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In this paper we address the question of the optimal design for the Purcell 3-link swimmer.
More precisely we investigate the best link length ratio which maximizes its displacement. The
dynamics of the swimmer is expressed as an ODE, using the Resistive Force Theory. Among a set of
optimal strategies of deformation (strokes), we provide an asymptotic estimate of the displacement
for small deformations, from which we derive the optimal link ratio. Numerical simulations are
in good agreement with this theoretical estimate, and also cover larger amplitudes of deformation.
Compared with the classical design of the Purcell swimmer, we observe a gain in displacement of
roughly 60%.

The study of self-propulsion at microscopic scale is at-
tracting increasing attention in the recent literature both
because of its intrinsic biological interest, and for the
possible implications on the design of bio-inspired arti-
ficial replicas reproducing the functionalities of biologi-
cal systems (see for instance [1–4]). At this scale, inertia
forces are negligible compared to the viscous ones i.e. low
Reynolds number, calling for different swimming strate-
gies than at greater scales. Thus, we assume that the
surrounding fluid is governed by Stokes equations which
implies that hydrodynamic forces and torques are linear
with respect to the swimmer’s velocity. In the case of
planar flagellar propulsion , the Resistive Force Theory
(RFT) provides a simple and concise way to compute a
local approximation of hydrodynamic forces and Newton
laws (see [5]). The resulting equations can be written
as a system of linear ODEs (see [6–8]). In this paper
we focus on one of the first example of micro-swimmer
model found in literature: the “three-link swimmer” [9].
This model is still attracting interest in recent studies,
see [10, 11]. The structure of the equations of motion
leads to establish a connexion between geometrical con-
trol theory and micro-swimming (see [12]). In this pa-
per, we address the optimal design issue, namely finding
the optimal length ratio between the three links which
maximizes displacement of the swimmer. A similar is-
sue has been studied in [13] where a Fourier expansion is
used to derive an optimal design. Here, techniques from
the control theory are used to approximate the leading
order term of the swimmer’s displacement. Maximizing
this leading term gives a theoretical value for the optimal
link ratio. As far as we know, this procedure is original
in that context, and could be applied to others models
such as the three-sphere swimmer (see [14]).

The paper is organized as follows. Section I recalls the
equations of motion for the Purcell swimmer. Section
II presents strokes which maximize the x-displacement,
based on previous simulations from [8]. Section III de-
tails the expansion of the displacement for such strokes
at small amplitude. By maximizing the leader term of
this expansion, we derive an optimal length ratio. Sec-
tion IV shows the numerical simulations whose results
are consistent with this theoretical ratio, for both small
and large amplitude of deformation.

I. MODELING

Purcell’s 3-link swimmer. The 3-link swimmer is
modeled by the position of the center of the second stick
x = (x, y), the angle θ between the x-axis and the second
stick (the orientation of the swimmer). The shape of the
swimmer defined by the two relative angles β1 and β3
(see Fig 1). We also denote by L and L2 the length of
the two external arms and central link.
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Figure 1. Purcell’s 3-link swimmer.

Dynamics via Resistive Force Theory. We approx-
imate the non local hydrodynamic forces exerted by the
fluid on the swimmer with local drag forces depending
linearly on the velocity. We denote by e‖i and e⊥i the
unit vectors parallel and perpendicular to the i-th link,
and we also introduce vi(s) the velocity of the point at
distance s from the extremity of the i-th link, that is

v1(s) = ẋ− L2

2 θ̇e⊥2 − s(θ̇ − β̇1)e⊥1 , s ∈ [0, L],

v2(s) = ẋ− (s− L2

2 )θ̇e⊥2 , s ∈ [0, L2],

v3(s) = ẋ + L2

2 θ̇e⊥2 + s(θ̇ − β̇3)e⊥3 , s ∈ [0, L].

The force fi acting on the i-th segment is taken as

fi(s) := −ξ
(

vi(s) · e‖i
)

e‖i − η
(
vi(s) · e⊥i

)
e⊥i , (1)

where ξ and η are respectively the drag coefficients in the
directions of e‖i and e⊥i .
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Neglecting inertia forces, Newton laws are written as{
F = 0 ,
ez ·Tx = 0 , (2)

where F is the total force exerted on the swimmer by the
fluid,

F =
N∑
i=1

∫ Li

0
fi(s) ds , (3)

and Tx is the corresponding total torque computed with
respect to the central point x,

Tx1 =
N∑
i=1

∫ Li

0
(xi(s)− x1)× fi(s) ds . (4)

Since the fi(s) are linear in ẋ, θ̇, β̇1, β̇3, the system (2)
can be rewritten as

A(z) ·
(

ẋ
θ̇

)
−B(z) ·

(
β̇1
β̇3

)
= 0, (5)

where z(t) := (β1, β3, x, y, θ)(t)T . The matrix A is known
as the "Grand Resistance Matrix" and is invertible (see
[6]). Then the dynamics of the swimmer is finally ex-
pressed as an ODE system

ż(t) = f(z, β̇1, β̇3) = g1(z(t)) β̇1(t) + g2(z(t)) β̇3(t) , (6)

where
(
g1 (z) g2(z)

)
:=
(

I2
A−1(z)B(z)

)
with I2 the 2×2

identity matrix. The literal expression of the gi is quite
complicated (several pages).

II. OPTIMAL STROKES

Optimal control problem. We are interested in
finding a periodic sequence of deformations which maxi-
mizes the displacement of the swimmer along the x-axis.
More precisely, we optimize both the link length ratio
L2/L and the deformation of the swimmer over time.
Taking the deformation speed β̇1|3 as control functions,
we obtain the optimal control problem

(OCP )



max x2(T ) s.t.
ż(t) = f(z(t), β̇1, β̇3) ∀t ∈ [0, T ] ,
β̇1|3 ∈ U = [−b, b] ∀t ∈ [0, T ] ,
β1|3(t) ∈ [−a, a] ∀t ∈ [0, T ] ,
x2(0) = y2(0) = θ2(0) = 0, y2(T ) = θ2(T ) = 0 ,
β1|3(0) = β1|3(T ),
2L+ L2 = c.

We set the constraints a and b over the amplitude and
deformation speed, as well as the total length c of the
swimmer. The final time T is fixed, and the constraint
β1|3(0) = β1|3(T ) ensures that the swimmer is in the
same configuration at the initial and final time. Note

that this condition can be satisfied by either a single
stroke or a sequence of strokes. From [8], numerically
solving (OCP ) typically gives a periodic sequence of
identical strokes. Their phase portrait is octagonal, as
illustrated on Fig.2, and we will detail how this shape is
consistent with optimal control theory.

Pontryagin’s Maximum Principle (PMP). We re-
call here the PMP as it gives some insight on the shape
of optimal strokes. This theorem in optimal control in-
troduced by Pontryagin et al. in [15] gives necessary
conditions for local optimality. Interested readers can
find more information on the PMP in [16, 17]. The PMP
is characterized by an Hamiltonian function H that for-
mally depends on the state variables z, the control func-
tions β̇1|3, and so-called co-state variables noted p. While
originally inspired by the Hamiltonian in mechanics, in
the context of optimal control H does not actually corre-
spond to the energy of the system. The co-state variables
play the part of the generalized velocities in Lagrangian
mechanics, and they can be interpreted as Lagrange mul-
tipliers (in the sense of constrained optimization) related
to the dynamics of the system. Let the Hamiltonian be

H(z,p, β̇1, β̇3) = 〈p,g1(z)〉 β̇1 + 〈p,g2(z)〉 β̇3. (7)

Under the assumption that g1|2 are continuous and C1

with respect to z, the PMP states that:
if (z∗, β̇∗1 , β̇∗3) is a solution of (OCP ) then there
exists p∗ 6= 0 absolutely continuous such that
ż∗ = Hp(z∗,p∗, β̇∗1 , β̇∗3), ṗ∗ = −Hz(z∗,p∗, β̇∗1 , β̇∗3),
p∗(T ) is orthogonal to the cotangent cone of the final
conditions at z∗(T ) and (β̇∗1 , β̇∗3) maximizes the Hamil-
tonian for almost every time t ∈ [0, T ].

Bang arcs. The Hamiltonian in (7) is linear in
the controls β̇1|3. If we assume 〈p,gi(z)〉 6= 0 for
i = 1, 2 over a time interval, then the optimal control
β̇1|3∗ that maximizes H must be on the boundary of
U = {(−b,−b), (−b, b), (b,−b), (b, b)}. In terms of phase
portrait, this corresponds to diagonal lines.

Constrained arcs. Moreover, we have the con-
straints on the joint angles β1|3(t) ∈ [−a, a]. When one
of them is active and |βi| = a, the corresponding control
β̇i = 0. In terms of phase portrait, this gives horizontal
or vertical lines.

Symmetries. As stated in [13], we expect optimal
strokes to be symmetric with respect to the diagonal axes
β1 = β3 and β1 = −β3. This comes from the equations
of motion being linear and time independent. From the
linearity, optimal strokes should be invariant by reflection
with respect to the axis of the swimmer’s body. From
time independence, the stroke should be invariant when
inverting the arms movement and going backwards in
time.
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III. OPTIMAL SWIMMER DESIGN

In this section, we express the leader term of the swim-
mer’s displacement for a stroke of small perimeter which
satisfies all properties stated in the previous section. We
represent the stroke by a closed octagonal curve γ in the
phase portrait (β1, β3), see Fig. 2.

Figure 2. (Color online) Phase portrait (β1, β3) of the octag-
onal stroke considered for the expansion of the displacement.

As a consequence of neglecting inertia forces, velocities
appear linearly in the dynamic, and time can be rescaled
without changing the dynamics. Thus the displacement
of the swimmer after one stroke does not depend on the
speed along the curve γ, but only on the shape of the
stroke. From now on, we parametrize γ by the arc-length
s. Using a similar approach to [18], we express the swim-
mer’s displacement along the x-axis (i.e., x(T )−x(0)) as
an asymptotic expansion for small length ai, i = 1, · · · , 4.

Displacement over the arc s ∈ [0, a1]. On this part,
according to Fig. 2, we set u = (β̇1, β̇3) = (0,−1). The
dynamics of the swimmer is therefore given by ż = −g2,
and the time expansion at order two is given by

z(a1) = z(0)− a1g2(z(0))

+a2
1

2
∂g2

∂z

∣∣∣∣
z(0)

(g2(z(0))) + o(a3
1) . (8)

Displacement over the arc s ∈ [a1, a1 + a2]. Simi-
larly, the position of the swimmer at s = a1 + a2 can be
expressed as

z(a1 + a2) =z(a1)− a2
√

2
2 h(z(a1))

+a2
2

4
∂h
∂z

∣∣∣∣
z(a1)

(h(z(a1))) + o(a3
2) , (9)

where h := g1 + g2. Plugging the value of z(a1) from (8)
into (9) and neglecting the terms of order greater than

two, we get

z(a1 + a2) =z(0) + c1(g1,g2, z(0), a1, a2)
+c2(g1,g2, z(0), a1, a2)
+o(a3

1) + o(a3
2) (10)

with

c1(f ,g, z, a1, a2) =−
√

2a2

2 f(z)

+(−a1 −
√

2a2

2 )g(z),

c2(f ,g, z, a1, a2) =a2
2

4
∂f
∂z

∣∣∣∣
z

(f(z)) + a2
2

4
∂g
∂z

∣∣∣∣
z

(f(z))

+
(
a1a2
√

2
2 + a2

2
4

)
∂f
∂z

∣∣∣∣
z

(g(z))

+
(
a1a2
√

2
2 + a2

2
4 + a2

1
2

)
∂g
∂z

∣∣∣∣
z

(g(z)) .

Displacement over the complete stroke. Iter-
ating the computations along each arc and noting by
P = 2(a1 +a2 +a3 +a4) the stroke perimeter, the expan-
sion of the total displacement for the octagonal stroke is
finally obtained as

z(T )− z(0) = C [g1,g2](z(0)) + o(a3
i )i=1−4 , (11)

where

C = a1a2
√

2
2 +a1a3+ a2a3

√
2

2 + a1a4
√

2
2 +a2a4+ a3a4

√
2

2

and

[g1,g2](z(0)) = ∇g2(z(0))·g1(z(0))−∇g1(z(0))·g2(z(0))

is the Lie brackets of g1 and g2 at point z(0). Choosing
the starting point z(0) such that θ(0) = β1(0) = β3(0) =
0, we compute the Lie bracket with a formal calculus tool

[g1,g2](0, 0, x, y, 0) =


0
0

η−ξ
ξ

L3L2(3L+2L2)
(2L+L2)4

0
0

 . (12)

Consequently, the x-displacement after one stroke is ap-
proximated by

∆x ∼ C
(
η − ξ
ξ

)(
L3L2(3L+ 2L2)

(2L+ L2)4

)
+ o(a3

i )i=1−4

(13)
Setting the total length of the swimmer by a constant
equal to c, i.e., 2L + L2 = c, we find that (13) has a
unique maximum at

L∗ = c
(

1−
√

2
5

)
, L∗2 = c

(
2
√

2
5 − 1

)
, (14)
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which gives an optimal ratio of(
L2

L

)∗
=
√

10− 1
3 ∼ 0.721 . (15)

Remark: in [13] an optimal ratio of 0.747 is given for
an efficiency-type criterion. The small gap may be due
to the difference in models, or the change of the objective
function.

IV. NUMERICAL SIMULATIONS

We solve now the optimal control problem (OCP )
numerically, in order to determine the optimal swim-
ming strategy and link ratio. Simulations are performed
with the toolbox Bocop ([19]) that implements a
direct transcription method. This approach uses a
time discretization to transform the continuous (OCP )
into a finite-dimensional optimization problem (non-
linear programming). We refer interested readers to
[20] for more details on these methods. We use here
an implicit midpoint discretization with 100 to 2500
time steps. Note that this method does not use the PMP.

As stated in (OCP ), the criterion is to maximize
the total displacement along the x-axis over a fixed
time T . The initial state of the swimmer is set as
x(0) = y(0) = θ2(0) = 0, with the final conditions
y(T ) = θ2(T ) = 0. The initial shape angles are left free,
with the periodicity conditions βi(0) = βi(T ), i = 1, 3.
We set the total length c = 4 for an easier comparison
with the classical Purcell swimmer (L = 1, L2 = 2).

We explore different values for the bounds a, b on the
shape angles and deformation speed and see their influ-
ence on the optimal stroke and link ratio. For practi-
cal applications, the values for a and b should reflect the
physical characteristics of the studied swimmer. It should
be pointed out that the period of the optimal stroke is
not known a priori. We arbitrarily set T = 1 in the first
set of simulations, and T = 25 when studying the larger
amplitudes. In the latter case we find that the swim-
ming strategy consists in a periodic sequence of identical
strokes, as previously observed in [8].

A. Small amplitudes, influence of speed limits

We start with small amplitudes by setting a = π/20
and solve (OCP ) for different values of the speed limit
b. Here we set T = 1 and use 250 time steps for the
discretization. Optimizations take about one minute on
a standard laptop. Results are given in Table.I, with the
phase portraits for the shape angles β1, β3 on Fig.3.

First, we observe that the optimal ratio L2/L is very
close to its theoretical value of 0.721 from (15), regardless

of b. The speed bound does however have an influence
on the shape of the optimal stroke, and its displacement.
Displacement increases with higher speeds, and we find
the following empirical relation between b and the stroke
shape, confirmed by simulations with other values of a:
- for b < 4a/T : diamond stroke, which touches the
bound a for the limit case b = 4a/T .
- for 4a/T < b < 8a/T : octagonal stroke.
- for b = 8a/T : classical Purcell stroke (square).
- for b > 8a/T : sequence of several strokes.
The three strokes observed (diamond, octagon, square)
match the discussion from Section II. They include only
diagonal lines (bang arcs saturating the speed limit
b) and horizontal/vertical lines (constrained arcs for
the amplitude limit a). Note also that the square and
diamond strokes are particular cases of the octagonal
one, by setting the appropriate arc lengths to 0.

Remark: this empirical relation can also be interpreted
in terms of the period T , with the two limit values T =
8a/b for the Purcell stroke and T = 4a/b for the diamond
touching a.

Table I. Small amplitude (a = π/20).
b x(T ) L2/L stroke
0.5 2.68E-3 0.719 diamond
π/5 4.23E-3 0.719 diamond
0.75 5.70E-3 0.719 octagon
1 7.73E-3 0.719 octagon
2π/5 8.42E-3 0.717 square
1.5 1.14E-2 0.719 octagon (x2)
2 1.55E-2 0.719 octagon (x2)

−0.2 −0.1 0 0.1 0.2
−0.2

−0.15
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−0.05
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0.15
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β
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b = 2π/5

b = 1

b = π/5

b = 0.5

Figure 3. (Color online) Phase portraits of the strokes for
small amplitudes, a = π/20. The shapes observed are consis-
tent with the discussion in section II.
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B. Comparison with the classical Purcell swimmer

Now we compare the performance of the optimal swim-
mer with respect to the classical Purcell swimmer defined
by L = 1, L2 = 2, meaning a ratio of 2. For this com-
parison we set a = π/6 (thus a stroke amplitude of π/3)
and b = π/3, 2π/3, π, 4π/3 and T = 1. The optimization
for the Purcell swimmer is done by setting L = 1 instead
of letting it free. The results are summed up in Table.II
and Fig.4. We see that the shape of the stroke matches
the empirical law, and that the optimal link ratio stays
close to its theoretical value. We also observe a consis-
tent gain in displacement that seems to increase with the
speed limit, up to 64% for the classical Purcell stroke
(square).

Table II. Optimal swimmer vs Purcell swimmer.
b x(T) L2/L stroke xP urcell(T ) gain
pi/3 1.17E-2 0.717 diamond 7.373E-3 51%
2π/3 4.57E-2 0.708 diamond 2.848E-2 60%
π 7.82E-2 0.699 octagon 4.806E-2 63%
4π/3 8.80E-2 0.695 square 5.359E-2 64%

1 1.5 2 2.5 3 3.5 4 4.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

b

x
(
T
)

 

 

OPTIMAL SWIMMER

PURCELL SWIMMER

Figure 4. (Displacement for the optimal/Purcell swimmer.

C. Large amplitudes, influence of angle limits

Now we study the influence of the maximal amplitude
of the stroke, set by the bound a. In this last part we
set the deformation speed limit b = 1 to focus on the
amplitude. Since we would like to study only the true
optimal strokes, whose period is not known, we also
take a longer final time T = 25. We expect to obtain
trajectories that exhibit a sequence of several identical
strokes with a period T ∗ < T . The number of time

steps is raised accordingly to 2500, which increases the
computational time up to half an hour. Another way of
finding the optimal stroke directly could be to leave the
final time T free in the optimization, while maximizing
the average speed of the stroke x(T )/T instead of the
displacement x(T ).

The results are illustrated in Table.III and Figs.5-6.
First, the simulations confirm that the optimal strategy
is a periodic sequence of identical strokes. The shape of
the optimal stroke is always octagonal until it becomes
unconstrained for very large values of a. We observe that
the central symmetry observed for small amplitudes is
lost for larger a, however symmetry w.r.t both diagonal
axes still holds as expected.

In the unconstrained case, we see arcs that are neither
bang arcs (diagonal) or constrained arcs (horizon-
tal/vertical), but rather appear as smooth curves (see
Fig.5) . These are characteristic of so-called singular
arcs, namely the case where 〈p, gi(z)〉 = 0 in the PMP.
More details on the analysis of singular arcs can be
found in [17], unfortunately here the complexity of the
gi makes further study quite difficult.

The total displacement x(T ) increases with a, first
almost linearly when a < π/3 (see Fig.6). From
a ≈ 1.95 and above, we obtain the same, unconstrained
solution. The improvement in displacement appears to
be marginal between a = π/3 and the unconstrained
case. Note that since the displacement is expected to
be a monotone increasing function of a, we see that for
a = 1.5, the optimization converged to a local solution.

The optimal ratio L2/L shows a steady decrease with
a, starting quite close to the value 0.721 computed for
small amplitudes, the seemingly reaching a limit value of
2/3 in the unconstrained case (i.e. L = 1.5, L2 = 1). We
recall that the classical Purcell swimmer has a link ratio
of 2 (L = 1, L2 = 2).

Table III. Larger amplitudes: optimal link ratio and stroke.
Solutions become unconstrained about a = 1.95.

a x(T) L2/L stroke
π/20 0.192 0.719 octagon x26
π/10 0.384 0.712 octagon x13
π/6 0.593 0.697 octagon x7
0.75 0.811 0.676 octagon x5
π/3 1.088 0.660 octagon x4
1.25 1.266 0.660 octagon x4
1.5 1.263 0.660 octagon x3
1.75 1.329 0.667 octagon x3
2π/3 1.335 0.667 unconstrained x3
2.5 1.335 0.667 unconstrained x3
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Figure 5. Larger amplitudes - Phase portrait (each trajectory
consists in several superposed strokes).
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Figure 6. Larger amplitudes - Overall displacement. For
a = 1.5 the optimization converged to a local solution, since
displacement is expected to be an increasing function of a.

V. CONCLUSION

This study is devoted to the optimization of the link ra-
tio of the three-link swimmer for maximal displacement.
We provide an estimate of the displacement based on an
expansion for small deformations, which gives a theoret-
ical optimal link ratio. Numerical simulations are con-
sistent with this theoretical ratio for small amplitudes
of deformation. We also observe that the optimal ratio
changes for large amplitudes of deformation, with a limit
value of 0.667 in the unconstrained case versus a the-
oretical ratio of 0.721 obtained for small amplitudes of
deformation. For an amplitude of π/3, the displacement
gain is about 60% compared with the classical Purcell
swimmer design. A possible continuation of this work is
the comparison of different objective functions, such as

speed or efficiency.
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