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Abstract— One main challenge of prototyping a SoC (System on 
Chip) on FPGA (Field Programmable Gate Array) is to tune at best 
the communication architecture according to the task graph of an 
application and the available resources of the chosen FPGA. The 
exploration of the potential design candidates is time consuming, 
tedious and does not scale. The sheer number of parameters leads to a 
wide design space that cannot be explored in a limited time. 

The aim of this paper is to identify mathematical models applied 
to NoC to estimate FPGA resources. Mathematical models are 
obtained from a database containing a set of observed results. Using 
the database, the Pearson’s correlation coefficient and the variable 
clustering are used to set the most appropriate variables and 
constants. The mathematical models are obtained and then validated 
with a set of experimental results. The validation shows that the error 
rate between observed results and the analytically estimated results is 
less than 5%. The designer can therefore tune the NoC in shorter 
exploration time. 

Keywords — Design Space Exploration, NoC dimensioning, 
FPGA, mathematical modeling, resource estimation. 

I. INTRODUCTION 

Systems On Chip (SoC) using Network on Chip (NoC) are the 
most appropriate systems for real time embedded applications. 
The SoC is a set of hardware or software IPs (Intellectual 
Properties) connected to the NoC. NoCs are emerging 
communication structures as they provide high bandwidth and 
high scalability with low power. 
In the design of SoC, the number and type of IPs are extracted 
from the algorithm. Signal and image processing algorithms 
are mainly described as a graph with functions and flow related 
to data or control dependencies. In most cases, one function is 
considered as an IP in the SoC. The flows between functions 
are implemented by means of the communication structure 
(NoC). According to the number of IPs, the communication 
structure is tuned. Tuning the NoC consists in selecting 
appropriate parameters of the NoC. The number of parameters 
and their associated values are high. Exploring all appropriate 
solutions is an intensive time process because of the sheer 
number of parameters required for the NoC. The designer 
selects the NoC without exploring all candidates, gaining 
significant time in the development process but the chosen 
solution is not always optimal. 
The Field Programmable Gate Array (FPGA) devices are 
widely used for prototyping systems. FPGA can be used to 
emulate the NoC performances within a fast design space 
exploration cycle. The performance metrics on FPGA are 

timing (bandwidth, latencies), area and energy consumption. 
Emulation gives precise timing and power evaluations in a 
shorter cycle compared to simulation [1]. Emulation on FPGA 
is not suitable for area estimation. Each NoC candidate has to 
be synthesized then placed and routed to obtain the number of 
resources required. Area estimation can be explored after either 
the synthesis or the place and route process. These processes 
are time consuming. With large size of FPGA, this process can 
run for several hours for one NoC candidate. Therefore it is not 
possible to synthesize all candidates to evaluate the number of 
resources required. 
Area estimation is important in order to find architectural 
solutions that: 1) suit to the target FPGA 2) correspond to 
application requirements 3) provide efficient timing results. 
The aim of this work is to provide a methodological framework 
based on mathematical modeling. The identified models help 
the designer to select the appropriate NoC candidates from a 
restricted number of implementation with FPGA and algorithm 
constraints. 
The contribution of this paper is to show the feasibility of 
creating a mathematical model for sizing a NoC on FPGA. 
This model was validated by a comprehensive set of 
experimentations. It guarantees a reduction of time necessary 
to the design space exploration (DSE) of NoC in the field of 
signal and image processing. 
 
The paper is organized into 9 sections. Related works are given 
in section 2. The design space exploration of NoC on FPGA 
including basis elements (NoC, FPGA, application and 
devices) is detailed in section 3. The methodological 
framework is described in section 4. The development of the 
mathematical models is presented in section 5. Validation of 
both experiments XP1 and XP2 for different sizes of NoC on a 
set of FPGAs are described in section 6. The impact of the 
synthesis optimization goals is studied in section7. The 
limitations of the models are in section8. Conclusion and future 
works are in section 9. 

II. RELATED WORKS 

NoCs have emerged as efficient scalable and low 
power communication structures for many-core SoC (System 
On Chip including several hundred or thousands of cores). 
Many NoCs are designed for FPGA devices [2][3][4] and 
application-specific NoC design flows are proposed [13]. In the 
design flow, the application described as a task graph is 
mapped to the topology graph. The topology graph is the NoC 



structure with all parameters already specified. These design 
flows do not explore the design space of the NoC.  
Design space explorations for the NoC are mainly based on 
power consumption and timing [1][5][6][7][10]. ORION is a 
tool designed for fast and accurate power and area model on 
Integrated Circuit (IC) [7]. The tool explores the area occupied 
(mm2) and the power (mW) by the NoC used on 65 nm chips 
when routers and links increase. The 3D Tezzaron design flow 
also explores the 3D NoC to reduce the area of the chip and 
interconnects on ASIC to optimize power [10]. A system level 
approach is proposed to explore the NoC design space with an 
objective to minimize the energy consumption and link 
bandwidth (timing). These works concern power and timing 
evaluation for ASIC. 
NOCDEX is a tool to evaluate the impact of various options on 
area, number of cycles and execution time on FPGA [8]. The 
tool evaluated the number of cycles according to the number of 
slices and the maximum frequency for a cascade NoC with 4 
masters and 4 slaves.  
Power models at different abstraction levels have also been 
proposed for a variety of networks in the past. Models for 
resource estimation of the NoC on FPGA have not been fully 
explored yet. A power area analysis of NoCs in FPGAs has 
been proposed in [9]. The analysis is based on the analysis of 
power and area of the router for the 4×4 torus topology. This 
work only considers the routing blocks, no any others blocks or 
routing. The number of links varies according to the position of 
the router so that it has a huge impact of the total number of 
resources. It is necessary to analyze the global structure to 
obtain a precise model depending on the topology. We propose 
to explore the design space of NoCs to estimate the area metric 
on FPGA. Explorations are constrained by the target FPGA and 
the data flow graph from the application. 

III. DESIGN SPACE EXPLORATION OF NOC ON FPGA 

Design Space Exploration (DSE) refers to the activity 
of exploring design alternatives prior to implementation [12]. 
The challenge of DSE is to explore the sheer size of the design 
space and to find the best candidates. Typically a large system 
has billions of possibilities as parameters of NoCs are 
abundant. The designer must select the topology, the number of 
nodes, the size of flits, the commutation mode, the routing 
algorithm, the size of buffers and many other parameters. 
Enumerating every point of the design space is prohibitive and 
is time consuming [11]. 
Moreover, the exploration of NoC candidates on FPGA is huge 
as the number of FPGAs is high. The portfolio of Xilinx 
company includes six FPGA families (Spartan, Artix, Kintex, 
Kintex Ultrascale, Virtex and Virtex ultrascale) [15]. Each 
family has around hundreds of devices.  
The estimation of resources for each NoC candidate on each 
FPGA device is long. Observed resources are obtained from a 
synthesis process whose time depends on the size of the NoC 
(29 minutes for a medium size and several hours for a large 
size). Exploring all points on the design space can take several 
weeks. 
 
The methodological framework proposed is based on the 
following elements described below: 

• The NoC structure, 
• The FPGA devices. 

A. Network On Chip (NoC) 

NoC are communication structures proposed as a 
solution for the communication challenge. NoC architecture is 
composed of several basic elements depicted in Fig. 1 : 
• Network Interface (NI): it enables PE (Processing 

Element) to communicate with routing node they are 
connected to. 

• Routing node (or switch): according to the routing 
algorithm, the switch sends packets to the appropriate link 
in the network. 

• Links: connect the routing switches together or switches to 
NI. 

• Processing Element: these units correspond to various 
modules of SoC, such as IP blocks, memories, processors. 
 

 

Fig 1.  Basic elements for the NoC structure. 

Many topologies can be considered for NoC structures: mesh 
(a), torus, ring (b), tree (c)…. The mesh topology is the most 
appropriate for FPGA devices (as depicted in Fig. 1). The 
following work uses mesh-based NoC but the framework can 
be extended to others.  
One PE sends messages to another PE through the NoC. 
Messages are compacted and divided into packets, which are 
divided into parts of the size of a flit. Flits (Flow Control 
Units) can be classified based on their position inside the 
packets as header, tail or payload.  

B. FPGA  

An FPGA (Field Programmable Gate Array) is a 
programmable logic device used in various applications 
requiring rapid prototyping of digital electronics 
(telecommunication, image processing...). Modern FPGAs are 
now able to host processors cores as well as several IP blocks 
to perform efficient prototyping of embedded systems. 
However, the designer can obtain, after the synthesis process, a 
prevision of FPGA resources. Resources are LUT (Look Up 
Table), MLUT (Memory LUT), FF (Flip Flop), Buffers and I/O 
(Input and Ouput). The resource allocation is given in the post-
synthesis report. This allowance depends on CLB 
(Configurable Logic Block) that define the internal architecture 
of the FPGA. 



IV. METHODOLOGICAL FRAMEWORK 

A. Description 

The objective is to mathematically model the relation 
between the input configuration of the NoC and material 
resources used without going through the step of synthesis. So 
we have to identify links between NoC input variables and the 
FPGA resources used for the NoC (LUT, MLUT, FF). 
The variables considered in the mathematical models are:  

• n1: the number of routers in the X-axis. 
• n2: the number of routers in the Y-axis.  
• n3: the depth of buffer. 
• n4: the size of flit. 

 
Other inputs of the NoC are set (i.e. are constants) such as 
routing algorithm, flow control and the number of virtual 
channels (for the use of the credit based control flow).  

 
Fig 2.  Methodological framework 

The methodological framework is proposed in  Fig 2. The 
results obtained are the number of LUT, MLUT and FF 

extracted from each synthesis process. They are stored in a 
database. The number of synthesis should be enough to get a 
full set of observed results. As long as the database is not 
complete, synthesis of the NoC according to variables are 
repeated. 
Then, from the complete database of observed results, data 
analysis is done to obtain links between variables and LUT, 
MLUT, FF. In the first experiment, variables are (n1, n2). In the 
second experiment, variables are (n1, n2, n4). 
In the first and second experiment, once the learning set is 
done, several steps are involved. Starts by analyzing data, 
deducing mathematical models, estimating resources, 
synthesizing additional NoC configurations on the same FPGA 
used on the learning set or synthesizing existing data base Noc 
sizes on different FPGAs, then calculating the relative error 
between observed and estimated resources, at the end, if the 
error rate is less than 6%, models are validated. 

B. Context of XP1 

The NoC used in the following experiments is the 
NoC Hermes. It was developed by the Catholic University of 
Rio Grande do Sul, in Porto Alegre, Brazil [2]. This NoC is 
based on a 2D Mesh switch. The main components of this 
infrastructure are the Hermes switch and IP cores (Fig 3. ). The 
Hermes switch has routing control logic and five bi-directional 
ports. All ports contain input buffers for provisional storage of 
information. 

 

Fig 3.  The Hermes NoC and its switch architecture. 

The platform is the VC707 Evaluation Platform with a Virtex 7 
XC7 VX485 FPGA (containing 303,600 LUTs, 130,800 
MLUTs, and 607,200 FF, registers and IO…).  
The experiments are carried out within the Atlas tool and then 
VIVADO 2012.3 as depicted in Fig 4. The synthesis tool is the 
XST tool (Xilinx Synthesis Tool). 

 
Fig 4.  NoC synthesis for XP1 

The objective is to find fk(n1 , n2) which corresponds to the 
identification of Nbk (number of resources k) for input 
constants (n3: buffer depth {32} and n4: size of flit {16}) and 
input variables (n1: number of routers in the X-axis {3..16} and 
n2: number of routers in the Y-axis {3..8}). 



C.  Context of XP2 

The NoC used in the following experiments is also the 
NoC Hermes. The objective of this second experiment is to 
find gk (n1, n2, n4) which corresponds to the identification of 
Nbk (number of resources k) for input constants (n3: buffer 
depth {32} and input variables (n1: number of routers in the X-
axis {3..16} and n2: number of routers in the Y-axis {3..8}and 
n4: size of flit {16, 32, 64}). The context of the second 
experiment is depicted in Fig 5.  

 
Fig 5.  NoC synthesis for XP2 

V. MATHEMATICAL MODELING 

Before defining the mathematical models, the analysis 
of data is achieved to define the most appropriate variables and 
the order of resources.  

A.  Data analysis 

The aim is to identify from the data analysis links between 
input variables (n1, n2, n4) and FPGA resources LUT, MLUT 
and FF. The variable n3 is not considered as the buffer depth 
remains always identical. This is due to the different kind of 
memory blocks that are used according to the NoC: the number 
does not change, only the type (i.e. the size of the block). The 
Pearson’s correlation coefficient is first observed to measure 
the strength of a linear association between two variables 
(Table 3).  
 

Table 3. Pearson’s correlation coefficient. 
n4 n2 n1 FF LUT MLUT 

n2 0.17 
n1 -0.157 -0.0237 
FF 0.364 0.509 0.531 
LUT 0.460 0.503 0.467 0.992 
MLUT 0.627 0.463 0.339 0.932 0.971 
n1 × n2 -0.056 0.462 0.68 0.88 0.821 0.643 

 
There is a strong correlation between the observed 
resources.  
While analyzing similarities between groups, the strongest 
correlation is between FFs and LUTs (0.992). There are also 
strong correlations between MLUT and LUT, and also FF 
and MLUT.  
There is also a strong correlation (lesser but significant) 
between n1 × n2 and the number of FF and LUT. 
One unexpected correlation is the correlation (in blue) 
between n1× n2 and the FPGA resources: 0.64 with MLUT, 
0.88 with FF and 0.882 with LUT. This correlation is higher 
than the correlations between the FPGA resources and n1 or 
n2. It is also observed that n1 has a higher correlation with 
FPGA resources than n4 and n2. The impact of the size of 
flits is higher than the number of nodes in Y, but lower than 
the number of nodes in X.  
 
But it is also possible to cluster variables in terms of their 
correlations. Two variables have a pair of values for each 
sample, and measures of distance and dissimilarity between 
these two column vectors can be considered. The similarity 
between variables is measured: this can be in the form of 
correlation coefficients or other measures of association. The 
result of a cluster analysis is a binary tree, or dendrogram, with 
n-1 nodes. The branches of this tree are cut at a level of 
similarities obtained in our case by using correlation. 
 
A strong correlation indicates a high degree of similarity. A 
weak correlation indicates a low degree of similarity. 
Similarities are depicted in Table 4 and the corresponding 
dendrogram is presented in Figure 6. 

Table 4. Table of similarities in the melting step 

Group number Number of 
variables 

Similarities between the 
group of variables 

1 6 99.58 
2 5 98.53 
3 4 94.00 
4 3 84.00 
5 2 81.35 
6 1 75.46 

 

 

Fig 6.  Similarities between the variables. 

94.00. 



 
They are illustrated in the table of similarities in the melting 
step (Table 4). 6 groups are extracted. The first group (with a 
99.58 similarity) has 6 variables. The second group is extracted 
for a similarity degree above 98.53. This group contains 5 
variables. It indicates that two variables, FF and LUT, have a 
small distance. The last group contains one variable only. 
The FPGA resources (LUT, FF and MLUT) are strongly 
correlated to (n1 × n2) as the similarity degree is 94 (cf Table 4, 
group number 3). 
 
So, models are carried out with the variable called n1×n2 

instead of considering two independent variables n1 and n2. The 
mathematical models are first based on the number of MLUTs 
as the correlation is lower. The mathematical models are also 
studied from n1 × n2 as this variable has the highest degree of 
similarities compared to n1 only or n2 only. 

B. Mathematical models for XP1 

As the number of routers is n1 multiplied by n2, the 
relation between MLUTobserved and (n1, n2) must be considered. 
So dividing the number of MLUTobserved per (n1×n2) is necessary 
to find those links between the number of MLUTs and one 
router. The phenomenon is illustrated in Fig 7. This figure 
shows 14 classes of measures corresponding to the 14 
variations of n1. And from a class to another there is a 
translation on horizontal and vertical axis.  

 

 

Fig 7.  Number of MLUTs divided per (n1 ×n2) 

Approaching each class by logarithmic trendlines (a 
logarithmic trendline is the best-fit curved line) confirms that 
MLUTobserved /(n1×n2) can be written as: (a × LN(n2-2) + b) and 
there is provided the values of a and b in Fig 7.  

 

Fig 8.  Variation of coefficients a and b 

Table 5. Coefficients to express FF, LUT according to MLUT 
 

Coefficient 
FF/MLUT 

Coefficient 
LUT/MLUT 

Coefficient 
LUT/FF 

Average 3.9632 12.2779 0.32281 
Median 3.9626 12.3027 0.32184 
Standard deviation 0.0049 0.1243 0.00363 
Min 3.9442 11.9239 0.31789 
Max 3.9737 12.4518 0.33327 
(Min+ Max)/2 3.95899 12.1878 0.32558 
Coefficient chosen 4 12 1/3 

The curves show that a is almost a constant value around 5.63 
and b varies. Approaching b by a polynomial trendline allows 
us to deduce the corresponding formula: 
 

��������, �
� = 	 ��� × �
� × ��. �� × ����
 − 
� +

	�−�. ���� × ��

 + �. ���� × �� + ��. ����� (1) 

 
The strong correlation between MLUT and both LUT and FF is 
extracted in the previous section (Data Analysis). Therefore a 
coefficient to express LUT and FF according to fMLUT can be 
found (table 5). With the chosen coefficients, fLUT and fFF 
become: 
 

fLUT (n1, n2) = 12× fMLUT (n1, n2) (2) 
 
fFF (n1, n2) = 4 × fMLUT (n1, n2) (3) 

 
Regarding to fMLUT (n1, n2) given in equation (1). 
 

C. Mathematical models for XP2 

The purpose of this second experiment is to express 
gk(n1, n2, n4) = coeffkij*f k(n1, n2). The size of flits is changed 
from 16 to 32 and the impact on the number of resources is 
analyzed. The number of resources changes according to the 
type of resources. There is one specific coefficient for MLUT 
(the value is 2), for LUT (the value is 1.477) and for FF (the 
value is 1.833) in this case.  
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Table 6. Coefficient k for flit from size 16 to 32 
 

k = MLUT k = LUT k = FF 
i= 16 i= 16 i= 16 
j=32 j= 32 j= 32 
CoeffMLUT 16 32 = 2 CoeffLUT 16 32 = 1.477 CoeffFF 16 32 = 1.833 

 
Then, for n4=16 ->32 

 gMLUT(n1, n2, n4) = 2*fMLUT(n1, n2)  (4) 

and 

gLUT(n1, n2, n4) = 1.477*fLUT(n1, n2)  (5) 

and 

gFF(n1, n2, n4) = 1.833*fFF(n1, n2) (6) 

 
Table7 and table 8 illustrate different coefficients while 
varying the size of flits (16, 32 and 64). 
 

Table 7. Coefficient k regarding the size of flits (from i to j). 
 

k = MLUT k = LUT k = FF 
i= 16 i= 16 i= 16 
j=64 j=64 j= 64 
CoeffMLUT 16 64 = 3.66 CoeffLUT 16 64 = 2.437 CoeffFF16 64 = 2.01 

 
Table 8. Coefficient k regarding the size of flits (from i to j). 

 
k = MLUT k = LUT k = FF 
i= 32 i= 32 i= 32 
j=64 j=64 j= 64 
CoeffMLUT 32 64 = 1.88 CoeffLUT 32 64 = 1.64 CoeffFF 32 64 = 1.05 

 
According to the configuration of the size of flits from i to j, all 
coefficients called Coeffkij are different (see table 7 and table 
8). The coefficient for MLUT, called CoeffMLUTij, is respectively 
2 and 1.88 for flits (i=16 to j=32) and for flits (i=32 to j=64). 
This phenomenon is identical for k=FF and k=LUT. 

VI. VALIDATION 

The validation is first done on results extracted from FPGA 
already used. Then other implementations with random sizes of 
NoCs and different size of flits are done to validate the models. 

A. Validation of XP1 with different sizes of NoC 
on a Virtex7 FPGA 

To validate our models, random NoC architectures are 
selected. Varying the number of routers (n1, n2), synthesizing 
and comparing with analytically estimated results gives the 
error rates illustrated in Fig 9.  
There are three classes of error rates. The first class is for n1 = 
3, and n2 = {3..8}. The error rate is 4.20% for the number of 
MLUTs, 4.33% for FFs and 2.51% for LUTs. The maximum 
error rate for the first class is less than 5%. The second class is 
for n1 = 4 and n2 = {3..8}. The error rate for the number of 
MLUTs is 1.42%, 1.49% for FFs and 0.46% for LUTs. The 
maximum error rate for the second class is less than 2%. The 
third and last class is for n1 = {5..16} and n2 = {3..8}. The error 
rate for the number of MLUTs is between [-0.65%, 0.47%], for 

the number of FFs it is between [-0.83%, 0.45%] and for LUTs 
it is between   [-0.66%, 1.63%]. 

 

Fig 9.  Error rates corresponding to fk for k = FF, 
LUT, MLUT 

Therefore, it is possible to estimate the number of resources for 
small sizes of NoC with an error rate less than ±5% (first 
class). The error rates for the third class are less than ±2%. This 
third class concerns large NoC having an important synthesis 
time. These error rates indicate that the number of estimated 
resources is near to post synthesis results. 

B. Validation of XP2 with different sizes of NoC on a 
Virtex7 FPGA 

The mathematical model validation is then done on previously 
unused FPGAs. The error rate between observed results and 
estimated is analyzed and presented in Fig 14. and Fig 11. 
The error rate for a size of flit from 16 to 32 is around -6% for 
small size of NoCs. This error rate decrease to less than 4% for 
bigger sizes of NoC. This indicates that the analytically 
estimated results are a little bit bigger than the results obtained 
after synthesis (synthesized results) for small sizes of NoC. The 
analytically estimated results are smaller than synthesized 
results for bigger sizes of NoCs. For any cases, the error rate is 
low and the analytically estimated results are close to 
synthesized results. This phenomenon is identical when the 
size of flits changes from 16 to 64. The error rate is a little bit 
higher for smaller size of NoC (around -7%) and bigger size of 
NoC. This error rate remains fairly good. 

 
Fig 10.  Rate error of XP2 model for fk when the size 

of flit 16-> 32  
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Fig 11.  Rate error of XP2 model for fk when the size 

of flit 16-> 64 

C. Validation using different FPGA devices 

To validate the experiments, three architectures of 
NoC varying the number of switches (n1; n2) were selected by 
drawing lots. Their sizes are {(7; 4), (11; 12), (5; 11)}. Then 20 
FPGA from the 326 FPGA available in Vivado 2012.3 were 
selected randomly. The FPGA available on Vivado are 
distributed as follows {194 Virtex7, 92 Kintex 7 and 40 
Artix7}. 
After synthesizing on the 20 different FPGAs, the number of 
resources is the same for each size of NoC. Fig. 12 depicts that 
the error rates vary from -0.5% to 1.2%. This result suggests 
that the mathematical models can correctly estimate the 
numbers of MLUTs, LUTs and FFs for XILINX families.  

 
 

 
 

Fig 12.  Error rate of the model for fk on different FPGA 

 
 

VII. IMPACT OF SYNTHESIS OPTIONS 

The objective is to analyze the impact of the synthesis options. 
The options concern the area or speed optimization with three 
optimization efforts (normal, high and fast) for the Xilinx 
Synthesis Tool (XST). 6 combinations (Table 9) can be 
considered when synthesizing the NoC. The NoC used is the 
Hermes NoC. The routing algorithm is identical to the previous 
experiments (XY), the mesh topology too. The depth of buffer 
and the size of flit are 16. The main difference concerns the 
flow control. The previous flow control was credit based with 2 
virtual channels. The flow control is now replaced by the 
handshake protocol. 
The environment used for the experiments is Xilinx ISE 14.7. 
The synthesis is done with two sizes of NoC (7×7 and 14×14) 
on the Virtex 7 FPGA (VC707 evaluation platform). 

 

 

 

Table 9. Synthesis options in XST (with ISE 14.7) 

 
 
The synthesis times for the size 14×14 are depicted in Fig 14. 
The fastest time is obtained with the fast mode. The normal 
optimization goal ensures faster synthesis than the high 
optimization goal.  
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4 Area Normal
5 Area High
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Fig 13.  Synthesis times for the 6 combinations of the 14×14 
Hermes NoC. 

Table 10 and table 11 give the number of resources for 
respectively the area and resources optimizations. 
 

Table 10. Number of resources according to the area 
optimization goal. 

 

 
 
The optimization efforts have not impact on the number of FFs 
and MLUTs when optimizing the area. The normal and high 
efforts give the same number of FFs. The fast optimization 
effort modifies the number of LUTs. This can be considered 
insignificant as it only represents 0.32% of added LUTs for the 
14×14 and 0.2% for the 7×7. 
 
Table 11. Number of resources according to the speed 
optimization goal. 
 

 
 
For the speed optimization goal, the number of resources is 
identical for the normal and high options. The fast option 
changes the number of FFs and LUTs. In the fast mode, 22% 
and 11% added LUTs are required for the 7×7 and the 14×14. 
Therefore, the number of MLUTs does not depend on the 
synthesis options. The number of FFs remains identical for 5 
synthesis options. There are only 14 more FFs for the 14×14 
NoC using the fast area option. This is not significant 
compared to the 38 710 FF used. 
The only main difference lies in the number of LUTs used.  
This analyze confirm the methodology proposed in section V. 
Mathematical models are proposed to first estimate the number 
of MLUTs (fMLUT) according to the input variables. Then the 
number of FFs (fFF) and LUTs (fLUT) are extracted according to 
the number of MLUTs (fMLUT).  

 
To extract mathematical models, the optimization goal must be 
wisely selected. According to the previous results, the normal 
area mode should be selected. This mode gives the same result 
as the high optimization goal with a shorter synthesis time and 
it gives better results (fewer resources) than the fast 
optimization level. 
 
As the resource results are similar for the normal and high 
optimization goals, the mathematical model can be defined 
from the normal mode using the area optimization.  
 

VIII. LIMIT OF THE MODELS 

The mathematical models are extracted from a specific NoC 
with variables and constants. In the previous experiments and 
the correlation analysis, 3 variables are extracted and other 
parameters are used as constants. The depth of buffer (variable 
n3) became a constant as it has no impact on the number of 
resources. Other parameters were first considered as constant 
to restrict the number of variables. 
In this section, 2 other variables are considered: the routing 
algorithm (n5) and the flow control (n6). 
The experiments conducted on the Hermes NoC with different 
routing algorithms (semi adaptive and determinist routing 
algorithm) show that such algorithms do not have any impact 
on the number of resources (7 lines are overlapped). Fig. 15 
depicts the number of FFs according to the routing algorithms 
and for different sizes of NoC. This behavior is identical for 
LUTs and MLUTs. The routing algorithm (n5) is then 
considered as a constant when building the mathematical 
model. This is true for these kinds of routing algorithms. The 
use of more sophisticated algorithms can lead to more added 
resources. In this case, n5 will be considered as a variable used 
to build the mathematical model). 

 

Fig 14.  Number of FFs for different sizes of Hermes NoC 
using different routing algorithms. 

The experiments are conducted for the flow control (n6) using 
two types: the handshake and the credit based with 2 virtual 
channels, in Fig 15. The number of resources significantly 
changes according to the flow control.  

14x14 FF 38 170 38 170 38 184

7x7 FF 8 987 8 987 8 987

14x14 LUTs 109 383 109 383 109 737

7x7 LUTs 25 525 25 525 25 539

14x14 MLUTS 14 784 14 784 14 784

7x7 MLUTS 3 472 3 472 3 472

1 2 3
14x14 FF 38 170 38 170 38 170
7x7 FF 8 986 8 986 8 986
14x14 LUTs 119 580 119 580 132 729
7x7 LUTs 27 816 27 816 34 080
14x14 MLUTS 14 784 14 784 14 784
7x7 MLUTS 3 472 3 472 3 472



 

Fig 15.  Number of resources according to the flow control. 

A comparison between both flows is done in the table 10 (the 
number of added resources for the credit based compared to the 
handshake. The resources for the handshake are extracted from 
the mathematical models. The resources for the virtual channel 
are obtained from the synthesis of the NoC. The number of FFs 
is 2.3 more for the virtual channel than the handshake for both 
sizes of NoC, 2.44 more for the LUTs and 1.5 more for the 
MLUTS.  

 
Table 10. Ratio of resources between both types of flow for two 

sizes of NoC (credit based/handshake). 
 

 
 
The exploration of the NoC should also consider the control 
flow (variable n6). Changing the flow control leads to define 
coefficients for each type of resource from the initial model as 
it has been done for n4.  

IX. CONCLUSION AND FUTURE WORK 

In this paper, the feasibility to identify mathematical 
models for exploring the NoC on FPGA devices has been 
shown. The number of FPGA resources (LUT, MLUT and FF) 
can be estimated using these models and without experiments. 
The designer can explore the entire design space to find the 
most appropriate candidate in shorter time. The time saving is 
significant as the exploration with mathematical models takes 
only few minutes and with experiments takes few days. The 
designer can also explore all FPGA candidates without 
increasing the exploration time. 
Mathematical models for a new NoC structure (topologies, 
flow control…) should be based on the analysis of the 
correlation of NoC variables and FPGA resources and also the 
correlation of Pearson 2-2. These analysis leads to select the 
input variables and the input constants. Input data can be one 
parameter or a combination of parameters. These analysis help 
the designer to order the Nbk (number of resources k) for input 
constants and variables. The mathematical models obtained can 
estimate the number of resource with the lowest error rate.  
Future work is to define the impact of the variable n6 in the 
mathematical model and to analyze these models for other 
topologies. 
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