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Abstract

Neurons are equipped with homeostatic mechanisms that counteract long-term pertur-

bations of their average activity and thereby keep neurons in a healthy and information-

rich operating regime. Yet, systematic analysis of homeostatic control has been lacking.

The analysis presented here reveals two important aspects of homeostatic control. First,

we consider networks of neurons with homeostasis and show that homeostatic control

that is stable for single neurons, can destabilize activity in otherwise stable recurrent

networks leading to strong non-abating oscillations in the activity. This instability can

be prevented by dramatically slowing down the homeostatic control. Next, we consider

the case that homeostatic feedback is mediated via a cascade of multiple intermediate

stages. Counter-intuitively, the addition of extra stages in the homeostatic control loop

further destabilizes activity in single neurons and networks. Our theoretical framework for

homeostasis thus reveals previously unconsidered constraints on homeostasis in biological

networks, and provides a possible explanation for the slow time-constants of homeostatic

regulation observed experimentally.

Author summary

Despite their apparent robustness many biological system work best in controlled environ-

ments, the tightly regulated mammalian body temperature being a good example. Homeo-

static control systems, not unlike those used in engineering, ensure that the right operating

1



conditions are met. Similarly, neurons appear to adjust the amount of activity they produce

to be neither too high nor too low by, among other ways, regulating their excitability. How-

ever, for no apparent reason the neural homeostatic processes are very slow, taking hours or

even days to regulate the neuron. Here we use methods from mathematical control theory

to show that if this weren’t the case, in particular in networks of neurons the control system

might otherwise become unstable and wild oscillations in the activity result. Our results lead

to a deeper understanding of neural homeostasis and can help the design of artificial neural

systems.

Introduction

Neurons in the brain are subject to varying conditions. Developmental processes, synaptic

plasticity, changes in the sensory signals, and tissue damage can all lead to over- or under-

stimulation of neurons. Both cases are undesirable: Prolonged periods of excessive activity are

potentially damaging and energy inefficient, while prolonged low activity is information poor.

Neural homeostasis is believed to prevent these situations by adjusting the neural parameters

and keeping neurons in an optimal operating regime. Such a regime can be defined from

information processing requirements (Laughlin, 1981; Stemmler and Koch, 1999), possibly

supplemented with constraints on energy consumption (Perrinet, 2010). As homeostasis can

greatly enhance computational power (Triesch, 2007; Lazar, Pipa, and Triesch, 2009; Naudé et

al., 2013), and a number of diseases has been linked to deficits in homeostasis (Horn, Levy, and

Ruppin, 1996; Fröhlich, Bazhenov, and Sejnowski, 2008; Chakroborty et al., 2009; Soden and

Chen, 2010), it is important to know the fundamental properties of homeostatic regulation,

its failure modes, and its constraints.

One distinguishes two homeostatic mechanisms: synaptic and intrinsic excitability home-

ostasis (Davis, 2006; Turrigiano, 2011). In case of over-excitement, synaptic homeostasis scales

excitatory synapses down and inhibitory synapses up, while intrinsic homeostasis increases the

firing threshold of neurons. The latter is the subject of this study. Intrinsic homeostasis cor-

relates biophysically to changes in the density of voltage gated ion channels, (e.g. Desai,

Rutherford, and Turrigiano, 1999; van Welie, van Hooft, and Wadman, 2004; O’Leary, van

Rossum, and Wyllie, 2010), as well as the ion channel location in the axon hillock (Kuba,

Oichi, and Ohmori, 2010; Grubb and Burrone, 2010).

All homeostatic mechanisms include an activity sensor and a negative feedback that coun-

ters deviations of the activity from a desired value. Control theory describes the properties of

feedback controllers and the role of its parameters (O’Leary and Wyllie, 2011). In engineering

one typically strives to bring a system rapidly to its desired state with minimal residual error.
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It is reasonable to assume that neural homeostasis has to be fairly rapid too in order to be

effective, although it should not interfere with the typical timescales of perceptual input or

of neural processing (millisecond to seconds). However, intrinsic excitability homeostasis is

typically much slower, on the order of many hours to days (Desai, Rutherford, and Turri-

giano 1999; Karmarkar and Buonomano 2006; O’Leary, van Rossum, and Wyllie 2010; Gal et

al. 2010, but see van Welie, van Hooft, and Wadman 2004). One hypothesis is that this is

sufficiently fast to keep up with typical natural perturbations, but an alternative hypothesis,

explored here, is that stable control necessitates such slow homeostasis. Note, that the speed

of homeostasis is the time it takes to reach a new equilibrium after a perturbation. This does

not rule out that homeostatic compensation can start immediately without delay after the

perturbation; it just takes a long time to reach its final value.

In computational studies homeostatic parameters are usually adjusted by hand to prevent

instability, but a systematic treatment, in particular in networks, is lacking (an exception is

a recent study by Remme and Wadman (2012), see Discussion). Furthermore, homeostasis is

often modeled as a simple, minimal feedback system, assuming that the details of the control

loop are unimportant. Here we analyze two issues: First, we examined the stability conditions

for networks of neurons equipped with homeostasis. We show that homeostasis can destabilize

otherwise stable networks and that, depending on the amount of recurrence, stable homeostatic

feedback needs to be much slower for networks than required for single neurons. Secondly, we

asked what happens if feedback occurs via a number of intermediate stages, as is common in

biological signaling cascades. We show that having additional elements in the feedback loop

tends to destabilize control even further, despite the feedback being slower. The results put

constraints on the design and interpretation of homeostatic control and help to understand

biological homeostasis.
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Results

Homeostatic framework

We first analyze a single neuron with homeostasis, a schematic is shown in Fig.1A. We de-

scribe the activity of the neuron as a function of time with a firing rate r1(t). A common

approximation for the firing rate dynamics is

τ1
dr1(t)

dt
= −r1(t) + g(u(t)− θ(t)) (1)

which can be understood as follows: The time-constant τ1 determines how rapidly the firing

rate changes in response to changes in the input and how rapidly it decays in the absence

of input. We use τ1 =10 ms. The value of τ1 serves as the time-constant with respect to

which all the other time-constants in the system will be defined. As only the ratios between

time-constants will matter, the results are straightforwardly adapted to other values of τ1.

The f-I curve g() describes the relation between net input to the neuron and its firing rate.

In general the f-I curve will be non-linear, but for the initial mathematical analysis we assume

a linear rectifying f-I curve, g(x) = αx if x > 0 and g(x) = 0 otherwise. When considering

the stability to small perturbations around the homeostatic set-point (local stability), a linear

approximation of the f-I curve can be made. An extension to general non-linear f-I curves

is presented below. We assume that homeostasis acts as a bias current which shifts the

f-I curve, consistent with experimental data (e.g. O’Leary, van Rossum, and Wyllie, 2010).

The total input is thus u(t) − θ(t), where u(t) is proportional to external input current to

the neuron, typically from synaptic input. Crucially, θ(t) is the homeostatically controlled

firing threshold of the neuron. While physiologically both the threshold current and threshold

voltage of neurons are affected by homeostasis (Desai, Rutherford, and Turrigiano, 1999), our

model comprises both indistinguishably.

Rather than reading out the activity directly, the homeostatic controller takes its input

from averaged activity. To obtain the averaged activity r2(t) of the neuron, the firing rate

r1(t) is filtered with a linear first order filter with a time-constant τ2

τ2
dr2(t)

dt
= −r2(t) + r1(t) (2)

Biophysically, the intra-cellular calcium concentration is a very likely candidate for this sensor

(Davis, 2006) in which case τ2 is around 50ms.

The last step in the model is to integrate the difference between the average activity and

the pre-defined desired activity level rgoal
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τ3
dr3(t)

dt
= r2(t)− rgoal (3)

rgoal was set in the figures to 1Hz, but its value is inconsequential. The feedback loop is closed

by setting the threshold in Eq.1 equal to this signal, that is θ(t) = r3(t). Thus, if the activity

remains high for too long, r2 and r3 increase, increasing the threshold and lowering the firing

rate, and vice versa if the activity is below the set-point rgoal for too long.

Note that in contrast to the earlier equations, Eq.(3) does not have a decay term on the

right hand side, i.e. a term of the form −r3(t). This means that instead of a leaky integrator, it

is a perfect integrator which keeps accumulating the error in the rate (r2(t)−rgoal) without any

decay. Mathematically, this can be seen by re-writing Eq.(3) as r3(t) =
1
τ3

∫ t
−∞

[r2(t
′)−rgoal] dt

′.

Perfect integrators are commonly used in engineering solutions such as PID controllers and are

very robust. A perfect integrator ensures that, provided the system is stable, the goal value

rgoal is eventually always reached, as otherwise r3(t) keeps accumulating. It is straightforward

to extend our theory to a leaky integrator; for small leaks, this does not affect our results.

Although it might appear challenging to build perfect integrators in biology, evidence for them

has been found in bacterial chemo-taxis (Saunders, Koeslag, and Wessels, 1998; Yi et al.,

2000). The time-constant τ3 is therefore not strictly a filter time-constant, but it determines

how rapidly errors are integrated and thus how quickly homeostasis acts. In the limit that

τ3 ≫ τ1, τ2 the firing rate settles exponentially with a time-constant τ3/α in response to

a perturbation, that is, r1(t) − rgoal ∝ e−αt/τ3 . For arbitrary time-constants τ1,τ2, τ3 the

homeostatic response will generally be a mix of three exponentials. The resulting model is a

3-dimensional linear differential equation with r1(t), r2(t) and r3(t) as dependent variables.

In the linear case the gain α can be fully absorbed in τ3. A shallower f-I curve (α < 1)

implies a weaker feedback, and is equivalent to a proportionally slower τ3; in both cases it

takes longer for the system to attain the goal value. For simplicity we set α to one without

loss of generality. Note, that this manipulation will affect the input gain, but this is of no

consequence in the analysis. Also note, that the compensation starts as soon as the rate

diverges from the goal value, although the change in θ is initially very small.

An attentive reader might have noticed that θ is a current, while r3 is a rate. Formally

this inconsistency can be resolved by defining θ(t) = βr3(t) where β has dimensions A/Hz and

give α dimensions Hz/A. However, for simplicity we use dimensionless units; this does in no

way affect our results. Also note, that while r1 is assumed positive, r3 and θ are not as they

are the difference between actual and goal rate and thus can take negative values.
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Stability of homeostatic control in the single neuron

While the above system is a set of piecewise linear equations, in the limit of small perturbations,

that is staying away from the rectification threshold,the system of differential equations is

linear. This means we can borrow results from linear control theory to examine the stability

of the set of differential equations that define the neural and homeostatic dynamics. One

needs to solve the differential equations and check whether the solutions diverge. Various

equivalent approaches have been developed to determine stability of controllers (e.g. DiStefano,

Stubberud, and Williams, 1997). Here we write the set of first order equations, Eqs.(1)-(3) in

matrix form

d

dt







r1(t)

r2(t)

r3(t)






= M







r1(t)

r2(t)

r3(t)






+ b

with matrix

M =







− 1
τ1

0 − 1
τ1

1
τ2

− 1
τ2

0

0 1
τ3

0







and vector

b(t) =







1
τ1
u(t)

0

− 1
τ3
rgoal







The theory of differential equations states that the solution to this set of equations is the

sum of a particular solution (which is unimportant for our purposes) and solutions to the

homogeneous equation, which is the equation with b = 0. With the ’ansatz’ ri(t) = cie
λt,

one finds that in order to solve the homogeneous equation, the vector c = (c1,c2, c3) must

be an eigenvector of M with eigenvalue λ. This means that λ has to solve the characteristic

polynomial, det(M − λI) = −(1 + τ1λ)(1 + τ2λ)τ3λ− 1 = 0. The three eigenvalues of M are

in general complex numbers. The eigenvalue determines the stability of each mode as follows:

• If an eigenvalue is real and negative, the corresponding mode is stable as the exponential

eλt decays to zero over time.

• If an eigenvalue is complex and the real part is negative, the corresponding mode decays

over time as a damped oscillation. In the context of homeostasis such activity oscillations

might be biologically undesirable, in particular when they persist for many cycles.
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• Finally, the solution will diverge if any of the eigenvalues has a positive real part. In

practice, some mechanism, such as a squashing or rectifying f-I curve, will restrain the

firing rate and strong non-abating oscillations in the firing rate will occur. (for two di-

mensional systems this can be proven using the Poincare-Bendixson theorem e.g. Khalil,

2002).In this case homeostatic control is called unstable.

Which of these above scenarios occurs depends in our model solely on the ratio between

the three τi parameters. In most of what follows, we determine the required value of τ3 for

given τ1 and τ2.

Fig. 1B shows simulated responses of the firing rate r1(t), and the threshold variable r3(t)

to a step input for various settings of the time-constants. It can be observed that only for

extremely short values of τ3 the neuron is unstable (striped region). In this case the firing

rate oscillates continuously and information coding is virtually impossible. In the gray region

the neuron is stable but displays damped oscillations after changes in the activity. Stability

without oscillation (white region) can always be achieved by taking τ3 slow enough. The

explicit stability condition follows from the Routh–Hurwitz stability criterion and is τ3 >

τ1τ2/(τ1 + τ2) (see Methods).

Our main assumption is that instability is to be avoided at all cost. While oscillations by

themselves occur in many circumstances in neuroscience and can have functional roles, the

oscillations here are uncontrollable and can not be stopped. The oscillating state is almost the

opposite of homeostasis, as neurons would only be able to code very little information. Finally,

the oscillating state is metabolically costly, especially if excitability is regulated through the

insertion and removal of ion-channels.

The above results confirm the intuition that slower feedback is more stable than fast

feedback. When τ2 is 50ms, τ3 needs to be longer than 8ms to obtain stability. To warrant

the absence of damped oscillations a similar criterion can be derived (Methods, Eq. 12) and

in this example case τ3 needs to be longer than 220ms to avoid oscillations. In summary, for

single neurons simple homeostatic control is stable even when it is very fast. Therefore, the

stability of the homeostatic controller would not appear an issue for homeostasis of intrinsic

excitability. Such very fast homeostasis might not even be desirable, because it will filter out

components of the input that are slower than the homeostatic control. For instance in Fig. 1B

(top left), the neural response equals the stimulus with changes slower than ∼100ms filtered

out.

Finally note, that because the system is linear, the instability will be triggered by any size

or type of perturbation, whether transient or sustained.
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Stability in recurrent networks

Next, we consider a network of N neurons and again analyze the stability of homeostatic

control. The network is connected with fast synapses via an N × N weight matrix W . For

ease of presentation we assume W to be symmetric, but this condition can be relaxed at the

cost of more complicated stability conditions (see Methods). In this abstract network a synapse

can be excitatory or inhibitory; imposing Dale’s principle will affect the eigenvalue spectrum

of the weight matrix (Rajan and Abbott, 2006), but does not alter our result otherwise.

For networks the conditions on homeostatic control are much more stringent than for single

neurons. In Fig.2A the population firing rate of a simulated network is plotted as the recurrence

is increased while all other network and homeostasis parameters are kept the same (left to

right plot). Increasing the recurrence in the network leads to strong, persistent oscillations.

Importantly, without homeostasis the network is stable (top panels, dotted curves). To prevent

instability the feedback needs to be much slower in networks than for single neurons.

This required slowdown of homeostatic control can be understood as follows: In the absence

of homeostasis the firing rate dynamics obeys

τ1
d

dt
r1(t) = (W − I)r1(t) + u(t)

where r1(t) is a N -dimensional vector containing all firing rates in the network, and u(t) is a

vector of external input to the neurons in the network. The recurrent feedback is contained in

the term Wr1(t). These types of symmetric networks have been used in many applications,

such as noise filtering and evidence accumulation (Dayan and Abbott, 2002). We denote the

eigenvalues of W with wn. We definethe largest eigenvalue, wm = max(wn), as the recurrence

of the network. The recurrent excitatory connectivity slows down the effective time-constant

of a given mode (Dayan and Abbott, 2002; van Rossum et al., 2008). This can be seen by

writing the equation for each mode as τ1
1−wn

drn(t)
dt = −rn(t) +

1
1−wn

un(t), from which the

time-constant of a given mode is then identified as τ1/(1 − wn). The network time-constant

is defined as the time-constant of the slowest mode, i.e. τ1/(1−wm). The network activity is

stable as long as wm < 1.

In the presence of homeostatic regulation, the system becomes 3N -dimensional. It is

described by the rate of each neuron r1, its filtered version r2, and its threshold r3. The

corresponding differential equation is

d

dt







r1

r2

r3






= M







r1

r2

r3






+







1
τ1
u(t)

0

− 1
τ3
rgoal






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where M is now a block-matrix, given by

M =







1
τ1
(W − I) 0 − 1

τ1
I

1
τ2
I − 1

τ2
I 0

0 1
τ3
I 0






(4)

We proceed as above to determine the stability of this system. In analogy with the single

neuron case, there are three eigenvalues for the full system per eigenvector of W , so that we

obtain 3N eigenvalues. In principle, one should now research the stability of each eigenvector

of W . Yet the analysis can be simplified. In a network without homeostasis the most critical

mode is the one with the largest eigenvalue. This also holds in networks with homeostasis: the

network is stable if and only if this mode is stable (see Methods for proof). Thus, rather than

analyzing the full network, we only need to analyze the stability of this most critical mode,

which is given by a three dimensional system similar to the single neuron system studied above

with the pre-factor of r1(t) on the right hand side as only modification,

τ1
dr1(t)

dt
= [wm − 1]r1(t) + u(t)− θ(t) (5)

The other equations for homeostatic control, Eqs.2 and 3, remain unchanged. The resulting

three dimensional system describes the dynamics of the critical eigenmode and its homeostatic

variables. The stability is now determined by the roots of the polynomial

(1− wm + τ1λ)(1 + τ2λ)τ3λ+ 1 = 0 (6)

The network is again stable if all roots have a negative real part. Application of the Routh–Hurwitz

criterion (Methods) yields the stability condition τ3 > τ crit3 , where

τ crit3 =
1

1− wm

τ1τ2
τ1 + (1− wm)τ2

(7)

In Figure 2B we vary the integration time of the network by changing wm and plot the values

for τ3 required for stability. The minimal, critical value of τ3 is shown with the solid black

curve. Eq.7 yields for (1−wm)τ2 ≫ τ1 that τ3 & τ1/(1−wm)2, while for (1−wm)τ2 ≪ τ1 this

can be approximated as τ3 & τ2/(1−wm). When, for example, the network has an integration

time-constant of 1s, τ3 needs to be at least 4.8s to prevent instability. If the network integration

time-constant is 10s, this increases to 50s.
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Oscillation-free homeostasis

The sustained oscillations associated to the instability are disastrous for neural information

processing as they hinder information coding, yet are energetically expensive. Damped os-

cillations are less harmful. However, in particular for strongly recurrent networks, damped

oscillations can interfere with the desired network response. As an illustration of this we show

the response of an ideal leaky integrator, such as might be used for evidence integration in

Fig. 2C (gray curve). When rapid homeostasis is active, the response shows strong oscillations

that occludes the network’s integrative properties (black curve). Only when homeostasis is

made so slow that no damped oscillations occur (dashed curve), the response approximates

that of the ideal integrator.

The value of τ3 required to ensure homeostasis without damped oscillations is much larger

than the value required to prevent persistent oscillation, compare dashed curve to solid curve

in Fig.2B. Interestingly, as is shown in the Methods, for long integration times it increases

as the square of the integration time (slope of 2 on the log-log plot). For example if the

network integration time-constant is 1s, the minimal homeostatic time-constant is 420s to

prevent oscillations. And if the network integration time-constant is 10s, a realistic value

in for instance working memory networks (e.g. Seung et al., 2000), this values increases to

11hrs. In summary, in particular if an oscillation-free response is required, strongly recurrent

networks with long time-constants require homeostasis many orders of magnitudes slower than

single neurons.

Variability and heterogeneity

To examine the generality of the results we included variability and heterogeneity in the

model. First, we wondered whether heterogeneity in the time-constants, likely to occur in

real neurons, could prevent the synchronous oscillations associated to the instability. Hereto

we drew for each neuron the homeostatic time-constants from a gamma-distribution with an

adjustable coefficient of variation (CV) and a given mean. To quantify the destabilizing effect

of homeostasis, we defined the dimensionless critical recurrence strength wc. It is the maximal

recurrence for which the network is still stable, possibly with damped oscillations. That is, wc

is the value for which the real part of the largest eigenvalue crosses zero. For networks without

homeostasis, the critical recurrence is one, but homeostasis limits this to lower values.

Stability is again determined by the stability matrix of Eq.4, however, in the heterogeneous

case the dimension reduction is not possible and the spectrum of the full matrix was examined.

When the CV is zero, all neurons have the same set of time-constants and the stability cor-

responded to that of the homogeneous networks. As the CV increased, the average maximal
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allowed recurrence first increased slightly after which it decreased, Fig.3A. Moreover, as can be

seen from the error bars, for a given realization of the time-constants, the stability can either

be higher or lower than that of the homogeneous network. Hence random heterogeneity of the

time-constants does not robustly lead to increased stability. A similar effect of heterogeneity

on the transition between the damped oscillatory and oscillation-free regime is observed (not

shown).

Next, we added noise to the neurons and analyzed how this affected the transition to

instability. The noise might potentially have a stabilizing effect by de-synchronizing the pop-

ulation. Gaussian noise with a correlation time of 1ms and a standard deviation equivalent to

0.1Hz was added to the input. We measured the fluctuations as the standard deviation of the

population firing rate once the system had reached steady state, Fig.3B. These fluctuations

comprise both the effect of noise and the periodic oscillations caused by the instability. As

seen above, Fig.2A), without noise fluctuations are absent when the recurrence is less than

the critical amount, and are strong above this point, Fig.3B (dashed curve). With noise,

fluctuations are always present (solid curve) and increase close to the transition to instability.

Above the transition point the fluctuations are similar to the noise-free model. In a network

with homeostasis the resulting fluctuations were always larger than without (grey line). The

reason is that in the homeostatic network the noise is continuously exciting a damped res-

onant system, amplifying the fluctuations. Importantly, the amount of recurrence at which

the transition to the unstable regime occurs, does not shift with noise, implying that noise

does not increase stability. Rather, one can observe that in particular in the stable regime,

but close to the transition to instability (around a recurrence of 0.75), homeostasis actually

increases the fluctuations in the population firing rate (black curve is above gray curve) .

Spiking networks

Next, we compared the theory to simulations of networks of spiking neurons (see Methods).

The connection strength was such that the network was stable and a Gaussian white noise

term was injected to all neurons to prevent population synchrony. The homeostatic control

was implemented exactly as above: the average rate r2(t) was extracted by filtering the spikes

(τ2 =50ms), and this was fed into the integrator as above. The homeostatic target rate was

set to 4Hz.

In this asynchronous regime, the population firing rate of the spiking network can be rea-

sonably approximated by the rate equation with a non-linear f-I curve (Eq.1) and recurrent

feedback. In order to be able to compare the spiking network to the theory we turned home-

ostasis off and gave small step stimuli to the network and measured how quickly the firing rate

equilibrated as a function of the connection strength, Fig. 4A. In the rate model this equili-
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bration time is τ1/(1−wm). A fit to this relation gave τ1 ≈ (11.5±1.5)ms and also yielded the

proportionality between the synaptic strength and wm, which we calibrated as above so that

wm = 1 corresponds to the critical amount of recurrence in the model without homeostasis.

As the networks with close to critical recurrence are slow and difficult to simulate, we used a

value of wm=0.6, so the required homeostatic time-constants are fairly short.

According to linear stability theory analogous to Eq.7, the critical value of τ3 is given by,

τ lin3 = g̃′(0)τ03 (8)

where τ03 = τ1τ2/[τ1 + (1 − wm)τ2]. Furthermore, g̃(x) is defined as the re-centered f-I curve

such that its origin g̃(x = 0) = 0 corresponds to the homeostatic set-point, g̃′(0) is the slope of

the network f-I curve at the set-point. We measured the f-I relation by turning homeostasis off

and stimulating the network with increasing levels of mean current and measured the resulting

mean population firing rate once the network stabilized. The linear criterion yields that when

τ3 ≥ τ lin3 =64ms the network should be stable. However, the simulated network is less stable

than the criterion predicts, as the network shows strong oscillations for such rapid homeostasis,

Fig. 4C, second plot from below.

The reason is that the f-I curve g() is non-linear. It can be shown that the system is

guaranteed to be stable only when for all x

0 <
g̃(x)

x
<

τ3
τ03

(9)

An f-I curve that exceeds these bounds can lead to instability given the right perturbation,

despite a shallow slope at the set-point. The criterion is expressed graphically in Fig. 4B

(dotted line) and corresponds to requiring that the f-I curve is enveloped by the line y = rgoal

(always satisfied here) and the line through the set-point with slope τ3/τ
0
3 . Hence the critical

time-constant is τaiz3 = maxx

(

g̃(x)
x

)

τ03 . The criterion is known as the Aizerman conjecture

(e.g. Leigh, 2004), and although not generally true, it is known to hold for this particular 3

dimensional system (Fujii and Shoji, 1972). Note that for a linear system g̃(x)/x is constant

and one retrieves Eq. 8.

When applied to our simulations the criterion leads to a value of τaiz3 = 322ms. This

indeed leads to stable homeostasis, Fig. 4C, top. In simulations a minimal value of τ3 around

τ3 = 240ms was already enough to stabilize the network. This is not in conflict with the

theory: not satisfying the criterion does not necessarily lead to instability, in other words Eq.9

is not a tight bound.
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Cascaded homeostatic control

The above results assumed a simple controller with only three components in the feedback

loop, r1, r2, and r3, but homeostatic control of excitability has many intermediate stages, for

instance synthesis, transport and insertion of ion-channels is likely involved. Therefore we

asked how the stability of homeostatic control changes with longer feedback cascades. Our

intuition was that adding more elements to the feedback cascade slows down the feedback,

and therefore would increase stability. However, we found that adding more filters actually

de-stabilizes the network.

We first simplify our model from three to two filters, and analyze what happens to the

critical amount of network recurrence if we add a third filter, Fig.5A. With two filters (τ1 =

10ms, τ2 = 50ms) the critical recurrence is one, the same as for a network without homeostasis

(gray curve). The addition of a third filter, such that the time-constants are (τ1, τ2, τ3) =

(10, 50, τ) is destabilizing even if the third filter has a time-constant slower than any other

time-constant (dashed curve). Only for a very long time-constant it had no detrimental effect.

Alternatively, one can add an intermediate filter, such that the time-constants are (τ1, τ2, τ3) =

(10, τ, 50). Also this is destabilizing (solid line). In this case the destabilizing effect can be

minimized by taking τ as short as possible. The filter then has a negligible effect, and the

system resembles the two filter system again.

More generally, assuming that there is no intermediate feedback between the filters and

that each element can be approximated by a linear filter, our formalism can be extended to

an arbitrary number of intermediate elements in the feedback loop. Suppose that we have K

filters, each with its own time-constant τk. The threshold is taken from the K-th filter, i.e.

θ(t) = rK(t). We thus have

τ1
dr1(t)

dt
= −[1− wm]r1(t) + u(t)− rK(t)

τk
drk(t)

dt
= −rk(t) + rk−1(t) k = 2 . . .K − 1

τK
drK(t)

dt
= −rgoal + rK−1(t)

The corresponding characteristic polynomial in this case is

1 + λτK(1− wm + λτ1)

K−1
∏

k=2

(1 + λτk) = 0 (10)

This expression is invariant to permutations of the time-constants τ2, . . . , τK−1. The stability

is again determined by the real part of the solutions to the polynomial. As analytic results

13



such as Routh-Hurwitz analysis, quickly grow in complexity for an increasing number of filters,

we solve polynomial Eq.10 numerically.

As the time-constants or even the number of steps in the homeostatic feedback in neurons

is not known, we examined the stability with various hypothetical settings of the additional fil-

ters, Fig.5B. When the time-constants were set linearly increasing as τi = 10, 100, 200, 300, . . .ms,

the stability decreased most strongly as the number of stages K increased (dashed curve).

Using τi = 10, 500, 500, . . . , 500, 5000, stability decreased also with the number of filters (dot-

dashed curve). When the time-constants were set exponentially as τi = 10, 20, 40, 80 . . . stabil-

ity decreased when using only few filters, and leveled off with more filters (black curve). With

a stronger exponential increase τi = 10, 30, 90, 270 . . . the stability reached a minimum for 4

filters and then increased to a constant level (thick black curve). Thus in general addition of

filters does not lead to stabilization of the system.

Next we wondered what choice of time-constants will be most stable for a given number

of filters. Suppose a cascade where the time-constant of the firing rate τ1 and of the threshold

setting τK are fixed. In analogy with the three filter network, setting the time-constants of

the intermediate stages as short as possible is the most stable configuration. Even adding an

intermediate filter with a time-constant much slower than τK will not stabilize the system.

The intuition behind these results is that not only the speed of the feedback matters, but its

phase delay matters as well. With sufficient filtering the negative homeostatic feedback will

be out of phase with the firing rate, amplifying perturbations. This effect is similar to the

typically destabilizing effect of delays in control theory.

The interaction between network recurrence and the presence of multiple feedback filters

can be analyzed with Eq.10 as well. As an example, consider the case where τ1=10ms, τ2 =

20ms, and wm = 0.99. If wm increases to 0.995 the required τ3 doubles from 4.7 to 9.7 s.

Alternatively, adding an intermediate filter with a time-constant of 50ms also approximately

doubles the required time-constant of the integrator to 9.5s. Now increasing both wm and

increasing the number of filters quadruples the required τ3 to 19.5s, thus the effect of recurrence

and cascade length are complementary.

Discussion

We have, to our knowledge for the first time, systematically analyzed instabilities in the neural

activity that arise from homeostasis of intrinsic excitability. In the worst case, homeostasis

can lead to continuous oscillations of the activity. Homeostasis can also give rise to damped

oscillations, which are less disastrous to information processing, provided the oscillations don’t

persist too long. To our knowledge such damped oscillations in the homeostatic response
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have not been observed experimentally, although averaging of experimental data could have

obscured their detection. Nevertheless, we think that they are unlikely to occur in biology

because substantial cost is involved in alternating up-down regulation of excitability, and

because the homeostatic control can strongly interact with the network activity (Fig. 2C).

Our control theoretic framework for homeostasis sets precise constraints on homeostatic

control to prevent either form of instability. We find that a typical single neuron model

with just a few filters in the feedback loop has no stability issues even when the homeostatic

control is very fast. However, this is no longer true when network interactions are included.

The stronger the recurrence of the network, the slower the feedback needs to be. Networks

with time-constants on the order of seconds have been proposed to explain sensory evidence

integration, decision making and motor control (Seung et al., 2000; Gold and Shadlen, 2007;

Goldman and Wang, 2009). The minimal homeostatic for homeostasis to be oscillation-free

scales quadratically with the network time-constant. As a result the required homeostasis can

easily be on the order of hours, a value comparable to experimentally observed homeostatic

action (Desai, Rutherford, and Turrigiano, 1999; Karmarkar and Buonomano, 2006; O’Leary,

van Rossum, and Wyllie, 2010; Gal et al., 2010).

Stability typically decreases further when the number of stages in the feedback loop in-

creases, Fig. 5. This effect complements the effect of the recurrence, so that for recurrent

networks consisting of neurons with long homeostatic cascades, even slower homeostasis is

required. The instability can not be prevented by including heterogeneity or adding noise to

the system and is also found in spiking network simulations.

Most of our analysis was based on a linearization of the dynamics of the neuron and the

feedback loop. This is appropriate to calculate the homeostatic response to small perturba-

tions. Obviously stability to small perturbations is needed when stability to arbitrary size

perturbations is required. In addition, we have derived the condition for stability if the f-I

curve is non-linear to arbitrary size perturbations and found that a non-linear f-I curve further

limits the minimal homeostatic time-constant. Ideally, one would like to know the stability

requirements for any given non-linear homeostatic controller. However, only in a very limited

number of cases extensions of our mathematical results to either multiple non-linearities in the

control loop or to higher dimensional systems (i.e. with longer feedback cascades) are known.

It is not unreasonable to assume that biology uses multiple, parallel homeostatic regulators.

Some cases can be captured by our theory, for instance if multiple feed-backs use the same

error signal, stability is determined by the quickest feedback, so that our results are easily

adapted to that case. However, a general theory of such systems is lacking. It would be very

interesting to know whether biology uses parallel regulators to increase stability.

Stability of homeostatic control has been the main consideration in this study. This is of
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course of utmost importance biologically, but it is unlikely to be the only criterion. There

can also be cases where rapid acting homeostasis is needed. For instance, one might want to

minimize periods of prolonged hyperactivity, while in a recent study fast synaptic homeosta-

sis was required to counter synaptic plasticity (Zenke, Hennequin, and Gerstner, 2013). It

suggests that homeostatic control is constrained “from below and from above”, and therefor

more finely tuned than previously thought. Unfortunately data on the time-course of the

homeostasis of intrinsic excitability, its mediators and regulation cascade is limited, hindering

a direct comparison of data to our analysis. Nevertheless, a number of predictions follows

from this work: we predict homeostasis to be slower in brain regions with strong recurrent

connections and long network integration times. Secondly, we predict that intermediate steps

in the homeostatic feedback cascade are rapid so as to prevent instability.

We note that the introduced framework is very general. A recent study examined simple

homeostatic control for a network with separate excitatory and inhibitory populations and

found that excitatory neurons require faster homeostasis than inhibitory neurons (Remme

and Wadman, 2012). Our results can be used to extend those results to more realistic control

loops. Other targets for extension and application of this theory include excitatory/inhibitory

balanced networks, controllers with parallel slow and fast components, as well as models that

include dynamical synapses. Also the interaction with ‘Hebbian’ modification of the intrinsic

excibility (Janowitz and van Rossum, 2006) will be of interest. Finally, these results might

be important for other regulatory feedback systems such as synaptic homeostasis and spike

frequency adaptation.
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Methods

Stability in recurrent network

In the main text we state that stability of a homeostatic network is determined by the stability

of the mode with the largest eigenvalue. Here we prove that if the reduced model is stable,

then so is the full network model. Given the interaction matrix M of the full network, Eq.

4, it is easy to show that eigenvectors of the matrix M have the form







en

αnen

βnen






, where

en is a eigenvector of the W matrix, and αn and βn are complex numbers. This means that

the filtered firing rates (the vectors r2 and r3) follow the firing rates r1 with a phase lag and

arbitrary amplitude. We use that the symmetric N × N matrix W is diagonizable by an

orthogonal matrix, that is W = UTDU , where D is a diagonal matrix with the eigenvalues

wn on the diagonal and UUT = I. We analyze M in the eigenspace of W using the matrix

U3N = U ⊗ I3, where ⊗ is the Kronecker product. In these coordinates M = U3NMUT
3N and

equals

M =







1
τ1
(D − I) 0 − 1

τ1
I

1
τ2
I − 1

τ2
I 0

0 1
τ3
I 0







In these coordinates, there is no interaction between the various eigenmodes. The stability of

each mode is given by Eq. 7. Because the factor (1−wn) is positive and minimal for wn = wm,

stability of the eigenmode with eigenvalue wm implies stability for all other modes for which

wn ≤ wm.

The stability condition is found from the Routh–Hurwitz stability criterion (DiStefano,

Stubberud, and Williams, 1997). It states that the third order polynomial
∑3

i=0 ciλ
i = 0 has

exclusively negative roots when 1) all the coefficients ci are larger than zero, and 2) c0c3 < c1c2.

Applied to homeostatic control this yields Eq.7.

Non-symmetric networks

The analysis can be extended to networks with non-symmetric weight matrices. Symmetry of

W implies that the eigenvalues of the matrix W are real. For non-symmetric W , the eigenvalues

are no longer guaranteed to be real but can be complex. The Routh-Hurwitz criterion needs

now to be applied after splitting the real and imaginary part of the polynomial. The conditions

that guarantee negative real parts for the solutions of the polynomial λ3 + c1λ
2 + c2λ+ c3 =
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0 with complex coefficients ci are (Zahreddine and Elshehawey, 1988): 1) ℜ(c1) > 0, 2)

ℜ(c1)ℜ(c1c̄2 − c3)−ℑ(c2)
2 > 0, and 3) [ℜ(c1)ℜ(c1c̄3)−ℜ(c3)

2][ℜ(c1)ℜ(c1c̄2 − c3)−ℑ(c2)
2]−

[ℜ(c1)ℑ(c̄1c3) − ℜ(c3)ℑ(c2)]
2 > 0, where c̄ denotes the complex conjugate, and ℜ and ℑ the

real and imaginary parts. In this case one has c1 = 1/τ2 + (1 − wn)/τ1, c2 = (1 − wn)/τ1τ2,

c3 = 1/τ1τ2τ3, where wn is the complex eigenvalue. Splitting the real and imaginary part as

wn = wr + iwi, these conditions combine to the condition τ3 ≥ τ cc3 with

τ cc3 =
1

1− wr

τ1τ2[τ1 + (1− wr)τ2] +
1
2τ

3
2w

2
i [1 +

√

1 + 4τ1(1− wr)/(τ2w2
i )]

[τ1 + (1− wr)τ2]2 + w2
i τ

2
2

(11)

In contrast to the case of symmetric W , these conditions have to be checked for all N

eigenvalues of W . In the case of random, excitation-only networks the largest eigenvalue is

typically real, so the theory of the main text can be applied. Furthermore, by taking the

limit of infinite wi it can be shown that stability is guaranteed for any complex wn when

τ3 > τ2/(1 − wr), which is more stringent than the condition given in Eq.7. Under this

condition any network, including non-symmetric ones, is guaranteed to be stable.

Oscillation-free response

To guarantee an oscillation-free response of the network, the eigenvalues need to be negative

and real. For a given wn this means that all the solutions of the polynomial

P (λ) = (1− wn + τ1λ)(1 + τ2λ)τ3λ+ 1

have to be real. As in our analysis above, the largest eigenvalue of W is the most critical one

so that we only need to study the case wn = wm.

The polynomial is a cubic; it is negative for negative λ and positive for positive λ. For

all solutions to be real, the polynomial has to dip down after the first zero-crossing and cross

zero again, after which it crosses the x-axis a final time. The condition on the minimum of

the dip, given by P ′(λc) = 0 and P ′′(λc) > 0, is that it should be below zero, i.e. P (λc) < 0.

This yields the condition τ3 ≥ τ co3 with

τ co3 =
1

(1− wm)2(τ1 − τ ′2)
2

[

(τ1 − 2τ ′2)(2τ1 − τ ′2)(τ1 + τ ′2) + 2(τ21 − τ1τ2 + τ22 )
3/2

]

(12)

where we defined τ ′2 = (1−wm)τ2. In the limit of strong recurrence τ co3 = 4
τ1

(

τ1
1−wm

)2
, which

implies that the required time-constant τ3 scales quadratically with the network time-constant,

τ1/1− wm.
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Spiking network simulations

A population of 16000 linear integrate-and-fire neurons was coupled with a 2% connection

probability via excitatory synapses modeled as exponentially decaying conductances (5ms

synaptic time-constant). It is possible to add inhibitory connections to the network, but as

long as the network remains in the mean-driven regime this should not affect the results. The

membrane voltage of each neuron obeyed τmem
dV (t)
dt = −V (t) + Vrest + RI(t), where tmem =

20ms, Vrest= -60mV and R = 1MΩ. In addition, upon reaching the threshold (Vthr=-50mV)

the voltage reset (Vreset = Vrest, 5ms refractory period). The current I consisted of recurrent

input, external drive and homeostatic bias, I(t) = ge(t)(V (t)−Ee)+ I(t)−hr3(t). The factor

h converts the filtered firing rate r3 to a current and sets the strength of the homeostatic

control. It was set to 1pA/Hz. The homeostatic control was implemented as in the rate based

networks: the average rate r2(t) was extracted by filtering the spikes (τ2 =50ms), and this was

fed into the integrator. The homeostatic target rate was set to 4Hz. The external current I(t)

contains both stimulation and a Gaussian white noise term (σ = 75pA) to prevent population

synchrony.
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Figure 1: Single neuron homeostasis.
A) Schematic illustration of the homeostatic model. The input current is transformed through
an input-output relation and a filter. The input-output curve is shifted by a filtered and
integrated copy of the output firing rate, so that the average activity matches a preset goal
value. F1 (time-constant τ1) denotes a filter describing the filtering between input and output
of the neuron; F2 (time-constant τ2) is a filter between the output and the homeostatic
controller.
B) The response of the model for various settings of the homeostatic time-constants. The value
of τ1 was fixed to 10ms (thin lines), while τ2 and τ3 were varied. Center plot: the response of
the neuron can either be stable (top left plot; white region), a damped oscillation (top right
plot, gray region), or unstable (bottom right plot, striped region). The surrounding plots show
the firing rate of the neuron and the threshold setting in response to a step stimulus.
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Figure 2: Homeostasis can destabilize activity in otherwise stable networks.
A) Activity in a homeostatic network with varying levels of recurrence, but identical home-
ostatic parameters (τ1 = 10ms, τ2 = 50ms, τ3 = 500ms). Without homeostasis even the
strongly recurrent network is stable (top row). With homeostasis, although the network in
stable in the absence of synaptic coupling (left), with increasing recurrence the network shows
increasing oscillatory activity (middle, wm = 0.8), and becomes unstable for strong recurrence,
leading to unabating oscillations (right, wm = 0.95).
B) The requirements on the homeostatic time-constant as a function of the recurrence of the
network, expressed in terms of the network time-constant, which equals τ1/(1− wm). Shown
are the minimal value of τ3 to ensure stability, potentially with damped oscillations (solid
curve) and the minimal value of τ3 for a stable firing rate without oscillation (dashed curve).
C) The interference of homeostatic control with a neural integrator. The response of an ideal
leaky-integrator with 1s time-constant (gray curve) to a pulse at 2s, and a bi-phasic pulse
at 10 s. The response of a stable, but oscillatory homeostatic network is very different from
the non-homeostatic case (black curve, τ3 = 7s). Only when the homeostasis is slow enough
to be oscillation-free, the response approximates that of the ideal integrator (dashed curve,
τ3 = 420s).
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Figure 3: Effects of heterogeneity and noise on homeostatic stability of a network.
A) The stability as a function of heterogeneity in the neurons’ homeostatic time-constants. The
time-constants τ1, τ2, τ3 for each neuron were drawn from gamma-distributions with means
10, 50 and 100ms, respectively, and a CV given by the x-axis. The curve represents the mean
maximal recurrence allowed to ensure a stable system. It decreases with heterogeneity. Error
bars represent the standard deviation over 1000 trials. Simulation of 10 neurons, connected
with a random, fixed weight matrix.
B) Noise does not ameliorate instability. The fluctuations in the population firing rate, due to
both noise and oscillations, are plotted as a function of the network recurrence. Without noise,
fluctuations are only present when the recurrence exceeds the critical value (dashed curve).
With noise, the fluctuations are already present in the stable regime and increase close to the
transition point (solid curve). The homeostasis in the system amplifies noise compared to the
non-homeostatic system (grey line). Homeostatic time-constants were 10, 50 and 100ms.
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Figure 4: Homeostatic regulation in a network of integrate-and-fire neurons.
A) The effective time-constant of the network as a function of recurrent connection strength.
Circles denote simulation results and the curve is the fitted relation τ1/(1− wm).
B) The f-I curve and the stability criterion. The solid curve shows the f-I curve as determined
from the simulations with homeostasis turned off. The various lines have a slope proportional
to τ3. According to linear theory stability the minimal τ3 required is given by the slope at
the set point (dashed lined). Stability of a system with a non-linear f-I curve requires the
time-constant to be such that the line encompasses the f-I curve (dotted line). In practice
stability was achieved for a slightly smaller value of τ3 (solid line).
C) Example population response to step stimuli for varying values of τ3 corresponding to the
lines in panel B). From top-to bottom: stable according to , τ3 = 322ms (Aizerman criterion);
τ3 = 240ms (empirically stable); τ3=200ms (edge of instability); τ3 = 64ms (linear criterion);
Bottom panel: network without homeostasis.
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Figure 5: Networks with longer feedback cascade are less stable. A) The effect of adding
a third filter to a two filter cascade. The stability is expressed as the maximum recurrence
allowed in the network before it becomes unstable (transient oscillations allowed). The system
with three filters is always less stable than the two filter system. The time-constants were set
τ1 = 10, τ2 = 50 in the case of two filters, and τ1 = 10, τ2 = 50, τ3 = x, as well as τ1 = 10,
τ2 = x, τ3 = 50 for the three filter case.
B) Stability versus the number of filters for various filter cascades. As a function of fil-
ter number, time-constants were set linear 10, 20, 30, 40, . . . (dashed), constant with slow fi-
nal integrator 10, 500, 500, . . . , 500, 5000 (dot-dashed), or exponential 10, 20, 40, . . . (solid) and
10, 30, 90, . . .ms (thick solid). The inset show the time-constants for a cascade with 10 filters
for the various cases. Except for the last case, stability decreases with the number of filters.
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