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Abstract

We consider neural networks with a single hidden layer and non-decreasing positively homoge-

neous activation functions like the rectified linear units. By letting the number of hidden units grow

unbounded and using classical non-Euclidean regularization tools on the output weights, they lead

to a convex optimization problem and we provide a detailed theoretical analysis of their general-

ization performance, with a study of both the approximation and the estimation errors. We show

in particular that they are adaptive to unknown underlying linear structures, such as the depen-

dence on the projection of the input variables onto a low-dimensional subspace. Moreover, when

using sparsity-inducing norms on the input weights, we show that high-dimensional non-linear vari-

able selection may be achieved, without any strong assumption regarding the data and with a total

number of variables potentially exponential in the number of observations. However, solving this

convex optimization problem in infinite dimensions is only possible if the non-convex subproblem

of addition of a new unit can be solved efficiently. We provide a simple geometric interpretation

for our choice of activation functions and describe simple conditions for convex relaxations of the

finite-dimensional non-convex subproblem to achieve the same generalization error bounds, even

when constant-factor approximations cannot be found. We were not able to find strong enough

convex relaxations to obtain provably polynomial-time algorithms and leave open the existence or

non-existence of such tractable algorithms with non-exponential sample complexities.

Keywords: Neural networks, non-parametric estimation, convex optimization, convex relaxation

1. Introduction

Supervised learning methods come in a variety of ways. They are typically based on local aver-

aging methods, such as k-nearest neighbors, decision trees, or random forests, or on optimization

of the empirical risk over a certain function class, such as least-squares regression, logistic regres-

sion or support vector machine, with positive definite kernels, with model selection, structured

sparsity-inducing regularization, or boosting (see, e.g., Györfi and Krzyzak, 2002; Hastie et al.,

2009; Shalev-Shwartz and Ben-David, 2014, and references therein).

Most methods assume either explicitly or implicitly a certain class of models to learn from. In

the non-parametric setting, the learning algorithms may adapt the complexity of the models as

the number of observations increases: the sample complexity (i.e., the number of observations) to

adapt to any particular problem is typically large. For example, when learning Lipschitz-continuous

functions in R
d, at least n = Ω(ε−max{d,2}) samples are needed to learn a function with excess
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risk ε (von Luxburg and Bousquet, 2004, Theorem 15). The exponential dependence on the dimen-

sion d is often referred to as the curse of dimensionality: without any restrictions, exponentially

many observations are needed to obtain optimal generalization performances.

At the other end of the spectrum, parametric methods such as linear supervised learning make

strong assumptions regarding the problem and generalization bounds based on estimation errors

typically assume that the model is well-specified, and the sample complexity to attain an excess

risk of ε grows as n = Ω(d/ε2), for linear functions in d dimensions and Lipschitz-continuous loss

functions (Shalev-Shwartz and Ben-David, 2014, Chapter 9). While the sample complexity is much

lower, when the assumptions are not met, the methods underfit and more complex models would

provide better generalization performances.

Between these two extremes, there are a variety of models with structural assumptions that are often

used in practice. For input data in x ∈ R
d, prediction functions f : Rd → R may for example be

parameterized as:

(a) Affine functions: f(x) = w⊤x+ b, leading to potential severe underfitting, but easy optimiza-

tion and good (i.e., non exponential) sample complexity.

(b) Generalized additive models: f(x) =
∑d

j=1 fj(xj), which are generalizations of the above

by summing functions fj : R → R which may not be affine (Hastie and Tibshirani, 1990;

Ravikumar et al., 2008; Bach, 2008a). This leads to less strong underfitting but cannot model

interactions between variables, while the estimation may be done with similar tools than for

affine functions (e.g., convex optimization for convex losses).

(c) Nonparametric ANOVA models: f(x) =
∑

A∈A fA(xA) for a set A of subsets of {1, . . . , d},

and non-linear functions fA : RA → R. The set A may be either given (Gu, 2013) or learned

from data (Lin and Zhang, 2006; Bach, 2008b). Multi-way interactions are explicitly included

but a key algorithmic problem is to explore the 2d − 1 non-trivial potential subsets.

(d) Single hidden-layer neural networks: f(x) =
∑k

j=1 σ(w
⊤
j x + bj), where k is the number

of units in the hidden layer (see, e.g., Rumelhart et al., 1986; Haykin, 1994). The activa-

tion function σ is here assumed to be fixed. While the learning problem may be cast as a

(sub)differentiable optimization problem, techniques based on gradient descent may not find

the global optimum. If the number of hidden units is fixed, this is a parametric problem.

(e) Projection pursuit (Friedman and Stuetzle, 1981): f(x) =
∑k

j=1 fj(w
⊤
j x) where k is the

number of projections. This model combines both (b) and (d); the only difference with neural

networks is that the non-linear functions fj : R → R are learned from data. The optimization

is often done sequentially and is harder than for neural networks.

(e) Dependence on a unknown k-dimensional subspace: f(x) = g(W⊤x) with W ∈ R
d×k,

where g is a non-linear function. A variety of algorithms exist for this problem (Li, 1991;

Fukumizu et al., 2004; Dalalyan et al., 2008). Note that when the columns of W are assumed

to be composed of a single non-zero element, this corresponds to variable selection (with at

most k selected variables).
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In this paper, our main aim is to answer the following question: Is there a single learning method

that can deal efficiently with all situations above with provable adaptivity? We consider single-

hidden-layer neural networks, with non-decreasing homogeneous activation functions such as

σ(u) = max{u, 0}α = (u)α+,

for α ∈ {0, 1, . . .}, with a particular focus on α = 0 (with the convention that 00 = 0), that is

σ(u) = 1u>0 (a threshold at zero), and α = 1, that is, σ(u) = max{u, 0} = (u)+, the so-called

rectified linear unit (Nair and Hinton, 2010; Krizhevsky et al., 2012). We follow the convexification

approach of Bengio et al. (2006); Rosset et al. (2007), who consider potentially infinitely many units

and let a sparsity-inducing norm choose the number of units automatically. This leads naturally to

incremental algorithms such as forward greedy selection approaches, which have a long history for

single-hidden-layer neural networks (see, e.g. Breiman, 1993; Lee et al., 1996).

We make the following contributions:

– We provide in Section 2 a review of functional analysis tools used for learning from contin-

uously infinitely many basis functions, by studying carefully the similarities and differences

between L1- and L2-penalties on the output weights. For L2-penalties, this corresponds to a

positive definite kernel and may be interpreted through random sampling of hidden weights.

We also review incremental algorithms (i.e., forward greedy approaches) to learn from these

infinite sets of basis functions when using L1-penalties.

– The results are specialized in Section 3 to neural networks with a single hidden layer and

activation functions which are positively homogeneous (such as the rectified linear unit). In

particular, in Sections 3.2, 3.3 and 3.4, we provide simple geometric interpretations to the non-

convex problems of additions of new units, in terms of separating hyperplanes or Hausdorff

distance between convex sets. They constitute the core potentially hard computational tasks

in our framework of learning from continuously many basis functions.

– In Section 4, we provide a detailed theoretical analysis of the approximation properties of (sin-

gle hidden layer) convex neural networks with monotonic homogeneous activation functions,

with explicit bounds. We relate these new results to the extensive literature on approximation

properties of neural networks (see, e.g., Pinkus, 1999, and references therein) in Section 4.7,

and show that these neural networks are indeed adaptive to linear structures, by replacing the

exponential dependence in dimension by an exponential dependence in the dimension of the

subspace of the data can be projected to for good predictions.

– In Section 5, we study the generalization properties under a standard supervised learning set-

up, and show that these convex neural networks are adaptive to all situations mentioned ear-

lier. These are summarized in Table 1 and constitute the main statistical results of this paper.

When using an ℓ1-norm on the input weights, we show in Section 5.3 that high-dimensional

non-linear variable selection may be achieved, that is, the number of input variables may be

much larger than the number of observations, without any strong assumption regarding the

data (note that we do not present a polynomial-time algorithm to achieve this).

– We provide in Section 5.5 simple conditions for convex relaxations to achieve the same gen-

eralization error bounds, even when constant-factor approximation cannot be found (e.g.,
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∣

∣

∣
Functional form Generalization bound

No assumption

∣

∣

∣

∣

n−1/(d+3) log n

Affine function

∣

∣

∣

∣

w⊤x+ b

∣

∣

∣

∣

d1/2 · n−1/2

Generalized additive model

∣

∣

∣

∣

∑k
j=1 fj(w

⊤
j x), wj ∈ R

d kd1/2 · n−1/4 log n

Single-layer neural network

∣

∣

∣

∣

∑k
j=1 ηj(w

⊤
j x+ bj)+ kd1/2 · n−1/2

Projection pursuit

∣

∣

∣

∣

∑k
j=1 fj(w

⊤
j x), wj ∈ R

d kd1/2 · n−1/4 log n

Dependence on subspace

∣

∣

∣

∣

f(W⊤x) , W ∈ R
d×s d1/2 · n−1/(s+3) log n

Table 1: Summary of generalization bounds for various models. The bound represents the expected

excess risk over the best predictor in the given class. When no assumption is made, the

dependence in n goes to zero with an exponent proportional to 1/d (which leads to sample

complexity exponential in d), while making assumptions removes the dependence of d in

the exponent.

because it is NP-hard such as for the threshold activation function and the rectified linear

unit). We present in Section 6 convex relaxations based on semi-definite programming, but

we were not able to find strong enough convex relaxations (they provide only a provable sam-

ple complexity with a polynomial time algorithm which is exponential in the dimension d)

and leave open the existence or non-existence of polynomial-time algorithms that preserve

the non-exponential sample complexity.

2. Learning from continuously infinitely many basis functions

In this section we present the functional analysis framework underpinning the methods presented

in this paper, which learn for a potential continuum of features. While the formulation from Sec-

tions 2.1 and 2.2 originates from the early work on the approximation properties of neural net-

works (Barron, 1993; Kurkova and Sanguineti, 2001; Mhaskar, 2004), the algorithmic parts that

we present in Section 2.5 have been studied in a variety of contexts, such as “convex neural net-

works” (Bengio et al., 2006), or ℓ1-norm with infinite dimensional feature spaces (Rosset et al.,

2007), with links with conditional gradient algorithms (Dunn and Harshbarger, 1978; Jaggi, 2013)

and boosting (Rosset et al., 2004).

In the following sections, note that there will be two different notions of infinity: infinitely many

inputs x and infinitely many basis functions x 7→ ϕv(x). Moreover, two orthogonal notions of

Lipschitz-continuity will be tackled in this paper: the one of the prediction functions f , and the one

of the loss ℓ used to measure the fit of these prediction functions.
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2.1 Variation norm

We consider an arbitrary measurable input space X (this will a sphere in R
d+1 starting from Sec-

tion 3), with a set of basis functions (a.k.a. neurons or units) ϕv : X → R, which are parameterized

by v ∈ V , where V is a compact topological space (typically a sphere for a certain norm on R
d start-

ing from Section 3). We assume that for any given x ∈ X , the functions v 7→ ϕv(x) are continuous.

These functions will be the hidden neurons in a single-hidden-layer neural network, and thus V will

be (d + 1)-dimensional for inputs of dimension d (to represent any affine function). Throughout

Section 2, these features will be left unspecified as most of the tools apply more generally.

In order to define our space of functions from X → R, we need real-valued Radon measures, which

are continuous linear forms on the space of continuous functions from V to R, equipped with the

uniform norm (Rudin, 1987; Evans and Gariepy, 1991). For a continuous function g : V → R

and a Radon measure µ, we will use the standard notation
∫

V g(v)dµ(v) to denote the action of

the measure µ on the continuous function g. The norm of µ is usually referred to as its total

variation (such finite total variation corresponds to having a continuous linear form on the space of

continuous functions), and we denote it as |µ|(V), and is equal to the supremum of
∫

V g(v)dµ(v)
over all continuous functions with values in [−1, 1]. As seen below, when µ has a density with

respect to a probability measure, this is the L1-norm of the density.

We consider the space F1 of functions f that can be written as

f(x) =

∫

V
ϕv(x)dµ(v),

where µ is a signed Radon measure on V with finite total variation |µ|(V).
When V is finite, this corresponds to

f(x) =
∑

v∈V
µvϕv(x),

with total variation
∑

v∈V |µv|, where the proper formalization for infinite sets V is done through

measure theory.

The infimum of |µ|(V) over all decompositions of f as f =
∫

V ϕvdµ(v), turns out to be a norm γ1
on F1, often called the variation norm of f with respect to the set of basis functions (see, e.g.,

Kurkova and Sanguineti, 2001; Mhaskar, 2004).

Given our assumptions regarding the compactness of V , for any f ∈ F1, the infimum defining γ1(f)
is in fact attained by a signed measure µ, as a consequence of the compactness of measures for the

weak topology (see Evans and Gariepy, 1991, Section 1.9).

In the definition above, if we assume that the signed measure µ has a density with respect to a fixed

probability measure τ with full support on V , that is, dµ(v) = p(v)dτ(v), then, the variation norm

γ1(f) is also equal to the infimal value of

|µ|(V) =
∫

V
|p(v)|dτ(v),

over all integrable functions p such that f(x) =
∫

V p(v)ϕv(x)dτ(v). Note however that not all

measures have densities, and that the two infimums are the same as all Radon measures are limits
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of measures with densities. Moreover, the infimum in the definition above is not attained in general

(for example when the optimal measure is singular with respect to dτ ); however, it often provides a

more intuitive definition of the variation norm, and leads to easier comparisons with Hilbert spaces

in Section 2.3.

Finite number of neurons. If f : X → R is decomposable into k basis functions, that is, f(x) =
∑k

j=1 ηjϕvj (x), then this corresponds to µ =
∑k

j=1 ηjδ(v = vj), and the total variation of µ is

equal to the ℓ1-norm ‖η‖1 of η. Thus the function f has variation norm less than ‖η‖1 or equal.

This is to be contrasted with the number of basis functions, which is the ℓ0-pseudo-norm of η.

2.2 Representation from finitely many functions

When minimizing any functional J that depends only on the function values taken at a subset X̂ of

values in X , over the ball {f ∈ F1, γ1(f) 6 δ}, then we have a “representer theorem” similar to

the reproducing kernel Hilbert space situation, but also with significant differences, which we now

present.

The problem is indeed simply equivalent to minimizing a functional on functions restricted to X ,

that is, to minimizing J(f|X̂ ) over f|X̂ ∈ R
X̂ , such that γ1|X̂ (f|X̂ ) 6 δ, where

γ1|X̂ (f|X̂ ) = inf
µ

|µ|(V) such that ∀x ∈ X̂ , f|X̂ (x) =
∫

V
ϕv(x)dµ(v);

we can then build a function defined over all X , through the optimal measure µ above.

Moreover, by Carathéodory’s theorem for cones (Rockafellar, 1997), if X̂ is composed of only n
elements (e.g., n is the number of observations in machine learning), the optimal function f|X̂ above

(and hence f ) may be decomposed into at most n functions ϕv, that is, µ is supported by at most n
points in V , among a potential continuum of possibilities.

Note however that the identity of these n functions is not known in advance, and thus there is a sig-

nificant difference with the representer theorem for positive definite kernels and Hilbert spaces (see,

e.g., Shawe-Taylor and Cristianini, 2004), where the set of n functions are known from the knowl-

edge of the points x ∈ X̂ (i.e., kernel functions evaluated at x).

2.3 Corresponding reproducing kernel Hilbert space (RKHS)

We have seen above that if the real-valued measures µ are restricted to have density p with respect

to a fixed probability measure τ with full support on V , that is, dµ(v) = p(v)dτ(v), then, the

norm γ1(f) is the infimum of the total variation |µ|(V) =
∫

V |p(v)|dτ(v), over all decompositions

f(x) =
∫

V p(v)ϕv(x)dτ(v).

We may also define the infimum of
∫

V |p(v)|2dτ(v) over the same decompositions (squared L2-

norm instead of L1-norm). It turns out that it defines a squared norm γ22 and that the function

space F2 of functions with finite norm happens to be a reproducing kernel Hilbert space (RKHS).

When V is finite, then it is well-known (see, e.g., Berlinet and Thomas-Agnan, 2004, Section 4.1)

that the infimum of
∑

v∈V µ2
v over all vectors µ such that f =

∑

v∈V µvϕv defines a squared RKHS

norm with positive definite kernel k(x, y) =
∑

v∈V ϕv(x)ϕv(y).
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We show in Appendix A that for any compact set V , we have defined a squared RKHS norm γ22

with positive definite kernel k(x, y) =

∫

V
ϕv(x)ϕv(y)dτ(v).

Random sampling. Note that such kernels are well-adapted to approximations by sampling sev-

eral basis functions ϕv sampled from the probability measure τ (Neal, 1995; Rahimi and Recht,

2007). Indeed, if we consider m i.i.d. samples v1, . . . , vm, we may define the approximation

k̂(x, y) = 1
m

∑m
i=1 ϕvi(x)ϕvi(y), which corresponds to an explicit feature representation. In other

words, this corresponds to sampling units vi, using prediction functions of the form 1
m

∑m
i=1 ηiϕvi(x)

and then penalizing by the ℓ2-norm of η.

When m tends to infinity, then k̂(x, y) tends to k(x, y) and random sampling provides a way to work

efficiently with explicit m-dimensional feature spaces. See Rahimi and Recht (2007) for a analysis

of the number of units needed for an approximation with error ε, typically of order 1/ε2. See

also Bach (2015) for improved results with a better dependence on ε when making extra assumptions

on the eigenvalues of the associated covariance operator.

Relationship between F1 and F2. The corresponding RKHS norm is always greater than the

variation norm (because of Jensen’s inequality), and thus the RKHS F2 is included in F1. However,

as shown in this paper, the two spaces F1 and F2 have very different properties; e.g., γ2 may be

computed easily in several cases, while γ1 does not; also, learning with F2 may either be done by

random sampling of sufficiently many weights or using kernel methods, while F1 requires dedicated

convex optimization algorithms with potentially non-polynomial-time steps (see Section 2.5).

Moreover, for any v ∈ V , ϕv ∈ F1 with a norm γ1(ϕv) 6 1, while in general ϕv /∈ F2. This is a

simple illustration of the fact that F2 is too small and thus will lead to a lack of adaptivity that will

be further studied in Section 5.4 for neural networks with certain activation functions.

2.4 Supervised machine learning

Given some distribution over the pairs (x, y) ∈ X × Y , a loss function ℓ : Y × R → R, our aim is

to find a function f : X → R such that the functional J(f) = E[ℓ(y, f(x))] is small, given some

i.i.d. observations (xi, yi), i = 1, . . . , n. We consider the empirical risk minimization framework

over a space of functions F , equipped with a norm γ (in our situation, F1 and F2, equipped with

γ1 or γ2). The empirical risk Ĵ(f) = 1
n

∑n
i=1 ℓ(yi, f(xi)), is minimized either (a) by constraining

f to be in the ball Fδ = {f ∈ F , γ(f) 6 δ} or (b) regularizing the empirical risk by λγ(f).
Since this paper has a more theoretical nature, we focus on constraining, noting that in practice,

penalizing is often more robust (see, e.g., Harchaoui et al., 2013) and leaving its analysis in terms

of learning rates for future work. Since the functional Ĵ depends only on function values taken at

finitely many points, the results from Section 2.2 apply and we expect the solution f to be spanned

by only n functions ϕv1 , . . . , ϕvn (but we ignore in advance which ones among all ϕv , v ∈ V , and

the algorithms in Section 2.5 will provide approximate such representations with potentially less or

more than n functions).

Approximation error vs. estimation error. We consider an ε-approximate minimizer of Ĵ(f) =
1
n

∑n
i=1 ℓ(yi, f(xi)) on the convex set Fδ, that is a certain f̂ ∈ Fδ such that Ĵ(f̂) 6 ε+inff∈Fδ Ĵ(f).
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γ1(f) ≤ δ

−J ′(ft)

ft

f̄t = arg min
γ1(f)≤δ

〈J ′(ft), f〉

ft+1

Figure 1: Conditional gradient algorithm for minimizing a smooth functional J on Fδ
1 = {f ∈

F1, γ1(f) 6 δ}: going from ft to ft+1; see text for details.

We thus have, using standard arguments (see, e.g., Shalev-Shwartz and Ben-David, 2014):

J(f̂)− inf
f∈F

J(f) 6

[

inf
f∈Fδ

J(f)− inf
f∈F

J(f)

]

+ 2 sup
f∈Fδ

|Ĵ(f)− J(f)|+ ε,

that is, the excess risk J(f̂) − inff∈F J(f) is upper-bounded by a sum of an approximation error

inff∈Fδ J(f) − inff∈F J(f), an estimation error 2 supf∈Fδ |Ĵ(f) − J(f)| and an optimization

error ε (see also Bottou and Bousquet, 2008). In this paper, we will deal with all three errors,

starting from the optimization error which we now consider for the space F1 and its variation norm.

2.5 Incremental conditional gradient algorithms

In this section, we review algorithms to minimize a smooth functional J : L2(dρ) → R, where ρ
is a probability measure on X . This may typically be the expected risk or the empirical risk

above. When minimizing J(f) with respect to f ∈ F1 such that γ1(f) 6 δ, we need algo-

rithms that can efficiently optimize a convex function over an infinite-dimensional space of func-

tions. Conditional gradient algorithms allow to incrementally build a set of elements of Fδ
1 = {f ∈

F1, γ1(f) 6 δ}; see, e.g., Frank and Wolfe (1956); Dem’yanov and Rubinov (1967); Dudik et al.

(2012); Harchaoui et al. (2013); Jaggi (2013); Bach (2014).

Conditional gradient algorithm. We assume the functional J is convex and L-smooth, that is

for all h ∈ L2(dρ), there exists a gradient J ′(h) ∈ L2(dρ) such that for all f ∈ L2(dρ),

0 6 J(f)− J(h)− 〈f − h, J ′(h)〉L2(dρ) 6
L

2
‖f − h‖2L2(dρ)

.

When X is finite, this corresponds to the regular notion of smoothness from convex optimiza-

tion (Nesterov, 2004).

The conditional gradient algorithm (a.k.a. Frank-Wolfe algorithm) is an iterative algorithm, starting

from any function f0 ∈ Fδ
1 and with the following recursion, for t > 0:

f̄t ∈ arg min
f∈Fδ

1

〈f, J ′(ft)〉L2(dρ)

ft+1 = (1− ρt)ft + ρtf̄t.

8
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See an illustration in Figure 1. We may choose either ρt = 2
t+1 or perform a line search for

ρt ∈ [0, 1]. For all of these strategies, the t-th iterate is a convex combination of the functions

f̄0, . . . , f̄t−1, and is thus an element of Fδ
1 . It is known that for these two strategies for ρt, we have

the following convergence rate (see, e.g. Jaggi, 2013):

J(ft)− inf
f∈Fδ

1

J(f) 6
2L

t+ 1
sup

f,g∈Fδ
1

‖f − g‖2L2(dρ)
.

When, r2 = supv∈V ‖ϕv‖2L2(dρ)
is finite, we have ‖f‖2L2(dρ)

6 r2γ1(f)
2 and thus we get a conver-

gence rate of 2Lr2δ2

t+1 .

Moreover, the basic Frank-Wolfe (FW) algorithm may be extended to handle the regularized prob-

lem as well (Harchaoui et al., 2013; Bach, 2013; Zhang et al., 2012), with similar convergence rates

in O(1/t). Also, the second step in the algorithm, where the function ft+1 is built in the segment

between ft and the newly found extreme function, may be replaced by the optimization of J over

the convex hull of all functions f̄0, . . . , f̄t, a variant which is often referred to as fully corrective.

Moreover, in our context where V is a space where local search techniques may be considered, there

is also the possibility of “fine-tuning” the vectors v as well (Bengio et al., 2006), that is, we may

optimize the function (v1, . . . , vt, α1, . . . , αt) 7→ J(
∑t

i=1 αiϕvi), through local search techniques,

starting from the weights (αi) and points (vi) obtained from the conditional gradient algorithm.

Adding a new basis function. The conditional gradient algorithm presented above relies on solv-

ing at each iteration the “Frank-Wolfe step”:

max
γ(f)6δ

〈f, g〉L2(dρ).

for g = −J ′(ft) ∈ L2(dρ). For the norm γ1 defined through an L1-norm, we have for f =
∫

V ϕvdµ(v) such that γ1(f) = |µ|(V):

〈f, g〉L2(dρ) =

∫

X
f(x)g(x)dρ(x) =

∫

X

(
∫

V
ϕv(x)dµ(v)

)

g(x)dρ(x)

=

∫

V

(
∫

X
ϕv(x)g(x)dρ(x)

)

dµ(v)

6 γ1(f) ·max
v∈V

∣

∣

∣

∣

∫

X
ϕv(x)g(x)dρ(x)

∣

∣

∣

∣

,

with equality if and only if µ = µ+ − µ− with µ+ and µ− two non-negative measures, with µ+

(resp. µ−) supported in the set of maximizers v of |
∫

X ϕv(x)g(x)dρ(x)| where the value is positive

(resp. negative).

This implies that:

max
γ1(f)6δ

〈f, g〉L2(dρ) = δmax
v∈V

∣

∣

∣

∣

∫

X
ϕv(x)g(x)dρ(x)

∣

∣

∣

∣

, (1)

with the maximizers f of the first optimization problem above (left-hand side) obtained as δ times

convex combinations of ϕv and −ϕv for maximizers v of the second problem (right-hand side).

A common difficulty in practice is the hardness of the Frank-Wolfe step, that is, the optimization

problem above over V may be difficult to solve. See Section 3.2, 3.3 and 3.4 for neural networks,

where this optimization is usually difficult.

9
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Finitely many observations. When X is finite (or when using the result from Section 2.2), the

Frank-Wolfe step in Eq. (1) becomes equivalent to, for some vector g ∈ R
n:

sup
γ1(f)6δ

1

n

n
∑

i=1

gif(xi) = δmax
v∈V

∣

∣

∣

∣

1

n

n
∑

i=1

giϕv(xi)

∣

∣

∣

∣

, (2)

where the set of solutions of the first problem is in the convex hull of the solutions of the second

problem.

Non-smooth loss functions. In this paper, in our theoretical results, we consider non-smooth loss

functions for which conditional gradient algorithms do not converge in general. One possibility is to

smooth the loss function, as done by Nesterov (2005): an approximation error of ε may be obtained

with a smoothness constant proportional to 1/ε. By choosing ε as 1/
√
t, we obtain a convergence

rate of O(1/
√
t) after t iterations. See also Lan (2013).

Approximate oracles. The conditional gradient algorithm may deal with approximate oracles;

however, what we need in this paper is not the additive errors situations considered by Jaggi (2013),

but multiplicative ones on the computation of the dual norm (similar to ones derived by Bach (2013)

for the regularized problem).

Indeed, in our context, we minimize a function J(f) on f ∈ L2(dρ) over a norm ball {γ1(f) 6 δ}.

A multiplicative approximate oracle outputs for any g ∈ L2(dρ), a vector f̂ ∈ L2(dρ) such that

γ1(f̂) = 1, and

〈f̂ , g〉 6 max
γ1(f)61

〈f, g〉 6 κ 〈f̂ , g〉,

for a fixed κ > 1. In Appendix B, we propose a modification of the conditional gradient algorithm

that converges to a certain h ∈ L2(dρ) such that γ1(h) 6 δ and for which infγ1(f)6δ J(f) 6

J(h) 6 infγ1(f)6δ/κ J(f).

Such approximate oracles are not available in general, because they require uniform bounds over all

possible values of g ∈ L2(dρ). In Section 5.5, we show that a weaker form of oracle is sufficient to

preserve our generalization bounds from Section 5.

Approximation of any function by a finite number of basis functions. The Frank-Wolfe al-

gorithm may be applied in the function space F1 with J(f) = 1
2E[(f(x) − g(x))2], we get a

function ft, supported by t basis functions such that E[(ft(x)− g(x))2] = O(γ(g)2/t). Hence, any

function in F1 may be approximated with averaged error ε with t = O([γ(g)/ε]2) units. Note that

the conditional gradient algorithm is one among many ways to obtain such approximation with ε−2

units (Barron, 1993; Kurkova and Sanguineti, 2001; Mhaskar, 2004). See Section 4.1 for a (slightly)

better dependence on ε for convex neural networks.

3. Neural networks with non-decreasing positively homogeneous activation functions

In this paper, we focus on a specific family of basis functions, that is, of the form

x 7→ σ(w⊤x+ b),

10
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for specific activation functions σ. We assume that σ is non-decreasing and positively homogeneous

of some integer degree, i.e., it is equal to σ(u) = (u)α+, for some α ∈ {0, 1, . . .}. We focus on these

functions for several reasons:

– Since they are not polynomials, linear combinations of these functions can approximate any

measurable function (Leshno et al., 1993).

– By homogeneity, they are invariant by a change of scale of the data; indeed, if all obser-

vations x are multiplied by a constant, we may simply change the measure µ defining the

expansion of f by the appropriate constant to obtain exactly the same function. This allows

us to study functions defined on the unit-sphere.

– The special case α = 1, often referred to as the rectified linear unit, has seen considerable

recent empirical success (Nair and Hinton, 2010; Krizhevsky et al., 2012), while the case α =
0 (hard thresholds) has some historical importance (Rosenblatt, 1958).

The goal of this section is to specialize the results from Section 2 to this particular case and show

that the “Frank-Wolfe” steps have simple geometric interpretations.

We first show that the positive homogeneity of the activation functions allows to transfer the problem

to a unit sphere.

Boundedness assumptions. For the theoretical analysis, we assume that our data inputs x ∈ R
d

are almost surely bounded by R in ℓq-norm, for some q ∈ [2,∞] (typically q = 2 and q = ∞). We

then build the augmented variable z ∈ R
d+1 as z = (x⊤, R)⊤ ∈ R

d+1 by appending the constant R
to x ∈ R

d. We therefore have ‖z‖q 6
√
2R. By defining the vector v = (w⊤, b/R)⊤ ∈ R

d+1, we

have:

ϕv(x) = σ(w⊤x+ b) = σ(v⊤z) = (v⊤z)α+,

which now becomes a function of z ∈ R
d+1.

Without loss of generality (and by homogeneity of σ), we may assume that the ℓp-norm of each

vector v is equal to 1/R, that is V will be the (1/R)-sphere for the ℓp-norm, where 1/p + 1/q = 1
(and thus p ∈ [1, 2], with corresponding typical values p = 2 and p = 1).

This implies by Hölder’s inequality that ϕv(x)
2 6 2α. Moreover this leads to functions in F1 that

are bounded everywhere, that is, ∀f ∈ F1, f(x)2 6 2αγ1(f)
2. Note that the functions in F1 are

also Lipschitz-continuous for α > 1.

Since all ℓp-norms (for p ∈ [1, 2]) are equivalent to each other with constants of at most
√
d with

respect to the ℓ2-norm, all the spaces F1 defined above are equal, but the norms γ1 are of course

different and they differ by a constant of at most dα/2—this can be seen by computing the dual

norms like in Eq. (2) or Eq. (1).

Homogeneous reformulation. In our study of approximation properties, it will be useful to con-

sider the the space of function G1 defined for z in the unit sphere S
d ⊂ R

d+1 of the Euclidean norm,

such that g(z) =
∫

Sd
σ(v⊤z)dµ(v), with the norm γ1(g) defined as the infimum of |µ|(Sd) over all

decompositions of g. Note the slight overloading of notations for γ1 (for norms in G1 and F1) which

should not cause any confusion.

11
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x
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x

z

Figure 2: Sending a ball to a spherical cap.

In order to prove the approximation properties (with unspecified constants depending only on d),

we may assume that p = 2, since the norms ‖ · ‖p for p ∈ [1,∞] are equivalent to ‖ · ‖2 with a

constant that grows at most as dα/2 with respect to the ℓ2-norm. We thus focus on the ℓ2-norm in

all proofs in Section 4.

We may go from G1 (a space of real-valued functions defined on the unit ℓ2-sphere in d + 1 di-

mensions) to the space F1 (a space of real-valued functions defined on the ball of radius R for the

ℓ2-norm) as follows (this corresponds to sending a ball in R
d into a spherical cap in dimension d+1,

as illustrated in Figure 2).

– Given g ∈ G1, we define f ∈ F1, with f(x) =
(

‖x‖22
R2 + 1

)α/2
g

(

1
√

‖x‖22 +R2

(

x

R

))

. If

g may be represented as
∫

Sd
σ(v⊤z)dµ(v), then the function f that we have defined may be

represented as

f(x) =
(‖x‖22

R2
+ 1

)α/2
∫

Sd

(

v⊤
1

√

‖x‖22 +R2

(

x

R

))α

+

dµ(v)

=

∫

Sd

(

v⊤
(

x/R

1

))α

+

dµ(v) =

∫

Sd

σ(w⊤x+ b)dµ(Rw, b),

that is γ1(f) 6 γ1(g), because we have assumed that (w⊤, b/R)⊤ is on the (1/R)-sphere.

– Conversely, given f ∈ F1, for z = (t⊤, a)⊤ ∈ S
d, we define g(z) = g(t, a) = f(Rt

a )aα,

which we define as such on the set of z = (t⊤, a)⊤ ∈ R
d×R (of unit norm) such that a >

1√
2
.

Since we always assume ‖x‖2 6 R, we have
√

‖x‖22 +R2 6
√
2R, and the value of g(z, a)

for a > 1√
2

is enough to recover f from the formula above.

On that portion {a > 1/
√
2} of the sphere S

d, this function exactly inherits the differentiabil-

ity properties of f . That is, (a) if f is bounded by 1 and f is (1/R)-Lipschitz-continuous, then

g is Lipschitz-continuous with a constant that only depends on d and α and (b), if all deriva-

tives of order less than k are bounded by R−k, then all derivatives of the same order of g are

bounded by a constant that only depends on d and α. Precise notions of differentiability may

be defined on the sphere, using the manifold structure (see, e.g., Absil et al., 2009) or through

12
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polar coordinates (see, e.g., Atkinson and Han, 2012, Chapter 3). See these references for

more details.

The only remaining important aspect is to define g on the entire sphere, so that (a) its regularity

constants are controlled by a constant times the ones on the portion of the sphere where it is

already defined, (b) g is either even or odd (this will be important in Section 4). Ensuring that

the regularity conditions can be met is classical when extending to the full sphere (see, e.g.,

Whitney, 1934). Ensuring that the function may be chosen as odd or even may be obtained

by multiplying the function g by an infinitely differentiable function which is equal to one for

a > 1/
√
2 and zero for a 6 0, and extending by −g or g on the hemi-sphere a < 0.

In summary, we may consider in Section 4 functions defined on the sphere, which are much easier to

analyze. In the rest of the section, we specialize some of the general concepts reviewed in Section 2

to our neural network setting with specific activation functions, namely, in terms of corresponding

kernel functions and geometric reformulations of the Frank-Wolfe steps.

3.1 Corresponding positive-definite kernels

In this section, we consider the ℓ2-norm on the input weight vectors w (that is p = 2). We may

compute for x, x′ ∈ R
d the kernels defined in Section 2.3:

kα(x, x
′) = E[(w⊤x+ b)α+(w

⊤x′ + b)α+],

for (Rw, b) distributed uniformly on the unit ℓ2-sphere S
d, and x, x′ ∈ R

d+1. Given the angle

ϕ ∈ [0, π] defined through
x⊤x′

R2
+ 1 = (cosϕ)

√

‖x‖22
R2

+ 1

√

‖x′‖22
R2

+ 1, we have explicit expres-

sions (Le Roux and Bengio, 2007; Cho and Saul, 2009):

k0(z, z
′) =

1

2π
(π − ϕ)

k1(z, z
′) =

√

‖x‖22
R2 + 1

√

‖x′‖22
R2 + 1

2(d + 1)π
((π − ϕ) cosϕ+ sinϕ)

k2(z, z
′) =

(

‖x‖22
R2 + 1

)(

‖x′‖22
R2 + 1

)

2π[(d + 1)2 + 2(d + 1)]
(3 sinϕ cosϕ+ (π − ϕ)(1 + 2 cos2 ϕ)).

There are key differences and similarities between the RKHS F2 and our space of functions F1. The

RKHS is smaller than F1 (i.e., the norm in the RKHS is larger than the norm in F1); this implies

that approximation properties of the RKHS are transferred to F1. In fact, our proofs rely on this

fact.

However, the RKHS norm does not lead to any adaptivity, while the function space F1 does (see

more details in Section 5). This may come as a paradox: both the RKHS F2 and F1 have similar

properties, but one is adaptive while the other one is not. A key intuitive difference is as follows:

given a function f expressed as f(x) =
∫

V ϕv(x)p(v)dτ(v), then γ1(f) =
∫

V |p(v)|dτ(v), while

the squared RKHS norm is γ2(f)
2 =

∫

V |p(v)|2dτ(v). For the L1-norm, the measure p(v)dτ(v)
may tend to a singular distribution with a bounded norm, while this is not true for the L2-norm. For

example, the function (w⊤x+ b)α+ is in F1, while it is not in F2 in general.

13
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3.2 Incremental optimization problem for α = 0

We consider the problem in Eq. (2) for the special case α = 0. For z1, . . . , zn ∈ R
d+1 and a vector

y ∈ R
n, the goal is to solve (as well as the corresponding problem with y replaced by −y):

max
v∈Rd+1

n
∑

i=1

yi1v⊤zi>0 = max
v∈Rd+1

∑

i∈I+
|yi|1v⊤zi>0 −

∑

i∈I−
|yi|1v⊤zi>0,

where I+ = {i, yi > 0} and I− = {i, yi < 0}. As outlined by Bengio et al. (2006), this is

equivalent to finding an hyperplane parameterized by v that minimizes a weighted mis-classification

rate (when doing linear classification). Note that the norm of v has no effect.

NP-hardness. This problem is NP-hard in general. Indeed, if we assume that all yi are equal to

−1 or 1 and with
∑n

i=1 yi = 0, then we have a balanced binary classification problem (we need to

assume n even). The quantity
∑n

i=1 yi1v⊤zi>0 is then n
2 (1− 2e) where e is the corresponding clas-

sification error for a problem of classifying at positive (resp. negative) the examples in I+ (resp. I−)

by thresholding the linear classifier v⊤z. Guruswami and Raghavendra (2009) showed that for all

(ε, δ), it is NP-hard to distinguish between instances (i.e., configurations of points xi), where a half-

space with classification error at most ε exists, and instances where all half-spaces have an error of at

least 1/2−δ. Thus, it is NP-hard to distinguish between instances where there exists v ∈ R
d+1 such

that
∑n

i=1 yi1v⊤zi>0 >
n
2 (1 − 2ε) and instances where for all v ∈ R

d+1,
∑n

i=1 yi1v⊤zi>0 6 nδ.

Thus, it is NP-hard to distinguish instances where maxv∈Rd+1

∑n
i=1 yi1v⊤zi>0 >

n
2 (1 − 2ε) and

ones where it is less than n
2 δ. Since this is valid for all δ and ε, this rules out a constant-factor

approximation.

Convex relaxation. Given linear binary classification problems, there are several algorithms to

approximately find a good half-space. These are based on using convex surrogates (such as the

hinge loss or the logistic loss). Although some theoretical results do exist regarding the classification

performance of estimators obtained from convex surrogates (Bartlett et al., 2006), they do not apply

in the context of linear classification.

3.3 Incremental optimization problem for α = 1

We consider the problem in Eq. (2) for the special case α = 1. For z1, . . . , zn ∈ R
d+1 and a vector

y ∈ R
n, the goal is to solve (as well as the corresponding problem with y replaced by −y):

max
‖v‖p61

n
∑

i=1

yi(v
⊤zi)+ = max

‖v‖p61

∑

i∈I+
(v⊤|yi|zi)+ −

∑

i∈I−
(v⊤|yi|zi)+,

where I+ = {i, yi > 0} and I− = {i, yi < 0}. We have, with ti = |yi|zi ∈ R
d+1, using convex

duality:

max
‖v‖p61

n
∑

i=1

yi(v
⊤zi)+ = max

‖v‖p61

∑

i∈I+
(v⊤ti)+ −

∑

i∈I−
(v⊤ti)+

14
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t1

t2

t3

0 0

t1 + t2 + t3

0 0

Figure 3: Two zonotopes in two dimensions: (left) vectors, and (right) their Minkowski sum (rep-

resented as a polygone).

= max
‖v‖p61

∑

i∈I+
max
bi∈[0,1]

biv
⊤ti −

∑

i∈I−
max
bi∈[0,1]

biv
⊤ti

= max
b+∈[0,1]I+

max
‖v‖p61

min
b−∈[0,1]I−

v⊤[T⊤
+ b+ − T⊤

− b−]

= max
b+∈[0,1]I+

min
b−∈[0,1]I−

max
‖v‖p61

v⊤[T⊤
+ b+ − T⊤

− b−] by Fenchel duality,

= max
b+∈[0,1]I+

min
b−∈[0,1]I−

‖T⊤
+ b+ − T⊤

− b−‖q,

where T+ ∈ R
n+×d has rows ti, i ∈ I+ and T− ∈ R

n−×d has rows ti, i ∈ I−, with v ∈
argmax‖v‖p61 v

⊤(T⊤
+ b+ − T⊤

− b−). The problem thus becomes

max
b+∈[0,1]n+

min
b−∈[0,1]n−

‖T⊤
+ b+ − T⊤

− b−‖q.

For the problem of maximizing |∑n
i=1 yi(v

⊤zi)+|, then this corresponds to

max

{

max
b+∈[0,1]n+

min
b−∈[0,1]n−

‖T⊤
+ b+ − T⊤

− b−‖q, max
b−∈[0,1]n−

min
b+∈[0,1]n+

‖T⊤
+ b+ − T⊤

− b−‖q
}

.

This is exactly the Hausdorff distance between the two convex sets {T⊤
+ b+, b+ ∈ [0, 1]n+} and

{T⊤
− b−, b− ∈ [0, 1]n−} (referred to as zonotopes, see below).

Given the pair (b+, b−) achieving the Hausdorff distance, then we may compute the optimal v as

v = argmax‖v‖p61 v
⊤(T⊤

+ b+ − T⊤
− b−). Note this has not changed the problem at all, since it is

equivalent. It is still NP-hard in general (König, 2014). But we now have a geometric interpretation

with potential approximation algorithms. See below and Section 6.

Zonotopes. A zonotope A is the Minkowski sum of a finite number of segments from the origin,

that is, of the form

A = [0, t1] + · · ·+ [0, tr] =
{

r
∑

i=1

biti, b ∈ [0, 1]r
}

,
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0
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0

0

Figure 4: Left: two zonotopes (with their generating segments) and the segments achieving the two

sides of the Haussdorf distance. Right: approximation by ellipsoids.

for some vectors ti, i = 1, . . . , r (Bolker, 1969). See an illustration in Figure 3. They appear in sev-

eral areas of computer science (Edelsbrunner, 1987; Guibas et al., 2003) and mathematics (Bolker,

1969; Bourgain et al., 1989). In machine learning, they appear naturally as the affine projection

of a hypercube; in particular, when using a higher-dimensional distributed representation of points

in R
d with elements in [0, 1]r , where r is larger than d (see, e.g., Hinton and Ghahramani, 1997),

the underlying polytope that is modelled in R
d happens to be a zonotope.

In our context, the two convex sets {T⊤
+ b+, b+ ∈ [0, 1]n+} and {T⊤

− b−, b− ∈ [0, 1]n−} defined

above are thus zonotopes. See an illustration of the Hausdorff distance computation in Figure 4

(middle plot), which is the core computational problem for α = 1.

Approximation by ellipsoids. Centrally symmetric convex polytopes (w.l.o.g. centered around

zero) may be approximated by ellipsoids. In our set-up, we could use the minimum volume enclos-

ing ellipsoid (see, e.g. Barvinok, 2002), which can be computed exactly when the polytope is given

through its vertices, or up to a constant factor when the polytope is such that quadratic functions

may be optimized with a constant factor approximation. For zonotopes, the standard semi-definite

relaxation of Nesterov (1998) leads to such constant-factor approximations, and thus the minimum

volume inscribed ellipsoid may be computed up to a constant. Given standard results (see, e.g.

Barvinok, 2002), a (1/
√
d)-scaled version of the ellipsoid is inscribed in this polytope, and thus the

ellipsoid is a provably good approximation of the zonotope with a factor scaling as
√
d. However,

the approximation ratio is not good enough to get any relevant bound for our purpose (see Sec-

tion 5.5), as for computing the Haussdorff distance, we care about potentially vanishing differences

that are swamped by constant factor approximations.

Nevertheless, the ellipsoid approximation may prove useful in practice, in particular because the ℓ2-

Haussdorff distance between two ellipsoids may be computed in polynomial time (see Appendix E).

NP-hardness. Given the reduction of the case α = 1 (rectified linear units) to α = 0 (exact thresh-

olds) (Livni et al., 2014), the incremental problem is also NP-hard, so as obtaining a constant-factor

approximation. However, this does not rule out convex relaxations with non-constant approximation

ratios (see Section 6 for more details).
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3.4 Incremental optimization problem for α > 2

We consider the problem in Eq. (2) for the remaining cases α > 2. For z1, . . . , zn ∈ R
d+1 and a

vector y ∈ R
n, the goal is to solve (as well as the corresponding problem with y replaced by −y):

max
‖v‖p61

1

α

n
∑

i=1

yi(v
⊤zi)

α
+ = max

‖v‖p61

∑

i∈I+

1

α
(v⊤|yi|1/αzi)α+ −

∑

i∈I−

1

α
(v⊤|yi|1/αzi)α+,

where I+ = {i, yi > 0} and I− = {i, yi < 0}. We have, with ti = |yi|1/αzi ∈ R
d+1, and

β ∈ (1, 2] defined by 1/β + 1/α = 1 (we use the fact that the function u 7→ uα/α and v 7→ vβ/β
are Fenchel-dual to each other):

max
‖v‖p61

1

α

n
∑

i=1

yi(v
⊤zi)

α
+ = max

‖v‖p61

∑

i∈I+

1

α
(v⊤ti)

α
+ −

∑

i∈I−

1

α
(v⊤ti)

α
+

= max
‖v‖p61

∑

i∈I+
max
bi>0

{

biv
⊤
i ti −

1

β
bβi

}

−
∑

i∈I−
max
bi>0

{

biv
⊤ti −

1

β
bβi

}

= max
b+∈RI+

+

min
b−∈RI−

+

max
‖v‖p61

v⊤[T⊤
+ b+ − T⊤

− b−]−
1

β
‖b+‖ββ +

1

β
‖b−‖ββ

by Fenchel duality,

= max
b+∈[0,1]I+

min
b−∈[0,1]I−

‖T⊤
+ b+ − T⊤

− b−‖q −
1

β
‖b+‖ββ +

1

β
‖b−‖ββ , (3)

where T+ ∈ R
n+×d has rows ti, i ∈ I+ and T− ∈ R

n−×d has rows ti, i ∈ I−, with v ∈
argmax‖v‖p61 (T

⊤
+ b+ − T⊤

− b−)
⊤v. Contrary to the case α = 1, we do not obtain exactly a for-

mulation as a Hausdorff distance. However, if we consider the convex sets K+
λ = {T⊤

+ b+, b+ >

0, ‖b+‖β 6 λ} and K−
µ = {T⊤

− b−, b− > 0, ‖b−‖β 6 µ}, then, a solution of Eq. (3) may be

obtained from Hausdorff distance computations between K+
λ and K−

µ , for certain λ and µ.

Note that, while for α = 1 we can use the identity 2u+ = u+ |u| to replace the rectified linear unit

by the absolute value and obtain the same function space, this is not possible for α = 2, as (u+)
2

and u2 do not differ by a linear function. This implies that the results from Livni et al. (2014),

which state that for the quadratic activation function, the incremental problems is equivalent to an

eigendecomposition (and hence solvable in polynomial time), do not apply.

4. Approximation properties

In this section, we consider the approximation properties of the set F1 of functions defined on R
d.

As mentioned earlier, the norm used to penalize input weights w or v is irrelevant for approximation

properties as all norms are equivalent. Therefore, we focus on the case q = p = 2 and ℓ2-norm

constraints.

Because we consider homogeneous activation functions, we start by studying the set G1 of functions

defined on the unit ℓ2-sphere S
d ⊂ R

d+1. We denote by τd the uniform probability measure on S
d.
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The set G1 is defined as the set of functions on the sphere such that g(z) =
∫

Sd
σ(v⊤z)p(z)dτd(z),

with the norm γ1(g) equal to the smallest possible value of
∫

Sd
|p(z)|dτd(z). We may also define

the corresponding squared RKHS norm by the smallest possible value of
∫

Sd
|p(z)|2dτd(z), with

the corresponding RKHS G2.

In this section, we first consider approximation properties of functions in G1 by a finite number of

neurons (only for α = 1). We then study approximation properties of functions on the sphere by

functions in G1. It turns out that all our results are based on the approximation properties of the

corresponding RKHS G2: we give sufficient conditions for being in G2, and then approximation

bounds for functions which are not in G2. Finally we transfer these to the spaces F1 and F2, and

consider in particular functions which only depend on projections on a low-dimensional subspace,

for which the properties of G1 and G2 (and of F1 and F2) differ. This property is key to obtaining

generalization bounds that show adaptivity to linear structures in the prediction functions (as done

in Section 5).

Approximation properties of neural networks with finitely many neurons have been studied exten-

sively (see, e.g., Petrushev, 1998; Pinkus, 1999; Makovoz, 1998; Burger and Neubauer, 2001). In

Section 4.7, we relate our new results to existing work from the literature on approximation the-

ory, by showing that our results provide an explicit control of the various weight vectors which are

needed for bounding the estimation error in Section 5.

4.1 Approximation by a finite number of basis functions

A key quantity that drives the approximability by a finite number of neurons is the variation norm

γ1(g). As shown in Section 2.5, any function g such that γ1(g) is finite, may be approximated in

L2(S
d)-norm with error ε with n = O(γ1(g)

2ε−2) units. For α = 1 (rectified linear units), we may

improve the dependence in ε, through the link with zonoids and zonotopes, as we now present.

If we decompose the signed measure µ as µ = µ+ − µ− where µ+ and µ− are positive measures,

then, for g ∈ G1, we have g(z) =
∫

Sd
(v⊤z)+dµ+(v)−

∫

Sd
(v⊤z)+dµ−(v) = g+(z)−g−(z), which

is a decomposition of g as a difference of positively homogenous convex functions.

Positively homogenous convex functions h may be written as the support function of a compact

convex set K (Rockafellar, 1997), that is, h(z) = maxy∈K y⊤z, and the set K characterizes the

function h. The functions g+ and g− defined above are not any convex positively homogeneous

functions, as we now describe.

If the measure µ+ is supported by finitely many points, that is, µ+(v) =
∑r

i=1 ηiδ(v − vi) with

η > 0, then g+(z) =
∑t

i=1 ηi(v
⊤
i z)+ =

∑t
i=1(ηiv

⊤
i z)+ =

∑t
i=1(t

⊤
i z)+ for ti = ηivi. Thus the

corresponding set K+ is the zonotope [0, t1] + · · · + [0, tr] = {∑r
i=1 biti, b ∈ [0, 1]r} already

defined in Section 3.3. Thus the functions g+ ∈ G1 and g− ∈ G1 for finitely supported measures µ
are support functions of zonotopes.

When the measure µ is not constrained to have finite support, then the sets K+ and K− are limits of

zonotopes, and thus, by definition, zonoids (Bolker, 1969), and thus functions in G1 are differences

of support functions of zonoids. Zonoids are a well-studied set of convex bodies. They are cen-

trally symmetric, and in two dimensions, all centrally symmetric compact convexs sets are (up to

translation) zonoids, which is not true in higher dimensions (Bolker, 1969). Moreover, the problem
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of approximating a zonoid by a zonotope with a small number of segments (Bourgain et al., 1989;

Matoušek, 1996) is essentially equivalent to the approximation of a function g by finitely many

neurons. The number of neurons directly depends on the norm γ1, as we now show.

Proposition 1 (Number of units - α = 1) Let ε ∈ (0, 1/2). For any function g in G1, there exists

a measure µ supported on at most r points in V , so that for all z ∈ S
d. |g(z)−

∫

Sd
(v⊤z)+dµ(v)| 6

εγ1(g), with r 6 C(d)ε−2d/(d+3), for some constant C(d) that depends only on d.

Proof Without loss of generality, we assume γ(g) = 1. It is shown by Matoušek (1996) that for

any probability measure µ (positive and with finite mass) on the sphere S
d, there exists a set of r

points v1, . . . , vr , so that for all z ∈ S
d,

∣

∣

∣

∣

∫

Sd

|v⊤z|dµ(v) − 1

r

r
∑

i=1

|v⊤i z|
∣

∣

∣

∣

6 ε, (4)

with r 6 C(d)ε−2+6/(d+3) = C(d)ε−2d/(d+3), for some constant C(d) that depends only on d. We

may then simply write

g(z)=

∫

Sd

(v⊤z)+dµ(v)=
1

2

∫

Sd

(v⊤z)dµ(v)+
µ+(S

d)

2

∫

Sd

|v⊤z|dµ+(v)

µ+(Sd)
−µ−(Sd)

2

∫

Sd

|v⊤z|dµ−(v)
µ−(Sd)

,

and approximate the last two terms with error εµ±(Sd) with r terms, leading to an approximation

of εµ+(S
d) + εµ−(Sd) = εγ1(g) = ε, with a remainder that is a linear function q⊤z of z, with

‖q‖2 6 1. We may then simply add two extra units with vectors q/‖q‖2 and weights −‖q‖2 and

‖q‖2. We thus obtain, with 2r + 2 units, the desired approximation result.

Note that Bourgain et al. (1989, Theorem 6.5) showed that the scaling in ε in Eq. (4) is not improv-

able, if the measure is allowed to have non equal weights on all points and the proof relies on the

non-approximability of the Euclidean ball by centered zonotopes. This results does not apply here,

because we may have different weights µ−(Sd) and µ+(S
d).

Note that the proposition above is slightly improved in terms of the scaling of the number of neurons

with respect to the approximation error ε (improved exponent), compared to conditional gradient

bounds (Barron, 1993; Kurkova and Sanguineti, 2001). Indeed, the simple use of conditional gra-

dient leads to r 6 ε−2γ1(g)
2, with a better constant (independent of d) but a worse scaling in

ε—also with a result in L2(S
d)-norm and not uniformly on the ball {‖x‖q 6 R}. Note also that

the conditional gradient algorithm gives a constructive way of building the measure. Moreover, the

proposition above is related to the result from Makovoz (1998, Theorem 2), which applies for α = 0
but with a number of neurons growing as ε−2d/(d+1), or to the one of Burger and Neubauer (2001,

Example 3.1), which applies to a piecewise affine sigmoidal function but with a number of neurons

growing as ε−2(d+1)/(d+3) (both slightly worse than ours).

Finally, the number of neurons needed to express a function with a bound on the γ2-norm can

be estimated from general results on approximating reproducing kernel Hilbert space described in

Section 2.3, whose kernel can be expressed as an expectation. Indeed, Bach (2015) shows that

with k neurons, one can approximate a function in F2 with unit γ2-norm with an error measured
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in L2 of ε = k−(d+3)/(2d). When inverting the relationship between k and ε, we get a number of

neurons scaling as ε−2d/(d+3), which is the same as in Prop. 1 but with an error in L2-norm instead

of L∞-norm.

4.2 Sufficient conditions for finite variation

In this section and the next one, we study more precisely the RKHS G2 (and thus obtain similar

results for G1 ⊃ G2). The kernel k(x, y) =
∫

Sd
(v⊤x)+(v⊤y)+dτd(v) defined on the sphere S

d

belongs to the family of dot-product kernels (Smola et al., 2001) that only depends on the dot-

product x⊤y, although in our situation, the function is not particularly simple (see formulas in

Section 3.1). The analysis of these kernels is similar to one of translation-invariant kernels; for

d = 1, i.e., on the 2-dimensional sphere, it is done through Fourier series; while for d > 1, spherical

harmonics have to be used as the expansion of functions in series of spherical harmonics make the

computation of the RKHS norm explicit (see a review of spherical harmonics in Appendix D.1

with several references therein). Since the calculus is tedious, all proofs are put in appendices, and

we only present here the main results. In this section, we provide simple sufficient conditions for

belonging to G2 (and hence G1) based on the existence and boundedness of derivatives, while in the

next section, we show how any Lipschitz-function may be approximated by functions in G2 (and

hence G1) with precise control of the norm of the approximating functions.

The derivatives of functions defined on S
d may be defined in several ways, using the manifold

structure (see, e.g., Absil et al., 2009) or through polar coordinates (see, e.g., Atkinson and Han,

2012, Chapter 3). For d = 1, the one-dimensional sphere S
1 ⊂ R

2 may be parameterized by a

single angle and thus the notion of derivatives and the proof of the following result is simpler and

based on Fourier series (see Appendix C.2). For the general proof based on spherical harmonics,

see Appendix D.2.

Proposition 2 (Finite variation on the sphere) Assume that g : Sd → R is such that all i-th order

derivatives exist and are upper-bounded in absolute value by η for i ∈ {0, . . . , s}, where s is an

integer such that s > (d− 1)/2+α+1. Assume g is even if α is odd (and vice-versa); then g ∈ G2

and γ2(g) 6 C(d, α)η, for a constant C(d, α) that depends only on d and α.

We can make the following observations:

– Tightness of conditions: as shown in Appendix D.5, there are functions g, which have bounded

first s derivatives and do not belong to G2 while s 6 d
2 + α (at least when s − α is even).

Therefore, when s− α is even, the scaling in (d− 1)/2 + α is optimal.

– Dependence on α: for any d, the higher the α, the stricter the sufficient condition. Given

that the estimation error grows slowly with α (see Section 5.1), low values of α would be

preferred in practice.

– Dependence on d: a key feature of the sufficient condition is the dependence on d, that is,

as d increases the number of derivatives has to increase in d/2—like for Sobolev spaces

in dimension d (Adams and Fournier, 2003). This is another instantiation of the curse of

dimensionality: only very smooth functions in high dimensions are allowed.
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– Special case d = 1, α = 0: differentiable functions on the sphere in R
2, with bounded deriva-

tives, belong to G2, and thus all Lipschitz-continuous functions, because Lipschitz-continuous

functions are almost everywhere differentiable with bounded derivative (Adams and Fournier,

2003).

4.3 Approximation of Lipschitz-continuous functions

In order to derive generalization bounds for target functions which are not sufficiently differentiable

(and may not be in G2 or G1), we need to approximate any Lipschitz-continuous function, with

a function g ∈ G2 with a norm γ2(g) that will grow as the approximation gets tighter. We give

precise rates in the proposition below. Note the requirement for parity of the function g. The re-

sult below notably shows the density of G1 in uniform norm in the space of Lipschitz-continuous

functions of the given parity, which is already known since our activation functions are not polyno-

mials (Leshno et al., 1993).

Proposition 3 (Approximation of Lipschitz-continuous functions on the sphere) For δ greater

than a constant depending only on d and α, for any function g : Sd → R such that for all x, y ∈ S
d,

g(x) 6 η and |g(x) − g(y)| 6 η‖x − y‖2, and g is even if α is odd (and vice-versa), there exists

h ∈ G2, such that γ2(h) 6 δ and

sup
x∈Sd

|h(x)− g(x)| 6 C(d, α)η
( δ

η

)−1/(α+(d−1)/2)
log

( δ

η

)

.

This proposition is shown in Appendix C.3 for d = 1 (using Fourier series) and in Appendix D.4

for all d > 1 (using spherical harmonics). We can make the following observations:

– Dependence in δ and η: as expected, the main term in the error bound (δ/η)−1/(α+(d−1)/2)
is a

decreasing function of δ/η, that is when the norm γ2(h) is allowed to grow, the approximation

gets tighter, and when the Lipschitz constant of g increases, the approximation is less tight.

– Dependence on d and α: the rate of approximation is increasing in d and α. In particular the

approximation properties are better for low α.

– Special case d = 1 and α = 0: up to the logarithmic term we recover the result of Prop. 2,

that is, the function g is in G2.

– Tightness: in Appendix D.5, we provide a function which is not in the RKHS and for which

the tightest possible approximation scales as δ−2/(d/2+α−2) . Thus the linear scaling of the

rate as d/2 + α is not improvable (but constants are).

4.4 Linear functions

In this section, we consider a linear function on S
d, that is g(x) = v⊤x for a certain v ∈ S

d, and

compute its norm (or upper-bound thereof) both for G1 and G2, which is independent of v and finite.

In the following propositions, the notation ≈ means asymptotic equivalents when d → ∞.
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Proposition 4 (Norms of linear functions on the sphere) Assume that g : Sd → R is such g(x) =
v⊤x for a certain v ∈ S

d. If α = 0, then γ1(g) 6 γ2(g) =
2dπ
d−1 ≈ 2π. If α = 1, then γ1(g) 6 2,

and for all α > 1, γ1(g) 6 γ2(g) =
d

d−1
4π
α

Γ(α/2+d/2+1)
Γ(α/2)Γ(d/2+1) ≈ Cdα/2.

We see that for α = 1, the γ1-norm is less than a constant, and is much smaller than the γ2-norm

(which scales as
√
d). For α > 2, we were not able to derive better bounds for γ1 (other than the

value of γ2).

4.5 Functions of projections

If g(x) = ϕ(w⊤x) for some unit-norm w ∈ R
d+1 and ϕ a function defined on the real-line, then the

value of the norms γ2 and γ1 differ significantly. Indeed, for γ1, we may consider a new variable

x̃ ∈ S
1 ⊂ R

2, with its first component x̃1 = w⊤x, and the function g̃(x) = ϕ(x̃1). We may

then apply Prop. 2 to g̃ with d = 1. That is, if ϕ is (α + 1)-times differentiable with bounded

derivatives, there exists a decomposition g̃(x̃) =
∫

S1
µ̃(ṽ)σ(ṽ⊤x̃)dµ̃, with γ1(g̃) = |µ̃|(S1), which

is not increasing in d. If we consider any vector t ∈ R
d+1 which is orthogonal to w in R

d+1, then, we

may define a measure µ supported in the circle defined by the two vectors w and t and which is equal

to µ̃ on that circle. The total variation of µ is the one of µ̃ while g can be decomposed using µ and

thus γ1(g) 6 γ1(g̃). Similarly, Prop. 3 could also be applied (and will for obtaining generalization

bounds), also our reasoning works for any low-dimensional projections: the dependence on a lower-

dimensional projection allows to reduce smoothness requirements.

However, for the RKHS norm γ2, this reasoning does not apply. For example, a certain function ϕ
exists, which is s-times differentiable, as shown in Appendix D.5, for s 6

d
2 + α (when s − α is

even), and is not in G2. Thus, given Prop. 2, the dependence on a uni-dimensional projection does

not make a difference regarding the level of smoothness which is required to belong to G2.

4.6 From the unit-sphere S
d to R

d+1

We now extend the results above to functions defined on R
d, to be approximated by functions in

F1 and F2. More precisely, we first extend Prop. 2 and Prop. 3, and then consider norms of linear

functions and functions of projections.

Proposition 5 (Finite variation) Assume that f : Rd → R is such that all i-th order derivatives

exist and are upper-bounded on the ball {‖x‖q 6 R} by η/Ri for i ∈ {0, . . . , k}, where s is the

smallest integer such that s > (d−1)/2+α+1; then f ∈ F2 and γ2(f) 6 C(d, α)η, for a constant

C(d, α) that depends only on d and α.

Proof By assumption, the function x 7→ f(Rx) has all its derivatives bounded by a constant times η.

Moreover, we have defined g(t, a) = f(Rt
a )aα so that all derivatives are bounded by η. The result

then follows immediately from Prop. 2.

Proposition 6 (Approximation of Lipschitz-continuous functions) For δ larger than a constant

that depends only on d and α, for any function f : Rd → R such that for all x, y such that ‖x‖q 6 R
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and ‖y‖q 6 R, |f(x)| 6 η and |f(x) − f(y)| 6 ηR−1‖x − y‖q, there exists g ∈ F2 such that

γ2(g) 6 δ and

sup
‖x‖q6R

|f(x)− g(x)| 6 C(d, α)η
( δ

η

)−1/(α+(d−1)/2)
log

( δ

η

)

.

Proof With the same reasoning as above, we obtain that g is Lipschitz-continuous with constant η,

we thus get the desired approximation error from Prop. 3.

Linear functions. If f(x) = w⊤x + b, with ‖w‖2 6 η and b 6 ηR, then for α = 1, it is

straightforward that γ1(f) 6 2Rη. Moreover, we have γ2(f) ∼ CRη. For other values of α, we

also have γ1-norms less than a constant (depending only of α) times Rη. The RKHS norms are bit

harder to compute since linear functions for f leads to linear functions for g only for α = 1.

Functions of projections. If f(x) = ϕ(w⊤x) where ‖w‖2 6 η and ϕ : R → R is a function,

then the norm of f is the same as the norm of the function ϕ on the interval [−Rη,Rη], and it thus

does not depend on d. This is a consequence of the fact that the total mass of a Radon measure

remains bounded even when the support has measure zero (which might not be the case for the

RKHS defined in Section 2.3). For the RKHS, there is no such results and it is in general not

adaptive.

More generally, if f(x) = Φ(W⊤x) for W ∈ R
d×s with the largest singular value of W less than η,

and Φ a function from R
s to R, then for ‖x‖2 6 R, we have ‖W⊤x‖2 6 Rη, and thus we may

apply our results for d = s.

ℓ1-penalty on input weights (p=1). When using an ℓ1-penalty on input weights instead of an ℓ2-

penalty, the results in Prop. 5 and 6 are unchanged (only the constants that depend on d are changed).

Moreover, when ‖x‖∞ 6 1 almost surely, functions of the form f(x) = ϕ(w⊤x) where ‖w‖1 6 η
and ϕ : R → R is a function, will also inherit from properties of ϕ (without any dependence on

dimension). Similarly, for functions of the form f(x) = Φ(W⊤x) for W ∈ R
d×s with all columns

of ℓ1-norm less than η, we have ‖W⊤x‖∞ 6 Rη and we can apply the s-dimensional result.

4.7 Related work

In this section, we show how our results from the previous sections relate to existing work on neural

network approximation theory.

Approximation of Lipschitz-continuous functions with finitely many neurons. In this section,

we only consider the case α = 1, for which we have two approximation bounds: Prop. 6 which

approximates any η-Lipschitz-continuous function by a function with finite γ1-norm less than δ and

uniform error less than η(δ/η)−2/(d+1) log (δ/η), and Prop. 1 which shows that a function with

γ1-norm less than δ, may be approximated with r neurons with uniform error δr−(d+3)/(2d) .

Thus, given r neurons, we get an approximation of the original function with uniform error

η(δ/η)−2/(d+1) log (δ/η) + δr−(d+3)/(2d) .
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We can optimize over δ, and use δ = ηn(d+1)/(2d), to obtain a uniform approximation bound pro-

portional to η(log n)n−1/d, for approximating an η-Lipschitz-continuous function with n neurons.

Approximation by ridge functions. The approximation properties of single hidden layer neural

networks have been studied extensively, where they are often referred to as “ridge function” approx-

imations. As shown by Pinkus (1999, Corollary 6.10)—based on a result from Petrushev (1998),

the approximation order of n−1/d for the rectified linear unit was already known, but only in L2-

norm (and without the factor log n), and without any constraints on the input and output weights.

In this paper, we provide an explicit control of the various weights, which is needed for computing

estimation errors. Moreover, while the two proof techniques use spherical harmonics, the proof

of Petrushev (1998) relies on quadrature formulas for the associated Legendre polynomials, while

ours relies on the relationship with the associated positive definite kernels, is significantly sim-

pler, and offers additional insights into the problem (relationship with convex neural networks and

zonoids). Maiorov (2006, Theorem 2.3) also derives a similar result, but in L2-norm (rather than

uniform norm), and for sigmoidal activation functions (which are bounded). Note finally, that the

order O(n−1/d) cannot be improved (DeVore et al., 1989, Theorem 4.2). Also, Maiorov and Meir

(2000, Theorem 5) derive similar upper and lower bounds based on a random sampling argument

which is close to using random features in the RKHS setting described in Section 2.3.

Relationship to hardness results for Boolean-valued functions. In this paper, we consider a

particular view of the curse of dimensionality and ways of circumventing it, that is, our distri-

bution over inputs is arbitrary, but our aim is to approximate a real-valued function. Thus, all

hardness results depending on functions with values in {0, 1} do not apply there directly—see, e.g.,

Shalev-Shwartz and Ben-David (2014, Chapter 20), for the need of exponentially many hidden units

for approximating most of the functions from {0, 1}d to {0, 1}.

Our approximation bounds show that, without any assumption beyond Lipschitz-continuity of the

target function, it sufficient to have a number of hidden units which is still exponential in dimension

(hence we also suffer from the curse of dimensionality), but a soon as the target function depends on

linear low-dimensional structure, then we lose this exponential dependence. It would be interesting

to study an extension to {0, 1}-valued functions, and also to relate our results to the number of linear

regions delimited by neural networks with rectified linear units (Montufar et al., 2014).

5. Generalization bounds

Our goal is to derive the generalization bounds outlined in Section 2.4 for neural networks with a

single hidden layer. The main results that we obtain are summarized in Table 2 and show adaptivity

to assumptions that avoid the curse of dimensionality.

More precisely, given some distribution over the pairs (x, y) ∈ X ×Y , a loss function ℓ : Y ×R →
R, our aim is to find a function f : Rd → R such that J(f) = E[ℓ(y, f(x))] is small, given some

i.i.d. observations (xi, yi), i = 1, . . . , n. We consider the empirical risk minimization framework

over a space of functions F , equipped with a norm γ (in our situations, F1 and F2, equipped with

γ1 or γ2). The empirical risk Ĵ(f) = 1
n

∑n
i=1 ℓ(yi, f(xi)), is minimized by constraining f to be in

the ball Fδ = {f ∈ F , γ(f) 6 δ}.
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We assume that almost surely, ‖x‖q 6 R, that for all y the function u 7→ ℓ(y, u) is G-Lipschitz-

continuous on {|u| 6
√
2δ}, and that almost surely, ℓ(y, 0) 6 Gδ. As before z denotes z =

(x⊤, R)⊤ so that ‖z‖q 6
√
2R. This corresponds to the following examples:

– Logistic regression and support vector machines: we have G = 1.

– Least-squares regression: we take G = max {
√
2δ + ‖y‖∞, ‖y‖

2
∞√
2δ

}.

Approximation errors inff∈Fδ J(f)− inff∈F J(f) will be obtained from the approximation results

from Section 4 by assuming that the optimal target function f∗ has a specific form. Indeed, we have:

inf
f∈Fδ

J(f)− J(f∗) 6 G inf
f∈Fδ

{

sup
‖x‖q6R

|f(x)− f∗(x)|
}

.

We now deal with estimation errors supf∈Fδ |Ĵ(f)− J(f)| using Rademacher complexities.

5.1 Estimation errors and Rademacher complexity

The following proposition bounds the uniform deviation between J and its empirical counterpart Ĵ .

This result is standard (see, e.g., Koltchinskii, 2001; Bartlett and Mendelson, 2003) and may be

extended in bounds that hold with high-probability.

Proposition 7 (Uniform deviations) We have the following bound on the expected uniform devia-

tion:

E

[

sup
γ1(f)6δ

|J(f)− Ĵ(f)|
]

6 4
Gδ√
n
C(p, d, α),

with the following constants:

– for α > 1, C(p, d, α) 6 α
√

2 log(d+ 1) for p = 1 and C(p, d, α) 6 α√
p−1

for p ∈ (1, 2]

– for α = 0, C(p, d, α) 6 C
√
d+ 1, where C is a universal constant.

Proof We use the standard framework of Rademacher complexities and get:

E sup
γ1(f)6δ

|J(f)− Ĵ(f)|

6 2E sup
γ1(f)6δ

∣

∣

∣

∣

1

n

n
∑

i=1

τiℓ(yi, f(xi))

∣

∣

∣

∣

using Rademacher random variables τi,

6 2E sup
γ1(f)6δ

∣

∣

∣

∣

1

n

n
∑

i=1

τiℓ(yi, 0)

∣

∣

∣

∣

+ 2E sup
γ1(f)6δ

∣

∣

∣

∣

1

n

n
∑

i=1

τi[ℓ(yi, f(xi))− ℓ(yi, 0)]

∣

∣

∣

∣

6 2
Gδ√
n
+ 2GE sup

γ(f)6δ

∣

∣

∣

∣

1

n

n
∑

i=1

τif(xi)

∣

∣

∣

∣

using the Lipschitz-continuity of the loss,

6 2
Gδ√
n
+ 2GδE sup

‖v‖p61/R

∣

∣

∣

∣

1

n

n
∑

i=1

τi(v
⊤zi)

α
+

∣

∣

∣

∣

using Eq. (2).
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We then take different routes for α > 1 and α = 0.

For α > 1, we have the upper-bound

E sup
γ1(f)6δ

|J(f)− Ĵ(f)| 6 2
Gδ√
n
+ 2GδαE sup

‖v‖p61/R

∣

∣

∣

∣

1

n

n
∑

i=1

τiv
⊤zi

∣

∣

∣

∣

using the α-Lipschitz-cont. of (·)α+ on [−1, 1],

6 2
Gδ√
n
+ 2

Gαδ

Rn
E

∥

∥

∥

∥

n
∑

i=1

τizi

∥

∥

∥

∥

q

.

From Kakade et al. (2009), we get the following bounds on Rademacher complexities:

– If p ∈ (1, 2], then q ∈ [2,∞), and E‖∑n
i=1 τizi‖q 6

√
q − 1R

√
n = 1√

p−1
R
√
n

– If p = 1, then q = ∞, and E‖∑n
i=1 τizi‖q 6 R

√
n
√

2 log(d+ 1).

Overall, we have E‖∑n
i=1 τizi‖q 6

√
nRC(p, d) with C(p, d) defined above, and thus

E sup
γ(f)6δ

|J(f)− Ĵ(f)| 6 2
Gδ√
n
(1 + αC(p, d)) 6 4

Gδα√
n
C(p, d).

For α = 0, we can simply go through the VC-dimension of half-hyperplanes, which is equal to d,

and Theorem 6 from Bartlett and Mendelson (2003), that shows that E supv∈Rd+1

∣

∣

∣

∣

1
n

∑n
i=1 τi1v⊤zi

∣

∣

∣

∣

6

C
√
d+1√
n

, where C is a universal constant.

Note that using standard results from Rademacher complexities, we have, with probability greater

than 1− u, sup
γ1(f)6δ

|J(f)− Ĵ(f)| 6 E sup
γ1(f)6δ

|J(f)− Ĵ(f)|+ 2Gδ√
n

√

log
2

u
.

5.2 Generalization bounds for ℓ2-norm constraints on input weights (p = 2)

We now provide generalization bounds for the minimizer of the empirical risk given the contraint

that γ1(f) 6 δ for a well chosen δ, that will depend on the assumptions regarding the target func-

tion f∗, listed in Section 1. In this section, we consider an ℓ2-norm on input weights w, while in the

next section, we consider the ℓ1-norm. The two situations are summarized and compared in Table 2,

where we consider that ‖x‖∞ 6 r almost surely, which implies that our bound R will depend on

dimension as R 6 r
√
d.

Our generalization bounds are expected values of the excess expected risk for a our estimator (where

the expectation is taken over the data).

Affine functions. We assume f∗(x) = w⊤x + b, with ‖w‖2 6 η and |b| 6 Rη. Then, as seen

in Section 4.6, f∗ ∈ F1 with γ1(f∗) 6 C(α)ηR (the constant is independent of d because we
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approximate an affine function). From Prop. 7, we thus get a generalization bound proportional

to GRη√
n

times a constant (that may depend on α), which is the same as assuming directly that we

optimize over linear predictors only. The chosen δ is then a constant times Rη, and does not grow

with n, like in parametric estimation (although we do use a non-parametric estimation procedure).

Projection pursuit. We assume f∗(x) =
∑k

j=1 fj(w
⊤
j x), with ‖wj‖2 6 η and each fj bounded

by ηR and 1-Lipschitz continuous. From Prop. 6, we may approach each x 7→ fj(w
⊤
j x) by a

function with γ1-norm less than δηR and uniform approximation C(α)ηRδ−1/α log δ. This leads

to a total approximation error of kC(α)GηRδ−1/α log δ for a norm less than kδηR (the constant is

independent of d because we approximate a function of one-dimensional projection).

For α > 1, from Prop. 7, the estimation error is kGRηδ√
n

, with an overall bound of C(α)kGRη( δ√
n
+

δ−1/α log δ). With δ = nα/2(α+1) (which grows with n), we get an optimized generalization bound

of C(α)kGRη logn
n1/(2α+2) , with a scaling independent of the dimension d (note however that R typi-

cally grow with
√
d, i.e., r

√
d, if we have a bound in ℓ∞-norm for all our inputs x).

For α = 0, from Prop. 5, the target function belongs to F1 with a norm less than kGRη, leading to

an overall generalization bound of kGRη
√
d√

n
.

Note that when the functions fj are exactly the activation functions, the bound is better, as these

functions directly belong to the space F1.

Multi-dimensional projection pursuit. We extend the situation above, by assuming f∗(x) =
∑k

j=1 Fj(W
⊤
j x) with each Wj ∈ R

d×s having all singular values less than η and each Fj bounded

by ηR and 1-Lipschitz continuous. From Prop. 6, we may approach each x 7→ Fj(W
⊤
j x) by a

function with γ1-norm less than δηR and uniform approximation C(α, s)ηRδ−1/(α+(s−1)/2) log δ.

This leads to a total approximation error of kC(α, s)GηRδ−1/(α+(s−1)/2) log δ.

For α > 1, the estimation error is kGRηδ/
√
n, with an overall bound of C(α, s)kGRη(δ/

√
n +

δ−1/(α+(s−1)/2) log δ). With δ = n(α+(s−1)/2)/(2α+s−1) , we get an optimized bound of
C(α,s)kGRη

n1/(2α+s+1) log n.

For α = 0, we have an overall bound of C(s)kGRη(δ−2/(s−1) log δ + δ
√
d√
n
), and with δ =

(n/d)(s−1)/(s+1), we get a generalization bound scaling as
C(s)kGRη

(n/d)1/(s+1) log(n/d).

Note that for s = d and k = 1, we recover the usual Lipschitz-continuous assumption, with a rate

of
C(α,d)kGRη

n1/(2α+d+1) log n.

We can make the following observations:

– Summary table: when we know a bound r on all dimensions of x, then we may take R = r
√
d;

this is helpful in comparisons in Table 2, where R is replaced by r
√
d and the dependence in

r is removed as it is the same for all models.

– Dependence on d: when making only a global Lipschitz-continuity assumption, the general-

ization bound has a bad scaling in n, i.e., as n−1/(2α+d+1), which goes down to zero slowly
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∣

∣

∣
function space ‖ · ‖2, α > 1 ‖ · ‖1, α > 1 α = 0
∣

∣

∣

∣

w⊤x+ b d1/2

n1/2

√
q(
log d
n )1/2

(dq)1/2

n1/2

∣

∣

∣

∣

k
∑

j=1

fj(w
⊤
j x), wj ∈ R

d kd1/2

n1/(2α+2) log n
kq1/2(log d)1/(α+1)

n1/(2α+2) log n
k(dq)1/2

n1/2

∣

∣

∣

∣

k
∑

j=1

fj(W
⊤
j x), Wj ∈ Rd×s kd1/2

n1/(2α+s+1) log n
kq1/2(log d)1/(α+(s+1)/2)

n1/(2α+s+1) log n
(dq)1/2d1/(s+1)

n1/(s+1) log n

Table 2: Summary of generalization bounds with different settings. See text for details.

when d increases. However, when making structural assumptions regarding the dependence

on unknown lower-dimensional subspaces, the scaling in d disappears.

– Comparing different values of α: the value α = 0 always has the best scaling in n, but

constants are better for α > 1 (among which α = 1 has the better scaling in n).

– Bounds for F2: The simplest upper bound for the penalization by the space F2 depends on

the approximation properties of F2. For linear functions and α = 1, it is less than
√
dηR,

with a bound GRη
√
d√

n
. For the other values of α, there is a constant C(d). Otherwise, there

is no adaptivity and all other situations only lead to upper-bounds of O(n−1/(2α+d+1)). See

more details in Section 5.4.

– Sample complexity: Note that the generalization bounds above may be used to obtain sam-

ple complexity results such as dε−2 for affine functions, (εk−1d−1/2)−2α−2 for projection

pursuit, and (εk−1d−1/2)−s−1−2α for the generalized version (up to logarithmic terms).

– Relationship to existing work: Maiorov (2006, Theorem 1.1) derives similar results for neural

networks with sigmoidal activation functions (that tend to one at infinity) and the square loss

only, and for a level of smoothness of the target function which grows with dimension (in this

case, once can get easily rates of n−1/2). Our result holds for problems where only bounded

first-order derivatives are assumed, but by using Prop. 2, we would get similar rate by ensuring

the target function belongs to F2 and hence to F1.

Lower bounds. In the sections above, we have only provided generalization bounds. Although

interesting, deriving lower-bounds for the generalization performance when the target function

belongs to certain function classes is out of the scope of this paper. Note however, that results

from Sridharan (2012) suggest that the Rademacher complexities of the associated function classes

provide such lower-bounds. For general Lipschitz-functions, these Rademacher complexities de-

creases as n−max{d,2} (von Luxburg and Bousquet, 2004).
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5.3 Generalization bounds for ℓ1-norm constraints on input weights (p = 1)

We consider the same three situations, assuming that linear predictors have at most q non-zero

elements. We assume that each component of x is almost surely bounded by r (i.e., a bound in

ℓ∞-norm).

Affine functions. We assume f∗(x) = w⊤x + b, with ‖w‖2 6 η and |b| 6 Rη. Given that we

have assumed that w has at most q non-zeros, we have ‖w‖1 6
√
qη.

Then, f∗ ∈ F1 with γ1(f) 6 C(α)ηr
√
q, with a constant that is independent of d because we have

an affine function.

From Prop. 7, we thus get a rate of
Grη

√
q log(d)√
n

times a constant (that may depend on α), which

is the same as assuming directly that we optimize over linear predictors only (see, for example,

Bühlmann and Van De Geer, 2011). We recover a high-dimensional phenomenon (although with a

slow rate in 1/
√
n), where d may be much larger than n, as long as log d is small compared to n.

The chosen δ is then a constant times rη
√
q (and does not grow with n).

Projection pursuit. We assume f∗(x) =
∑k

j=1 fj(w
⊤
j x), with ‖wj‖2 6 η (which implies ‖wj‖1 6√

qη given our sparsity assumption) and each fj bounded by ηr
√
q and 1-Lipschitz continuous. We

may approach each x 7→ fj(w
⊤
j x) by a function with γ1-norm less than δηr

√
q and uniform approx-

imation C(α)ηr
√
qδ−1/α log δ, with a constant that is independent of d because we have a function

of one-dimensional projection. This leads to a total approximation error of kC(α)Gηr
√
qδ−1/α log δ

for a norm less than kδηr
√
q.

Forα > 1, the estimation error is kGrηδ
√
q log d√
n

, with an overall bound of C(α)kGr
√
qη(δ−1/α log δ+

δ
√
log d√
n

). With δ = (n/ log d)α/2(α+1), we get an optimized bound of C(α)kGr
√
qη logn(log d)1/(2α+2)

n1/(2α+2) ,

with a scaling only dependent in d with a logarithmic factor.

For α = 0, the target function belongs to F1 with a norm less than kGr
√
qη, leading to an overal

bound of kGrη
√
q log d√
n

(the sparsity is not helpful in this case).

Multi-dimensional projection pursuit. We assume f∗(x) =
∑k

j=1 Fj(W
⊤
j x) with each Wj ∈

R
d×s, having all columns with ℓ2-norm less than η (note that this is a weaker requirement than

having all singular values that are less than η). If we assume that each of these columns has at

most q non-zeros, then the ℓ1-norms are less than r
√
q and we may use the approximation properties

described at the end of Section 4.6. We also assume that each Fj is bounded by ηr
√
q and 1-

Lipschitz continuous (with respect to the ℓ2-norm).

We may approach each x 7→ Fj(W
⊤
j x) by a function with γ1-norm less than δηr

√
q and uni-

form approximation C(α, s)ηr
√
qδ−1/(α+(s−1)/2) log δ. This leads to a total approximation error

of kC(α, s)Gηr
√
qδ−1/(α+(s−1)/2) log δ.
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For α > 1, the estimation error is kGr
√
qηδ

√
log d/

√
n, with an overall bound which is equal to

C(α, s)kGr
√
qη(δ−1/(α+(s−1)/2) log δ + δ

√
log d√
n

). With δ = (n/ log d)(α+(s−1)/2)/(2α+s−1) , we

get an optimized bound of
C(α, s)kGr

√
qη(log d)1/(2α+s+1)

n1/(2α+s+1)
log n.

For α = 0, we have the bound
C(s)kGr

√
qη

(n/d)1/(s+1) log(n/d), that is we cannot use the sparsity as the

problem is invariant to the chosen norm on hidden weights.

We can make the following observations:

– High-dimensional variable selection: when k = 1, s = q and W1 is a projection onto q

variables, then we obtain a bound proportional to
√
qη(log d)1/(2α+s+1)

n1/(2α+s+1) log n, which exhibits a

high-dimensional scaling in a non-linear setting. Note that beyond sparsity, no assumption

is made (in particular regarding correlations between input variables), and we obtain a high-

dimensional phenomenon where d may be much larger than n.

– Group penalties: in this paper, we only consider ℓ1-norm on input weights; when doing joint

variable selection for all basis functions, it may be worth using a group penalty (Yuan and Lin,

2006; Bach, 2008a).

5.4 Relationship to kernel methods and random sampling

The results presented in the two sections above were using the space F1, with an L1-norm on the

outputs weights (and either an ℓ1- or ℓ2-norm on input weights). As seen in Sections 2.3 and 3.1,

when using an L2-norm on output weights, we obtain a reproducing kernel Hilbert space F2.

As shown in Section 6, the space F2 is significantly smaller than F1, and in particular is not adap-

tive to low-dimensional linear structures, which is the main advantage of the space F1. However,

algorithms for F2 are significantly more efficient, and there is no need for the conditional gradi-

ent algorithms presented in Section 2.5. The first possibility is to use the usual RKHS representer

theorem with the kernel functions computed in Section 3.1, leading to a computation complexity

of O(n2). Alternatively, as shown by Rahimi and Recht (2007), one may instead sample m basis

functions that is m different hidden units, keep the input weights fixed and optimize only the output

layer with a squared ℓ2-penalty. This will quickly (i.e., the error goes down as 1/
√
m) approach

the non-parametric estimator based on penalizing by the RKHS norm γ2. Note that this argument

of random sampling has been used to study approximation bounds for neural networks with finitely

many units (Maiorov and Meir, 2000).

Given the usage of random sampling with L2-penalties, it is thus tempting to sample weights, but

now optimize an ℓ1-penalty, in order to get the non-parametric estimator obtained from penalizing

by γ1. When the number of samples m tends to infinity, we indeed obtain an approximation that

converges to γ1 (this is simply a uniform version of the law of large numbers). However, the rate of

convergence does depend on the dimension d, and in general exponentially many samples would be

needed for a good approximation—see Bach (2013, Section 6) for a more precise statement in the

related context of convex matrix factorizations.
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5.5 Sufficient condition for polynomial-time algorithms

In order to preserve the generalization bounds presented above, it is sufficient to be able to solve the

following problem, for any y ∈ R
n and z1, . . . , zn ∈ R

d+1:

sup
‖v‖p=1

∣

∣

∣

∣

1

n

n
∑

i=1

yi(v
⊤zi)

α
+

∣

∣

∣

∣

, (5)

up to a constant factor. That is, there exists κ > 1, such that for all y and z, we may compute v̂
such that ‖v̂‖p = 1 and

∣

∣

∣

∣

1

n

n
∑

i=1

yi(v̂
⊤zi)

α
+

∣

∣

∣

∣

>
1

κ
sup

‖v‖p=1

∣

∣

∣

∣

1

n

n
∑

i=1

yi(v
⊤zi)

α
+

∣

∣

∣

∣

.

This is provably NP-hard for α = 0 (see Section 3.2), and for α = 1 (see Section 3.3). If such

an algorithm is available, the approximate conditional gradient presented in Section 2.5 leads to

an estimator with the same generalization bound. Moreover, given the strong hardness results for

improper learning in the situation α = 0 (Klivans and Sherstov, 2006; Livni et al., 2014), a convex

relaxation that would consider a larger set of predictors (e.g., by relaxing vv⊤ into a symmetric

positive-definite matrix), and obtained a constant approximation guarantee, is also ruled out.

However, this is only a sufficient condition, and a simpler sufficient condition may be obtained. In

the following, we consider V = {v ∈ R
d+1, ‖v‖2 = 1} and basis functions ϕv(z) = (v⊤z)α+ (that

is we specialize to the ℓ2-norm penalty on weight vectors). We consider a new variation norm γ̂1
which has to satisfy the following assumptions:

– Lower-bound on γ1: It is defined from functions ϕ̂v̂, for v̂ ∈ V̂ , where for any v ∈ V , there

exists v̂ ∈ V̂ such that ϕv = ϕ̂v̂. This implies that the corresponding space F̂1 is larger than

F1 and that if f ∈ F1, then γ̂1(f) 6 γ1(f).

– Polynomial-time algorithm for dual norm: The dual norm sup
v̂∈V̂

∣

∣

∣

∣

1

n

n
∑

i=1

yiϕ̂v̂(zi)

∣

∣

∣

∣

may be com-

puted in polynomial time.

– Performance guarantees for random direction: There exists κ > 0, such that for any vectors

z1, . . . , zn ∈ R
d+1 with ℓ2-norm less than R, and random standard Gaussian vector y ∈ R

n,

sup
v̂∈V̂

∣

∣

∣

∣

1

n

n
∑

i=1

yiϕ̂v̂(xi)

∣

∣

∣

∣

6 κ
R√
n
. (6)

We may also replace the standard Gaussian vectors by Rademacher random variables.

We can then penalize by γ̂ instead of γ. Since γ̂1 6 γ1, approximation properties are transferred,

and because of the result above, the Rademacher complexity for γ̂1-balls scales as well as for γ1-

balls. In the next section, we show convex relaxations which cannot achieve these and leave the

existence or non-existence of such norm γ̂1 as an open problem.
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6. Convex relaxations of the Frank-Wolfe step

In this section, we provide approximation algorithms for the following problem of maximizing, for

a given y ∈ R
n and vectors z1, . . . , zn:

sup
‖v‖p=1

1

n

n
∑

i=1

yi(v
⊤zi)

α
+

These approximation algorithms may be divided in three families, as they may be based on (a) ge-

ometric interpretations as linear binary classification or computing Haussdorff distances (see Sec-

tion 3.2 and Section 3.3), (b) on direct relaxations, on (c) relaxations of sign vectors. For simplicity,

we only focus on the case p = 2 (that is ℓ2-constraint on weights) and on α = 1 (rectified linear

units). As described in Section 5.5, constant-factor approximation ratios are not possible, while

approximation ratios that increases with n are possible (but as of now, we only obtain scalings in n
that provide a provable sample complexity with a polynomial time algorithm which is exponential

in the dimension d.

6.1 Semi-definite programming relaxations

We present two relaxations, which are of the form described in Section 5.5 (leading to potential

generalization bounds) but do not attain the proper approximation scaling (as was checked empiri-

cally).

Note that all relaxations that end up being Lipschitz-continuous functions of z, will have at least the

same scaling than the set of these functions. The Rademacher complexity of such functions is well-

known, that is 1/
√
n for d = 1,

√

logn
n for d = 2 and n−1/d for larger d (von Luxburg and Bousquet,

2004). Unfortunately, the decay in n is too slow to preserve generalization bounds (which would

require a scaling in 1/
√
n).

d-dimensional relaxation. We denote ui = (v⊤zi)+ = 1
2v

⊤zi +
1
2 |v⊤zi|. We may then use

2ui − v⊤zi = |v⊤zi| and, for ‖v‖2 = 1, ‖vv⊤zi‖2 = |v⊤zi| =
√

z⊤i vv
⊤zi. By denoting V = vv⊤,

the constraint that ui = (v⊤zi)+ = 1
2v

⊤zi + 1
2 |v⊤zi| is equivalent to

‖V zi‖2 6 2ui − v⊤zi 6
√

z⊤i V zi and V < 0, trV = 1, rank(V ) = 1.

We obtain a convex relaxation when removing the rank constraint, that is

sup
V <0, tr V=1, u∈Rn

u⊤y such that ∀i ∈ {1, . . . , n}, ‖V zi‖2 6 2ui − v⊤zi 6
√

z⊤i V zi.

(n + d)-dimensional relaxation. We may go further by also considering quadratic forms in u ∈
R
n defined above. Indeed, we have:

(2ui − v⊤zi)(2uj − v⊤zj) = |v⊤zi| · |v⊤zj | = |v⊤ziz⊤j v| = | trV ziz
⊤
j |,
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which leads to a convex program in U = uu⊤, V = vv⊤ and J = uv⊤, that is a semidefinite

program with d+ n dimensions, with the constraints

4Uij + x⊤j V zi − 2δ⊤i Jzj − 2δ⊤j Jzi > | trV ziz
⊤
j |,

and the usual semi-definite contraints

(

U J
J⊤ V

)

<

(

u
v

)(

u
v

)⊤
, with the additional con-

straint that 4Uii + z⊤i V zi − 4δ⊤i Jzi = trV ziz
⊤
i .

If we add these constraints on top of the ones above, we obtain a tighter relaxation. Note that for

this relaxation, we must have [(2ui − v⊤zi)− (2uj − v⊤zj)] less than a constant times ‖zi − zj‖2.

Hence, the result mentioned above regarding Lipschitz-continuous functions and the scaling of the

upper-bound for random y holds (with the dependence on n which is not good enough to preserve

the generalization bounds with a polynomial-time algorithm).

6.2 Relaxation of sign vectors

By introducing a sign vector s ∈ R
n such that si ∈ {−1, 1} and siv

⊤xi = |v⊤xi|, we have the

following relaxation with S = ss⊤, V = vv⊤ and J = sv⊤:

– Usual semi-definite constraint:

(

S J
J⊤ V

)

<

(

s
v

)(

s
v

)⊤
,

– Unit/trace constraints: diag(S) = 1 and trV = 1,

– Sign constraint: δ⊤i Jxi > maxj 6=i |δ⊤j Jxi|.

– Additional constraint: (x⊤i V xi)
1/2 6 δ⊤i Jxi.

We then need to maximize 1
2n

∑n
i=1 yiδ

⊤
i Jxi +

1
2n

∑n
i=1 yiv

⊤xi, which leads to a semidefinte pro-

gram. Again empirically, it did not lead to the correct scaling as a function of n for random Gaussian

vectors y ∈ R
n.

7. Conclusion

In this paper, we have provided a detailed analysis of the generalization properties of convex neural

networks with positively homogenous non-decreasing activation functions. Our main new result

is the adaptivity of the method to underlying linear structures such as the dependence on a low-

dimensional subspace, a setting which includes non-linear variable selection in presence of poten-

tially many input variables.

All our current results apply to estimators for which no polynomial-time algorithm is known to

exist and we have proposed sufficient conditions under which convex relaxations could lead to the

same bounds, leaving open the existence or non-existence of such algorithms. Interestingly, these

problems have simple geometric interpretations, either as binary linear classification, or computing

the Haussdorff distance between two zonotopes.
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In this work, we have considered a single real-valued output; the functional analysis framework

readily extends to outputs in a finite-dimensional vector-space where vector-valued measures could

be used, and then apply to multi-task or multi-class problems. However, the extension to multiple

hidden layers does not appear straightforward as the units of the last hidden layers share the weights

of the first hidden layers, which should require a new functional analysis framework.
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Appendix A. Reproducing kernel Hilbert spaces for ℓ2-norm penalization

In this section, we consider a Borel probability measure τ on the compact space V , and func-

tions ϕv : X → R such that the functions v 7→ ϕv(x) are measurable for all x ∈ X . We

study the set F2 of functions f such that there exists a squared-integrable function p : X → R

with f(x) =
∫

V p(v)ϕv(x)dτ(v) for all x ∈ X . For f ∈ F2, we define γ22(f) as the infimum

of
∫

V p(v)2dτ(v) over all decompositions of f . We now show that F2 is an RKHS with kernel

k(x, y) =
∫

V ϕv(x)ϕv(y)dτ(v).

We follow the proof of Berlinet and Thomas-Agnan (2004, Section 4.1) and extend it to inte-

grals rather than finite sums. We consider the linear mapping T : L2(dτ) → F2 defined by

(Tp)(x) =
∫

V p(v)ϕv(x)dτ(v), with null space K. When restricted to the orthogonal comple-

ment K⊥, we obtain a bijection U from K⊥ to F2. We then define a dot-product on F2 as 〈f, g〉 =
∫

V(U
−1f)(v)(U−1g)(v)dτ(v).

We first show that this defines an RKHS with kernel k defined above. For this, we trivially have

k(·, y) ∈ F2 for all y ∈ X . Moreover, for any y ∈ X , we have with p = U−1k(·, y) ∈ K⊥

and q : v 7→ ϕv(y), p − q ∈ K, which implies that 〈f, k(·, y)〉 =
∫

V(U
−1f)(v)p(v)dτ(v) =

∫

V(U
−1f)(v)q(v)dτ(v) =

∫

V(U
−1f)(v)ϕv(y)dτ(v) = T (U−1f)(y) = f(y), hence the reproduc-

ing property is satisfied. Thus, F2 is an RKHS.

We now need to show that the RKHS norm which we have defined is actually γ2. For any f ∈ F2

such that f = Tp, for p ∈ L2(dτ), we have p = U−1f + q, where q ∈ K. Thus,
∫

V p(v)2dτ(v) =
‖p‖2L2(dτ)

= ‖U−1f‖2L2(dτ)
+ ‖q‖2L2(dτ)

= ‖f‖2 + ‖q‖2L2(dτ)
. This implies that

∫

V p(v)2dτ(v) >

‖f‖2 with equality if and only if q = 0. This shows that γ2(f) = ‖f‖.

Appendix B. Approximate conditional gradient with multiplicative oracle

In this section, we wish to minimize a smooth convex functional J(h) on for h in a Hilbert-space

over a norm ball {γ(h) 6 δ}. A multiplicative approximate oracle outputs for any g ∈ R
n, ĥ such

that γ(ĥ) = 1, and

〈ĥ, g〉 6 max
γ(h)61

〈h, g〉 6 κ 〈ĥ, g〉,

for a fixed κ > 1. We now propose a modification of the conditional gradient algorithm that con-

verges to a certain h such that γ(h) 6 δ and for which infγ(h)6δ J(h) 6 J(ĥ) 6 infγ(h)6δ/κ J(h).
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We assume the smoothness of the function J with respect to the norm γ, that is, for a certain L > 0,

for all h, h′ such that γ(h) 6 δ, then

J(h′) 6 J(h) + 〈J ′(h), h′ − h〉+ L

2
γ(h− h′)2. (7)

We consider the following recursion

ĥt = −δ × output of approximate oracle at −J ′(ht)

ht+1 ∈ arg min
ρ∈[0,1]

J((1 − ρ)ht + ρĥt).

In the previous recursion, one may replace the minimization of J on the segment [ht, ĥt] with the

minimization of its upper-bound of Eq. (7) taken at h = ht. From the recursion, all iterates are

in the γ-ball of radius δ. Following the traditional convergence proof for the conditional gradient

method (Dunn and Harshbarger, 1978; Jaggi, 2013), we have, for any ρ in [0, 1]:

J(ht+1) 6 J(ht)− ρ〈J ′(ht), ht − ĥt〉+ 2Lρ2δ2

= J(ht)− ρJ ′(ht)
⊤ht + κ〈J ′(ht),

ĥt
κ
〉+ 2Lρ2δ2

6 J(ht)− ρJ ′(ht)
⊤ht − max

γ(h)6δ/κ
{ − 〈J ′(ht), h〉} + 2Lρ2δ2.

If we take h∗ the minimizer of J on {γ(h) 6 δ/κ}, we get:

J(ht+1) 6 J(ht)− ρ〈J ′(ht), ht − h∗〉+ 2Lρ2δ2.

Then, by using J(ht) > J(h∗) + 〈J ′(ht), h∗ − ht〉, we get:

J(ht+1)− J(h∗) 6 (1− ρ)[J(ht)− J(h∗)] + 2Lρ2δ2.

This is valid for any ρ ∈ [0, 1]. If J(ht) − J(h∗) 6 0 for some t, then by taking ρ = 0 it

remains the same of all greater t. Therefore, up to (the potentially never happening) point where

J(ht) − J(h∗) 6 0, we can apply the regular proof of the conditional gradien to obtain: J(ht) 6

infγ(h)6δ/κ J(h) +
4Lρ2δ2

t , which leads to the desired result. Note that a similar reasoning may be

used for ρ = 2/(t + 1).

Appendix C. Proofs for the 2-dimensional sphere (d = 1)

In this section, we consider only the case d = 1, where the sphere S
d is isomorphic to [0, 2π] (with

periodic boundary conditions). We may then compute the norm γ2 in closed form. Indeed, if we

can decompose g as g(θ) = 1
2π

∫ 2π
0 p(ϕ)σ(cos(ϕ−θ))dϕ, then the decomposition of g into the k-th

frequency elements (the combination of the two k-th elements of the Fourier series) is equal to, for

σ(u) = (u)α+, and for k > 0:

gk(θ) =
1

π

∫ 2π

0
g(η) cos k(θ − η)dη
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=
1

π

∫ 2π

0

1

2π

(
∫ 2π

0
p(ϕ)σ(cos(η − ϕ))dϕ

)

cos k(θ − η)dη through the decomposition of g,

=
1

2π2

∫ 2π

0
p(ϕ)

(
∫ 2π

0
σ(cos(η − ϕ)) cos k(θ − η)dη

)

dϕ

=
1

2π2

∫ 2π

0
p(ϕ)

(
∫ 2π

0
σ(cos η) cos k(θ − ϕ− η)dη

)

dϕ by a change of variable,

=
1

2π2

∫ 2π

0
p(ϕ)

(

cos k(θ − ϕ)

∫ 2π

0
σ(cos η) cos kη dη

+sin k(θ − ϕ)

∫ 2π

0
σ(cos η) sin kη dη

)

dϕ by expanding the cosine,

=

(

1

2π

∫ 2π

0
σ(cos η) cos kη dη

)(

1

π

∫ 2π

0
p(ϕ) cos k(θ − ϕ)

)

+ 0 by a parity argument,

= λkpk(θ) with λk =
1

2π

∫ 2π

0
σ(cos η) cos kη dη.

For k = 0, the same equality holds (except that the two coefficients g0 and p0 are divided by 2π
except of π).

Thus we may express ‖p‖2
L2(Sd)

as

‖p‖2L2(Sd)
=

∑

k>0

‖pk‖2L2(Sd)
=

∑

λk 6=0

‖pk‖2L2(Sd)
+

∑

λk=0

‖pk‖2L2(Sd)

=
∑

λk 6=0

1

λ2
k

‖gk‖2L2(Sd)
+

∑

λk=0

‖pk‖2L2(Sd)
.

If we minimize over p, we thus need to have ‖pk‖2L2(Sd)
= 0 for λk = 0, and we get

γ2(g)
2 =

∑

λk 6=0

1

λ2
k

‖gk‖2L2(Sd)
. (8)

We thus simply need to compute λk and its decay for all values of α, and then relate them to the

smoothness properties of g, which is standard for Fourier series.

C.1 Computing λk

We now detail the computation of λk = 1
2π

∫ 2π
0 σ(cos η) cos kη dη for the different functions σ =

(·)α+. We have for α = 0:

1

2π

∫ 2π

0
1cos η>0 cos kη dη =

1

2π

∫ π/2

−π/2
cos kη dη =

1

πk
sin

kπ

2
if k 6= 0.

For k = 0 it is equal to 1
2 . It is equal to zero for all other even k, and different from zero for all

odd k, with λk going to zero as 1/k.
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We have for α = 1:

1

2π

∫ 2π

0
(cos η)+ cos kη dη =

1

2π

∫ π/2

−π/2
cos η cos kη dη

=
1

2π

∫ π/2

−π/2
[
1

2
cos(k + 1)η +

1

2
cos(k − 1)η] dη

=
1

4π

(

2

k + 1
sin(k + 1)

π

2
+

2

k − 1
sin(k − 1)

π

2

)

=
cos kπ

2

2π

(

1

k + 1
− 1

k − 1

)

=
− cos kπ

2

π(k2 − 1)
for k 6= 1.

For k = 1, it is equal to 1/4. It is equal to zero for all other odd k, and different from zero for all

even k, with λk going to zero as 1/k2.

For α = 2, we have:

1

2π

∫ 2π

0
(cos η)2+ cos kη dη =

1

2π

∫ π/2

−π/2
(cos η)2 cos kη dη =

1

2π

∫ π/2

−π/2

1 + cos 2η

2
cos kη dη

=
1

2π

∫ π/2

−π/2
[
1

2
cos kη +

1

4
cos(k + 2)η +

1

4
cos(k − 2)η] dη

=
1

4π

(

2

k
sin k

π

2
+

1

k + 2
sin(k + 2)

π

2
+

1

k − 2
sin(k − 2)

π

2

)

=
sin(k π

2 )

4π

(

2

k
− 1

k + 2
− 1

k − 2

)

=
sin(k π

2 )

4π

(

2k2 − 8− k2 + 2k − k2 − 2k

k(k2 − 4)

)

=
−8 sin(k π

2 )

4πk(k2 − 4)
for k /∈ {0, 2}.

For k = 0, it is equal to 1/4, and for k = 2, it is equal to 1/8. It is equal to zero for all other even k,

and different from zero for all odd k, with λk going to zero as 1/k3.

The general case for α > 2 will be shown for for all d in Appendix D.2: for all α ∈ N, λk is

different from zero for k having the opposite parity of α, with a decay as 1/kα+1. All values from

k = 0 to α are also different from zero. All larger values with the same parity as α are equal to zero.

C.2 Proof of Prop. 2 for d = 1

We only consider the proof for d = 1. For the proof for general d, see Appendix D.3.

Given the zero values of λk given above, if g has the opposite parity than α (that is, is even when

α is odd, and vice-versa), then we may define p through its Fourier series, which is obtained by

multiplying the one of g by a strictly positive sequence growing as kα+1.

Thus, if g is such that its (α + 1)-th order derivative is squared-integrable, then p defined above

is squared-integrable, that is, g ∈ G2. Moreover, if all derivatives of order less than (α + 1) are
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bounded by η, p is squared-integrable and ‖p‖2
L2(Sd)

is upper-bounded by a constant times η2, i.e.,

γ2(g)
2 6 C(α)2η2.

Note that we could relax the assumption that g is even (resp. odd) by adding all trigonometric

polynomials of order less than α.

C.3 Proof of Prop. 3 for d = 1

Again, we only consider the proof for d = 1. For the proof for general d, see Appendix D.4.

Without loss of generality, we assume that η = 1. For d = 1, we essentially want to approximate a

Lipschitz-continuous function by a function which is (α+ 1)-times differentiable.

For α = 0, then the function g is already in G2 with a norm less than one, because Lipschitz-

continuous functions are almost everywhere differentiable with bounded derivative (Adams and Fournier,

2003). We thus now consider α > 0.

Given λk defined above and r ∈ (0, 1), we define p̂ through

p̂k(θ) =
∑

k,λk 6=0

λ−1
k gk(θ)r

k.

Our goal is to show that for r chosen close enough to 1, then the function ĝ defined from p̂ has small

enough norm γ2(ĝ) 6 ‖p̂‖L2(Sd), and is close to g.

Computation of norm. We have

‖p̂‖2L2(Sd)
=

∑

k,λk 6=0

λ−2
k r2k‖gk‖2L2(Sd)

.

Since g is 1-Lipschitz-continuous with constant 1, then it has a squared-integrable derivative f = g′

with norm less than 1 (Adams and Fournier, 2003), so that

‖f‖2L2(Sd)
=

∑

k>0

‖fk‖2L2(Sd)
6 1.

This implies that using λ−1
k = O(kα+1):

‖p̂‖2L2(Sd)
6 λ−2

0 ‖g0‖2L2(Sd)
+ ‖g′‖2L2(Sd)

max
k>1,λk 6=0

r2kλ−2
k k−2

6 C + C‖g′‖2L2(Sd)
max
k>1

r2kk2α,

because ‖g0‖2L2(Sd)
and ‖f‖2

L2(Sd)
are bounded by 1.

We may now compute the derivative of k 7→ r2kk2α with respect to k (now considered a real

number), that is 2αk2α−1r2k+k2αr2k2 log r, which is equal to zero for α
k = log 1

r , that is k = α
log 1

r

,

the maximum being then e−2α( α
log 1

r

)2α = O((1− r)−2α), by using the concavity of the logarithm.

Thus ‖p̂‖L2(Sd) 6 C(1− r)−α. This defines ĝ with γ(ĝ) 6 C(1− r)−α.
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Computing distance between ĝ and g. We have:

ĝ(θ) =
∑

k>0

gk(θ)r
k =

∑

k>0

1

π

∫ 2π

0
g(η)rk cos k(θ − η)dη +

1

2π

∫ 2π

0
g(η)dη

=
1

π

∫ 2π

0

(

∑

k>0

rk cos k(θ − η)

)

g(η)dη − 1

2π

∫ 2π

0
g(η)dη

=
1

π

∫ 2π

0
Real

(

1

1− rei(θ−η)

)

g(η)dη − 1

2π

∫ 2π

0
g(η)dη

=
1

π

∫ 2π

0

(

1− r cos(θ − η)

(1− r cos(θ − η))2 + r2(sin(θ − η))2

)

g(η)dη − 1

2π

∫ 2π

0
g(η)dη

=
1

π

∫ 2π

0

(

1− r cos(θ − η)

1 + r2 − 2r cos(θ − η)

)

g(η)dη − 1

2π

∫ 2π

0
g(η)dη

=
1

2π

∫ 2π

0

(

1− r2 + 1 + r2 − 2r cos(θ − η)

1 + r2 − 2r cos(θ − η)

)

g(η)dη − 1

2π

∫ 2π

0
g(η)dη

=
1

2π

∫ 2π

0

(

1− r2

1 + r2 − 2r cos(θ − η)

)

g(η)dη.

We have, for any θ ∈ [0, 2π]

|ĝ(θ)− g(θ)| =

∣

∣

∣

∣

1

2π

∫ 2π

0

(

1− r2

1 + r2 − 2r cos(θ − η)

)

[g(η)− g(θ)]dη

∣

∣

∣

∣

6
1

2π

∫ 2π

0

(

1− r2

1 + r2 − 2r cos(θ − η)

)

|g(η) − g(θ)|dη

=
1

2π

∫ π

π

(

1− r2

1 + r2 − 2r cos η

)

|g(θ)− g(θ + η)|dη by periodicity,

=
1

π

∫ π/2

π/2

(

1− r2

1 + r2 − 2r cos η

)

|g(θ)− g(θ + η)|dη by parity of g,

6
1

π

∫ π/2

π/2

(

1− r2

1 + r2 − 2r cos η

)√
2| sin η|dη

because the distance on the sphere is bounded by the sine,

6
2

π

∫ π

0

(

1− r2

1 + r2 − 2r cos η

)

sin η dη

=
1

π

∫ 1

0

(

1− r2

1 + r2 − 2rt

)

dt by the change of variable t = cos θ,

6 C(1− r)

∫ 1

0

(

1

1 + r2 − 2rt

)

dt

= C(1− r)

[−1

2r
log(1 + r2 − 2rt)

]1

0

= C(1− r)
1

2r
log

1 + r2

(1− r)2
.

It can be easily checked that for any r ∈ (1/2, 1), the last function is less than a constant times
5
2C(1 − r) log 1

1−r . We thus get for δ large enough, by taking r = 1 − (C/δ)1/α ∈ (1/2, 1), an
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error of

(C/δ)1/α log(C/δ)−1/α = O(δ−1/α log δ).

This leads to the desired result.

Appendix D. Approximations on the d-dimensional sphere

In this appendix, we first review tools from spherical harmonic analysis, before proving the two

main propositions regarding the approximation properties of the Hilbert space G2. Using spherical

harmonics in our set-up is natural and is common in the analysis of ridge functions (Petrushev,

1998) and zonotopes (Bourgain and Lindenstrauss, 1988).

D.1 Review of spherical harmonics theory

In this section, we review relevant concepts from spherical harmonics. See Frye and Efthimiou

(2012); Atkinson and Han (2012) for more details. Spherical harmonics may be seen as extension

of Fourier series to spheres in dimensions more than 2 (i.e., with our convention d > 1).

For d > 1, we consider the sphere S
d = {x ∈ R

d+1, ‖x‖2 = 1} ⊂ R
d+1, as well as its normalized

rotation-invariant measure τd (with mass 1). We denote by ωd = 2π(d+1)/2

Γ((d+1)/2) the surface area of the

sphere S
d.

Definition and links with Laplace-Beltrami operator. For any k > 1 (for k = 0, the con-

stant function is the corresponding basis element), there is an orthonormal basis of spherical har-

monics, Ykj : S
d → R, 1 6 j 6 N(d, k) = 2k+d−1

k

(

k+d−2
d−1

)

. They are such 〈Yki, Ysi〉Sd =
∫

Sd
Yki(x)Ysjdτd(x) = δijδsk.

Each of these harmonics may be obtained from homogeneous polynomials in R
d with an Euclidean

Laplacian equal to zero, that is, if we define a function Hk(y) = Yki(y/‖y‖2)‖y‖k2 for y ∈ R
d+1,

then Hk is a homogeneous polynomial of degree k with zero Laplacian. From the relationship

between the Laplacian in R
d+1 and the Laplace-Beltrami operator ∆ on S

d, Yki is an eigenfunction

of ∆ with eigenvalue −k(k+ d− 1). Like in Euclidean spaces, the Laplace-Beltrami operator may

be used to characterize differentiability of functions defined on the sphere (Frye and Efthimiou,

2012; Atkinson and Han, 2012).

Legendre polynomials. We have the addition formula

N(d,k)
∑

j=1

Ykj(x)Ykj(y) = N(d, k)Pk(x
⊤y),

where Pk is a Legendre polynomial of degree k and dimension d + 1, defined as (Rodrigues’ for-

mula):

Pk(t) = (−1/2)k
Γ(d/2)

Γ(k + d/2)
(1− t2)(2−d)/2

( d

dt

)k
(1− t2)k+(d−2)/2.
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They are also referred to as Gegenbauer polynomials. For d = 1, Pk is the k-th Chebyshev polyno-

mial, such that Pk(cos θ) = cos(kθ) for all θ (and we thus recover the Fourier series framework of

Appendix C). For d = 2, Pk is the usual Legendre polynomial.

The polynomial Pk is even (resp. odd) when k is even (resp. odd), and we have

∫ 1

−1
Pk(t)Pj(k)(1 − t2)(d−2)/2dt = δjk

ωd

ωd−1

1

N(d, k)
.

For small k, we have P0(t) = 1, P1(t) = t, and P2(t) =
(d+1)t2−1

d .

The Hecke-Funk formula leads to, for any linear combination Yk of Ykj, j ∈ {1, . . . , N(d, k)}:

∫

Sd

f(x⊤y)Yk(y)dτd(y) =
ωd−1

ωd
Yk(x)

∫ 1

−1
f(t)Pk(t)(1 − t2)(d−2)/2dt.

Decomposition of functions in L2(S
d). Any function g : Sd → R, such that

∫

Sd
g(x)dτd(x) = 0

may be decomposed as

g(x) =

∞
∑

k=1

N(d,k)
∑

j=1

〈Ykj , g〉Ykj(x) =

∞
∑

k=1

N(d,k)
∑

j=1

∫

Sd

Ykj(y)Ykj(x)g(y)dτd(y)

=

∞
∑

k=1

gk(x) with gk(x) = N(d, k)

∫

Sd

g(y)Pk(x
⊤y)dτd(y).

This is the decomposition in harmonics of degree k. Note that

g1(x) = x⊤
[

d

∫

Sd

yg(y)dτd(y)

]

is the linear part of g (i.e., if g(x) = w⊤x, g1 = g). Moreover, if g does not have zero mean, we

may define g0(x) =
∫

Sd
g(y)dτd(y) as the average value of g. Since the harmonics of different

degrees are orthogonal to each other, we have the Parseval formula:

‖g‖2
Sd

=
∑

k>0

‖gk‖2Sd .

Decomposition of functions of one-dimensional projections. If g(x) = ϕ(x⊤v) for v ∈ S
d and

ϕ : [−1, 1] → R, then

gk(x) = N(d, k)

∫

Sd

ϕ(v⊤y)Pk(x
⊤y)dτ(y)

= N(d, k)
ωd−1

ωd
Pk(x

⊤v)
∫ 1

−1
ϕ(t)Pk(t)(1− t2)(d−2)/2dt

=

(

ωd−1

ωd
Pk(x

⊤v)
∫ 1

−1
ϕ(t)Pk(t)(1− t2)(d−2)/2dt

)N(d,k)
∑

j=1

Ykj(x)Ykj(y),
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and

‖gk‖2L2(Sd)
=

(

ωd−1

ωd
Pk(x

⊤v)
∫ 1

−1
ϕ(t)Pk(t)(1− t2)(d−2)/2dt

)2 N(d,k)
∑

j=1

Ykj(y)
2

=

(

ωd−1

ωd
Pk(x

⊤v)
∫ 1

−1
ϕ(t)Pk(t)(1− t2)(d−2)/2dt

)2

N(d, k)Pk(1)

=

(

ωd−1

ωd
Pk(x

⊤v)
∫ 1

−1
ϕ(t)Pk(t)(1− t2)(d−2)/2dt

)2

N(d, k).

D.2 Computing the RKHS norm γ2

Like for the case d = 1, we may compute the RKHS norm γ2 of a function g in closed form

given its decomposition in the basis of spherical harmonics g =
∑

k>0 gk. If we can decompose

g(x) =
∫

Sd
p(w)σ(w⊤x)dτd(w) for a certain function p : Sd → R, then we have, for k > 0:

gk(x) = N(d, k)

∫

Sd

g(y)Pk(x
⊤y)dτd(y)

= N(d, k)

∫

Sd

∫

Sd

p(w)σ(w⊤y)Pk(x
⊤y)dτd(y)dτd(w)

= N(d, k)

∫

Sd

p(w)

(
∫

Sd

σ(w⊤y)Pk(x
⊤y)dτd(y)

)

dτd(w)

=
ωd−1

ωd
N(d, k)

∫

Sd

p(w)Pk(x
⊤w)

(
∫ 1

−1
σ(t)Pk(t)(1− t2)(d−2)/2dt

)

dτd(w)

using the Hecke-Funk formula,

= λkpk(x) with λk =
ωd−1

ωd

∫ 1

−1
σ(t)Pk(t)(1− t2)(d−2)/2dt.

If k ≡ α mod. 2, then λk ∝ 1
2

∫ 1
−1 t

αPk(t)(1 − t2)(d−2)/2dt = 0, for k > α since Pk is orthogonal

to all polynomials of degree strictly less than k for that dot-product. Otherwise, λk 6= 0, since tα

may be decomposed as combination with non-zero coefficients of polynomials Pj for j ≡ α mod. 2,

j 6 α.

We now provide an explicit formula extending the proof technique (for α = 1) of Schneider (1967)

and Bourgain and Lindenstrauss (1988) to all values of α. See also Mhaskar (2006).

We have, by α successive integration by parts, for k > α+ 1:

∫ 1

0
tα
( d

dt

)k
(1− t2)k+(d−2)/2dt

= (−1)αα!

∫ 1

0

( d

dt

)k−α
(1 − t2)k+(d−2)/2dt = −(−1)αα!

( d

dt

)k−α−1
(1− t2)k+(d−2)/2

∣

∣

∣

∣

t=0

= −(−1)αα!
( d

dt

)k−α−1∑

j>0

(

k + (d− 2)/2

j

)

(−1)jt2j
∣

∣

∣

∣

t=0

using the binomial formula,
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= −(−1)αα!
( d

dt

)k−α−1
(

k + (d− 2)/2

j

)

(−1)jt2j
∣

∣

∣

∣

t=0

for 2j = k − α− 1,

= −(−1)αα!

(

k + (d− 2)/2

j

)

(−1)j(2j)! for 2j = k − α− 1.

Thus

λk = −ωd−1

ωd
(−1/2)k

Γ(d/2)

Γ(k + d/2)
(−1)αα!

(

k + (d− 2)/2

j

)

(−1)j(2j)! for 2j = k − α− 1,

= −ωd−1

ωd
(−1/2)k

Γ(d/2)

Γ(k + d/2)
(−1)αα!

Γ(k + d
2 )

Γ(j + 1)Γ(k + d
2 − j)

(−1)jΓ(2j + 1)

= −ωd−1

ωd
(−1/2)k

Γ(d/2)

Γ(k + d/2)
(−1)αα!

Γ(k + d
2)

Γ(k2 − α
2 + 1

2)Γ(
k
2 + d

2 + α
2 + 1

2)
(−1)(k−α−1)/2Γ(k − α)

=
d− 1

2π

α!(−1)(k−α−1)/2

2k
Γ(d/2)Γ(k − α)

Γ(k2 − α
2 + 1

2 )Γ(
k
2 + d

2 +
α
2 + 1

2 )
.

By using Stirling formula Γ(x) ≈ xx−1/2e−x
√
2π, we get an equivalent when k or d tends to

infinity as a constant (that depends on α) times

dd/2+1/2kk/2−α/2+1/2(k + d)−k/2−d/2−α/2.

Note that all exponential terms cancel out. Moreover, when k tends to infinity and d is considered

constant, then we get the equivalent k−d/2−α−1/2, which we need for the following sections. Finally,

when d tends to infinity and k is considered constant, then we get the equivalent d−α/2−k/2+1/2.

We will also need expressions of λk for k = 0 and k = 1. For k = 0, we have:

∫ 1

0
tα(1− t2)d/2−1dt =

∫ 1

0
(1− u)α/2ud/2−1 du

2
√
1− u

with t =
√
1− u,

=
1

2

∫ 1

0
(1− u)α/2+1/2−1ud/2−1du =

1

2

Γ(α/2 + 1/2)Γ(d/2)

Γ(α/2 + 1/2 + d/2)
,

using the normalization factor of the Beta distribution. This leads to

λ0 =
ωd−1

ωd

1

2

Γ(α/2 + 1/2)Γ(d/2)

Γ(α/2 + 1/2 + d/2)
=

d− 1

2π

1

2

Γ(α/2 + 1/2)Γ(d/2)

Γ(α/2 + 1/2 + d/2)
,

which is equivalent to d1/2−α/2 as d tends to infinity.

Moreover, for k = 1, we have (for α > 0):

∫ 1

0
tα
( d

dt

)

(1− t2)d/2dt = −α

∫ 1

0
tα−1(1− t2)d/2dt = −α

∫ 1

0
(1− u)α/2−1/2ud/2

du

2
√
1− u

= −α/2

∫ 1

0
(1− u)α/2−1ud/2+1−1du = −α/2

Γ(α/2)Γ(d/2 + 1)

Γ(α/2 + d/2 + 1)
.

This leads to, for α > 0:

λ1 = (−1/2)
2

d

d− 1

2π
(−α/2)

Γ(α/2)Γ(d/2 + 1)

Γ(α/2 + d/2 + 1)
=

d− 1

d

α

4π

Γ(α/2)Γ(d/2 + 1)

Γ(α/2 + d/2 + 1)
,
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which is equivalent to d−α/2 as d tends to infinity.

Finally, for α = 0, λ1 =
d−1
2dπ . More generally, we have |λk| ∼ C(d)k−(d−1)/2−α−1.

Computing the RKHS norm. Given g with the correct parity, then we have

γ2(g)
2 =

∑

k>0

λ−2
k ‖gk‖2L2(Sd)

.

D.3 Proof of Prop. 2 for d > 1

Given the expression of λk from the section above, the proof is essentially the same than for d = 1
in Appendix C.3. If g is s-times differentiable with all derivatives bounded uniformly by η, then is

equal to g = ∆s/2f for a certain function f such that ‖f‖L2(Sd) 6 η (where ∆ is the Laplacian on

the sphere) (Frye and Efthimiou, 2012; Atkinson and Han, 2012).

Moreover, since g has the correct parity,

γ2(g)
2
6 ‖p‖2L2(Sd)

6
∑

k>1,λk 6=0

λ−2
k ‖gk‖2L2(Sd)

Also, gk are eigenfunctions of the Laplacian with eigenvalues k(k + d− 1). Thus, we have

‖gk‖22 6 ‖fk‖2L2(Sd)

1

[k(k + d− 1)]s
6 ‖fk‖2L2(Sd)

/k2s,

leading to γ2(g)
2
6 max

k>2
λ−2
k k−2s‖f‖2L2(Sd)

6 max
k>2

kd−1+2α+2k−2s‖f‖2L2(Sd)
6 C(d)η2, if s >

(d− 1)/2 + α+ 1, which is the desired result.

D.4 Proof of Prop. 3 for d > 1

Without loss of generality we assume that η = 1, and we follow the same proof as for d = 1 in Ap-

pendix C.3. We have assumed that for all x, y ∈ S
d, |g(x)− g(y)| 6 η‖x− y‖2 = η

√
2
√

1− x⊤y.

Given the decomposition in the k-th harmonics, with

gk(x) = N(d, k)

∫

Sd

g(y)Pk(x
⊤y)dτd(y),

we may now define, for r < 1:

p̂(x) =
∑

k,λk 6=0

λ−1
k rkgk(x),

which is always defined when r ∈ (0, 1) because the series is absolutely convergent. This defines a

function ĝ that will have a finite γ2-norm and be close to g.
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Computing the norm. Given our assumption regarding the Lipschitz-continuity of g, we have

g = ∆1/2f with f ∈ L2(S
d) with norm less than 1 (Atkinson and Han, 2012). Moreover ‖gk‖2L2(Sd)

6

Ck2‖fk‖2L2(Sd)
. We have

‖p̂‖2L2(Sd)
=

∑

k,λk 6=0

λ−2
k r2k‖gk‖2L2(Sd)

6 C(d, α)max
k>0

kd−1+2αr2k‖f‖2L2(Sd)
because λk = Ω(k−d/2−α−1/2),

6 C(d, α)(1 − r)−d+1−2α (see Appendix C.3).

The function p̂ thus defines a function ĝ ∈ G1 by ĝk = λkpk, for which γ2(g) 6 C(d, α)(1 −
r)(−d+1)/2−α.

Approximation properties. We now show that g and ĝ are close to each other. Because of the

parity of g, we have ĝk = rkgk. We have, using Theorem 4.28 from Frye and Efthimiou (2012):

ĝ(x) =
∑

k>0

rk =
∑

k>0

rkN(d, k)

∫

Sd

g(y)Pk(x
⊤y)dτd(y)

=

∫

Sd

g(y)

(

∑

k>0

rkN(d, k)Pk(x
⊤y)

)

dτd(y)

=

∫

Sd

g(y)
1− r2

(1 + r2 − 2r(x⊤y))(d+1)/2
dτd(y).

Moreover, following Bourgain and Lindenstrauss (1988), we have:

g(x)− ĝ(x) =

∫

Sd

[g(x) − g(y)]
1− r2

(1 + r2 − 2r(x⊤w))(d+1)/2
dτd(y)

= 2

∫

Sd, y⊤x>0
[g(x) − g(y)]

1− r2

(1 + r2 − 2r(x⊤w))(d+1)/2
dτd(y) by parity of g,

|g(x) − ĝ(x)| 6

∫

Sd, y⊤x>0

√
2
√

1− x⊤y
1− r2

(1 + r2 − 2r(x⊤y))(d+1)/2
dτd(y).

As shown by Bourgain and Lindenstrauss (1988, Eq. (2.13)), this is less than a constant that depends

on d times (1− r) log 1
1−r . We thus get for δ large enough, by taking 1− r = (C/δ)1/(α+(d−1)/2) ∈

(0, 1), an error of

(C/δ)1/(α+(d−1)/2) log(C/δ)−1/(α+(d−1)/2) ] = O(δ1/(α+(d−1)/2) log δ),

which leads to the desired result.

D.5 Finding differentiable functions which are not in G2

In this section, we consider functions on the sphere which have the proper parity with respect to α,

which are s-times differentiable with bounded derivatives, but which are not in G2. We then provide

optimal approximation rates for these functions.

50



BREAKING THE CURSE OF DIMENSIONALITY WITH CONVEX NEURAL NETWORKS

We assume that s − α is even, we consider g(x) = (w⊤x)s+ for a certain arbitrary w ∈ S
d. As

computed at the end of Appendix D.1, we have ‖gk‖2L2(Sd)
=

(

ωd−1

ωd
Pk(x

⊤v)
∫ 1
−1 ϕ(t)Pk(t)(1 −

t2)(d−2)/2dt

)2

N(d, k). Given the computations from Appendix D.2,

(

ωd−1

ωd
Pk(x

⊤v)
∫ 1
−1 ϕ(t)Pk(t)(1−

t2)(d−2)/2dt

)2

goes down to zero as k−d−2s−1, while N(d, k) grows as kd−1. In order to use the

computation of the RKHS norm derived in Appendix D.2, we need to make sure that g has the

proper parity. This can de done by removing all harmonics with k 6 s (note that these harmonics

are also functions of w⊤x, and thus the function that we obtain is also a function of w⊤x). That

function then has a squared RKHS norm equal to
∑

k>s,λk 6=0

‖gk‖2L2(Sd)
λ−2
k .

The summand has an asymptotic equivalent proportional to k−d−2s−1kd−1kd+2α+1 = kd+2α−2s−1.

Thus if d+2α−2s > 0, the series is divergent (the function is not in the RKHS), i.e., if s 6 α+ d
2 .

Best approximation by a function in G2. The squared norm of the k-th harmonic ‖gk‖2L2(Sd)
goes

down to zero as k−2s−2 and the squared RKHS norm of a h is equivalent to
∑

k>0

‖hk‖2L2(Sd)
kd+2α+1.

Given δ, we may then find the function h such that γ2(h)
2 =

∑

k>0 ‖hk‖2L2(Sd)
kd+2α+1 6 δ2 with

smallest L2(S
d) norm distance to g, that is,

∑

k>0 ‖gk − hk‖2L2(Sd)
. The optimal approximation is

hk = αkgk for some αk ∈ R+, with error
∑

k>0(1−αk)
2‖gk‖2L2(Sd)

∼ ∑

k>0(1−αk)
2k−2s−2 and

squared γ2-norm
∑

k>0 α
2
kk

d+2α+1k−2s−2 =
∑

k>0 α
2
kk

d+2α−2s−1. The optimal αk is obtained

by considering a Lagrange multiplier λ such that (αk − 1)k−2s−2 + λαkk
d+2α−2s−1 = 0, that is,

αk = (k−2s−2 + λkd+2α−2s−1)−1k−2s−2 = (1 + λkd+2α+1)−1. We then have
∑

k>0

α2
kk

d+2α−2s−1 =
∑

k>0

(1 + λkd+2α+1)−2kd+2α−2s−1

≈
∫ ∞

0
(1 + λtd+2α+1)−2td+2α−2s−1dt by approximating a series by an integral,

∝
∫ ∞

0
(1 + u)−2d(td+2α−2s) with the change of variable u = λtd+2α+1

∝ λ−(d+2α−2s)/(d+2α+1) up to constants,

which should be of order δ2 (this gives the scaling of λ as a function of δ). Then the squared error

is

∑

k>0

(1− αk)
2k−2s−2 =

∑

k>0

λ2t2d+4α+2

(1 + λkd+2α+1)2
k−2s−2

≈
∫ ∞

0

λ2t2d+4α−2s

(1 + λtd+2α+1)2
dt

≈ λ2λ−(2d+4α−2s+1)/(d+2α+1) = λ−(2d+4α−2s+1−2d−4α−2)/(d+2α+1)

= λ(2s+1)/(d+2α+1) ≈ δ−2(2s+1)/(d+2α−2s) ,
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and thus the (non-squared) approximation error scales as δ−(2s+1)/(d+2α−2s). For s = 1, this leads

to a scaling as δ−3/(d+2α−2) .

D.6 Proof of Prop. 4

For α = 1, by writing v⊤x = (v⊤x)+ − (−v⊤x)+ we obtain the upperbound γ1(g) 6 2. For all

other situations, we may compute

γ2(g)
2 =

∑

k>0

‖gk‖2L2(Sd)

λ2
k

.

For g a linear function gk = 0 except for k = 1, for which, we have g1(x) = v⊤x, and thus

‖gk‖2L2(Sd)
=

∫

Sd
(v⊤x)2dτd(x) = v⊤(

∫

Sd
xx⊤τd(x))v = 1. This implies that γ2(g) = λ−1

1 . Given

the expression (from Appendix D.2) λ1 =
d−1
d

α
4π

Γ(α/2)Γ(d/2+1)
Γ(α/2+d/2+1) for α > 1 and λ1 =

d−1
2dπ .

Appendix E. Computing ℓ2-Haussdorff distance between ellipsoids

We assume that we are given two ellipsoids defined as (x−a)⊤A−1(x−a) 6 1 and (x−b)⊤B−1(x−
b) 6 1 and we want to compute their Hausdorff distance. This leads to the two equivalent problems

max
‖w‖261

w⊤(a− b)− ‖B1/2w‖2 + ‖A1/2w‖2,

max
‖u‖261

min
‖v‖261

‖a+A1/2u− b−B1/2v‖2,

which are related by w = a+A1/2u−b−B1/2v. We first review classical methods for optimization

of quadratic functions over the ℓ2-unit ball.

Minimizing convex quadratic forms over the sphere. We consider the following convex opti-

mization problem, with Q < 0; we have by Lagrangian duality:

min
‖x‖261

1

2
x⊤Qx− q⊤x

max
λ>0

min
x∈Rd

1

2
x⊤Qx− q⊤x+

λ

2
(‖x‖22 − 1)

max
λ>0

−1

2
q⊤(Q+ λI)−1q − λ

2
with x = (Q+ λI)−1q.

If ‖Q−1q‖2 6 1, then λ = 0 and x = Q−1q. Otherwise, at the optimum, λ > 0 and ‖x‖22 = q⊤(Q+
λI)−2q = 1, which implies 1 6 1

λ+λmin(Q)q
⊤Q−1q, which leads to λ 6 q⊤Q−1q−λmin(Q), which

is important to reduce the interval of possible λ. The optimal λ may then be obtained by binary

search (from a single SVD of Q).
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Minimizing concave quadratic forms over the sphere. We consider the following non-convex

optimization problem, with Q < 0, for which strong Lagrangian duality is known to hold (Boyd and Vandenberghe,

2004):

min
‖x‖261

−1

2
x⊤Qx+ q⊤x = min

‖x‖2=1
−1

2
x⊤Qx+ q⊤x

max
λ>0

min
x∈Rd

−1

2
x⊤Qx+ q⊤x+

λ

2
(‖x‖22 − 1)

max
λ>λmax(Q)

−1

2
q⊤(λI −Q)−1q − λ

2
with x = (Q− λI)−1q.

At the optimum, we have q⊤(λI − Q)−2q = 1, which implies 1 6
1

[λ−λmax(Q)]2
‖q‖22, which leads

to 0 6 λ− λmax(Q) 6 ‖q‖2. We may perform binary search on λ from a single SVD of Q.

Computing the Haussdorff distance. We need to compute:

max
‖u‖261

min
‖v‖261

1

2
‖a+A1/2u− b−B1/2v‖22

= max
‖u‖261

max
λ>0

min
‖v‖261

1

2
‖a+A1/2u− b−B1/2v‖22 +

λ

2
(‖v‖22 − 1)

= max
‖u‖261

max
λ>0

−λ

2
+

1

2
‖a− b+A1/2u‖2 − 1

2
(a− b+A1/2u)⊤B(B + λI)−1(a− b+A1/2u)

= max
‖u‖261

max
λ>0

−λ

2
+

λ

2
(a− b+A1/2u)⊤(B + λI)−1(a− b+A1/2u)

with v = (B + λI)−1B1/2(a− b+A1/2u). The interval in λ which is sufficient to explore is

λ ∈ [0,−λmin(B) + (‖a− b‖22 + λmax(A
1/2))2],

which are bounds that are independent of u.

Given λ > 0, we have the problem of

min
µ>0

max
u∈Rd

λ

2
(a− b+A1/2u)⊤(B + λI)−1(a− b+A1/2u)− µ

2
(‖u‖22 − 1)− λ

2

= min
µ>0

max
u∈Rd

λ

2
(a− b)⊤(B + λI)−1(a− b) +

µ− λ

2
+ λu⊤A1/2(B + λI)−1(a− b)

−1

2
u⊤(µI − λA1/2(B + λI)−1A1/2)u

= min
µ>0

λ

2
(a− b)⊤(B + λI)−1(a− b) +

µ− λ

2

+λ2(a− b)⊤(B + λI)−1A1/2(µI − λA1/2(B + λI)−1A1/2)−1A1/2(B + λI)−1(a− b)

We have u = (
µ

λ
I − A1/2(B + λI)−1A1/2)−1A1/2(B + λI)−1(a− b), leading to w ∝ (λ−1B −

µ−1A+ I)(a− b). We need µ
λ > λmax(A

1/2(B + λI)−1A1/2). Moreover

0 6
µ

λ
− λmax(A

1/2(B + λI)−1A1/2) 6 ‖A1/2(B + λI)−1(a− b)‖.
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This means that the ℓ2-Haussdorff distance may be computed by solving in λ and µ, by exhaustive

search with respect to λ and by binary search (or Newton’s method) for µ. The complexity of each

iteration is that of a singular value decomposition, that is O(d3). For more details on optimization

of quadratic functions on the unit-sphere, see Forsythe and Golub (1965).
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