that

the prior guess on the parameters ξ assumed that they were independent and

of Gausssian distribution with zero mean and unit variance. The posterior

estimates show that some parameters can be highly correlated and that their

distribution may have changed. For example, the parameters from ξ2 to ξ4

show bell-shaped MCPDs, but are clearly non-centered on zero and have a

variance less than one (width of the bell-shaped curve far less than 6).

The overall quality of the inverse solutions is now discussed. First, the

MAP solution reported in Fig. 4(c) has a spatial structure close to that of the

reference solution. Note that the reference solution has an effective correla-

tion length of about 0.5 which is smaller than expected from the covariance

model used to generate the random field. This occurs when the size of the

domain is close to the correlation length. The sampled covariance (vari-

ogram) of the MAP solution is Gaussian with a correlation length of about

0.45, close to that of the reference field (see Fig. 6(a)). The MAP solution,

however, slightly underestimates the variance, probably because the KL ex-

pansion considers modes representing only 84% of the variance on Y (see

above). However, the MAP solution is much closer from the reference field

than a kriged map of transmissivity data. This kriged map has a variogram

that largely overestimates the correlation length and underestimates the vari-

ance of the transmissivity field. As told above the kriged field is smoother

than the reference and MAP solutions. We note that some inverse solutions

calculated by taking parameters from MCPDs sampling can perfectly fit the

covariance of the reference field (Fig. 6(a)). These solutions are good but not
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the best with respect to the posterior pdf.

Note that MCPDs sample give optimal inverse solutions for a prescribed

value of one parameter. Using the sample, we rebuilt the associated Y fields

and calculated their sampled (experimental) covariances. Then, these co-

variances were fitted with a Gaussian model in the form of Cy(x1,x2) =

σ2
ye

−η(x1−x2)
2

, the variance of CY obviously being σ2
y and the effective corre-

lation length
√

3/η. Fig. 6(b), (c), and (d) show these variances and corre-

lation lengths. In general, the MCPD solutions slightly underestimate the

variance of Y with mean values on the order of 1.9 for a reference at 2.1.

The mean correlation length of MCPD solutions establishes at 0.43 for a

reference at 0.47. Though the prior guess on the spatial structure of the

inverse solutions greatly differed from the reference, the eigenvectors using

the KL expansion clearly record the effective spatial structure (covariance)

from which data are extracted. The re-composition of these eigenvectors by

means of MCPDs provides a large set of probable solutions that are only very

slightly biased, at least for the forward problem handled here.

6. Conclusions

In this work, we introduced the concept of maximal conditional posterior

distribution for the identification of model parameters. The MCPD of a

parameter θi can be viewed as the distribution of the parameter θi knowing

that the other parameters are at their optimal values (in the sense that

the conditional posterior pdf is maximized). It makes sense calculating a

MCPD because the uncertainty drawn from the distribution of θi refers to

valuable solutions to the inverse problem. All the parameters θ−i are optimal

except θi which is allowed to wander in the parameter space. In essence,

the calculations of two MCPDs for parameters θi and θj are independent.
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They can be performed very easily on parallel computational sessions and

one can extend the number of parallel sessions up to the total number of

parameters involved in the problem under investigation (thus, drastically

reducing the computational effort). This feature associated with the fact that

the MCPD draws are good inverse solutions post-conditioned on observation

data, renders the inversion in a Bayesian context affordable, even for highly

parameterized problems.

As stated above, a MCPD allows a single parameter θi to vary when the

others are optimal. A key feature to avoid the single parameter (and the

others) to be far from valuable solutions is to pre-identify the so called max-

imum a posteriory (MAP). This MAP is a solution where all the parameters

are at their optimal value, but this solution may correspond to several lo-

cal maxima when the underlying distribution of parameters is multimodal.

Hence, the success of MCPD sampling depends on the ability of the prelim-

inary optimization procedure to retrieve all the probable local optima. This

can be achieved by multi-start optimizations. The synthetic test case per-

formed in this study showed that the MCPD calculations retrieve fairly well

multimodal distributions.

The MCPD technique was also faced to the problem of retrieving a param-

eter random field on the basis of information gathering both measurements of

the parameters and state variables from a spatially distributed problem (here,

steady-state groundwater flow). The parameterization allowing a strong de-

crease in the dimensionality (in parameters) of the problem was grounded

in a Karhunen-Loève decomposition of the parameter field. This technique

is well-known to be accurate regarding the depiction of a stationary random

field. Hence, the MCPD calculations were really tested on their ability to

provide valuable inverse solutions and the associated uncertainties for pa-
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rameters that do not directly enter in the calculation of the forward problem

(the parameters allow the re-composition of a transmissivity field then used

in the forward groundwater flow problem). The whole procedure allowed us

to approximate the random field with only s = 104 parameters: the mean of

the random field and the 103 first eigenmodes of the Karhunen-Loève decom-

position. Then, the MCPDs of these parameters were assessed quickly with

the proposed algorithm taking advantage of their computation in parallel.

It was shown that the MCPD-KL association was able to accurately re-

trieve a reference field even when starting from a flawed initial estimate of the

spatial structure (covariance) of the field. MCPDs can also render parameter

distributions that strongly differ from their prior guess especially regarding

their mean and variance.
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1 A two-dimensional illustration of the MCPD assessment. The
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from its marginal density because two modes overlap. The
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6 Comparison of Y = LogK variograms between the reference

problem and MCDP inversions. (a)- variograms of the refer-

ence field, the MAP field and one of the MCPDs fields. (b),
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