
HAL Id: hal-01098502
https://hal.science/hal-01098502v1

Submitted on 25 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Algorithms for Program Equivalence for
Confluent Concurrent Constraint Programming

Luis Fernando Pino Duque, Filippo Bonchi, Frank Valencia

To cite this version:
Luis Fernando Pino Duque, Filippo Bonchi, Frank Valencia. Efficient Algorithms for Program Equiv-
alence for Confluent Concurrent Constraint Programming. Science of Computer Programming, 2015,
111, pp.135-155. �10.1016/j.scico.2014.12.003�. �hal-01098502�

https://hal.science/hal-01098502v1
https://hal.archives-ouvertes.fr

Efficient Algorithms for Program Equivalence for

Confluent Concurrent Constraint Programming✩

Luis F. Pino

INRIA/DGA and LIX (UMR 7161 X-CNRS), École Polytechnique, 91128 Palaiseau Cedex, France

Filippo Bonchi

ENS Lyon, Université de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA), 46 Allée

d’Italie, 69364 Lyon, France

Frank Valencia

CNRS and LIX (UMR 7161 X-CNRS), École Polytechnique, 91128 Palaiseau Cedex, France

Abstract

Concurrent Constraint Programming (CCP) is a well-established declarative frame-

work from concurrency theory. Its foundations and principles e.g., semantics,

proof systems, axiomatizations, have been thoroughly studied for over the last

two decades. In contrast, the development of algorithms and automatic verifica-

tion procedures for CCP have hitherto been far too little considered. To the best

of our knowledge there is only one existing verification algorithm for the standard

notion of CCP program (observational) equivalence. In this paper we first show

that this verification algorithm has an exponential-time complexity even for pro-

grams from a representative sub-language of CCP; the summation-free fragment

(CCP\+). We then significantly improve on the complexity of this algorithm by

providing two alternative polynomial-time decision procedures for CCP\+ pro-

gram equivalence. Each of these two procedures has an advantage over the other.

One has a better time complexity. The other can be easily adapted for the full

✩This work has been partially supported by the project ANR 12IS02001 PACE, ANR-09-

BLAN-0169-01 PANDA, and by the French Defense procurement agency (DGA) with a PhD

grant.

Email addresses: luis.pino@lix.polytechnique.fr (Luis F. Pino),

filippo.bonchi@ens-lyon.fr (Filippo Bonchi),

frank.valencia@lix.polytechnique.fr (Frank Valencia)

Preprint submitted to Science of Computer Programming December 25, 2014

language of CCP to produce significant state space reductions. The relevance of

both procedures derives from the importance of CCP\+. This fragment, which

has been the subject of many theoretical studies, has strong ties to first-order logic

and an elegant denotational semantics, and it can be used to model real-world sit-

uations. Its most distinctive feature is that of confluence, a property we exploit to

obtain our polynomial procedures. Finally, we also study the congruence issues

regarding CCP’s program equivalence.

Keywords: Concurrent Constraint Programming, Bisimulation, Partition

Refinement, Observational Equivalence

1. Introduction

Motivation. Concurrent constraint programming (CCP) [1] is a well-established

formalism from concurrency theory that combines the traditional algebraic and

operational view of process calculi with a declarative one based upon logic. It was

designed to give programmers explicit access to the concept of partial information

and, as such, has close ties with logic and constraint programming.

The CCP framework models systems whose agents (processes or programs)

interact by concurrently posting (telling) and querying (asking for) partial infor-

mation in a shared medium (the store). This framework is parametric in a con-

straint system indicating interdependencies (entailment) between partial informa-

tion and providing for the specification of data types and other rich structures.

The above features have attracted renewed attention as witnessed by the works

[2, 3, 4, 5, 6] on calculi exhibiting data-types, logic assertions as well as tell and

ask operations. A compelling example of the kind of system CCP can model in-

volves users interacting by posting and querying information in a social network

[6].

Nevertheless, despite the extensive research on the foundations and principles

of CCP, the development of tools and algorithms for the automatic verification of

CCP programs has hitherto been far too little considered. As we shall argue below,

the only existing algorithm for deciding the standard notion of process equivalence

was given in [7] and it has an exponential time (and space) complexity.

The main goal of this paper is to produce efficient decision procedures for pro-

gram equivalence for a meaningful fragment of CCP. Namely, the summation-free

fragment of CCP, henceforth CCP\+. The CCP\+ formalism is perhaps the most

representative sublanguage of CCP. It has been the subject of many theoretical

studies because of its computational expressivity, strong ties to first-order logic,

2

and elegant denotational semantics based on closure operators [1]. Its most dis-

tinctive property is that of confluence in the sense that the final resulting store is

the same regardless of the execution order of the parallel processes. We shall use

this property extensively in proving the correctness of our decision procedures.

Approach. To explain our approach we shall briefly recall some CCP equiva-

lences. The standard notion of observational (program) equivalence, ∼o, [1],

roughly speaking, decrees that two CCP programs are observationally equivalent

if each one can be replaced with the other in any CCP context and produce the

same final stores. Other alternative notions of program equivalences for CCP

such as saturated barbed bisimilarity (∼̇sb) and its weak variant (≈̇sb) were intro-

duced in [8, 9], where it is also shown that ≈̇sb coincides with the standard CCP

observational equivalence for CCP\+ programs.

The above-mentioned alternative notions of CCP equivalences are defined in

terms of a labeled transition system (LTS) describing the interactive behavior of

CCP programs. (Intuitively, a labeled transition γ
α

−→ γ′ represents the evolution

into the program configuration γ′ if the information α is added to store of the pro-

gram configuration γ.) The advantage of using these alternative notions of equiv-

alence instead of using directly the standard notion of observational equivalence

for CCP is that there is a substantial amount of work supporting the automatic

verification of bisimilarity-based equivalence.

Unfortunately, the standard algorithms for checking bisimilarity (such as [10,

11, 12, 13]) cannot be reused for ∼̇sb and ≈̇sb, since in this particular case of

the bisimulation game, when the attacker proposes a transition, the defender does

not necessarily have to answer with a transition with the same label. (This is

analogous to what happens in the asynchronous π-calculus [14] where an input

transition can be matched also by an internal (tau) transition.)

Partition Refinement for CCP. By building upon [14], we introduced in [15] a

variation of the partition refinement algorithm that allows us to decide ∼̇sb in

CCP. The variation is based on the observation that some of the transitions are

redundant, in the sense that they are logical consequences of other transitions.

Unfortunately, such a notion of redundancy is not syntactic, but semantic, more

precisely, it is based on ∼̇sb itself. Now, if we consider the transition system hav-

ing only non-redundant transitions, the ordinary notion of bisimilarity coincides

with ∼̇sb. Thus, in principle, we could remove all the redundant transitions and

then check bisimilarity with a standard algorithm. But how can we decide which

transitions are redundant, if redundancy itself depends on ∼̇sb ?

3

The solution in [15] consists in computing ∼̇sb and redundancy at the same

time. In the first step, the algorithm considers all the states as equivalent and

all the (potentially redundant) transitions as redundant. In any iteration, states

are discerned according to (the current estimation of) non-redundant transitions

and then non-redundant transitions are updated according to the new computed

partition.

One peculiarity of the algorithm in [15] is that in the initial partition, we insert

not only the reachable states, but also extra ones which are needed to check for

redundancy. Unfortunately, the number of these states might be exponentially

bigger than the size of the original LTS and therefore worst-case complexity is

exponential, even as we shall show in this paper, for the restricted case of CCP\+.

This becomes even more problematic when considering the weak semantics

≈̇sb. Usually weak bisimilarity is computed by first closing the transition relation

with respect to internal transitions and then by checking strong bisimilarity on

the obtained LTS. In [7], this approach (which is referred in [16] as saturation) is

proven to be unsound for CCP (see [7]). It is also shown that in order to obtain a

sound algorithm, one has to close the transition relation, not only w.r.t. the internal

transitions, but w.r.t. all the transitions. This induces an explosion of the number

of transitions which makes the computation of ≈̇sb even more inefficient.

Confluent CCP. In this paper, we shall consider the “summation free” fragment of

CCP (CCP\+), i.e., the fragment of CCP without non-deterministic choice. Dif-

ferently from similar fragments of other process calculi (such as the π-calculus

or the mobile ambients), CCP\+ is confluent because concurrent constraints pro-

grams interact only via reading and telling permanent pieces of information (roughly

speaking, resources are not consumed). When considering the weak equivalence

≈̇sb, confluence makes it possible to characterize redundant transitions syntac-

tically, i.e., without any information about ≈̇sb. Therefore for checking ≈̇sb in

CCP\+, we can first prune redundant transitions and then check the standard

bisimilarity with one of the usual algorithms [10, 11, 12, 13]. Since redundancy

can be determined statically, the additional states needed by the algorithm in [15]

are not necessary any more: in this way, the worst case complexity from exponen-

tial becomes polynomial.

Unfortunately, this approach still suffers of the explosion of transitions caused

by the closure of the transition relation. In order to avoid this problem, we exploit

a completely different approach (based on the semantic notion of compact input-

output sets) that works directly on the original LTS. We shall conclude our paper

by also showing how the results obtained for CCP\+can be exploited to optimize

4

the partition refinement for the full language of CCP.

We wish to conclude this introduction with a quote from [17] that captures the

goal of the present paper:

“The times have gone, where formal methods were primarily a pen-and-pencil

activity for mathematicians. Today, only languages properly equipped with soft-

ware tools will have a chance to be adopted by industry. It is therefore essential

for the next generation of languages based on process calculi to be supported by

compilers, simulators, verification tools, etc. The research agenda for theoretical

concurrency should therefore address the design of efficient algorithms for trans-

lating and verifying formal specifications of concurrent systems”.

Contributions. This paper is an extended version of [18]. In this version

we give all the details and proofs omitted in [18]. We also extend the intuitions

from [18] to improve the clarity of the paper. Furthermore, we add a section,

Section 7, with new technical material. In this new section we study congruence

issues for the CCP fragment here studied, CCP\+, as well as for the full language

of CCP. In particular we show that ≈̇sb is a congruence for CCP\+ but not for

CCP. Despite the negative result for the full language we show that ≈̇sb is still

a useful notion as it implies the standard notion of program equivalence ∼o for

CCP. Consequently, the (co-inductive) proof techniques associated to ≈̇sb can be

used to establish program equivalence and the algorithms provided in this paper

for the full language can be used as semi-decision procedures for ∼o.

Structure of the paper. The paper is organized as follows: In Section 2 we

recall the background concerning the standard partition refinement and the CCP

formalism. In Section 3 we present the partition refinement for CCP from [15]

and how it can be used to decide observational equivalence following [7]. Our

contributions begin in Section 4 where we prove that the partition refinement for

CCP from Section 3 is inefficient even for CCP\+. We then introduce some par-

ticular features of CCP\+ which are then used to develop a polynomial procedure

for checking observational equivalence in CCP\+. In Section 5 we introduce our

second, more efficient, method for deciding observational equivalence by using

the compact input-output sets. In Section 6 we show how the procedure from

Section 4 can be adapted to the full CCP language. In Section 7 we discuss the

use of the technique in Section 6 as a semi-decision procedure for observational

equivalence. We also discuss the congruence issues concerning weak bisimilarity

for CCP and CCP\+. Finally, in Section 8 we present our conclusions and future

work.

5

2. Background

We start this section by recalling the notion of labeled transition system (LTS),

partition and the graph induced by an LTS. Then we present the standard partition

refinement algorithm, the concurrent constraint programming (CCP) and we show

that partition refinement cannot be used for checking equivalence of concurrent

constraint processes.

Labeled Transition System. A labeled transition system (LTS) is a triple (S, L,)
where S is a set of states, L a set of labels and ⊆ S × L × S a transition

relation. We shall use s
a
 r to denote the transition (s, a, r) ∈ . Given a

transition t = (s, a, r) we define the source, the target and the label as follows

src(t) = s, tar(t) = r and lab(t) = a. We assume the reader to be familiar with

the standard notion of bisimilarity [19].

Partition. Given a set S, a partition P of S is a set of non-empty blocks, i.e.,

subsets of S, that are all disjoint and whose union is S. We write {B1} . . . {Bn}
to denote a partition consisting of (non-empty) blocks B1, . . . , Bn. A partition

represents an equivalence relation where equivalent elements belong to the same

block. We write sPr to mean that s and r are equivalent in the partition P .

LTSs and Graphs. Given a LTS (S, L,), we write LTS for the directed graph

whose vertices are the states in S and edges are the transitions in . Given a set

of initial states IS ⊆ S, we write LTS (IS) for the subgraph of LTS rechable

from IS . Given a graph G we write V(G) and E(G) for the set of vertices and

edges of G, respectively.

2.1. Partition Refinement

We report the partition refinement algorithm [10] for checking bisimilarity

over the states of an LTS (S, L,).
Given a set of initial states IS ⊆ S, the partition refinement algorithm (see

Algorithm 1) checks bisimilarity on IS as follows. First, it computes IS ⋆

, that

is the set of all states that are reachable from IS using . Then it creates the

partition P0 where all the elements of IS ⋆

belong to the same block (i.e., they

are all equivalent). After the initialization, it iteratively refines the partitions by

employing the function on partitions F (−), defined as follows: for a partition

P , sF (P)r iff

if s
a
 s′ then exists r′ s.t. r

a
 r′ and s′Pr′. (1)

6

s s′ s′′
a a

s, s′, s′′ s, s′ s′′ s s′ s′′

P F (P) F (F (P))

Figure 1: An example of the use of F

(P) from Equation 1

See Figure 1 for an example of F (P). Algorithm 1 terminates whenever

two consecutive partitions are equivalent. In such a partition two states (reachable

from IS) belong to the same block iff they are bisimilar (using the standard notion

of bisimilarity [19]).

Algorithm 1 pr(IS ,)

Initialization

1. IS ⋆

is the set of all states reachable from IS using ,

2. P0 := IS ⋆

,

Iteration Pn+1 := F (P
n) as in Equation 1

Termination If Pn = Pn+1 then return Pn.

2.2. Constraint Systems

The CCP model is parametric in a constraint system (cs) specifying the struc-

ture and interdependencies of the information that processes can ask or add to a

central shared store. This information is represented as assertions traditionally re-

ferred to as constraints. Following [20, 21] we regard a cs as a complete algebraic

lattice in which the ordering ⊑ is the reverse of an entailment relation: c ⊑ d

means d entails c, i.e., d contains “more information” than c. The top element

false represents inconsistency, the bottom element true is the empty constraint,

and the least upper bound (lub) ⊔ is the join of information.

Definition 1. (Constraint System) A constraint system (cs) is a complete algebraic

lattice C = (Con,Con0,⊑,⊔, true, false) where Con, the set of constraints, is a

partially ordered set w.r.t. ⊑, Con0 is the subset of compact elements of Con, ⊔ is

the lub operation defined on all subsets, and true, false are the least and greatest

elements of Con, respectively.

7

Remark 1. We assume that the constraint system is well-founded and that its

ordering ⊑ is decidable.

We now define the constraint system we use in our examples.

Example 1. Let Var be a set of variables and ω be the set of natural numbers.

A variable assignment is a function µ : Var −→ ω. We use A to denote the

set of all assignments, P(A) to denote the powerset of A, ∅ the empty set and ∩
the intersection of sets. Let us define the following constraint system: The set of

constraints is P(A). We define c ⊑ d iff c ⊇ d. The constraint false is ∅, while

true is A. Given two constraints c and d, c ⊔ d is the intersection c ∩ d. We will

often use a formula like x < n to denote the corresponding constraint, i.e., the set

of all assignments that map x to a number smaller than n.

2.3. Syntax

We now recall the basic CCP process constructions. We are concerned with

the verification of finite-state systems, thus we shall dispense with the recursion

operator which is meant for describing infinite behavior. We shall also omit the

local/hiding operator for the simplicity of the presentation (see [8, 9] for further

details).

Let C = (Con,Con0,⊑,⊔, true, false) a constraint system. The CCP pro-

cesses are given by the following syntax:

P,Q ::= stop | tell(c) | ask(c) → P | P ‖ Q | P +Q

where c ∈ Con0. Intuitively, stop represents termination, tell(c) adds the con-

straint (or partial information) c to the store. The addition is performed regardless

the generation of inconsistent information. The process ask(c) → P may exe-

cute P if c is entailed from the information in the store. The processes P ‖ Q

and P + Q stand, respectively, for the parallel execution and non-deterministic

choice of P and Q.

Remark 2. (CCP\+). Henceforth, we use CCP\+ to refer to the fragment of CCP

without nondeterministic choice.

2.4. Reduction Semantics

A configuration is a pair 〈P, d〉 representing a state of a system; d is a con-

straint representing the global store, and P is a process, i.e., a term of the syntax.

We use Conf with typical elements γ, γ′, . . . to denote the set of all configura-

tions. We will use Conf
CCP\+ for the CCP\+ configurations.

8

R1 〈tell(c), d〉 −→ 〈stop, d ⊔ c〉 R2
c ⊑ d

〈ask (c) → P, d〉 −→ 〈P, d〉

R3
〈P, d〉 −→ 〈P ′, d′〉

〈P ‖ Q, d〉 −→ 〈P ′ ‖ Q, d′〉
R4

〈P, d〉 −→ 〈P ′, d′〉

〈P + Q, d〉 −→ 〈P ′, d′〉

Table 1: Reduction semantics for CCP (the symmetric rules for R3 and R4 are omitted).

The operational semantics of CCP is given by an unlabeled transition relation

between configurations: a transition γ −→ γ′ intuitively means that the configu-

ration γ can reduce to γ′. We call these kind of unlabeled transitions reductions

and we use −→∗ to denote the reflexive and transitive closure of −→.

Formally, the reduction semantics of CCP is given by the relation −→ defined

in Table 1. These rules are easily seen to realize the intuitions described in the

syntax (Section 2.3).

In [8, 9], the authors introduced a barbed semantics for CCP. Barbed equiva-

lences have been introduced in [22] for CCS, and have become a classical way to

define the semantics of formalisms equipped with unlabeled reduction semantics.

Intuitively, barbs are basic observations (predicates) on the states of a system. In

the case of CCP, barbs are taken from the underlying set Con0 of the constraint

system.

Definition 2. (Barbs) A configuration γ = 〈P, d〉 is said to satisfy the barb c,

written γ ↓c, iff c ⊑ d. Similarly, γ satisfies a weak barb c, written γ ⇓c, iff there

exist γ′ s.t. γ −→∗ γ′ ↓c.

Example 2. Let γ = 〈ask (x > 10) → tell(y < 42), x > 10〉. We have γ ↓x>5

since (x > 5) ⊑ (x > 10) and γ ⇓y<42 since γ −→ 〈tell(y < 42), x > 10〉 −→
〈stop, (x > 10) ⊔ (y < 42)〉 ↓y<42.

In this context, the equivalence proposed is the saturated bisimilarity [23, 24].

Intuitively, in order for two states to be saturated bisimilar, then (i) they should

expose the same barbs, (ii) whenever one of them moves then the other should

reply and arrive at an equivalent state (i.e. follow the bisimulation game), (iii)

they should be equivalent under all the possible contexts of the language. In the

case of CCP, it is enough to require that bisimulations are upward closed as in

condition (iii) below.

Definition 3. (Saturated Barbed Bisimilarity) A saturated barbed bisimulation is

9

a symmetric relation R on configurations s.t. whenever (γ1, γ2) ∈ R with γ1 =
〈P, c〉 and γ2 = 〈Q, d〉 implies that:

(i) if γ1 ↓e then γ2 ↓e,

(ii) if γ1 −→ γ′
1 then there exists γ′

2 s.t. γ2 −→ γ′
2 and (γ′

1, γ
′
2) ∈ R,

(iii) for every a ∈ Con0, (〈P, c ⊔ a〉, 〈Q, d ⊔ a〉) ∈ R.

We say that γ1 and γ2 are saturated barbed bisimilar (γ1 ∼̇sb γ2) if there is

a saturated barbed bisimulation R s.t. (γ1, γ2) ∈ R. We write P ∼̇sb Q iff

〈P, true〉 ∼̇sb 〈Q, true〉.

Weak saturated barbed bisimilarity (≈̇sb) is obtained from Definition 3 by re-

placing the strong barbs in condition (i) for its weak version (⇓) and the transitions

in condition (ii) for the reflexive and transitive closure of the transition relation

(−→∗).

Definition 4. (Weak Saturated Barbed Bisimilarity) A weak saturated barbed

bisimulation is a symmetric relation R on configurations s.t. whenever (γ1, γ2) ∈
R with γ1 = 〈P, c〉 and γ2 = 〈Q, d〉 implies that:

(i) if γ1 ⇓e then γ2 ⇓e,

(ii) if γ1 −→
∗ γ′

1 then there exists γ′
2 s.t. γ2 −→

∗ γ′
2 and (γ′

1, γ
′
2) ∈ R,

(iii) for every a ∈ Con0, (〈P, c ⊔ a〉, 〈Q, d ⊔ a〉) ∈ R.

We say that γ1 and γ2 are weak saturated barbed bisimilar (γ1 ≈̇sb γ2) if there ex-

ists a weak saturated barbed bisimulation R s.t. (γ1, γ2) ∈ R. We write P ≈̇sb Q

iff 〈P, true〉 ≈̇sb 〈Q, true〉.

We now illustrate ∼̇sb and ≈̇sb with the following two examples.

Example 3. Take T = tell(true), P = ask (x < 7) → T and Q = ask (x <

5) → T . One can check that 〈P, true〉 6 ∼̇sb〈Q, true〉, since 〈P, x < 7〉 −→
〈T, x < 7〉, while 〈Q, x < 7〉 6−→. Then consider 〈P + Q, true〉 and observe

that 〈P + Q, true〉∼̇sb〈P, true〉. Indeed, for all constraints e, s.t. x < 7 ⊑ e,

both the configurations evolve into 〈T, e〉, while for all e s.t. x < 7 6⊑ e, both

configurations cannot proceed. Since x < 7 ⊑ x < 5, the behavior of Q is in a

sense absorbed by the behavior of P .

10

Example 4. Let γ1 = 〈tell(true), true〉 and γ2 = 〈ask (c) → tell(d), true〉. We

can show that γ1 ≈̇sb γ2 when d ⊑ c. Intuitively, this corresponds to the fact that

the implication c ⇒ d is equivalent to true when c entails d. The LTSs of γ1 and

γ2 are the following: γ1 −→ 〈stop, true〉 and γ2
c

−→ 〈tell(d), c〉 −→ 〈stop, c〉.
It is now easy to see that the symmetric closure of the relation

R = {(γ2, γ1), (γ2, 〈stop, true〉), (〈tell(d), c〉, 〈stop, c〉), (〈stop, c〉, 〈stop, c〉)}

is a weak saturated barbed bisimulation as in Definition 4.

2.5. Labeled Semantics

In [8, 9] we have shown that ≈̇sb is fully abstract with respect to the standard

observational equivalence from [1]. Unfortunately, the quantification over all con-

straints in condition (iii) of Definition 3 and Definition 4 makes checking ∼̇sb and

≈̇sb hard, since one should check infinitely many constraints. In order to avoid

this problem we have introduced in [8, 9] a labeled transition semantics where

labels are constraints.

In a transition of the form 〈P, d〉
α

−→ 〈P ′, d′〉 the label α ∈ Con0 represents

a minimal information (from the environment) that needs to be added to the store

d to reduce from 〈P, d〉 to 〈P ′, d′〉, i.e., 〈P, d ⊔ α〉 −→ 〈P ′, d′〉. This approach is

based on [25] which is related to the early work on symbolic semantics from [26].

As a consequence, the transitions labeled with the constraint true are in one

to one correspondence with the reductions defined in the previous section. For

this reason, hereafter we will sometimes write −→ to mean
true
−→. Before formally

introducing the labeled semantics, we fix some notation.

Notation 1. We will use to denote a generic transition relation on the state

space Conf and labels Con0. Also in this case means
true
 . Given a set of

initial configurations IS , Config

(IS) denotes the set {γ′ | ∃γ ∈ IS s.t. γ

α1

. . .
αn

 γ′ for some n ≥ 0}.

The LTS (Conf ,Con0,−→) is defined by the rules in Table 2. The rule LR2,

for example, says that 〈ask (c) → P, d〉 can evolve to 〈P, d ⊔ α〉 if the envi-

ronment provides a minimal constraint α that added to the store d entails c, i.e.,

α ∈ min{a ∈ Con0 | c ⊑ d ⊔ a}. The other rules are easily seen to realize the

intuition given in Section 2.3. Figure 2 illustrates the LTS of our running example.

Given the LTS (Conf ,Con0,−→), one would like to exploit it for “efficiently

characterizing” ∼̇sb and ≈̇sb. One first naive attempt would be to consider the

standard notion of (weak) bisimilarity over −→, but this would distinguish config-

urations which are in ∼̇sb (and ≈̇sb), as illustrated by the following two examples.

11

LR1 〈tell(c), d〉
true
−→ 〈stop, d ⊔ c〉 LR2

α ∈ min{a ∈ Con0 | c ⊑ d ⊔ a }

〈ask (c) → P, d〉
α

−→ 〈P, d ⊔ α〉

LR3
〈P, d〉

α
−→ 〈P ′, d′〉

〈P ‖ Q, d〉
α

−→ 〈P ′ ‖ Q, d′〉
LR4

〈P, d〉
α

−→ 〈P ′, d′〉

〈P +Q, d〉
α

−→ 〈P ′, d′〉

Table 2: Labeled semantics for CCP (the symmetric rules for LR3 and LR4 are omitted).

T = tell(true)

T ′ = tell(y = 1)

P = ask (x < 7) → T

S = ask (z < 7) → P

Q = ask (x < 5) → T

Q′ = ask (x < 5) → T ′

R = ask (z < 5) → (P +Q)

R′ = ask (z < 5) → (P +Q′)

〈R+ S, true〉

〈S, true〉

〈R′ + S, true〉 〈P +Q′, z < 5〉

〈P, z < 7〉

〈P +Q, z < 5〉

〈P, z < 5〉

〈T ′, z < 5 ⊔ x < 5〉

〈T, z < 7 ⊔ x < 7〉

〈T, z < 5 ⊔ x < 5〉

〈T, z < 5 ⊔ x < 7〉

〈stop, z < 5 ⊔ x < 5 ⊔ y = 1〉

〈stop, z < 7 ⊔ x < 7〉

〈stop, z < 5 ⊔ x < 5〉

〈stop, z < 5 ⊔ x < 7〉
x < 7

z < 5

z < 7

z < 7

z < 5

z < 7

x < 5

x < 7

x < 5

x < 7

x < 7

true

true

true

true

Figure 2: LTS−→({〈R′ + S, true〉, 〈S, true〉, 〈R+ S, true〉, 〈P, z < 5〉}).

Example 5. In Example 3 we saw that 〈P + Q, true〉∼̇sb〈P, true〉. However,

〈P +Q, true〉
x<5
−→ 〈T, x < 5〉, while 〈P, true〉 6

x<5
−→.

Example 6. In Example 4, we showed that γ1 ≈̇sb γ2. However, γ2
c

−→, while

γ1 6
c

−→

The examples above show that the ordinary notion of bisimilarity do not coin-

cide with the intended semantics (∼̇sb and ≈̇sb). As a consequence, the standard

partition refinement algorithm (Section 2.1) cannot be used for checking ∼̇sb and

≈̇sb. However, one can consider a variation of the bisimulation game, namely irre-

dundant bisimilarity [15], which coincide with ∼̇sb and, in the weak case [7], with

≈̇sb. This fact allowed us in [15] to define a variation of the partition refinement

algorithm which we show in the next section.

First, we recall some results from [15] and [7], which are fundamental for the

development of the paper.

12

R-Tau
γ =⇒ γ

R-Label
γ

α
−→ γ′

γ
α

=⇒ γ′
R-Add

γ
α

=⇒ γ′
β

=⇒ γ′′

γ
α⊔β
=⇒ γ′′

Table 3: Weak semantics for CCP

Lemma 1. ([8, 9], [7]) (Soundness) If 〈P, c〉
α

−→ 〈P ′, c′〉 then 〈P, c ⊔ α〉 −→
〈P ′, c′〉. (Completeness) If 〈P, c ⊔ a〉 −→ 〈P ′, c′〉 then there exists α and b s.t.

〈P, c〉
α

−→ 〈P ′, c′′〉 where α ⊔ b = a and c′′ ⊔ b = c′.

The weak labeled transition system (Conf ,Con0,=⇒) is defined by the rules

in Table 3. This LTS is sound and complete, as −→, and it can be used to decide

≈̇sb as shown in [7].

Lemma 2. ([7]) (Soundness) If 〈P, c〉
α

=⇒ 〈P ′, c′〉 then 〈P, c ⊔ α〉 =⇒ 〈P ′, c′〉.
(Completeness) If 〈P, c ⊔ a〉 =⇒ 〈P ′, c′〉 then there exists α and b s.t. 〈P, c〉

α
=⇒

〈P ′, c′′〉 where α ⊔ b = a and c′′ ⊔ b = c′.

Note that we close −→, not only w.r.t true transitions (as similarly done in

CCS, where τ intuitively corresponds to true), but w.r.t. all the transitions. This

is needed to check ≈̇sb, because otherwise the above lemma would not hold.

Finally, the following lemma relates the labeled and weak semantics, i.e. −→
and =⇒. It states that a single transition in =⇒ corresponds to a sequence of

reductions (−→∗).

Lemma 3. ([7]) γ −→∗ γ′ iff γ =⇒ γ′.

3. Partition refinement for CCP

In this section we recall the partition refinement algorithm for CCP and how it

can be used to decide observational equivalence.

3.1. Strong equivalence

In [15], we adapted the standard partition refinement procedure to check strong

bisimilarity for CCP (∼̇sb) by relying on [27] (which, in turn, was inspired by [28]

presenting a similar procedure for the open π-calculus). As we did for the standard

partition refinement, we also start with Config−→(IS), that is the set of all states

that are reachable from the set of initial state IS using −→. However, in the case

of CCP some other states must be added to IS ⋆

in order to verify ∼̇sb as we will

explain later on.

13

Now, since configurations satisfying different barbs are surely different, it can

be safely started with a partition that equates all and only those states satisfying

the same barbs. Hence, as initial partition of IS ⋆

, we take P0 = {B1} . . . {Bm},

where γ and γ′ are in Bi iff they satisfy the same barbs.

When splitting the above-mentioned partitions, unlike for the standard par-

tition refinement, we need to consider a particular kind of transitions, so-called

irredundant transitions. These are those transitions that are not dominated by

others, in a given partition, in the sense defined below.

Definition 5. (Transition Domination) Let t and t′ be two transitions of the form

t = (γ, α, 〈P ′, c′〉) and t′ = (γ, β, 〈P ′, c′′〉). We say that t dominates t′, written

t ≻ t′, iff α ⊏ β and c′′ = c′ ⊔ β.

The intuition is that the transition t dominates t′ iff t requires less information

from the environment than t′ does (hence α ⊏ β), and they end up in configura-

tions which differ only by the additional information in β not present in α (hence

c′′ = c′ ⊔ β). To better explain this notion let us give an example.

Example 7. Consider the following process:

P = (ask (x < 15) → tell(y > 42)) + (ask (x < 10) → tell(y > 42))

and let γ = 〈P, true〉. Now let t1 and t2 be transitions defined as:

t1 = γ
x<15
−→ 〈tell(y > 42), x < 15〉 and t2 = γ

x<10
−→ 〈tell(y > 42), x < 10〉

One can check that t1 ≻ t2 since (x < 15) ⊏ (x < 10) and also (x < 10) =
((x < 15) ⊔ (x < 10)).

Notice that in the definition above t and t′ end up in configurations whose

processes are syntactically identical (i.e., P ′). The following notion parameterizes

the notion of dominance w.r.t. a relation on configurations R (rather than fixing it

to the identity on configurations).

Definition 6. (Transition Domination w.r.t. R and Irredundant Transition w.r.t.

R) We say that the transition t dominates a transition t′ w.r.t a relation on config-

urations R, written t ≻R t′, iff there exists t′′ such that t ≻ t′′, lab(t′′) = lab(t′)
and tar(t′′)R tar(t′). A transition is said to be redundant w.r.t. to R when it is

dominated by another w.r.t. R, otherwise it is said to be irredundant w.r.t. to R.

To understand this definition better consider the following example.

14

(ISIS

)

γ ∈ IS

γ ∈ IS ⋆

(RSIS

)

γ ∈ IS ⋆

γ
α
 γ′

γ′ ∈ IS ⋆

(RDIS

) γ ∈ IS ⋆

t1 = γ

α
 〈P1, c1〉 t2 = γ

β
 〈P2, c2〉 α ⊏ β c2 = c1 ⊔ β

〈P1, c2〉 ∈ IS ⋆

Table 4: Rules for generating the states used in the partition refinement for CCP

Example 8. Consider the following processes:

Q1 = (ask (b) → (ask (c) → tell(d))) and Q2 = (ask (a) → stop)

Now let P = Q1 + Q2 where d ⊑ c and a ⊏ b. Then take γ = 〈P, true〉 and

consider the transitions t and t′ as:

t = γ
a

−→ 〈stop, a〉 and t′ = γ
b

−→ 〈ask (c) → tell(d), b〉

Finally, let R = ≈̇sb and take t′′ = (γ, b, 〈stop, b〉). One can check that t ≻R

t′ as in Definition 6. Firstly, t ≻ t′′ follows from a ⊏ b. Secondly, we know

tar(t′′)R tar(t′) from Example 4, i.e. 〈stop, b〉≈̇sb〈ask (c) → tell(d), b〉 since

〈stop, true〉≈̇sb〈ask (c) → tell(d), true〉.

We now explain briefly how to compute IS ⋆

using the Rules in Table 4. Rules

(ISIS

) and (RSIS

) say that all the states generated from the labeled semantics

(Table 2) from the set of initial states should be included, i.e., Config

(IS) ⊆

IS ⋆

.

The rule (RDIS

) adds the additional states needed to check redundancy. Con-

sider the transitions t1 = γ
α
 〈P1, c1〉 and t2 = γ

β
 〈P2, c2〉 with α ⊏ β

and c2 = c1 ⊔ β in Rule (RDIS

). Suppose that at some iteration of the parti-

tion refinement algorithm the current partition is P and that 〈P2, c2〉P〈P1, c2〉.
Then, according to Definition 6 the transitions t1 would dominate t2 w.r.t P . This

makes t2 redundant w.r.t P . Since 〈P1, c2〉 may allow us to witness a potential

redundancy of t2, we include it in IS ⋆

(and thus, from the definition of the initial

partition P0, also in the block of P0 where 〈P2, c2〉 is). See [15] for further details

about the computation of IS ⋆

.

Finally, we shall describe how the refinement is done in the case CCP. In-

stead of using the function F (P) of Algorithm 1, the partitions are refined by

employing the function IR (P) defined as follows.

15

〈(ask (a) → stop) + (ask (b) → stop), true〉

〈stop, a〉 〈stop, b〉

〈(ask (a) → stop), true〉

〈stop, a〉

a b a

γ1

γa1 γb1

γ2

γa2

γ1, γ
a
1 , γ

b
1, γ2, γ

a
2

γ1, γ2 γa1 , γ
b
1, γ

a
2

P IR−→(P)

Figure 3: An example of the use of IR−→(P) as in Definition 7. Let a ⊏ b, notice that γ1 and

γ2 end up in the same block after the refinement since γ1
b

−→ γb
1

is a redundant transition w.r.t P
hence it is not required that γ2 matches it.

Definition 7. (Refinement function for CCP) Given a partition P we define IR (P)
as follows: γ1 IR (P) γ2 iff

if γ1
α
 γ′

1 is irredundant w.r.t. P then there exists γ′
2 s.t. γ2

α
 γ′

2 and γ′
1 Pγ′

2

See Figure 3 for an example of the use of IR (−).

Algorithm 2 pr-ccp(IS ,)

Initialization

1. Compute IS ⋆

with the rules (ISIS

), (RSIS

), (RDIS

) defined in Table 4,

2. P0 = {B1} . . . {Bm} is a partition of IS ⋆

where γ and γ′ are in Bi iff they

satisfy the same barbs (↓c),

Iteration Pn+1 := IR (P
n) as in Definition 7

Termination If Pn = Pn+1 then return Pn.

Algorithm 2 can be used to decide strong saturated bisimilarity ∼̇sb with ex-

ponential time. (Recall that Config−→(IS) represents the set of states that are

reachable from the initial states IS using −→.) More precisely:

Theorem 1. ([15]) Let γ and γ′ be two CCP configurations. Let IS = {γ, γ′}
and let P be the output of pr-ccp(IS ,−→) in Algorithm 2. Then

• γ P γ′ iff γ ∼̇sb γ
′.

16

• pr-ccp(IS ,−→) may take exponential time in the size of Config−→(IS).

The exponential time is due to construction of the set IS ⋆
−→ (Algorithm 2, step

1) whose size is exponential in |Config−→(IS)|.

3.2. Weak equivalence

We can also use the above-mentioned algorithm to verify the weak version

of saturated barbed bisimilarity (≈̇sb). Recall that, as shown in [8, 9], in CCP\+

weak bisimilarity (≈̇sb) coincides with the standard notion of CCP program (ob-

servational) equivalence.

Following [16] the reduction of the problem of deciding ≈̇sb to the problem

of deciding ∼̇sb is obtained by adding some additional transitions, so called weak

transitions, to the LTS. Given two configurations γ and γ′, the first step is to build

G = LTS−→(IS) where IS = {γ, γ′}. Using G we then proceed to compute

G′ = LTS=⇒(IS), and finally we run Algorithm 2 adapted to G′. The adaptation

consists in using weak barbs (⇓c) instead of barbs (↓c) for the initial partition P0

and using =⇒ as a parameter of the algorithm.

Algorithm 3 weak-pr-ccp(IS ,)

Initialization

1. Compute IS ⋆

with the rules (ISIS

), (RSIS

), (RDIS

) defined in Table 4,

2. P0 = {B1} . . . {Bm} is a partition of IS ⋆

where γ and γ′ are in Bi iff they

satisfy the same weak barbs (⇓c),

Iteration Pn+1 := IR (P
n) as in Definition 7

Termination If Pn = Pn+1 then return Pn.

Using Algorithm 3 we can decide ≈̇sb also with exponential time.

Theorem 2. ([7]) Let γ and γ′ be two CCP configurations. Let IS = {γ, γ′} and

let P be the output of weak-pr-ccp(IS ,=⇒) defined in Algorithm 3. Then

• γ P γ′ iff γ ≈̇sb γ
′.

• weak-pr-ccp(IS ,=⇒) may take exponential time in |Config−→(IS)|.

As for the strong case, the exponential time is due to construction of the set

IS ⋆
=⇒ by weak-pr-ccp(IS ,=⇒), whose size is exponential in |Config−→(IS)|.

In the next section we shall address the issue of avoiding this exponential construc-

tion in the context of confluent CCP.

17

4. Using Partition refinement for checking observational equivalence in CCP\+

In the previous section, we presented a procedure to verify ≈̇sb for CCP and

we saw how this method takes exponential time (in the size of the LTS) to check

whether two configurations are weakly bisimilar. In this section, we will explore

what happens with such procedure when we restrict ourselves to CCP\+. We

shall see that pr-ccp(IS ,−→) may also be exponential time for inputs from the

CCP\+ fragment.

Let us consider the following CCP\+ construction.

Example 9. Let n > 0. We define P n = P n
0 with P n

i , for i ∈ {0, . . . , n − 1},

given by:

P n
i = (ask (ai) → (ask (bi) → P n

i+1)) ‖ (ask (bi) → stop)

and P n
n = tell(bn). Furthermore, we assume that for all i ∈ {0, . . . , n − 1} we

have ai ⊑ bi and for all j ∈ {0, . . . , n− 1} if i 6= j then ai 6⊑ aj and bi 6⊑ bj . The

LTS for 〈P n, true〉 is illustrated in Figure 4.

One can verify that by taking IS = {〈P n, true〉} as in the example above, then

the size of IS ⋆
−→ in Algorithm 2 grows exponentially with n, essentially because

of the rule (RDIS

−→).

Proposition 1. Let γ = 〈P n, true〉 as in Example 9 and take IS = {γ}. Let P be

the output of pr-ccp(IS ,−→) using Algorithm 2, then pr-ccp(IS ,−→) takes

at least exponential time in n.

The main problem is that the procedure does not distinguish between summation-

free processes and the normal CCP processes. Therefore, it is unable to exploit

the underlying properties of CCP\+ and the algorithm will perform (in the worst-

case) inherently the same as for the full CCP, as evidenced in the example above.

4.1. Properties of CCP\+

In this section we will state some features that (unlike the full CCP) this frag-

ment possess. The first one we want to introduce is confluence. Intuitively, in

CCP\+, if from a given configuration we have two possible reductions (−→),

then we are guaranteed that they will coincide at some point of the computation.

Recall that Conf
CCP\+ is the set of all CCP\+ configurations, i.e. configurations

whose process is summation-free.

18

〈Pn, true〉

〈LPn
0 , a0〉 〈RPn

0 , b0〉

〈LLPn
0 , b0〉 〈LRPn

0 , b0〉

a0 b0

b0 b0

〈Pn
1 , b0〉

Pn = (ask (a0) → (ask (b0) → Pn
1)) ‖ (ask (b0) → stop)

LPn
0 = (ask (b0) → Pn

1) ‖ (ask (b0) → stop)

RPn
0 = (ask (ai) → (ask (bi) → Pn

i+1)) ‖ stop)

LLPn
0 = Pn

1 ‖ (ask (b0) → stop)

LRPn
0 = (ask (b0) → Pn

1) ‖ stop

New nodes after Rule (RDIS

−→)

〈LPn
0 , b0〉

〈LPn
1 , b0 ⊔ b1〉

〈LPn
1 , b0 ⊔ b1〉

Figure 4: LTS−→(IS) where IS = {〈Pn, true〉} as in Example 9. The configurations in the right

part are generated by (RDIS

−→
) applied to the source nodes of the dotted arrows. Some transitions

and stop processes were omitted for clarity.

Proposition 2. ([1]) Let γ ∈ Conf
CCP\+. If γ −→∗ γ1 and γ −→∗ γ2 then there

exists γ′ such that γ1 −→
∗ γ′ and γ2 −→

∗ γ′.

Before discussing the second property, we need to introduce some notation.

We shall call derivatives (of γ) the successors reached via (zero or more) reduc-

tions (−→∗) starting from a given configuration γ.

Definition 8. (Derivatives) The derivatives of a configuration γ, written Deriv(γ),
are defined as Deriv(γ) = {γ′ | γ −→∗ γ′}.

Using this notation, we can now state another property of CCP\+. A CCP\+

configuration is weakly bisimilar to all its derivatives.

Lemma 4. Let γ ∈ Conf
CCP\+. For all γ′ ∈ Deriv(γ) we have γ ≈̇sb γ

′.

Proof. Let R = {(γ1, γ2) | ∃γ3 s.t. γ1 −→
∗ γ3 and γ2 −→

∗ γ3}, we prove that R
is a weak saturated barbed bisimulation. Let (γ1, γ2) be any pair of configurations

in R.

19

(i) If γ1 ⇓e then by definition γ1 −→∗ γ′
1 ↓e. By confluence (Proposition 2)

γ′
1 −→∗ γ3 and thus γ3 ↓e (since constraints can only be added). Since γ2 −→∗

γ3 ↓e we conclude that γ2 ⇓e.

(ii) If γ1 −→
∗ γ′

1, then by confluence γ′
1 −→

∗ γ3 and therefore (γ′
1, γ2) ∈ R.

(iii) Finally, let γ1 = 〈P1, c1〉 and γ2 = 〈P2, c2〉. If 〈P1, c1〉 −→∗ 〈P3, c3〉 and

〈P2, c2〉 −→
∗ 〈P3, c3〉, then 〈P1, c1 ⊔ e〉 −→∗ 〈P3, c3 ⊔ e〉 and 〈P2, c2 ⊔ e〉 −→∗

〈P3, c3 ⊔ e〉 and thus (〈P1, c1 ⊔ e〉, 〈P2, c2 ⊔ e〉) ∈ R.

The proof above relies on the intrinsic confluent nature of CCP\+ (Proposition

2) and this lemma will be central for the results we will present next. In the

next section we shall take advantage of these properties to check ≈̇sb for CCP\+

configurations.

4.2. Optimizations to partition refinement for CCP\+

We presented how the partition refinement for CCP performs for CCP\+ as

well as some properties of the configurations of this fragment. In this section, us-

ing such features, we shall show that the complexity of weak-pr-ccp(IS ,=⇒)
can be improved, thus we can check ≈̇sb in a more efficient manner.

Due to the nature of CCP\+, determining which are the redundant transitions

w.r.t. ≈̇sb (Definition 6) becomes an easier task. As we explained in Section 3.1,

the purpose of rule (RDIS

) from Table 4 is to add some configurations to IS ⋆

that will be used to check redundancy at each iteration of Algorithm 2. In CCP\+

these additional configurations are not necessary. But before we arrive to this let

us introduce some definitions first.

Definition 9. We say that γ goes with α to γ′ with a maximal weak transition,

written γ
α

=⇒max γ
′, iff γ

α
=⇒ γ′ 6−→.

The definition above reflects the fact that when γ
α

=⇒max γ′ then γ′ has no

more information to deduce without the aid of the environment, namely no further

reduction (−→) is possible. As =⇒, the maximal weak transition relation =⇒max

is sound and complete.

Lemma 5. (Soundness) If 〈P, c〉
α

=⇒max 〈P ′, c′〉 then 〈P, c ⊔ α〉 =⇒max 〈P ′, c′〉.
(Completeness) If 〈P, c ⊔ a〉 =⇒max 〈P ′, c′〉 then there exists α and b such that

〈P, c〉
α

=⇒max 〈P
′, c′′〉 where α ⊔ b = a and c′′ ⊔ b = c′.

Proof. Follows from the correctness of =⇒ (Lemma 2) and from the fact that

LTS−→({〈P, c〉}) is finite.

20

As one would expect, =⇒max can also be used to compute ≈̇sb and the com-

plexity of the procedure is equivalent to the case of =⇒ (Theorem 2).

Theorem 3. ([7]) Let γ and γ′ be two CCP configurations. Let IS = {γ, γ′}, let

P be the output weak-pr-ccp(IS ,=⇒max) using Algorithm 3. Then

• γ P γ′ iff γ ≈̇sb γ
′.

• weak-pr-ccp(IS ,=⇒max) may take exponential time in |Config−→(IS)|.

Proof. Follows from the correctness of =⇒max (Lemma 5); Corollary 1 and The-

orem 3 from [7] and Theorem 2.

Nevertheless, in CCP\+, the maximal weak transitions =⇒max satisfy a par-

ticular property that allow us to erase the redundant transitions w.r.t. ≈̇sb before

computing ≈̇sb itself.

Proposition 3. Let γ = 〈P, c〉 ∈ Conf
CCP\+. Let t1 = γ

α
=⇒max 〈P1, c1〉 and

t2 = γ
β

=⇒max 〈P2, c2〉. We have that α ⊏ β and 〈P1, c1 ⊔ β〉 −→∗ 〈P ′, c2〉 6−→
iff t1 ≻≈̇sb

t2.

Proof. (⇒) By soundness on t1 we have 〈P, c ⊔ α〉 =⇒max 〈P1, c1〉 then by

definition 〈P, c⊔α〉 =⇒ 〈P1, c1〉 now by monotonicity 〈P, c⊔β〉 =⇒ 〈P1, c1⊔β〉
and then 〈P, c⊔ β〉 −→∗ 〈P1, c1 ⊔ β〉 then by Lemma 4 〈P, c⊔ β〉≈̇sb〈P1, c1 ⊔ β〉.
Using a similar reasoning on t2 we can conclude that 〈P, c⊔β〉≈̇sb〈P2, c2〉 and by

transitivity 〈P1, c1 ⊔ β〉≈̇sb〈P2, c2〉. Finally take t′ = (γ, β, 〈P1, c1 ⊔ β〉), hence

we can conclude that t1 ≻≈̇sb
t2 since t1 ≻ t′ and 〈P1, c1 ⊔ β〉≈̇sb〈P2, c2〉.

(⇐) Assume that t1 ≻≈̇sb
t2 then there exists t′ = (γ, β, 〈P1, c

′〉) such that

t1 ≻ t′ and 〈P1, c
′〉≈̇sb〈P2, c2〉. By t1 ≻ t′ we know that α ⊏ β and c′ = c1 ⊔ β.

Now since 〈P2, c2〉 6−→ by definition of =⇒max, therefore by condition (i) of

≈̇sb we have c′ ⊑ c2. Moreover, 〈P1, c
′〉 −→∗ 〈P ′, c3〉 where c2 ⊑ c3. By

contradiction let c2 6= c3 then c2 ⊏ c3, thus there is e s.t. 〈P1, c
′〉 ⇓e but since

〈P2, c2〉 6−→ then 〈P2, c2〉 6⇓e and so 〈P1, c
′〉 6≈̇sb〈P2, c2〉, an absurd. Thus c3 = c2

hence 〈P1, c
′〉 −→∗ 〈P ′, c2〉 6−→ .

Using this property we can define a new procedure for deciding ≈̇sb that does

not use Rule (RDIS

) since redundancy can be checked and erased using Proposi-

tion 3 (Algorithm 4, Step 2).

In other words, we first need to build the LTS of reachable states using =⇒max.

Then for each pair of transitions with the same source we can check whether

21

Proposition 3 holds, if it is the case then the redundant transition is removed.

Finally we apply the standard partition refinement on the LTS resulting from the

previous step.

Algorithm 4 weak-pr-dccp(IS)

Initialization

1. Compute G = LTS=⇒max
(IS) using the rules (ISIS

=⇒max
) and (RSIS

=⇒max
),

2. G′ = remRed(G) where the graph remRed(G) results from removing from

G the redundant transitions w.r.t. ≈̇sb,

3. P0 = {B1} . . . {Bm} is a partition of V(G′) where γ and γ′ are in Bi iff they

satisfy the same weak barbs (⇓e),

Iteration Pn+1 := F=⇒max
(Pn) as defined in Equation 1

Termination If Pn = Pn+1 then return Pn.

The key idea is that in order to compute ≈̇sb, with the redundancy removed, it

suffices to refine the partitions using F=⇒max
(P) (defined by Equation 1) instead

of IR=⇒max
(P). Algorithm 4 can be used to decide ≈̇sb for configurations in

Conf
CCP\+ with polynomial time.

Theorem 4. Let γ and γ′ be two CCP\+ configurations. Let IS = {γ, γ′}, let P
be the output of weak-pr-dccp(IS) in Algorithm 4 and let N = |Config−→(IS)|.
Then

• γ P γ′ iff γ ≈̇sb γ
′.

• weak-pr-dccp(IS) takes O(N3) time and uses O(N2) space.

Proof. The first item follows from the Theorem 2 and Proposition 3. As for the

second item:

(Step 1) G = LTS=⇒max
(IS) takes O(N2) time and space since =⇒max will add,

at most, a transition from each element in V(G) to every other configuration in

V(G) and |V(G)| = |Config−→(IS)| = N .

(Step 2) Each node in V(G) has at most N − 1 outgoing transitions, then G′ =
remRed(G) takes O((N − 1) ∗ (N − 1)) = O(N2) per node, thus this step takes

O(N2 ∗N) = O(N3) time.

(Step 3) P0 can be created in O(N2) by definition of =⇒max.

22

(Iteration) Using the procedure from Tarjan et al. [29], this step takes O(|E| log |V |)
time and uses O(|E|) space. Therefore, since |V(G)| = N and |E(G)| = O(N2),
hence we have O(N2 logN) and O(N2) space.

We can conclude that weak-pr-dccp(IS) takes O(N3) time and uses O(N2)
space.

Thanks to Proposition 3, by removing redundant transitions, we can solve the

problem of checking bisimilarity for CCP\+ with the standard solutions for check-

ing bisimilarity. In Algorithm 4, we have used the “classical” partition refinement,

but different, more effective solutions, are possible. For instance, executing the

algorithm in [13] (after having removed all the redundant transitions) would re-

quire at most O(|E| + |V |) steps. Note however that, due to the closure needed

for weak transitions (Table 3), |E| is usually quadratic w.r.t. the number of states

|V |. In the following section, we introduce a novel procedure which avoids such

expensive closure.

5. Using the compact input-output sets for verifying observational equiva-

lence in CCP\+

In the previous section we improved the CCP exponential-time decision pro-

cedure for ≈̇sb to obtain a polynomial-time procedure for the special case of the

summation-free fragment CCP\+. (Recall that in CCP\+, the relation ≈̇sb coin-

cides with the standard notion of observational equivalence.)

In this section, we will present an alternative approach for verifying observa-

tional equivalence for CCP\+ that improves on the time and space complexity of

Algorithm 4.

Roughly speaking our approach consists in reducing the problem of whether

two given CCP\+ configurations γ, γ′ are in ≈̇sb to the problem of whether γ and

γ′ have the same minimal finite representation of the set of weak barbs they satisfy

in every possible context.

5.1. Weak bisimilarity and barb equivalence

First we will show that, in CCP\+, we can give characterization of ≈̇sb in

terms of the simpler notion of weak-barb equivalence defined below. Intuitively,

two configurations are saturated weakly bisimilar if and only if for every possible

augmentation of their stores, the resulting configurations satisfy the same weak

barbs. More precisely,

23

Definition 10. (Barb equivalence) 〈P, c〉 and 〈Q, d〉 are (weak) barbed equiva-

lent, written 〈P, c〉 ∼wb 〈Q, d〉, iff

∀e, α ∈ Con0. 〈P, c ⊔ e〉 ⇓α⇔ 〈Q, d ⊔ e〉 ⇓α

Let us give an example.

Example 10. Let P = tell(true) and Q = ask (c) → tell(d). We can show

that 〈P, true〉 ∼wb 〈Q, true〉 when d ⊑ c (as in Example 4). One can check that

for all c′ we have 〈P, c′〉 ⇓c′ and 〈Q, c′〉 ⇓c′ . Notice that whenever c is entailed

then tell(d) does not add any more information since d ⊑ c.

The full characterization of ≈̇sb in terms of weak-barbed equivalence is given

next. Notice that the following theorem uses Lemma 4 which itself depends on

the confluent nature of CCP\+.

Theorem 5. Let 〈P, c〉 and 〈Q, d〉 be CCP\+ configurations. 〈P, c〉≈̇sb〈Q, d〉 iff

〈P, c〉 ∼wb 〈Q, d〉

Proof. (⇒) Assume that 〈P, c〉≈̇sb〈Q, d〉 then by condition (i) of ≈̇sb (Definition

3) we have ∀α ∈ Con0.〈P, c〉 ⇓α⇔ 〈Q, d〉 ⇓α, hence in combination with condi-

tion (iii) we can conclude 〈P, c ⊔ e〉 ⇓α⇔ 〈Q, d ⊔ e〉 ⇓α.

(⇐) Let R = {(〈P, c〉, 〈Q, d〉) | ∀e, α ∈ Con0. 〈P, c⊔e〉 ⇓α⇔ 〈Q, d⊔e〉 ⇓α},

we prove that R is a weak saturated barbed bisimulation:

(i) Take e = true then ∀α ∈ Con0.〈P, c〉 ⇓α⇔ 〈Q, d〉 ⇓α.

(ii) Assume that 〈P, c〉 −→∗ 〈P ′, c′〉, by Lemma 4 〈P, c〉≈̇sb〈P
′, c′〉 hence by (⇒)

we can conclude that 〈P ′, c′〉R〈Q, d〉.
(iii) Assume 〈P, c〉R〈Q, d〉 then for all e′ we have 〈P, c ⊔ e′〉R〈Q, d ⊔ e′〉 just by

taking e = e′.

We shall show a compact representation of the set of weak barbs of a config-

uration under any possible context. First we introduce some convenient notation

for this purpose. The set J〈P, c〉K will contain pairs of the form (α, e).

Definition 11. (Input-Output set) The input-output set of a given configuration

〈P, c〉 is defined as follows:

J〈P, c〉K
def
= {(α, e) | 〈P, c ⊔ α〉 ⇓e}

Let us give an example.

24

Example 11. Let γ = 〈ask a → tell(b), true〉 where b 6⊑ a.

JγK = {(α, α)|α ⊏ a or a 6⊑ α} ∪ {(β, β ⊔ b)|a ⊑ β}

Intuitively, each pair (α, e) ∈ J〈P, c〉K denotes a stimulus-response, or input-

output, interaction of γ = 〈P, c〉: If the environment adds α to the store of γ,

the resulting configuration 〈P, c ⊔ α〉 may evolve, without any further interaction

with the environment, into a configuration whose store entails e. In other words

〈P, c ⊔ α〉 ⇓e. We can think of e as piece of information that 〈P, c ⊔ α〉 may

produce.

The following corollary is an immediate consequence of the definitions.

Corollary 1. J〈P, c〉K = J〈Q, d〉K iff 〈P, c〉 ∼wb 〈Q, d〉

Proof. (⇒) Assume (β, a) ∈ J〈P, c〉K then 〈P, c ⊔ β〉 ⇓a. Hence, we can take

e = β and by hypothesis 〈Q, d ⊔ β〉 ⇓a therefore (β, a) ∈ J〈Q, d〉K.

(⇐) Assume that 〈P, c ⊔ β〉 ⇓a for some β and a, then (β, a) ∈ J〈P, c〉K and by

hypothesis (β, a) ∈ J〈Q, d〉K therefore by definition 〈Q, d ⊔ β〉 ⇓a.

We now introduce the notion of relevant input-output pair.

Definition 12. (Relevant Pair) Let (α, e) and (β, e′) be elements from Con0 ×
Con0. We say that (α, e) is more relevant than (β, e′), written (α, e) � (β, e′), iff

α ⊑ β and e′ ⊑ (e ⊔ β). Similarly, given p = (β, e′) s.t. p ∈ S , we say that the

pair p is irrelevant in S if there is a pair (α, e) ∈ S more relevant than p, else p is

said to be relevant in S .

Let us illustrate this with an example.

Example 12. Let S = {(true, true), (α, α), (α ⊔ β, α ⊔ β ⊔ c)} where α, β, c ∈
Con0 are not related to each other. Notice that (true, true) � (α, α) however

(true, true) 6� (α⊔β, α⊔β⊔c). This means that (true, true) and (α⊔β, α⊔β⊔c)
are relevant in S and (α, α) is irrelevant in S .

Recall the stimulus-response intuition given above. In other words, the pair

(β, e′) is irrelevant in a given input-output set if there exists another pair (α, e)
in the set that represents the need for less stimulus from the environment, hence

the condition α ⊑ β, to produce at least as much information, with the possible

exception of information that β may entail but α does not. Hence e′ ⊑ e ⊔ β.

We now list two important properties of � that will be useful later on. The set

J〈P, c〉K is closed w.r.t. �.

25

Proposition 4. Let (α, e) ∈ J〈P, c〉K. If (α, e) � (β, e′) then (β, e′) ∈ J〈P, c〉K.

Proof. By definition 〈P, c⊔α〉 ⇓e then by monotonicity 〈P, c⊔β〉 ⇓e⊔β so 〈P, c⊔
β〉 ⇓e′ since e′ ⊑ (e ⊔ β), therefore (β, e′) ∈ J〈P, c〉K.

Moreover, the relation � is well-founded. More precisely,

Proposition 5. There is no infinite strictly descending chain p1 ≻ p2 ≻

Proof. Follows from the well-foundedness of ⊑ (Remark 1).

5.2. A canonical representation of CCP\+ configurations

Clearly J〈P, c〉K may be infinite due potential existence of infinitely many arbi-

trary stimuli (inputs). By using the labeled transition semantics (Table 2) we shall

show that we do not need consider arbitrary inputs but only the minimal ones.

Recall that in γ
α

−→ γ′ the label α represents the minimal information needed to

evolve from γ to γ′.

Definition 13. The label-based input-output set of a configuration 〈P, c〉, denoted

as M(〈P, c〉), is inductively defined as follows:

{(true, c)} ∪
⋃

〈P,c〉
α

−→〈P ′,c′〉

({(α, c′)} ∪ (α⊗M(〈P ′, c′〉)))

where ⊗ : Con0 × 2Con0×Con0 −→ 2Con0×Con0 is defined as

α⊗ S
def
= {(α ⊔ β, e) | (β, e) ∈ S)}

Let us illustrate this definition with an example.

Example 13. Let γ = 〈ask (α) → (ask (β) → tell(c)), true〉 and γ′ =
〈ask (α ⊔ β) → tell(c), true〉 where α, β, c ∈ Con0 are not related to each

other. Let us assume that α and β are the minimal elements that allow γ and γ′ to

proceed. Their corresponding label-based input-output sets are as follows:

M(γ) = {(true, true), (α, α), (α ⊔ β, α ⊔ β), (α ⊔ β, α ⊔ β ⊔ c)}

M(γ′) = {(true, true), (α ⊔ β, α ⊔ β), (α ⊔ β, α ⊔ β ⊔ c)}

Nevertheless, labeled-based input-output sets do not give us a fully-abstract

representation of the input-output sets because of the existence of irrelevant pairs.

By excluding these pairs we obtain a compact and fully-abstract representation of

input-output sets.

26

Definition 14. (Compact input-output set) The compact input-output set of a con-

figuration 〈P, c〉 is defined as follows:

MC(〈P, c〉)
def
= {(α, e) | (α, e) ∈ M(〈P, c〉) and (α, e) is relevant in M(〈P, c〉)}

Let us give an example.

Example 14. Let γ and γ′ as in Example 13. Using the same reasoning as in

Example 12 one can check that:

MC(γ) = MC(γ′) = {(true, true), (α ⊔ β, α ⊔ β ⊔ c)}

We shall now show the full-abstraction of the compact input-output sets. We

need the following lemmata. First, compact sets are closed under weak transitions

(=⇒). More precisely:

Proposition 6. If 〈P, c〉
α

=⇒ 〈P ′, c′〉 then (α, c′) ∈ M(〈P, c〉).

Proof. By induction on the depth of the inference of 〈P, c〉
α

=⇒ 〈P ′, c′〉. Consider

the rules R-Tau, R-Label and R-Add from Table 5.

• Using Rule R-Tau we have 〈P, c〉 =⇒ 〈P, c〉 and (true, c) ∈ M(〈P, c〉) by

definition.

• Using Rule R-Label we have 〈P, c〉
α

−→ 〈P ′, c′〉 and (α, c′) ∈ M(〈P, c〉)
by definition.

• Using Rule R-Add we have 〈P, c〉
α′′

=⇒ 〈P ′′, c′′〉
α′

=⇒ 〈P ′, c′〉 where α′ ⊔
α′′ = α. Then by induction hypothesis (α′′, c′′) ∈ M(〈P, c〉) and (α′, c′) ∈
M(〈P ′′, c′′〉), hence by definition of M(〈P, c〉) we have (α′ ⊔ α′′, c′) ∈
M(〈P, c〉) so (α, c′) ∈ M(〈P, c〉).

The following proposition states that whenever a pair (α, e) is in M(〈P, c〉),
it means that e can be reached from 〈P, c ⊔ α〉 without aid of the environment.

Proposition 7. If (α, e) ∈ M(〈P, c〉) then 〈P, c ⊔ α〉 −→∗ 〈P ′, e〉

Proof. By definition of M(〈P, c〉), since (α, e) ∈ M(〈P, c〉) then there exist

α1, . . . , αn such that α =
⊔n

i=1 αn and 〈P, c〉
α1−→ . . .

αn−→ 〈P ′, e〉. Hence by

soundness on each transition 〈P, c ⊔
⊔n

i=1 αn〉 = 〈P, c ⊔ α〉 −→∗ 〈P ′, e〉.

27

We can now prove our main result, given two configurations 〈P, c〉 and 〈Q, d〉,
they are observationally equivalent if and only if their compact input-output sets

are identical. We split the proof in the following two lemmata.

Lemma 6. If MC(〈P, c〉) = MC(〈Q, d〉) then J〈P, c〉K = J〈Q, d〉K

Proof. Let us assume that (α, β) ∈ J〈P, c〉K then by definition 〈P, c⊔α〉 ⇓β hence

there exists P ′ and β′ such that 〈P, c ⊔ α〉 −→∗ 〈P ′, β′〉 and β ⊑ β′. By Lemma

3 we have 〈P, c ⊔ α〉 =⇒ 〈P ′, β′〉, then by completeness of =⇒ (Lemma 2) there

exist α′, b s.t. 〈P, c〉
α′

=⇒ 〈P ′, c′〉 where α′ ⊔ b = α and c′ ⊔ b = β′ (1). Now

by Proposition 6 we know (α′, c′) ∈ M(〈P, c〉), then since � is well-founded

(Proposition 5) there is (α′′, c′′) that is relevant in M(〈P, c〉) (then it belongs

to MC(〈P, c〉)) such that (α′′, c′′) � (α′, c′), namely α′′ ⊑ α′ (or equivalently

∃x.(α′′ ⊔ x) = α′ (2)) and c′ ⊑ (c′′ ⊔ α′). Given that (α′′, c′′) ∈ MC(〈P, c〉) then

by hypothesis (α′′, c′′) ∈ MC(〈Q, d〉), this means also that (α′′, c′′) ∈ M(〈Q, d〉)
and by Proposition 7 we know that 〈Q, d ⊔ α′′〉 −→∗ 〈Q′, c′′〉. By monotonicity

we have the following transition 〈Q, d ⊔ α′′ ⊔ x ⊔ b〉 −→∗ 〈Q′, c′′ ⊔ x ⊔ b〉, now

notice that from (1) and (2) we have (d⊔α′′⊔x⊔ b) = (d⊔α′⊔ b) = (d⊔α) then

〈Q, d⊔α〉 −→∗ 〈Q′, c′′⊔x⊔ b〉. Finally, we have to prove that β ⊑ (c′′⊔x⊔ b) to

conclude that (α, β) ∈ J〈Q, d〉K, for that purpose, recall that β ⊑ β′ = (c′ ⊔ b) ⊑
(c′′ ⊔ α′ ⊔ b) and since (c′′ ⊔ α′′ ⊔ x⊔ b) = (c′′ ⊔ x⊔ b) then β ⊑ (c′′ ⊔ x⊔ b) and

so (α, β) ∈ J〈Q, d〉K.

Lemma 7. If J〈P, c〉K = J〈Q, d〉K then MC(〈P, c〉) = MC(〈Q, d〉)

Proof. Assume that (α, β) ∈ MC(〈P, c〉) our goal is to prove that (α, β) ∈
MC(〈Q, d〉). By definition (α, β) is relevant in M(〈P, c〉), moreover, by Propo-

sition 7 we have 〈P, c ⊔ α〉 −→∗ 〈P ′, β〉 then by definition (α, β) ∈ J〈P, c〉K
and by hypothesis (α, β) ∈ J〈Q, d〉K. This means that 〈Q, d ⊔ α〉 ⇓β then there

exists Q′, d′ s.t. 〈Q, d ⊔ α〉 −→∗ 〈Q′, d′〉 where β ⊑ d′. By Lemma 3 we have

〈Q, d ⊔ α〉 =⇒ 〈Q′, d′〉, now by completeness of =⇒ (Lemma 2) there exist α′, b

s.t. 〈Q, d〉
α′

=⇒ 〈Q′, d′′〉 where (α′ ⊔ b) = α and (d′′ ⊔ b) = d′. Now let us as-

sume by means of contradiction that α′ 6= α. By soundness of =⇒ (Lemma 2) we

have 〈Q, d ⊔ α′〉 =⇒ 〈Q′, d′′〉 then by Lemma 3 we get 〈Q, d ⊔ α′〉 −→∗ 〈Q′, d′′〉
hence (α′, d′′) ∈ J〈Q, d〉K. By hypothesis then (α′, d′′) ∈ J〈P, c〉K, now this means

that 〈P, c ⊔ α′〉 −→∗ 〈P ′′, e〉 where d′′ ⊑ e (equivalently ∃z.(d′′ ⊔ z) = e). By

Lemma 3 we get that 〈P, c ⊔ α′〉 =⇒ 〈P ′′, e〉 and by completeness there exist

x, b′ s.t. 〈P, c〉
x

=⇒ 〈P ′′, c′〉 where (x ⊔ b′) = α′ and c′ ⊔ b′ = e. Using Lemma

6 we have that (x, c′) ∈ M(〈P, c〉), now we will prove that (x, c′) � (α, β),

28

namely x ⊑ α and β ⊑ (α ⊔ c′). Recall that x ⊑ α′ ⊑ α, now for the latter

condition (α ⊔ c′) = (α′ ⊔ b ⊔ c′) = (x ⊔ b′ ⊔ b ⊔ c′) = (x ⊔ b ⊔ e) then since

d′′ ⊑ e we can check that β ⊑ d′ ⊑ (d′ ⊔ x) = (d′′ ⊔ b ⊔ x) ⊑ (e ⊔ b ⊔ x) =
(α ⊔ c′). Thus, this would mean that (α, β) is irrelevant in M(〈P, c〉), a contra-

diction, therefore α′ = α and by consequence d′′ = d′. Therefore, we know that

〈Q, d〉
α

=⇒ 〈Q′, d′〉, now let us assume by contradiction that d′ 6= β (i.e. β ⊏ d′).

By soundness and Lemma 3 we have that 〈Q, d⊔α〉 −→∗ 〈Q′, d′〉, this means that

(α, d′) ∈ J〈Q, d〉K. By hypothesis then (α, d′) ∈ J〈P, c〉K so there exist P1, c1 s.t.

〈P, c ⊔ α〉 −→∗ 〈P1, c1〉 and d′ ⊑ c1. By Lemma 3 then 〈P, c ⊔ α〉 =⇒ 〈P1, c1〉,

now by completeness, there exist y, b′′ s.t. 〈P, c〉
y

=⇒ 〈P1, c
′
1〉 where y ⊔ b′′ = α

and c′1 ⊔ b′′ = c1. Using Lemma 6 we get that (y, c′1) ∈ M(〈P, c〉). Now let us

prove that (y, c′1) � (α, β), namely y ⊑ α and β ⊑ (α ⊔ c′1). The first condi-

tion follows from y ⊔ b′′ = α and for the latter condition we proceed as follows

β ⊏ d′ ⊑ c1 ⊑ (c1 ⊔ y) = (c′1 ⊔ b′′ ⊔ y) = (c′1 ⊔ α). Again, this would mean

that (α, β) is irrelevant in M(〈P, c〉), a contradiction, therefore d′ = β. Hence,

we know that 〈Q, d〉
α

=⇒ 〈Q′, β〉 then by Proposition 6 (α, β) ∈ M(〈Q, d〉). Fi-

nally, let us assume by contradiction that (α, β) is irrelevant in M(〈Q, d〉). Then

there exists (α1, β1) ∈ M(〈Q, d〉) such that (α1, β1) � (α, β), namely α1 ⊑ α

(equivalently ∃z′.α1 ⊔ z′ = α) and β ⊑ α ⊔ β1. By Proposition 7 we have that

〈Q, d ⊔ α1〉 −→
∗ 〈Q1, β1〉, then (α1, β1) ∈ J〈Q, d〉K and by hypothesis (α1, β1) ∈

J〈P, c〉K. This means that 〈P, c⊔α1〉 −→
∗ 〈P2, c2〉 where β1 ⊑ c2, now by Lemma

3 we get 〈P, c ⊔ α1〉 =⇒ 〈P2, c2〉. By completeness of =⇒ there exist a, b1 s.t.

〈P, c〉
a

=⇒ 〈P2, c
′
2〉 where (a⊔b1) = α1 and (c′2⊔b1) = c2. Hence, by Proposition 6

we know that (a, c′2) ∈ M(〈P, c〉). Now let us prove that (a, c′2) � (α, β) namely

a ⊑ α and β ⊑ (α ⊔ c′2). First a ⊑ α1 ⊑ α, for the latter condition we proceed as

follows (α⊔ c′2) = (α1⊔ z′⊔ c′2) = (a⊔ b1⊔ z′⊔ c′2) = (c2⊔ z′) and since β1 ⊑ c2
and α ⊑ c2 then β ⊑ (α⊔β1) ⊑ (c2⊔z

′) = (α⊔c′2). Once again, this would mean

that (α, β) is irrelevant in M(〈P, c〉), a contradiction. Finally, we can conclude

that (α, β) is relevant in M(〈Q, d〉) therefore (α, β) ∈ MC(〈Q, d〉).

Using the these Lemma 6 and 7 we conclude the following theorem.

Theorem 6. J〈P, c〉K = J〈Q, d〉K iff MC(〈P, c〉) = MC(〈Q, d〉)

By combining Theorem 5 and Theorem 6 we get a simple decision procedure

for ≈̇sb by reducing weak saturated equivalence between two given configuration

to the set equivalence of the corresponding compact input-output representations.

The complexity of this procedure is clearly determined by the complexity of con-

structions of the compact input-output sets.

29

Theorem 7. Let γ and γ′ be two CCP\+ configurations. Let IS = {γ, γ′} and let

N = |Config−→(IS)|. Then

• MC(γ) = MC(γ′) iff γ ≈̇sb γ
′.

• Checking whether MC(γ) = MC(γ′) takes O(N2) time and uses O(N)
space.

Proof. The first item follows from Theorem 5 and Theorem 6 and the second item

is derived from the construction of MC(γ) and MC(γ′).

6. Improving the partition refinement for CCP

In this section we show that in the general case of CCP systems, the strategy

from Section 4.2 can be used for their CCP\+ components, thus producing a IS ⋆

which may be significant smaller (although the worst case remains exponential).

Given a configuration γ the idea is to detect when an evolution of γ, i.e. a γ′

s.t. γ
α1=⇒ . . .

αk=⇒ γ′, is a CCP\+ configuration. This way we can avoid adding

new configurations with Rule (RDIS

) whenever γ′ ∈ Conf

CCP\+, and redundancy

can be then checked using Proposition 3.

(IS’ =⇒)
γ ∈ IS

γ ∈ IS ⋆

(RS’ =⇒)
γ ∈ IS ⋆

γ

α
 γ′

γ′ ∈ IS ⋆

(opt-RD =⇒)

γ ∈ IS ⋆

γ 6∈ Conf
CCP\+ t1 = γ

α
 〈P1, c1〉

t2 = γ
β
 〈P2, c2〉 α ⊏ β c2 = c1 ⊔ β

〈P1, c2〉 ∈ IS ⋆

Table 5: Rules for improved version of the partition refinement for CCP.

Definition 15. (Improved partition refinement for CCP) We define the proce-

dure imp-weak-pr-ccp(IS ,) by using the rules in Table 5 in Step 1 of

weak-pr-ccp(IS ,) from Algorithm 3.

Using this algorithm we can decide ≈̇sb in a more efficient manner, although,

in the worst-case scenario, still with exponential time. This follows from Propo-

sition 3 and Theorem 1.

30

〈(tell(c) ‖ ask c → stop) + (tell(d)), true〉

〈ask c → stop, c〉 〈tell(c), c〉

〈stop, c〉〈stop, c〉

〈stop, d〉

c

c

Figure 5: The above example illustrates the advantages of using the method discussed in Section 6:

only the dashed transitions need to be taken into account to check ≈̇sb. Transitions are computed

according to =⇒ (Table 3) and self-loops are omitted.

Theorem 8. Let γ and γ′ be two CCP configurations. Let IS = {γ, γ′} and let P
be the output of imp-weak-pr-ccp(IS ,=⇒) in Definition 15. Then

• γ P γ′ iff γ ≈̇sb γ
′.

• imp-weak-pr-ccp(IS ,=⇒) may take exponential time in the size of

Config−→(IS).

It is clear that it is better to use imp-weak-pr-ccp(IS ,=⇒) instead of

weak-pr-ccp(IS ,=⇒) since the new procedure avoids adding new states when-

ever they are not necessary to check redundancy w.r.t. ≈̇sb. In other words, if a

configuration has subcomponents which do not use the nondeterministic choice

then we can take advantage of this by efficiently deleting their redundant transi-

tions.

Unfortunately, this improvement does not escape from the worst-case scenario

of weak-pr-ccp(IS ,=⇒). Nevertheless, this approach shows the applicability

of the strategy developed in Section 4.2. One may expect a practical impact of

this optimization since most configurations are composed by several CCP\+ sub-

configurations. We want to conclude this section by pointing to Figure 5 which

illustrates the main advantage of using this method.

7. Congruence issues

A typical question in the realm of process calculi, and concurrency in general,

is whether a given process equivalence is a congruence. In other words, whether

the fact that P and Q are equivalent implies that they are still equivalent in any

context. More precisely, an equivalence ∼= is a congruence if P ∼= Q implies

C[P] ∼= C[Q] for every process context C. Intuitively, a context C is an expres-

sion with a hole • such that replacing • with a process yields a process term. The

31

expression C[P] denotes the process that results from replacing in C, the hole •
with P . For example C = R ‖ • then C[P] = R ‖ P .

The congruence issue is fundamental for algebraic as well as practical rea-

sons; one may not be content with having P ∼= Q equivalent but R ‖ P 6∼= R ‖ Q.

Nevertheless, some of the representative equivalences in concurrency are not con-

gruences. For example, in CCS [19], trace equivalence and strong bisimilarity are

congruences but weak bisimilarity is not because it is not preserved by summation

contexts. So given a notion of equivalence one may wonder in what contexts the

equivalence is preserved. For instance, the problem with weak bisimilarity can be

avoided by using a somewhat less liberal summation called guarded-summation

(see [30]).

In this section we show that weak (saturated barbed) bisimilarity (≈̇sb) is a

congruence for the main CCP fragment here considered; CCP\+. We also show

that ≈̇sb is not a congruence for the full language of CCP. Moreover, unlike CCS,

we shall see that restricting the syntax to guarded summation will not prevent

the problem. In fact, our counterexample reveals that the problem is intrinsic to

CCP. Despite the negative result for the full language, here we also show that

weak bisimilarity is still a useful notion: its underlying co-inductive technique

(bisimulation) as well as the verification algorithms we introduced in previous

sections can be used to establish the standard observational equivalence in CCP.

More precisely, we will show that ≈̇sb implies observational equivalence in CCP,

and hence it give us a semi-decision procedure for the standard equivalence of

CCP.

7.1. Observational Equivalence

The standard notion of observables for CCP are the results computed by a

process for a given initial store. More formally, given a (maximal) computation ξ

of the form:

〈Q0, d0〉 −→ 〈Q1, d1〉 −→ . . . −→ 〈Qn, dn〉 6−→

the result of ξ, denoted by Result(ξ), is the final store dn.

We shall say then that two configurations are observational equivalent if they

produce the same set of outputs when given the same input. More formally:

Definition 16. (Observational equivalence) Let O : Proc → Con0 → 2Con0 be

given by O(P)(d) = {e | 〈P, d〉 −→∗ 〈P ′, e〉 6−→}. We say that P and Q are

observational equivalent, written P ∼o Q, iff for all d, O(P)(d) = O(Q)(d).

32

In [8, 9] it was shown that, in CCP\+, weak saturated barbed bisimilarity and

observation equivalence coincide. Recall that P ≈̇sb Q means 〈P, true〉 ≈̇sb 〈Q, true〉.

Theorem 9. ([8, 9]) Let P and Q be CCP\+ processes. Then P ∼o Q if and only

if P ≈̇sb Q.

Nevertheless, the above theorem does not hold for the full language of CCP.

We can show this by using a counter-example reminiscent from the standard one

for CCS. Namely, in CCS one can prove that, in general, a + τ.P is not weakly

bisimilar to a+ P . We can use a similar approach for CCP as follows.

Claim 1. There are P,Q s.t. P ∼o Q but P 6 ≈̇sb Q.

Proof. Let P = (ask (b) → tell(c)) + (ask (true) → ask (d) → tell(e))
and Q = (ask (b) → tell(c)) + (ask (d) → tell(e)) for unrelated elements

b, c, d, e ∈ Con0. It is straightforward to see that P ∼o Q since the only relevant

inputs are true, b and d for which both processes produce true, c and e respec-

tively. Now let us show that P 6 ≈̇sb Q. First notice that if we take the transition

〈P, true〉 −→ 〈ask (d) → tell(e), true〉 then 〈Q, true〉 can only stay still. Now

if we take the transition 〈Q, true〉
b

−→ 〈tell(c), b〉 then note that 〈tell(c), b〉 ⇓c

but 〈ask (d) → tell(e), b〉 6⇓c. Hence P 6 ≈̇sb Q.

However, the “if” direction of the theorem does hold. We show this next.

Theorem 10. If P ≈̇sb Q then P ∼o Q.

Proof. Let us assume by means of contradiction that P ≈̇sb Q and there exists

d s.t. O(P)(d) 6= O(Q)(d). By definition, this means that there is an α s.t.

α ∈ O(P)(d) but α 6∈ O(Q)(d). Hence 〈P, d〉 −→∗ 〈P ′, α〉 6−→ however there is

no Q′ s.t. 〈Q, d〉 −→∗ 〈Q′, α〉 6−→. Therefore, for each computation 〈Q, d〉 −→∗

〈Q′, β〉 6−→ we have that either (i) β ⊏ α, (ii) α ⊏ β or (iii) β 6⊑ α. We

shall prove that there is no saturated barbed bisimulation R containing the pair

〈P ′, α〉R〈Q′, β〉 for any of the three cases of β. First, consider the computations

of type (i). Notice that since 〈Q′, β〉 6−→ and β ⊏ α then 〈Q′, β〉 6⇓α while

〈P ′, α〉 ⇓α. Now take the type (ii) and this time 〈Q′, β〉 ⇓β but 〈P ′, α〉 6⇓β since

α ⊏ β. Similarly, in the type (iii) computations we have that 〈Q′, β〉 6⇓α however

〈P ′, α〉 ⇓α. From these three cases we can conclude that 〈P ′, α〉 cannot be related

with 〈Q′, β〉 in R. Finally, in order to match 〈P ′, α〉 ⇓α then the only case left

would correspond to 〈Q, d〉 −→∗ 〈Q′, α〉 −→∗ 〈Q′′, α′〉 with α ⊏ α′, but again

〈Q′, α〉 ⇓α′ while 〈P ′, α〉 6⇓α′ . Since 〈Q, d〉 is not able to match 〈P, d〉 −→∗

33

〈P ′, α〉 then there cannot be weak saturated barbed bisimulation relating 〈P, d〉
and 〈Q, d〉, a contradiction to the hypothesis P ≈̇sb Q.

Therefore, we can use the algorithms presented in this paper as semi-decision

procedures for observational equivalence. We can also use the co-inductive tech-

nique of weak saturated barbed bisimulation to establish observational equiva-

lence: I.e., if we can exhibit a weak saturated barbed bisimulation containing the

pair 〈P, true〉 and 〈Q, true〉 then P ∼o Q.

7.2. Congruence

We begin by showing that weak bisimilarity is a congruence in a restricted

sense: It is preserved by all the contexts from the summation-free fragment. For

this purpose it is convenient to recall an equivalent definition of weak bisimilarity

introduced in [8, 9].

Definition 17. (Weak bisimilarity) A weak bisimulation is a symmetric relation R
on configurations such that whenever (γ1, γ2) ∈ R with γ1 = 〈P, c〉 and γ2 =
〈Q, d〉 :

(i) if γ1 ↓e then γ2 ⇓e,

(ii) if γ1
α

−→ γ′
1 then ∃γ′

2 s.t. 〈Q, d ⊔ α〉 −→∗ γ′
2 and (γ′

1, γ
′
2) ∈ R.

We say that γ1 and γ2 are weakly bisimilar, written γ1 ≈̇ γ2, if there exists a weak

bisimulation R such that (γ1, γ2) ∈ R. We write P ≈̇ Q iff 〈P, true〉≈̇〈Q, true〉.

The following theorem from [8, 9] states that the above equivalence coincides

with weak saturated barbed bisimilarity (Definition 4).

Theorem 11. ([8, 9]) ≈̇sb = ≈̇.

Using these definitions we can now prove that ≈̇sb is a congruence in CCP\+.

Theorem 12. Let P,Q and R be CCP\+ processes and assume that P ≈̇sbQ. Then

1. (ask (c) → P) ≈̇sb (ask (c) → Q),

2. (P ‖ R) ≈̇sb (Q ‖ R).

Proof. We will focus on the parallel operator since the ask case is trivial. We

shall prove that R = {(〈P ‖ R, c〉, 〈Q ‖ R, d〉) | 〈P, c〉 ≈̇ 〈Q, d〉} is a weak

bisimulation (Definition 17). The result then follows from Theorem 11.

34

(i) Assume that 〈P ‖ R, c〉 ↓α then, since 〈P, c〉≈̇〈Q, d〉, by condition (i) we

have that 〈Q ‖ R, d〉 ⇓α.

(ii) Now suppose that 〈P ‖ R, c〉
α

−→ 〈P1, c1〉 for some 〈P1, c1〉. By induction

on (the depth) of the inference of 〈P ‖ R, c〉
α

−→ 〈P1, c1〉 we have the

following two cases:

• Using Rule LR3 (left) we have that 〈P ‖ R, c〉
α

−→ 〈P ′ ‖ R, c′〉,
hence 〈P, c〉

α
−→ 〈P ′, c′〉 by a shorter inference. Using this transi-

tion and the hypothesis in R we can conclude that 〈Q, d ⊔ α〉 −→∗

〈Q′, d′〉 and 〈P ′, c′〉≈̇〈Q′, d′〉 (1). Now using Rule LR3 we get that

〈Q ‖ R, d ⊔ α〉 −→∗ 〈Q′ ‖ R, d′〉 and, because of (1), we know that

〈P ′ ‖ R, c′〉R〈Q′ ‖ R, d′〉.

• Using Rule LR3 (right) we have that 〈P ‖ R, c〉
α

−→ 〈P ‖ R′, c′〉,
hence 〈R, c〉

α
−→ 〈R′, c′〉 by a shorter inference, where c′ = c ⊔ α ⊔ β.

Given that 〈P, c〉 ↓c then by the hypothesis we know that 〈Q, d〉 ⇓c.

This means that 〈Q, d〉 −→∗ 〈Q′, d′〉 ↓c, moreover by Lemma 4, Theo-

rem 11 and the hypothesis we can conclude that 〈Q, d〉≈̇〈Q′, d′〉≈̇〈P, c〉.
Therefore 〈Q ‖ R, d⊔α〉 −→∗ 〈Q′ ‖ R, d′⊔α〉 since c ⊑ d′. Now from

this transition notice that 〈Q′ ‖ R, d′ ⊔ α〉 −→∗ 〈Q′ ‖ R′, d′ ⊔ α ⊔ β〉
and it is the case that 〈Q′ ‖ R′, d′ ⊔ α ⊔ β〉R〈P ‖ R′, c ⊔ α ⊔ β〉 since

〈Q′, d′〉≈̇〈P, c〉.

Unfortunately, due to summation, the second point in the theorem above does

not hold for arbitrary CCP processes.

Claim 2. There are P ′, Q,R such that (a) P ′ ≈̇sb Q and (b) (P ′ ‖ R) 6≈̇sb (Q ‖ R).

To prove this claim we let P = (ask (true) → tell(c)) + (ask (true) →
tell(d)), P ′ = P ‖ tell(e) and Q = (ask (true) → tell(c⊔e))+(ask (true) →
tell(d⊔e)) with c 6⊑ d, c 6⊑ e, d 6⊑ c, d 6⊑ e, e 6⊑ c, e 6⊑ d. For (a) we can show that

〈P ′, true〉≈̇sb 〈P, e〉 ≈̇sb 〈Q, true〉. The first equation is trivial. For the second we

define a relation on configurations R. The set of pairs in R are those linked in

Figure 6. It can easily be verified that (the symmetric closure of) R is a weak

bisimulation (see Definition 17). The point (a) then follows from Theorem 11.

For proving the part (b) of the above claim, we let R = (ask (e) → tell(α))+
(ask (e) → tell(β)). We shall prove that no weak bisimulation can contain the

35

〈P, e〉

〈tell(c), e〉 〈tell(d), e〉

〈stop, c ⊔ e〉 〈stop, d ⊔ e〉

〈Q, true〉

〈tell(c ⊔ e), true〉 〈tell(d ⊔ e), true〉

〈stop, c ⊔ e〉 〈stop, d ⊔ e〉

Figure 6: Let P = (ask (true) → tell(c))+(ask (true) → tell(d)) and Q = (ask (true) →
tell(c ⊔ e)) + (ask (true) → tell(d ⊔ e)). The linked configurations are weakly bisimilar.

pair (〈P ‖ R, e〉, 〈Q ‖ R, true〉). The results then follows from Theorem 11 and

the fact that 〈P ′ ‖ R, true〉≈̇sb 〈P ‖ R, e〉 which can be easily verified.

Consequently, let us assume that 〈P ‖ R, e〉 −→ 〈P ‖ tell(α), e〉 by execut-

ing the left summand of R. By condition (ii) of weak bisimulation 〈Q ‖ R, true〉
must match the move. We have two cases:

• 〈Q ‖ R, true〉 does not make a transition. And now let us suppose that 〈Q ‖
R, true〉

e
−→ 〈Q ‖ tell(β), true〉. This means that 〈P ‖ tell(α), e〉 now

has to match this transition. However 〈Q ‖ tell(β), true〉 −→ 〈Q, β〉 ⇓β

while 〈P ‖ tell(α), e〉 6⇓β . Thus we cannot satisfy condition (i) of weak

bisimulation.

• 〈Q ‖ R, true〉 makes a transition. To match the move it should also execute

the left summand of R. However, since e is not the store of 〈Q ‖ R, true〉, Q
must be executed first. and this means executing of one of summands in Q

to be able to add e to the store. If the left summand of Q is executed, we get

〈Q ‖ R, true〉 −→∗ 〈tell(α), c⊔e〉. In this case we could then take the move

〈P ‖ tell(α), e〉 −→ 〈tell(d) ‖ tell(α), e〉. But then 〈tell(α), c⊔e〉 ⇓c and

notice that 〈tell(d) ‖ tell(α), e〉 6⇓c, thus we cannot satisfy condition (i) of

weak bisimulation. The case where the right summand of Q is executed is

symmetric.

36

8. Conclusions and Future Work

In this paper we explored the use of the partition refinement algorithm for CCP

from [15] and [7] for checking observational equivalence in the CCP\+ fragment.

In [15] authors gave a decision procedure for ∼̇sb and in [7] authors proved how

the algorithm for ∼̇sb can be used to compute ≈̇sb. In this paper, we proved that

this procedure takes exponential time and space (in the size of the set of reach-

able configurations) even for the restricted case of CCP\+. We then proposed two

alternative methods for checking observational equivalence in CCP\+ by exploit-

ing some of the intrinsic properties of this fragment, in particular confluence. We

proved that both procedures take polynomial time (in the size of the set of reach-

able configurations), thus significantly improving the exponential-time approach

from [15, 7], which is, to the best of our knowledge the only algorithm for check-

ing observational equivalence in CCP. Each of the two method has its advantages

over the other. On the one hand, the algorithm from Section 4 uses significantly

more time and space than the one from Section 5, however it can be easily adapted

for for full language of CCP as shown in Section 6. On the other hand, the proce-

dure from Section 5 takes less time and uses only linear space nevertheless there

is no “trivial” adaptation for the full language as it does not rely on the partition

refinement approach. We also studied congruence issues for ≈̇sb for CCP\+ and

CCP as well as the relationship between ≈̇sb and observational equivalence.

From a theoretical perspective, it would be interesting to lift such relationship

to the whole CCP including recursive definitions: these allow infinite computa-

tions for which the notion of observation requires fairness [1]. In [8], we have

shown that these notions coincides for CCP\+ but, for the whole calculus a better

understanding is missing. From a more practical point of view, we would like to

proceed with an experimental evaluation comparing the performances of the var-

ious approaches that we have discussed in this paper. Furthermore we would like

to consider more efficient partition refinement algorithms [13] to check whether

the algorithm from Section 4 can be further improved. The challenge would be to

find a more efficient version of =⇒ that can still be used for deciding ≈̇sb and so it

can be adapted to the case of the full CCP. Finally, we plan to investigate how the

procedures here defined can be extended to different versions of CCP where the

summation operator is not present, for instance timed CCP (tcc) [31], universal

temporal CCP (utcc) [32] and epistemic CCP (eccp) [6].

37

References

[1] V. A. Saraswat, M. C. Rinard, P. Panangaden, Semantic foundations of con-

current constraint programming, in: D. S. Wise (Ed.), 18th Annual ACM

Symposium on Principles of Programming Languages (POPL 1991), ACM

Press, 1991, pp. 333–352. doi:10.1145/99583.99627.

[2] C. Palamidessi, V. A. Saraswat, F. D. Valencia, B. Victor, On the expres-

siveness of linearity vs persistence in the asychronous pi-calculus, in: 21th

IEEE Symposium on Logic in Computer Science (LICS 2006), IEEE Com-

puter Society, 2006, pp. 59–68. doi:10.1109/LICS.2006.39.

[3] M. G. Buscemi, U. Montanari, Open bisimulation for the concurrent

constraint pi-calculus, in: S. Drossopoulou (Ed.), 17th European Sym-

posium on Programming Languages and Systems (ESOP 2008), volume

4960 of Lecture Notes in Computer Science, Springer, 2008, pp. 254–268.

doi:10.1007/978-3-540-78739-6_20.

[4] J. Bengtson, M. Johansson, J. Parrow, B. Victor, Psi-calculi: Mobile pro-

cesses, nominal data, and logic, in: 24th Annual IEEE Symposium on Logic

in Computer Science (LICS 2009), IEEE Computer Society, 2009, pp. 39–

48. doi:10.1109/LICS.2009.20.

[5] M. Bartoletti, R. Zunino, A calculus of contracting processes, in: 25th

Annual IEEE Symposium on Logic in Computer Science (LICS 2010), IEEE

Computer Society, 2010, pp. 332–341. doi:10.1109/LICS.2010.25.

[6] S. Knight, C. Palamidessi, P. Panangaden, F. D. Valencia, Spatial and epis-

temic modalities in constraint-based process calculi, in: M. Koutny, I. Ulid-

owski (Eds.), 23rd International Conference on Concurrency Theory (CON-

CUR 2012), volume 7454 of Lecture Notes in Computer Science, Springer,

2012, pp. 317–332. doi:10.1007/978-3-642-32940-1_23.

[7] L. F. Pino, A. Aristizabal, F. Bonchi, F. Valencia, Weak CCP bisimilar-

ity with strong procedures, Science of Computer Programming (2014).

doi:10.1016/j.scico.2014.09.007.

[8] A. Aristizábal, F. Bonchi, C. Palamidessi, L. Pino, F. D. Valencia, De-

riving labels and bisimilarity for concurrent constraint programming, in:

M. Hofmann (Ed.), 14th International Conference on Foundations of Soft-

ware Science and Computational Structures (FOSSACS 2011), volume

38

http://dx.doi.org/10.1145/99583.99627
http://dx.doi.org/10.1109/LICS.2006.39
http://dx.doi.org/10.1007/978-3-540-78739-6_20
http://dx.doi.org/10.1109/LICS.2009.20
http://dx.doi.org/10.1109/LICS.2010.25
http://dx.doi.org/10.1007/978-3-642-32940-1_23
http://dx.doi.org/10.1016/j.scico.2014.09.007

6604 of Lecture Notes in Computer Science, Springer, 2011, pp. 138–152.

doi:10.1007/978-3-642-19805-2_10.

[9] A. Aristizábal, Bisimulation Techniques and Algorithms for Concurrent

Constraint Programming, Ph.D. thesis, École Polytechnique, 2012.

[10] P. C. Kanellakis, S. A. Smolka, CCS expressions, finite state processes, and

three problems of equivalence, in: R. L. Probert, N. A. Lynch, N. Santoro

(Eds.), 2nd Annual ACM Symposium on Principles of Distributed Com-

puting (PODC 1983), ACM, 1983, pp. 228–240. doi:10.1145/800221.

806724.

[11] J.-C. Fernandez, L. Mounier, Verifying bisimulations “On the Fly”, in:

J. Quemada, J. A. Mañas, E. Vázquez (Eds.), 3rd International Conference

on Formal Description Techniques for Distributed Systems and Communi-

cation Protocols (FORTE 1990), North-Holland, 1990, pp. 95–110.

[12] A. Bouali, R. de Simone, Symbolic bisimulation minimisation, in: G. von

Bochmann, D. K. Probst (Eds.), 4th International Workshop Computer

Aided Verification (CAV 1992), volume 663 of Lecture Notes in Computer

Science, Springer, 1992, pp. 96–108. doi:10.1007/3-540-56496-9\

_9.

[13] A. Dovier, C. Piazza, A. Policriti, An efficient algorithm for computing

bisimulation equivalence, Theoretical Computer Science 311 (2004) 221–

256. doi:10.1016/S0304-3975(03)00361-X.

[14] R. M. Amadio, I. Castellani, D. Sangiorgi, On bisimulations for the asyn-

chronous pi-calculus., in: U. Montanari, V. Sassone (Eds.), 7th Inter-

national Conference on Concurrency Theory (CONCUR 1996), volume

1119 of Lecture Notes in Computer Science, Springer, 1996, pp. 147–162.

doi:10.1007/3-540-61604-7_53.

[15] A. Aristizábal, F. Bonchi, L. Pino, F. D. Valencia, Partition refinement for

bisimilarity in CCP, in: S. Ossowski, P. Lecca (Eds.), 27th Annual ACM

Symposium on Applied Computing (SAC 2012), ACM, 2012, pp. 88–93.

doi:10.1145/2245276.2245296.

[16] L. Aceto, A. Ingolfsdottir, J. Srba, The algorithmics of bisimilarity, in:

D. Sangiorgi, J. Rutten (Eds.), Advanced Topics in Bisimulation and Coin-

39

http://dx.doi.org/10.1007/978-3-642-19805-2_10
http://dx.doi.org/10.1145/800221.806724
http://dx.doi.org/10.1145/800221.806724
http://dx.doi.org/10.1007/3-540-56496-9_9
http://dx.doi.org/10.1007/3-540-56496-9_9
http://dx.doi.org/10.1016/S0304-3975(03)00361-X
http://dx.doi.org/10.1007/3-540-61604-7_53
http://dx.doi.org/10.1145/2245276.2245296

duction, Cambridge University Press, 2011, pp. 100–172. doi:10.1017/

CBO9780511792588.

[17] H. Garavel, Reflections on the future of concurrency theory

in general and process calculi in particular 209 (2008) 149–164.

doi:10.1016/j.entcs.2008.04.009.

[18] L. F. Pino, F. Bonchi, F. D. Valencia, Efficient computation of program

equivalence for confluent concurrent constraint programming, in: R. Peña,

T. Schrijvers (Eds.), 15th International Symposium on Principles and Prac-

tice of Declarative Programming (PPDP 2013), ACM, 2013, pp. 263–274.

doi:10.1145/2505879.2505902.

[19] R. Milner, A Calculus of Communicating Systems, volume 92 of

Lecture Notes in Computer Science, Springer, 1980. doi:10.1007/

3-540-10235-3.

[20] F. S. de Boer, A. D. Pierro, C. Palamidessi, Nondeterminism and infinite

computations in constraint programming, Theoretical Computer Science

151 (1995) 37–78. doi:10.1016/0304-3975(95)00047-Z.

[21] N. P. Mendler, P. Panangaden, P. J. Scott, R. A. G. Seely, A logical view of

concurrent constraint programming, Nordic Journal of Computing 2 (1995)

181–220.

[22] R. Milner, D. Sangiorgi, Barbed bisimulation, in: W. Kuich (Ed.), 19th In-

ternational Colloquium on Automata, Languages and Programming (ICALP

1992), volume 623 of Lecture Notes in Computer Science, Springer, 1992,

pp. 685–695. doi:10.1007/3-540-55719-9_114.

[23] F. Bonchi, B. König, U. Montanari, Saturated semantics for reactive sys-

tems, in: 21th IEEE Symposium on Logic in Computer Science (LICS

2006), IEEE Computer Society, 2006, pp. 69–80. doi:10.1109/LICS.

2006.46.

[24] F. Bonchi, F. Gadducci, G. V. Monreale, Reactive systems, barbed seman-

tics, and the mobile ambients, in: L. de Alfaro (Ed.), 12th International

Conference on Foundations of Software Science and Computational Struc-

tures (FOSSACS 2009), volume 5504 of Lecture Notes in Computer Science,

Springer, 2009, pp. 272–287. doi:10.1007/978-3-642-00596-1\

_20.

40

http://dx.doi.org/10.1017/CBO9780511792588
http://dx.doi.org/10.1017/CBO9780511792588
http://dx.doi.org/10.1016/j.entcs.2008.04.009
http://dx.doi.org/10.1145/2505879.2505902
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1016/0304-3975(95)00047-Z
http://dx.doi.org/10.1007/3-540-55719-9_114
http://dx.doi.org/10.1109/LICS.2006.46
http://dx.doi.org/10.1109/LICS.2006.46
http://dx.doi.org/10.1007/978-3-642-00596-1_20
http://dx.doi.org/10.1007/978-3-642-00596-1_20

[25] F. Bonchi, U. Montanari, Symbolic semantics revisited, in: R. M. Amadio

(Ed.), 11th International Conference on Foundations of Software Science

and Computational Structures (FoSSaCS 2008), volume 4962 of Lecture

Notes in Computer Science, Springer, 2008, pp. 395–412. doi:10.1007/

978-3-540-78499-9_28.

[26] M. Hennessy, H. Lin, Symbolic bisimulations, Theorerical Computer Sci-

ence 138 (1995) 353–389. doi:10.1016/0304-3975(94)00172-F.

[27] F. Bonchi, U. Montanari, Minimization algorithm for symbolic bisimi-

larity, in: G. Castagna (Ed.), 18th European Symposium on Program-

ming Languages and Systems (ESOP 2009), volume 5502 of Lecture

Notes in Computer Science, Springer, 2009, pp. 267–284. doi:10.1007/

978-3-642-00590-9_20.

[28] M. Pistore, D. Sangiorgi, A partition refinement algorithm for the π-calculus,

Inf. Comput. 164 (2001) 264–321. doi:10.1006/inco.2000.2895.

[29] R. Paige, R. E. Tarjan, Three partition refinement algorithms, SIAM Journal

on Computing 16 (1987) 973–989. doi:10.1137/0216062.

[30] R. Milner, Communicating and mobile systems: the π-calculus, Cambridge

University Press, 1999.

[31] V. A. Saraswat, R. Jagadeesan, V. Gupta, Foundations of timed concurrent

constraint programming, in: 9th Annual Symposium on Logic in Computer

Science (LICS 1994), IEEE Computer Society, 1994, pp. 71–80. doi:10.

1109/LICS.1994.316085.

[32] C. Olarte, F. D. Valencia, Universal concurrent constraint programing: sym-

bolic semantics and applications to security, in: R. L. Wainwright, H. Had-

dad (Eds.), 23rd Annual ACM Symposium on Applied Computing (SAC

2008), ACM, 2008, pp. 145–150. doi:10.1145/1363686.1363726.

41

http://dx.doi.org/10.1007/978-3-540-78499-9_28
http://dx.doi.org/10.1007/978-3-540-78499-9_28
http://dx.doi.org/10.1016/0304-3975(94)00172-F
http://dx.doi.org/10.1007/978-3-642-00590-9_20
http://dx.doi.org/10.1007/978-3-642-00590-9_20
http://dx.doi.org/10.1006/inco.2000.2895
http://dx.doi.org/10.1137/0216062
http://dx.doi.org/10.1109/LICS.1994.316085
http://dx.doi.org/10.1109/LICS.1994.316085
http://dx.doi.org/10.1145/1363686.1363726

	Introduction
	Background
	Partition Refinement
	Constraint Systems
	Syntax
	Reduction Semantics
	Labeled Semantics

	Partition refinement for CCP
	Strong equivalence
	Weak equivalence

	Using Partition refinement for checking observational equivalence in CCP\+
	Properties of CCP\+
	Optimizations to partition refinement for CCP\+

	Using the compact input-output sets for verifying observational equivalence in CCP\+
	Weak bisimilarity and barb equivalence
	A canonical representation of CCP\+ configurations

	Improving the partition refinement for CCP
	Congruence issues
	Observational Equivalence
	Congruence

	Conclusions and Future Work

