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Abstract

The optimal processing of spectral data often requires specific pre-treatments.
In the context of spectral discrimination, results can be greatly improved us-
ing the relevant pre-treatment. Most importantly, the pre-treatment must
be suited to the nuisance variability that has to be removed. This study fo-
cuses on discrimination of weed and wheat using spectra acquired in outdoor
conditions with uncontrolled lighting and leaf orientations. Both vegetation
spectra are highly similar, and due to the context of acquisition, a lot of
spectral variability is present. This nuisance variability is modeled using an
additive, multiplicative and noise term, each of which affects the measured
spectra. Several pre-treatments were therefore evaluated according to their
potential to deal with this variability and their effects were described in the
feature space. Finally, results obtained with these pre-treatments combined
with two discrimination methods (PLS-LDA and Gaussian SVM) are com-
pared and discussed. Results showed that, thanks to their ability to remove
nuisance variability, most pre-treatments are effective in terms of classifi-
cation accuracy. Gaussian SVM classification results are less influenced by
pre-treatments than those of PLS-LDA, since the former compensates the
pre-treatment effect by using a different non-linear kernel. For this data-set,
the best discrimination result was obtained using the combination logarithm
and PLS-LDA. Logarithm actually transforms the multiplicative effect into
and additive one, which is then effectively dealt with by PLS-LDA.
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1. Introduction

In the field of spectral data discrimination, vectors to be classified lie in a
high-dimensional space which leads to poor classification results when using
standard statistical classifiers. In fact, Hughes (1968) has even demonstrated
that as space dimensionality increases there is a corresponding drop in sta-
tistical mean accuracy. The problem is even more complex because spectral
variables are also highly correlated, which implies that covariance matrices
of spectra are rank deficient and are thus not invertible. As a result, usual
discrimination methods such as Fisher’s Linear Discriminant Analysis (LDA)
cannot be applied to spectral data.

To handle these problems, in the chemometrics field, Partial Least Squares
(PLS) has been introduced by Herman Wold (Wold, 1966) in order to solve
an over-determined regression problem through dimension reduction. In the
case of discrimination, the same idea of applying dimension reduction as a
first step has been used in Partial Least Squares Linear Discriminant Anal-
ysis (PLS-LDA) (Barker and Rayens, 2003). PLS-LDA thus tackles both
problems, i.e. high-dimensional vectors and highly correlated vectors, and
has led to successful discrimination results in spectroscopy (Liu and Rayens,
2007).

In the pattern recognition field, discrimination problems generally re-
late to high-dimensional data. For discrimination purposes, Support Vector
Machine (SVM) has been introduced in (Vapnik, 1998) and has proven its
efficiency in finding robust class separators even with highly correlated spec-
tral variables, e.g., in remote sensing applications (Plaza et al., 2009; Fauvel
et al., 2012; Rajan et al., 2008). The success of SVM also comes from its
ability to deal with non-linearly separable classes by using a kernel that maps
the data into a higher dimensional space (Aizerman et al., 1964; Karimi et al.,
2006).

The use of spectral properties to discriminate plant species has been re-
viewed in (Zwiggelaar, 1998), since then most studies have revealed that
spectral indices only lead to an accurate discrimination when weeds and crop
have enough spectral differences (Piron et al., 2008; Pedersen, 2001; Thorp
and Tian, 2004; Sui et al., 2008). In other cases, finding weeds within crop
rows is a much more difficult problem to address, and thus requires a more
advanced use of the spectral information (Brown and Noble, 2005; Slaughter
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et al., 2008; Hadoux et al., 2012).
The discrimination methods previously described could be directly ap-

plied to the spectra. However, these spectra are often affected by nuisance
variability due to the environment which has to be dealt with while at the
same time keeping the spectral variability that comes from the objects’ chem-
ical composition. For example, accurate spectral discrimination has been ob-
tained under controlled leaf orientations in Franz et al. (1991), but authors
have shown that a major drop in discrimination accuracy occurs as soon as
leaf orientation changes. In Vigneau et al. (2011), authors have explored
the effect of leaf orientation in order to build a prediction model of nitrogen
content using hyperspectral imaging. They modeled the effect of outdoor
lighting and orientation using a linear model and overcame this effect using
standard normal variate (SNV) pre-treatment. Recent studies have evalu-
ated the utility of several pre-treatments primarily for regression purposes.
For example, Buddenbaum and Steffens (2012a), Buddenbaum and Steffens
(2012b) and Stevens et al. (2010) have reviewed different pre-treatments for
soil component estimation. Recent studies (Jones et al., 2012; Vidal and
Amigo, 2012) have also evaluated the efficacy of several pre-treatments, un-
der controlled lighting conditions, for chemical resolution applications.

To the best of our knowledge, the effects of pre-treatments have not been
studied in a spectral discrimination context, and especially while taking into
account the physical meaning of the nuisance variability that occurs in out-
door conditions with uncontrolled lighting and leaf orientations.

In this paper, we aim to answer the following question: based on the
acquired spectral data, which combination of pre-treatments and discrimi-
nation method leads to the most accurate and reliable results? To do so, in
section 2 we model the nuisance variability due to the outdoor environment
and optical measurement variations. In this section, we also present several
pre-treatments that are adapted to deal with this variability, their scope and
their effect in the feature space. In section 3 our experimental setup and ex-
periment design are detailed. Finally, in section 4, our experimental results
obtained with PLS-LDA and Gaussian SVM are presented and discussed.
Results obtained with PLS-LDA are also detailed in terms of both the class
separability and the bias occurring between training and test set.
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2. Theoretical aspects

2.1. Notations

In this paper, the following symbolic conventions are used. Boldface
capital characters are used for matrices, e.g. X ; small bold characters are
used for column vectors, e.g. x; row vectors are denoted by the transpose
notation, e.g. xT ; non bold characters are used for scalars, e.g. matrix
elements xij, vector element xi or indices i. The identity matrix of Rn is
denoted by In.

When dealing with spectral data, two representations can be used:

• the individual space (in R): a spectrum is represented as a curve de-
pending on the wavelength: r(λ) . This space should be only used for
visualization purposes.

• the feature space (in Rp) in which a spectrum corresponds to a vector
r in a p-dimensional space where p is the number of wavelengths. Since
multi-variate discrimination methods act in this space, any modifica-
tion on the spectrum should be understood in this space.

In our study we therefore describe the pre-treatments effect in the feature
space and we represent their effects in the individual space (for practical
representation reasons).

2.2. Optical model

Let us consider a reflectance hyperspectral image which was obtained
by using a reference surface for lighting measurement and correction (see Vi-
gneau et al. (2011)). Due to the uncontrolled lighting conditions and leaf ori-
entations when acquiring the hyperspectral image, the measured reflectance
spectrum for a given leaf can vary a lot. This measured reflectance spectrum
r(λ)meas has been represented in Vigneau et al. (2011) as a linear function
of the leaf reflectance spectrum ρ(λ):

rmeas(λ) = m · ρ(λ) (1)

where m is a multiplicative term that models the effect due to the uncon-
trolled leaf orientation toward the incident light.

In Vigneau et al. (2011), the additive term only corresponds to a specular
reflection from the sun directly toward the sensor. In our study, another ad-
ditive term that corresponds to spectrometers common defects is also added
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to equation 1. It is modeled as a linear trend (Barnes et al., 1989) which is
scaled by the wavelength: a0 +a1 ·λ. Finally, a noise term n(λ) is also added
to the model which corresponds to statistical fluctuations in the photoelec-
tron number (Poisson distribution). Note that the noise variance depends on
the wavelength and is directly related to the silicon sensitivity of the CCD
sensor. The final model of our study is given in equation 2.

rmeas(λ) = m · ρ(λ) + a0 + a1 · λ+ n(λ) (2)

2.3. Spectral pre-treatments

This study is focused on spectral pre-treatments that are able to reduce
or remove the nuisance variability sources given in the equation 2, i.e. the
multiplicative term m, the additive term a0 and a1 and the noise term n(λ)
from the measured spectrum. Using this notation, the term ρ(λ) is referred
to as useful spectral information while the others are referred to as a nuisance
variability (for discrimination purposes).

The pre-treatments evaluated in this study that can cope with some parts
of the nuisance variability sources are listed in Table 1. For clarity, a nomen-
clature to describe these pre-treatments according to their effects and scopes
have been used. The term global refers to a pre-treatment that has a unique
effect on a given spectrum without differentiating between wavelengths. The
term piecewise describes a pre-treatment that uses its neighboring wave-
lengths. The term local refers to a pre-treatment that treats each wave-
length independently. We also differentiate the actual pre-treatment effect
using terms: reduce, transform or remove. For example, smoothing reduces
the noise piecewise using a numerical filter of a given width, logarithm trans-
forms the multiplicative effect (into additive) locally and centering removes
the additive effect globally.

In the following, the main pre-treatments are detailed and their effect in
feature spaces are described.

2.3.1. Dealing with additive effects

The centering pre-treatment (also known as constant detrending or de-
trending of order 0) and linear detrending (or detrending of order 1) have
been chosen to deal with additive term a0 and the linear trend a0 + λ · a1
respectively.

Their expressions in the feature space can be expressed using the same no-
tation. LetDk be the matrix Dk =

[
p0,p1, · · · ,pk

]
, where pi = [1i, 2i, · · · , pi]T
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Table 1: Pre-treatments evaluated in this study, their effect on spectrum: remove (rm),
transform (tr) or decrease (dc) and their scope : global (G), piecewise (P), local (L) as
described in Section 2.3.

Pre-treatment Abreviation
Additive

Multiplicative NoiseConstant Linear
None R
Center D0 rm - G
Detrend linear D1 rm - G
Normalize std Nstd rm - G
Normalize Norm 1 N1 rm - G
Normalize Norm 2 N2 rm - G
Center - Normalize std D0 −Nstd rm -G rm -G
Center - Normalize Norm 1 D0 −N1 rm -G rm -G
Center - Normalize Norm 2 D0 −N2 rm -G rm -G
Logarithm Log tr - L
Logarithm - Center Log −D0 rm - L
Smoothing SG0 dc - P
1st Derivative SG1 rm - P dc - P
2nd Derivative SG2 rm - P rm - P dc - P
Smoothing -Center SG0 −D0 rm - G dc - P
Smoothing - Detrend linear SG0 −D1 rm - G dc - P
Smoothing - Normalize std SG0 −Nstd rm - G dc - P
Smoothing - Normalize Norm 1 SG0 −N1 rm - G dc - P
Smoothing -Normalize Norm 2 SG0 −N2 rm - G dc - P
Smoothing -Center - Normalize std SG0 −D0 −Nstd dc - P
Smoothing -Center - Normalize Norm 1 SG0 −D0 −N1 dc - P
Smoothing -Center - Normalize Norm 2 SG0 −D0 −N2 dc - P
Smoothing -Logarithm SG0 − Log tr - L dc - P
Smoothing -Logarithm - Center SG0 − Log −D0 rm - L dc - P

and p corresponds to the number of wavelengths. Detrending of any order k
corresponds to projecting the spectrum orthogonal to the matrix Dk (Boulet
and Roger, 2012):

rcorr =
(
IP −Dk

(
DT

kDk

)−1
DT

k

)
rmeas (3)

If k = 0, p0 = [1, · · · , 1]T , the spectrum is projected on an hyperplane
orthogonal to the vector composed only of ones. Similarly, linear detrending
corresponds in the feature space to the projection of the spectrum orthogonal
to the matrix D1. Note that in practice, as k increases, special care should be
given for numerical inversion of the matrix DT

kDk because of large differences
between its eigenvalues (Meyer, 2000).

Expressed in Rp, it is clear that the spectral dimension is reduced from
p to p − 1 and from p to p − 2 for the detrend 0 and for the detrend 1 re-
spectively. Indeed, the spectrum is projected orthogonal to a matrix of rank
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1 and 2 respectively. Removing these dimensions when dealing with data in
such a high-dimensional space might not appear problematic, especially since
the actual dimension of visible and near infra red (V-NIR) spectra is usually
quite low due to the high correlation between wavelengths (Naes et al., 2002).
However, when these pre-treatments are applied, the global intensity infor-
mation is also definitively removed. Class separability therefore decreases if
discriminatory information is colinear to these (removed) directions in the
feature space.

2.3.2. Dealing with multiplicative effects

In this study, we considered two types of pre-treatment to deal with the
multiplicative term, i.e., normalizing and logarithm transformation.

With the normalizing approach, a single factor computed from all wave-
lengths is used to normalize the spectrum. Several normalizing factors can
be used and lead to different results that depend on the context, e.g. num-
ber of wavelengths of the spectral data, presence of outliers, intensity of the
reflectance values, etc. Usual normalizing factors are norm 1, norm 2 or
standard deviation (std) of the spectrum:

rcorr =
1

N (rmeas)
rmeas (4)

where N(·) = {‖ · ‖1, ‖ · ‖2, std(·)} corresponds to the normalizing factor.
Note that by using variation information around the mean, std is less sensi-
tive to centered noise. In the feature space, normalizing using norm 1 cor-
responds to the projection of the spectrum onto the space orthogonal to the
vector [1, · · · , 1]T in Rp. When using norm 2, the spectrum is projected onto
the unit sphere of dimension p. Finally, normalizing using standard deviation
corresponds to the projection of the spectrum onto a (p−1)-dimensional hy-
persphere of unit radius (centered on its mean). Spectra with different angles
(in Rp) before the pre-treatment remain different after projection. Therefore,
if discriminatory information between spectra is in a space spanned by a dif-
ference in intensity (length of the vector in Rp), the information is lost after
projection.

Another approach to deal with multiplicative term is the logarithm trans-
formation which is described as follows:

rcorr = log (rmeas) (5)
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, where the log(·) operator is applied to every element of rmeas individually.
In the feature space, this transformation corresponds to using a logarithmic
scale instead of a linear one. Doing so, no spectral dimension is lost and the
transformation is reversible. However, logarithm transformation itself does
not remove the multiplicative term, it only transforms the multiplicative term
into an additive term.

2.3.3. Dealing with noise: smoothing and derivative

Savitzky-Golay smoothing (Savitzky and Golay, 1964) performs a piece-
wise polynomial fitting with specified width and order to the spectrum. This
smoothing method has been successfully adopted by the spectroscopy com-
munity because it is able to reduce noise while keeping the meaningful vari-
ation that occurs at these wavelengths.

In the individual space, it increases the correlation between neighboring
wavelengths and reduces random noise leading to smoother curves. In the
feature space, it increases the correlation between variables, therefore in-
creasing the matrix column correlations and decreasing the real rank of the
spectral data.

Savitzky and Golay have also provided a smoothed version of first and
second numerical derivatives with a high signal to noise ratio. Some theoret-
ical advantages and practical properties of Savitzky-Golay derivatives have
been studied (Luo et al., 2005). In our study, first derivatives are used to
remove baselines and second derivatives to removes slopes.

2.3.4. Combination of pre-treatments

The previously described pre-treatments taken individually are designed
to correct only for a part of the nuisance variability of the model given
in equation 2. We must therefore combine them optimally to attempt to
remove more of the nuisance variability. Table 1 lists every combination of
pre-treatments evaluated in our study.

Because the order of applying different pre-treatments is important, a
consistent notation ordered from left to right is used in this paper. For
example, Smoothing - Center - Normalize Norm 1, corresponds to apply first
a smoothing, then a centering and finally a normalization (with norm 1).

Among these combinations, the most widely used in spectral data analysis
is called Standard Normal Variate (SNV) (e.g. see (Sun et al., 2011)) and it
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combines centering and normalizing using std:

rSNV =
1

std (rmeas)

(
IP − p0

(
pT
0 p0

)−1
pT
0

)
rmeas. (6)

In the feature space, a spectrum is first mapped on the hyperplane of
dimension (p − 1) orthogonal to [1, · · · , 1]T . The resulting vector is then
projected onto a (p− 1)-dimensional hypersphere of unit radius. Geometric
details of this transformation are well described in (Fearn et al., 2009).

3. Material and methods

3.1. Experimental setup

Short-range in-field hyperspectral images were acquired using a camera
(Hyspex V-NIR 1600, Norks Elektro Optikk, Norway) with a spatial res-
olution of 0.2 mm/pixel at a distance of 1 meter above the ground. The
acquired spectra were composed of 160 spectral bands ranging from 415 nm
to 1000 nm. Each image was composed of 1600 pixels per row and the number
of rows, that depended on the scanning length, was in average 3000. A typ-
ical RGB image reconstructed from the hyperspectral image is represented
in Figure 1. In this figure, weeds are also highlighted using the Normalized
Difference Vegetation Index (NDVI) (Rouse et al., 1973).

Using a calibrated reference surface in each image (see on the right-hand
side of Figure 1), radiance values were transformed into reflectance values.
In doing so, the obtained reflectance images were almost independent of the
atmospheric conditions and illumination. Image acquisitions were carried
out over two consecutive years, at a growth stage that corresponds to the
weeding period, and under various lighting conditions, i.e. sunny and cloudy
weather, shaded areas, etc. In each image, weeds (dicotyledons), wheat, soil
and the reference surface were in the camera field of view as represented in
Figure 1. In total, 9 images, in which each weed position was recorded in the
field, were used for the study and were randomly separated into two groups:
4 images for the training and 5 images for the test. A ground truth map of
weed and wheat was then manually created for each image. Finally, around
1600 spectra for training set and 1600 spectra for the test set were randomly
selected and labeled as either wheat or weed according to the ground truth.

We applied every pre-treatment listed in Table 1 to the training and test
sets. For Savitzky-Golay smoothing and derivatives, the parameters that
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Figure 1: Illustration of a typical image from the data set. (top) RGB image reconstructed
from the hyperspectral image. Note the reference surface used for reflectance correction
on the right-hand side. (bottom) NDVI images zoomed on the weeds.

gave the best results using a cross-validation (Esbensen and Geladi, 2010) on
the training set were a third order polynomial and a kernel width of 17.

Concerning the two-class discrimination problem (wheat and weed), we
used Partial Least Square Linear Discriminant Analysis (PLS-LDA) and Sup-
port Vector Machine with a Radial Basis Function Kernel (Gaussian SVM).
Every model (pre-treatment and classifier) was trained and tuned using a
cross-validation on the training set and its performance was then assessed
on the independent test set (Esbensen and Geladi, 2010). Both classifiers,
i.e. PLS-LDA and Gaussian SVM were compared in terms of the prediction
error (on the test set).

For Gaussian SVM, the model complexity was also reported as a way to
understand how complex the discrimination task as a function of the pre-
treatment.

For PLS-LDA, bias and class separability of the scores were also mea-
sured. The bias corresponded to a shift occurring between the best separa-
tor in the training set and the separator that would be the best in the test
set. The class separability was measured by computing the Wilk’s lamdba
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(ΛWilks) (Everitt and Skrondal, 2002) on the PLS-LDA scores. In Figure 2
the bias and separability are illustrated for our two class discrimination prob-
lem.

Figure 2: Illustration of the bias and separability for PLS-LDA performance assessment.
Green and red represent two different classes. Dotted lines represent a training set and
plain lines represent a test set.

4. Experimental results

Pre-treatment effects on the training spectra are displayed in Figure 3
with green for wheat and red for weed. In each class, the solid line corre-
sponds to the average spectrum and the plain color area represents its vari-
ability (standard deviation) within the training set. Raw spectra (without
any pre-treatment) are shown in Figure 3a. Additive corrections are rep-
resented in Figures 3c (detrend of order 0) and Figure 3d (linear detrend).
Figures 3b, 3e, 3f and 3g correspond to multiplicative corrections using loga-
rithm, normalizing factors norm 1, norm 2 and std respectively. Smoothing,
first and second derivative are shown in Figures 3h, Figures 3i and Figures 3j.

Discrimination results obtained with every combination of pre-treatments
(detailed in Table 1) are displayed in Figure 4 using a radar chart. Each
edge corresponds to a specific pre-treatment and each color to a discrimina-
tion method, i.e. blue for Gaussian SVM and red for PLS-LDA. Gaussian
SVM model complexity is defined by the number of support vectors used to
create the model divided by the available number of training samples and
is displayed (in %) with a dashed blue line. For PLS-LDA, only the rate
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(a) R (b) Log

(c) D0 (d) D1

(e) N1 (f) N2

(g) Nstd (h) SG0

(i) SG1 (j) SG2

Figure 3: Pre-treatment effects on real reflectance spectra taken from the training set.
Wheat spectra are in green and weed spectra in red. Filled areas correspond to spectral
variability within each class. Abbreviations are detailed in Table 1.12
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Figure 4: Radar chart displaying the rate of good discrimination in (%) for both discrim-
ination methods : PLS-LDA (red), and Gaussian SVM (blue). SVM model complexity
(dotted blue) corresponds to the percentage of support vectors used to create the model
(in the available training set). Gray area corresponds to result where at least a smoothing
has been applied. Abbreviations are detailed in Table 1.
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of good discrimination was considered since the same model complexity (6
latent variables) was obtained with every pre-treatment.

The separability obtained with the training (blue) and test set (red) are
represented in Figure 5a. The bias obtained from the training set to the test
set is represented in Figure 5b. In both radar charts results are expressed in
percentages and relative to the results obtained with raw spectra. Note that
on the radar chart, a result lying outside the main area corresponds to an
unfavorable pre-treatment and a result close to the center corresponds to a
useful pre-treatment.

5. Discussion

5.1. Effects on spectra

Raw vegetation spectra in Figure 3a clearly indicate a plateau in the near
infra red (NIR) region (750 nm - 1000 nm). The increasing slope between
670 nm and 750 nm, called red-edge, is a robust indicator to discriminate
vegetation from the background (Brown and Noble, 2005), (Slaughter et al.,
2008). The bump between 500 nm and 600 nm corresponds to the green
color of vegetation and the strong absorption at around 670 nm indicates
the presence of chlorophyll in the leaves. The peak at 760 nm indicates that
oxygen absorption was not accurately corrected using the reference surface
(due to low signals creating an large amount of quantification noise). Above
900 nm, spectra are noisier because of a lower sensitivity of the CCD sensor
in the NIR.

As for the discrimination between these two classes, the NIR plateau is
on average higher and the red-edge steeper for wheat spectra than for weed
spectra. A slight difference in greenness between both vegetation spectra is
also noticeable between 500 nm and 600 nm.

Within each class a large amplitude variation at every wavelength is
clearly visible. Comparing Figures 3c and Figures 3d (additive corrections)
with Figures 3e, 3f and 3g (multiplicative corrections) indicates that this
spectral variation is mostly due to a multiplicative effect.

After smoothing, spectra clearly indicate less random noise in NIR and
the 760 nm peak is reduced. However, main spectral features remained, e.g.
red edge, plateau and greenness differences between weed and wheat.

With derivatives, visual interpretation of the curves is easier since deriva-
tive increases small variations. Boundary effects are also visible at both ends
of the spectra due to numerical filtering computational issues.

14

Author-produced version of the article published in Computers and Electronics in Agriculture, 2014, N°108(), p.242-249 
The original publication is available at http://www.sciencedirect.com  
Doi: 10.1016/j.compag.2014.08.010 



(a)

(
ΛWilks

ΛWilks(R)

)−1

(b)
Bias(Training → Test)

Bias(Training → Test)(R)

Figure 5: Radar charts obtained with PLS-LDA. (a) the class separability for the training
(red) and the test set (blue). The value has been inverted for visualization purpose. (b) the
bias between training and test. Results are expressed in percent and relative to the results
obtained with raw spectra. Gray area corresponds to results where at least a smoothing
has been applied. Abbreviations are detailed in Table 1.

5.2. Discrimination

Curves presented in the previous section demonstrate the difficulty of
the discrimination task between wheat and weeds despite any sort of pre-
treatment. There is in fact very little difference between weed and wheat
spectra as well as the variability within each class being large.

However, most pre-treatments evaluated in this study were effective in
dealing with the discrimination problem. Both PLS-LDA and Gaussian SVM
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obtained a discrimination accuracy of more than 80% which demonstrates
their potential in spectral analysis. With raw data (R), high discrimination
rates are observed for both methods, i.e. 87% for SVM and 80% for PLS-
LDA. The SVM model used 60% of the available training spectra to create
its model. Around a thousand points in a 160-dimensional vector space is
still low and confirms the high correlation of the spectral data (the space is
almost empty). PLS-LDA appears more sensitive to the pre-treatment than
Gaussian SVM, the latter compensates for the loss of information by creating
a more complex non-linear model.

The best pre-treatment is clearly the logarithm transformation, especially
when used with PLS-LDA (96%). Logarithm does not suppress multiplicative
effect, it transforms this effect into an additive one which is then entirely
handled by PLS-LDA.

On the other hand, normalization forced spectra to lie in a lower dimen-
sional subspace by forcing low and high intensity values to be on the same
scale. Therefore, some discriminatory features such as NIR plateau value
and greenness were diminished. Gaussian SVM model complexity indicates
that problems occurred when using normalization of any sort. The obtained
model was therefore more complex and only based on subtle features that
were still present in the corrected spectra. For PLS-LDA, however, normal-
ization gave better results than with raw spectra. Since PLS-LDA cannot
deal with a multiplicative effect, it was better to lose some information than
to be perturbed by the multiplicative effect.

For both classifiers, smoothing appears to be an important first pre-
treatment step by reinforcing the correlation between neighboring wave-
lengths and by reducing noise. It thus helps the discrimination method to
build simpler models that are less sensitive to an error when using a specific
wavelength.

Removing additive effects (by centering or removing linear trend) did not
improve PLS-LDA discrimination results since it can handle additive effects
on its own if they are present within the training set. On the contrary,
Gaussian SVM cannot deal with additive effects even if they are present in
the training set, i.e. it learns the discrimination boundaries knowing only
some examples of translated vectors. By removing additive effects, SVM
model complexity decreased therefore helping the model to find a better
class separation.

Using the first and second derivative does not significantly improve dis-
crimination results for either classifier. It provides slightly lower Gaussian
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SVM model complexity while keeping the discrimination result constant.
PLS-LDA is not greatly affected by this pre-treatment step since it can han-
dle the same effects on its own.

5.3. PLS-LDA separability and bias

In this study, spectra came from images acquired at different times and
parts of the field, creating between-image variability. Since spectra from the
training set were taken from images different from those of the test set this
variability could not be learned by the model. PLS-LDA first step is to
reduce the dimension of the space. The class separability and the bias were
thus computed in this lower dimensional space avoiding statistical estimation
problems that occur in high-dimensional spaces (Hughes, 1968).

In the radar chart of Figure 5a, similar patterns are observed with the
training set and the test set. The separability was always worse with the
test set than with the training set (except when using the logarithm). This
difference indicates a slight over-fitting of the model to the training set even
using a proper validation method. None of the pre-treatments was designed
to handle the bias occurring between training set and test set, however, from
the chart in Figures 5b, we observe they all had a positive influence on the
bias.

Generally, removing multiplicative effects gave more separability than
with raw data. Logarithm transformation provided the best results in terms
of both separability and bias even without smoothing and/or centering. Log-
arithm kept all the data information by only transforming the multiplicative
effect. The discrimination model was therefore based on the main spec-
tral differences and was more robust to small changes occurring between the
training set and the test set. With normalizing, results of each factor were
nearly equivalent with only a slightly poorer result for standard deviation.
Standard deviation, as explained in section 2.3.2, makes more assumptions
about the data distributions.

Removing additive effects by detrending or derivative considerably re-
duced the class separability and gave worse results than with raw data. In-
deed, when using PLS-LDA, if the additive effect is present in the training
set, there is no need to remove it through any pre-treatment. In terms of
bias, almost no improvement is noticeable by removing additive effect.

Smoothing had an large positive effect in terms of bias but had a negative
effect in terms of separability. The bad effect on separability was likely caused
by the filter being too strong, thus resulting in the removal of some useful
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discrimination information. On the other hand, smoothing removed small
variations that might have occurred between images thus reducing the bias.

6. Conclusion

This study examines the influence of pre-treatments on the discrimination
of wheat and weed spectra in outdoor conditions. We demonstrated that to
deal with the modeled nuisance variability the most effective combination of
pre-treatment and discrimination methods was the logarithm transformation
with PLS-LDA. Logarithm was the only pre-treatment that dealt with multi-
plicative effect without explicitly projecting the data on a lower dimensional
subspace in which useful discriminatory information was lost.

Experimental results also validate the model of measured reflectance for
outdoor application with uncontrolled light, and leaf orientations. This ap-
proach will however require further studies to increase the understanding of
the bias occurring between images. This would help to create a more detailed
model and hopefully some treatments that can handle this bias.
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