
HAL Id: hal-01098228
https://hal.science/hal-01098228

Submitted on 23 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of SNMP-like protocol to manage a NoC
emulation platform

Otávio Alcântara de Lima Jr, Virginie Fresse, Frédéric Rousseau

To cite this version:
Otávio Alcântara de Lima Jr, Virginie Fresse, Frédéric Rousseau. Evaluation of SNMP-like protocol
to manage a NoC emulation platform. International Conference On field programmable technology,
Dec 2014, Shanghai, China. �hal-01098228�

https://hal.science/hal-01098228
https://hal.archives-ouvertes.fr


Evaluation of SNMP-like protocol to manage a NoC
emulation platform

Otávio Alcântara de Lima Jr. and Virginie Fresse
Hubert Curien Laboratory UMR CNRS 5516

Jean Monnet University - University of Lyon, PRES Lyon
Saint-Étienne, France

Frédéric Rousseau
TIMA Laboratory, UJF/CNRS/Grenoble INP, SLS Group

Institute Polytechnique de Grenoble
Grenoble, France

Abstract—The Networks-on-Chip (NoCs) are currently the
most appropriate communication structure for many-core embed-
ded systems. An FPGA-based emulation platform can drastically
reduce the time needed to evaluate a NoC, even if it is composed
by tens or hundreds of distributed components. These components
should be timely managed in order to execute an evaluation traffic
scenario. There is a lack of standard protocols to drive FPGA-
based NoC emulators. Such protocols could ease the integration
of emulation components developed by different designers.

In this paper, we evaluate a light version of SNMP (Simple
Network Management Protocol) to manage an FPGA-based
NoC emulation platform. The SNMP protocol and its related
components are adapted to a hardware implementation. This
facilitates the configuration of the emulation nodes without
FPGA-resynthesis, as well as the extraction of emulation results.
Some experiments highlight that this protocol is quite simple to
implement and very efficient for a light resources overhead.

I. INTRODUCTION

The accelerated development of the VLSI microelectro-
nics technology enables the integration of ten or hundred of
complex logic cores in a System-on-Chip (SoC). Those SoCs
consist of a set of processors, memories, mixed signals compo-
nents and specialized logic blocks that share a communication
infrastructure. The growing communication requirements of
those systems demand scalable, flexible and parallel communi-
cation architectures. The Networks-on-Chip (NoCs) emerge as
the most promising communication technology for the modern
many-cores SoC, whereby they have greater scalability than
other solutions such as buses and point to point connections.

The NoCs have a large design space concerning different
aspects like topology, routing, flow control, QoS, among
others. A SoC designer must make several architectural choices
and performance evaluations to find the best NoC configuration
for a given project. Furthermore, all those system aspect
must be tested and validated. An important part of a SoC
design costs and time is spent in design space exploration and
validation of the communication architecture. NoC specialized
design tools can be used to reduce the design costs.

High level simulation [2], [4], [1] can be used in the
early stages of development process for a faster, however less
accurate, design space exploration. Usually those simulations
are written in high level languages like C, C++ and Java. Cycle
Accurate and Byte Accurate (CABA) simulations [12] have
higher accuracy in detriment of very high execution times.
They are used to validate an HDL model.

The FPGA-based emulation platforms [3], [9] are a promis-
ing technique for NoC design space exploration and bench-
marking. Those platforms can drastically reduce the design
time and they also possess high accuracy. Although the hard-
ware NoC emulation have some disadvantages. The platform
synthesis time is an obstacle, because any change in the target
NoC demands the platform re-synthesis. Some approaches [4],
[15] use the partial reconfiguration capabilities of state of art
FPGAs to bypass this situation. Another drawback is the FPGA
resources limitations which determine the maximum NoC size
that can be emulated. The multi-FPGAs platforms [5], [17] can
be used to extend the amount of available resources. However
the off-chip communications can represent a bottleneck.

The previous proposals of FPGA-based emulation platform
do not offer emulation components interoperability. There is
a lack of standard protocols targeted at providing common
interface to manage the components of NoC emulators. The
adoption of a standard protocol can ease the integration of
emulation components created by different designers. More-
over, this protocol shall provide a common interface to the
emulation components from the perspective of the management
software running at the host PC in charge of the emulation.

In this paper, we evaluate the SNMP (Simple Network
Management Protocol) to manage an FPGA-based NoC emu-
lation platform. The evaluated communication model enables
managing an emulation platform’s components using a set
of standard operations executed in associated Management
Information Base (MIB). The MIB is a bank of registers
holding the configuration data of a traffic scenario and its
results. The operations on the MIB allow changing the platform
behavior, in such a way that it is possible to configure and
execute several evaluation traffic scenarios without FPGA re-
synthesis. Although the SNMP was conceived for computer
networks, it can be adapted to the VLSI environment. In [7]
the SNMP is used to manage a testing platform for SoCs,
which use the P1500 test standard.

The SNMP has been chosen for managing a NoC emulation
platform because of its simplicity and its flexibility to deal with
devices from different manufacturers. Indeed, to manage a new
device using SNMP it is needed only to known the device’s
MIB structure. Moreover, the SNMP RFCs has standardized
how a MIB description should be written, which eases the ma-
nagement of SNMP enabled devices as well as the adoption of
components from different designers. In this paper, the SNMP
protocol and its related components are adapted to a hardware
implementation, which is is quite simple to implement and



very efficient for a light resources overhead as highlighted by
some experiments.

The rest of this paper is organized as follows. The section
II presents the related works. The section III introduces the
concepts of network management based on SNMP. Afterward,
the emulation platform is presented in section IV. The evalua-
tion experiments are presented in section V. At last, the section
VI presents the paper conclusions.

II. RELATED WORKS

The FPGA-based emulation platforms can be used to accel-
erate NoC benchmarking as well as design space exploration.
Those platforms have high accuracy and low execution time
in relation to NoC simulators. The NoC hardware emulation
has some drawback. For instance, the platform synthesis time
represents a major problem, because any change in the target
NoC demands the FPGA re-synthesis. However, the FPGA
partial reconfiguration can be used to bypass these limitations.
Furthermore, a platform shall also provide ways to execute
different traffic scenarios without FPGA re-synthesis.

An FPGA-based emulator uses specific components to in-
ject and to extract packets in and from the network. The Traffic
Generators (TGs) are responsible for generating traffic based
on applications or synthetic models. The Traffic Receptors
(TRs) are responsible for retrieving the packets and computing
performance metrics. Those components can be implemented
in hardware or software. Some proposals [9], [15] execute
software implementations of the TGs and TRs in a dedicated
processor. This approach enables easy configuration of the
emulation platform. However the communication between the
dedicated processor and the NoC is considered as a bottleneck.
A single processor cannot emulate the traffic generated by all
application cores for large NoCs at high offered loads, neither
it can emulate the parallel nature of the application cores.

In opposite, the hardware implementation of traffic related
components occupies valuable FPGA resources, but it can
ensure higher communication bandwidth, because the emu-
lation components can be directly connected to the NoC.
However it is harder to configure the emulation platform
because its components are physically distributed. The Figure
1 represents this organization for a simple 2x2 mesh NoC. In
this architecture a host PC is responsible for configuring the
TGs and for retrieving the emulation results from the TRs. In
this example the host PC configures the TG connected to the
router 11 (red arc) and it retrieves the traffic results from the
TR connected to the router 01 (blue arc). The proposed SNMP-
based platform uses a similar approach, which is explained in
section IV.

In the rest of this section, some propositions of FPGA-
based NoC emulators are presented. The AcENoCs [9] is
a flexible and cycle-accurate FPGA emulation platform for
validating synchronous and GALS-based NoC architectures.
The platform is divided into two frameworks. The hardware
framework comprises the interconnection network to be emu-
lated. The software framework is implemented in a soft core
processor and it consists of logical implementation of traffic
generators, source queues and traffic receptors. The connection
between the two frameworks can represent a performance
bottleneck.

Fig. 1: hardware implementation of TGs and TRs.

The DART [14] is an FPGA-based NoC emulation platform
that enables different NoC architectures to be simulated with-
out recompiling/resynthesizing the DART engine. The routers
are organized in partitions and the partitions are connected
through a crossbar switch. DART simulates a NoC by mapping
the simulated NoC to DART partitions and by reconfiguring the
crossbar. The DRNoC [6] is a NoC emulation platform. This
platform is based on FPGA partial reconfiguration capabilities.
Therefore, it enables the dynamic insertion or removal of
routers and cores in a mesh NoC.

The previous proposals of FPGA-based emulation platform
do not address the issues related to the interoperability of
emulation platforms components. The adoption of a standard
protocol can ease the integration of emulation components
created by different designers. In order to execute an emulation
scenario, all the emulation components must be configured
and, afterward, they must be accessed to extract the emulation
results. The proposals that use hardware TGs and TRs usually
apply a set of independent buses to connect them [3]. In
opposite, the software implemented TGs and TRs can use
software libraries to share data, but they must share a single
bus to access the network routers [9], [15]. In both cases, there
is no standard interface to manage the emulation components
from the host PC perspective.

The management of the TGs and TRs imposes challenges.
It must allow dynamic configuration and easy extraction of
the emulation results. In this paper, we evaluate the SNMP
communication model to manage an FPGA-based NoC emu-
lation platform. The adoption of already tested management
concepts enables taming the complexity of the NoC emulation
platform. Moreover, the SNMP creates a common interface to
manage emulation components from different manufacturers
from a host PC.

III. SNMP

As connected computer systems become critical for modern
business environment, monitoring and ensuring their reliability
in performance is absolutely required. That is the reason why
the IETF developed the SNMP protocol in the ends of the
80s. Until today, this protocol is the reference for network
management because it is simpler than others solutions.



The SNMP is an application level protocol of the TCP/IP
stack. It is a standard Internet protocol and its first version
is defined in the RFC 1155, RFC 1212 and RFC 1157. The
first two of these RFCs describe the SNMP data definition
language, which specifies how the MIB must be described.
The third one describes the protocol operations. The other
two versions of this protocol are also defined by RFCs. In the
context of this paper, we are concerned only with the aspects
of the first version of this protocol.

The SNMP architectural model is a collection of network
management stations (managers) and networks elements (ma-
naged devices). The network elements are devices connected
on the network like routers, gateways, among others. Each
managed device contains software called agent, which is
responsible for handling the manager’s requests. The SNMP
is a protocol to monitor devices. In addition, it is capable of
dealing with the configuration tasks and to change settings
from a distance.

The MIB defines the structure of the management data of a
device. It uses a hierarchical namespace containing the object
identifiers (OID). Each OID can be read or written by the
operations provided by the SNMP. The MIB can be described
as a repository which all managed objects of a device are
listed in a standardized tree hierarchy. The Figure 2 depicts
the SNMP architecture.

Fig. 2: SNMP architecture and operations.

The communication model applied between a manager and
a device is the request-response model. A manager can access
the objects stored in an agent’s MIB through the SNMP GET
and SNMP GET-NEXT operations. An agent replies those
SNMP operations by sending a SNMP GET RESPONSE filled
with the value of the required object. The SNMP SET enables
to change the value of a MIB object. The SNMP was designed
as a monitoring protocol. In order to give reactiveness to
the protocol, the SNMP designers added the SNMP TRAP
operation. This operation enables an agent to notify a manager
about a specific device event. The SNMP TRAP is sent without
previous manager’s request.

In this paper, we evaluate the SNMP architecture to manage
an FPGA-based NoC emulation platform. A communication
protocol between a host PC and a target FPGA is designed.
This protocol is inspired by the SNMP, but it is not aimed at a
TCP/IP implementation. However, it is capable of configuring
the emulation components and, then, extracting the emulation
results. The emulation components are organized as SNMP

agents. They are connected to a communication bus inde-
pendent of the target NoC. The emulation components’ MIB
has all the registers needed to control their behavior during
the execution of the traffic scenarios. Others management
protocols such as SMBus [18] or NC-SI [19] could be solutions
for integrating TGs and TRs. However, these protocols are
designed specifically for computer motherboards management.
They lack flexibility to manage a wide range of devices unlike
SNMP that is a general purpose network management protocol.

IV. EMULATION PLATFORM

A. Architecture Overview

The top level architecture of the proposed emulation
platform is depicted in Figure 3. The emulation platform
is composed by synthesizable hardware components and by
software components. The hardware components are meant
to be implemented in a target FPGA, while the software
components are meant to be executed in a host PC.

Fig. 3: architecture overview.

At first, we present the hardware components. The emu-
lation node is a hardware implementation of a manageable
device and it is directly connected to a NoC router. It is
composed of four components: agent, MIB, TG and TR.
The agent is responsible for decoding and executing the
management commands. The MIB is an addressable register
bank, which contains all the control and status registers that
control the behavior of the traffic scenario generation, as
well as they store the emulation results. The address of each
MIB register is equivalent to the OID onto the standard
SNMP implementation. In order to reduce the MIB resources
requirements, it is necessary to limit the number of destinations
of each node and consequently the number of registers spent
on holding the emulation results. The goal is to keep the MIB
size independent of the network size. The MIB is accessed
by the traffic components through a simple interface, which
enables reading and writing on the MIB’s registers.

The two last components are the TG and TR that are
responsible for generating and retrieving data on the traffic

user
Realce



scenarios. Those components were adapted from the emulation
platform presented in [13]. The TG is connected to the router
local input port. The TR is connected to the router local
output port. In this implementation, the traffic is generated
according to micro-benchmark models like transpose traffic,
bit reverse, among others. Furthermore, it is possible to
create traffic scenarios with an arbitrary number of source
and destination nodes, including scenarios described as tasks
graphs. The TR processes the traffic and it produces synthetic
information about the performance of each communication
link. The subsection IV-C presents the traffic models offered
by this platform.

The adoption of the SNMP can ease the integration of TGs
and TRs created by different designers. Indeed, to integrate a
new component on this architecture it is needed only the de-
scription of the component’s MIB. Moreover, the component’s
MIB can be described using the standards already defined in
the SNMP RFCs.

The emulation nodes are connected on a dedicated commu-
nication bus, which is controlled by the BUSCTR component.
This component is responsible for interfacing the platform
manager and the managed devices. The BUSCTR decodes the
management packets sent by the manager and it retransmits
those to the target emulation node through a dedicated com-
munication bus. This internal bus can be implemented using
any standard on-chip buses protocols. A multi-hierarchical bus
could also be applied according to the number of emulation
nodes.

The software components are the manager, traffic scenarios
and emulation results. The manager is implemented as a C
library that communicates with the emulation platform over
a serial link. This library enables easy integration of the
emulation platform in third party systems. The communication
protocol applied is inspired on the SNMP, but it is not targeted
for a TCP/IP implementation. The traffic scenarios component
is a set of test cases that may be generated by an external
tool. The last component is the emulation results component,
which is a synthesis of the performance results gathered
during the emulation process. Those results can be used to
the design space exploration, benchmarking or validation of a
NoC implementation.

B. Protocol implementation

The SNMP has a proven management model based on a set
of simple operations exchanged in a request-response model.
This model is adapted to create a hardware implementation to
manage a NoC emulation platform. In this model, the emu-
lation nodes are represented as distributed components which
can be managed through their MIBs. The SNMP provides the
operations to handle the MIB from the manager side.

In order to build this platform, three SNMP standard
operations are used and three new operations are added. The
GET, GET RESPONSE and SET operations are standard
SNMP operations that are adapted to this emulation platform
context. The GET enables the manager to request the value of
a specific object in an emulation node’s MIB. This object can
represent a traffic scenario parameter. The GET RESPONSE is
the response generated by an emulation node to a GET packet.
The SET enables the manager to alter the value of a specific

object allocated in a MIB. In order to ease the control of the
emulation platform, three new operations are added. The GO
starts the emulation process. The RESET puts the emulation
platform in the initial state. The EMU END indicates that the
manager can retrieve the emulation results.

The Figure 4 depicts the protocol packet format. All packet
fields are 8-bit long. The first field represents the start of a
packet. The OPER field indicates the requested management
operation: GET, GET RESPONSE, SET, GO, RESET and
EMU END. Afterward, the emulation node address and the
object identifier are represented in the next three fields. The
OID indicates the address of a MIB register, which controls a
specific behavior of the emulation node. The PARAM field is
the parameter of the SET operations. At last, the CHECKSUM
is an error control field. An incorrect packet is discarded and
the destination requires its retransmission.

Fig. 4: packet format

C. Traffic Model

In order to evaluate a NoC performance, an emulation
platform must be capable of generating rich traffic scenarios.
The SNMP model can be easily adapted to many traffic
models, but in this work it is used a micro-benchmark traffic
model and a task graph traffic model. The proposed traffic
models are implemented as two distinct hardware modules,
described by two distinct MIBs. The platform user must select
which traffic model will be used before the platform synthesis.
The traffic model choice is based on the goals of the NoC
evaluation.

The first traffic model enables the creation of micro-
benchmark synthetic traffic as transpose, bit-complement, bit-
reversal, among others. These synthetic traffic scenarios are
largely used to evaluate the NoC, however they do not resemble
to real applications. The second traffic model enables creating
richer traffic scenarios based on task graphs, which can be
used to model application behavior. Furthermore, a resource
analysis of both implementations is presented in the subsection
V-C.

D. Execution Flow

In this subsection, we explain the execution flow associated
with the proposed NoC emulation platform. The execution flow
is depicted in the Figure 5. In order to evaluate the performance
of a NoC, a designer must specify a set of traffic scenarios.
In the context of this paper, a traffic scenario describes how
each emulation node must generate and receive packets. In
this way, for each emulation node the traffic scenario specifies
the amount of packets transmitted to each destination node, as
well as the packets size, the associated injected charge, among
others parameters. That stage is called the conception step.
After this step, the execution flow enters in a loop to emulate
sequentially all the traffic scenarios. Only one traffic scenario
is kept in the MIB any time.



Fig. 5: execution flow.

The manager library can be used to transform a traffic
scenario in the specific operations needed to configure the
emulation platform. At first, each emulation node must be
configured with the information gathered from the traffic
scenario. This stage is known as the configuration step. On this
step, the manager sends SET packets to change the value of
objects stored in the MIB of each emulation node. The updated
MIB changes the behavior of the associated node according to
the current traffic scenario.

In order to accelerate the configuration step, the manager
keeps a copy of each router’s MIB and it only updates the MIB
registers that have distinct values from the values specified by
the previous traffic scenario. For instance, after executing the
first traffic scenario, the manager starts the configuration step
of the second traffic scenario. Then, the manager sends SET
packets to change only the MIB registers that are distinct in
both traffic scenarios. Those MIB registers that possess the
same value are not changed. Thus, the number of SET packets
sent is reduced. This feature is called differential MIB update
and it is experimentally evaluated in the section V-B.

After the configuration step, the manager can send a GO
packet and the emulation nodes start sending and receiving
data packets. It is the emulation step which lasts as long as
necessary to finish all the communication flows described by
the traffic scenario. After the emulation nodes receive all the
data packets, the emulation platform sends an EMU END
to the manager and the results step begins. On this step,
the manager uses GET packets to retrieve the performance
results. After this, the results are stored in the emulation results
component. The execution flow must continue until all the
traffic scenarios are emulated. Then, the emulation results can
be analyzed in order to find out the NoC performance.

E. Implementation Details

This subsection presents the implementation details of the
proposed emulation platform. At first, the SNMP hardware
components are detailed and, afterward, the SNMP manager
library is described.

1) SNMP Hardware Components: In this subsection, we
describe the hardware implementation of the SNMP com-
ponents: BUSCTR, Agent and MIB. These components are
implemented in VHDL using RTL behavioral description.

The BUSCTR treats the SNMP packets from the manager
and it adapts them to the internal bus format. This component
has an asynchronous full-duplex serial interface to communi-
cate with the manager and it also has a parallel bus interface
which is capable to transfer 2 B per bus cycle. In order to
execute one SNMP operation, the BUSCTR selects the target
emulation node and then it takes five bus cycles to transfer the
operation and its parameters to the target emulation node. The
SNMP operations are executed sequentially by this component.
A state machine implements the BUSCTR actions.

The Agent is responsible for decoding and executing the
SNMP operations. It has a slave interface to the internal
parallel bus and a custom interface to a MIB component. This
interface enables the Agent to read and write in the MIB.
A state machine is responsible for implementing the Agent
behavior.

The MIB is implemented as a pair of registers banks. The
first bank enables read operations and the second one enables
write operations. These banks have distinct address spaces.
The MIB is connected to a TG and a TR component through
a simple interface, which enables the write and read of the
MIB’s registers.

The evaluation of the timing performance for executing
each SNMP operation is presented in section V-A.

2) SNMP manager library: In order to drive the emulation
platform, a SNMP manager library written in C is available.
This library can be easily incorporated into existing and new
NoC evaluation tools as a mean to drive the emulation. This
subsection outlines the library functions as shown in Table I.

To start the communication with the emulation platform,
the emuNoC initCOM function must be called. Afterward,
the platform must be reseted before starting an emulation
scenario. The emuNoC Reset lets the platform ready for use
and it must be called before each emulation scenario. The
user can create a scenario based on micro-benchmark with
the emuNoC scenario function or a custom scenario can be
created using the emuNoC confNode function, which must be
called for each node participating in this traffic scenario. After
the configuration of the emulation nodes, the emuNoC GO
function can be called to start the emulation. This function
returns after the end of the emulation. Then, the performance
results can be extracted using the emuNoC getLatency func-
tion. Afterward, a new traffic scenario can be executed or
the communication with the platform can be closed using the
emuNoC closeCOM function.

V. EXPERIMENTS

In this section, we describe experiments conducted in
order to evaluate our proposal. The proposed NoC emulation
platform is implemented in a ML605 Virtex 6 evaluation board
for resources analysis and for performance evaluation of the
SNMP operations and of the MIB update. The Xilinx ISE 14.3
and the XST are used to synthesize the emulation platform.
The target NoC used in these experiments is a Hermes NoC



TABLE I: SNMP manager library

Operation Description
emuNoC initCOM Initializes the communication with the emulation platform
emuNoC Reset Resets the emulation platform
emuNoC confNode Configures the communication requirements for one emula-

tion node
emuNoC scenario Configure one microbenchmak scenario for this platform
emuNoC GO Initializes the NoC’s emulation
emuNoC getLatency Retrieves the average latency for a pair of source and

destination nodes
emuNoC closeCOM Closes the communication with the emulation platform

[10], in which the XY routing and handshake flow control are
applied, as well as a 16-flit buffer is used by each router input
port.

A. SNMP Operations Evaluation

The evaluation of the timing performance of the SNMP
hardware components is described in this subsection. In order
to evaluate this protocol, a workload based on three applica-
tions described as task graphs and three pseudo-random acyclic
task graphs are executed on a 7x7 NoC. The applications used
are MPEG-4, VOPD and multispectral imaging. The synthetic
task graphs are created using the TGFF tool [16]. Each task
graph is executed ten times in order to evaluate the emulation
platform. The traffic scenario execution time is measured as
well as the number of executed GETs and SETs, which enables
calculating the time spent on the execution of the SNMP
operations. From experiments, it is known that each GET takes
29 clock cycles, each SET takes 30 clock cycles and the circuit
frequency is 66 MHz.

The SNMP related measurements are relative only to the
execution of those operations by the SNMP dedicated circuits.
It does not include the SNMP packet transmission delay, which
depends on the link bandwidth between the manager and
the FPGA board. Indeed, it does include the SNMP packet
handling time, the internal bus latency and the emulation
node’s execution time.

The Table II depicts the amount of time needed to execute
the SNMP operations as well as the average time needed to
execute each traffic scenario within a 95% confidence interval
displayed in parenthesis. Furthermore, the number of executed
GETs, SETs operations and the number of tasks for each
application are also presented.

The SNMP operations take only a very small fraction of
the time spent to carry out a traffic scenario. For instance,
for the MPEG-4 application the SNMP operations represent
only 0.03% of the traffic scenario time and only 0.004% for
the VOPD. Indeed, the SNMP operations are executed by
lightweight circuits and they represent a very low overhead
to drive the emulation tasks.

The time spent to execute the traffic scenario is much
larger for the task graphs based on real applications. In this
case, these applications have more bandwidth requirements
than the synthetic ones. However, the time spent on the SNMP
operations does not depend on the traffic scenario execution
time. Moreover, there is a correlation between the number of
tasks and the time spent on SNMP operations. More tasks lead
to more time spent on the platform configuration.

The number of executed SETs operations is 36% - 47%
bigger than the number of executed GETs for the three task
graphs based on real application. For the synthetic task graphs,
this difference is larger, it is around 55% - 58%. It is expected
that the number of executed SETs is bigger than the number
of executed GETs for a regular traffic scenario.

TABLE II: SNMP operations execution time

Application SNMP [ms] Traffic [ms] No. of
GETs

No. of
SETs

No. of
tasks

MPEG-4 0.15 430.1 (0.35) 104 232 12
VOPD 0.08 1768.1 (0.19) 52 142 12
Multispectral 0.11 895.2 (0.26) 80 169 14
TGFF 0 0.04 10.7 (1.57) 36 65 9
TGFF 1 0.11 6.3 (0.29) 92 156 14
TGFF 2 0.06 7.0 (0.41) 52 189 7

B. MIB Update Evaluation

In order to evaluate the performance of the differential MIB
update which is described in section IV-D, we analyze the
amount of data exchanged between the manager and the target
FPGA to carry out the evaluation of a NoC. In this experiment,
we execute a set of ten transpose traffic scenarios following
the execution flow presented on IV-D.

Those scenarios are distinct only because of the injected
charge which is consecutively incremented of 10% for each
traffic scenario. The first traffic scenario has 10% of injected
charge and the last one have 100% of injected charge. We mea-
sure the amount of data transferred to carry out these scenarios
for different sizes of NoC. We conduct these experiments with
the differential MIB update enabled and also when this features
is disabled (linear MIB update).

The Table III presents the results. The differential MIB
update transfers about 54% less data bytes than the linear MIB
update. For a 115200 bps serial link and a 4x4 NoC, it takes
about 405 ms to execute all the data transfers needed for the ten
traffic scenarios when the differential MIB update is applied.
In opposite, when the linear update is applied, it takes about
755 ms to accomplish this task. For each router added to the
emulation platform, there is an average increment of 33% in
the amount of bytes transferred for both update methods.

TABLE III: MIB update evaluation.

NoC size Differential update (bytes) Linear update (bytes)
4x4 5845 10885
3x3 3479 6314
2x2 1589 2849

C. Resources Analysis

As described in the subsection IV-C, the proposed emu-
lation platform offers two distinct implementations of traffic
models. The first one enables the creation of micro-benchmark
synthetic traffic scenarios. The second one enables the creation
of traffic scenarios based on tasks graphs. Both implementa-
tions share the same SNMP architecture, but they use different
TGs and TRs components.

At first, we analyze the resources occupation of the micro-
benchmark synthetic traffic implementation. The Figure 6 de-
picts the FPGA occupation for eight different configurations of



the NoC and the emulation platform. The resources occupation
of the emulation platform comprises the implementation of
the SNMP components, the traffic model components as well
as the NoC itself. We observe that for a given NoC size the
emulation platform has 2.8 times more LUTs and 4.7 - 5.3
times more Registers than the implementation of only the NoC
components. Furthermore, these implementations do not use
RAM resources.

Fig. 6: FPGA occupation for synthetic traffic implementation

The additional FPGA resources used to implement the
emulation platform are due to the SNMP components and the
traffic model components. In order to quantify the influence
of these components to the overall platform occupation, we
analyze the resources occupation of only one emulation node.
The Figure 7 depicts the LUTs and Registers occupation for
the MIB, Agent, TR and TG components. We point out that
the SNMP components (MIB and Agent) occupy only 7% of
the LUTs and 8% of the Registers used to implement one
emulation node. Indeed, most of the resources are applied to
implement the traffic model components. The TG is the only
component whose resources occupation significantly depends
on the number of nodes implemented.

Henceforth, the resources occupation of the task graph
traffic implementation is analysed. The Figure 8 depicts the
FPGA resources occupation for different configurations of
NoC and the emulation platform. We observe that for a given
NoC size the emulation platform has 4 times more LUTs
and 6 times more Registers than the implementation of only
the NoC components. Furthermore, these implementations use
RAM resources to implement the MIB registers. For this traffic
model, the MIB holds (20 ∗ number of destinations+ 36)
32-bit registers, by the other side, for the synthetic traffic
model the MIB holds only (7 ∗ number of destinations)
32-bit registers. The number of destinations can be configured
before the platform synthesis. In these experiments the number
of destinations is equal to the number of nodes in the NoC,
which is the worst case possible in relation to resources
occupation.

In order to quantify the influence of the SNMP components
to the overall platform occupation, we analyze the resources
occupation of one emulation node. The Figure 9 depicts the
LUTs and Registers occupation for the MIB, Agent, TR and
TG components. The SNMP components represent only 15%
- 30% of the LUTs and 6% of the Registers used to implement
one emulation node. Indeed, most of the resources are applied

(a)

(b)

Fig. 7: LUTs (a) and Registers (b) occupation share for one
emulation node of the synthetic traffic implementation

Fig. 8: FPGA occupation for task graph traffic implementation

to implement the traffic model components. However the MIB
has a growing occupation of LUTs which depends on the
number of implemented nodes. These resources are used to
implement the memory locations for the traffic model param-
eters. Usually, these memory components are implemented as
RAM blocks in the FPGA. When the MIB is synthesized alone
the synthesis tool implements them as LUTs. When the whole
emulation platform is implemented, the MIB is implemented
mostly as RAM blocks.

D. Results Discussion

The SNMP timing performance evaluation is presented in
the subsections V-A and V-B. The execution of the SNMP ope-
rations are independent of the NoC size and these operations
represent a very small fraction (0.004% - 1.7%) of the time
spent on the execution of the traffic scenarios. Furthermore,
the utilization of the differential MIB update reduces in 54%
the amount of data exchanged between the FPGA and the host
PC. Thus, it permits fast update of the MIB content. Although,



(a)

(b)

Fig. 9: LUTs (a) and Registers (b) occupation share for one
emulation node of the task graph traffic implementation

the serial link between the FPGA and the host PC represents
a communication bottleneck. A higher bandwidth link could
allow faster MIB update and consequently faster emulation
execution.

In the subsection V-C, it is presented the resources analysis
for two different implementations of the proposed emulation
platform. The results point out that the SNMP components
represent a small fraction of the overall emulation platform.
The MIB is the only SNMP component that depends on
the complexity of the implemented traffic scenarios, because
it must hold all the parameters related to the traffic model
description. For the ML605 evaluation board, it is possible
to implement the emulation platform for a 8x8 NoC (micro-
benchmark scenarios) and a 7x7 NoC (task graph scenarios).
The low resources occupation of the SNMP components is due
to the lightweight circuits in charge to implement the SNMP
functions.

The obtained results point out that the SNMP commu-
nication model is a fast and lightweight solution to drive a
NoC emulation platform. Besides that, the circuitry needed to
implement the SNMP components is quite simple.

VI. CONCLUSIONS

In this paper, we evaluate the SNMP protocol concepts
to manage an FPGA-based NoC emulation platform. The
implemented architecture enables the easy configuration of the
emulation nodes, as well as it defines an interoperability model
for the emulation components based on the MIB descrip-
tion. As a demonstration of the interoperability the proposed
emulation platform integrates two distinct implementations of
traffic models, which are defined by two distinct MIBs. The
first one enables the creation of micro-benchmark synthetic

traffic scenarios. The second one enables the creation of traffic
scenarios based on tasks graphs. The experiments highlight that
a light version of SNMP is very efficient for a light resources
overhead.

ACKNOWLEDGMENT

Funding for this project was provided by a grant from
la Région Rhône-Alpes as well as by the CNPq (process
245340/2012-2).

REFERENCES

[1] Y. Ben-Itzhak et al. HNOCS: modular open-source simulator for
heterogeneous NoCs. In Int. Conf. on Emb. Comp. Systems, pages
51–57, 2012.

[2] M. Coppola et al. OCCN: a network-on-chip modeling and simulation
framework. pages 174–179. IEEE Comput. Soc, 2004.

[3] N. Genko et al. A novel approach for network on chip emulation. In
IEEE Int. Symp. on Circuits and Systems, pages 2365–2368 Vol. 3,
2005.

[4] H. Hossain et al. Gpnocsim - a general purpose simulator for network-
on-chip. In Int. Conf. on Information and Communication Technology,
pages 254–257, 2007.

[5] Kouadri-Mostefaoui et al. Large scale on-chip networks : An accurate
multi-FPGA emulation platform. In 11th EUROMICRO Conf. on Digital
System Design Architectures, Methods and Tools, pages 3–9, 2008.

[6] Y. Krasteva et al. A fast emulation-based NoC prototyping framework.
In Int. Conf. on Reconfigurable Computing and FPGAs, pages 211–216,
2008.

[7] O. Laouamri and C. Aktouf. Enhancing testability of system on chips
using network management protocols. In Design, Automation and Test
in Europe Conf. and Exhibition, volume 2, pages 1370–1371 Vol.2,
2004.

[8] X. Li and O. Hammami. Multi-FPGA emulation of a 48-cores
multiprocessor with NOC. In Design and Test Workshop, pages 205–
208, 2008.

[9] S. Lotlikar, V. Pai, and P. Gratz. AcENoCs: a configurable HW/SW
platform for FPGA accelerated NoC emulation. In 24th Int. Conf. on
VLSI Design, pages 147–152, 2011.

[10] F. Moraes et al. HERMES: an infrastructure for low area overhead
packet-switching networks on chip. Integr. VLSI J., 38(1):69–93, Oct.
2004.

[11] E. Pekkarinen et al. A set of traffic models for network-on-chip
benchmarking. In Int. Symp. on System on Chip, pages 78–81, 2011.

[12] S. Prabhu et al. Ocin tsim- DVFS aware simulator for NoCs. In
Workshop on SoC Architecture, Accelerators and Workloads, 2010.

[13] J. Tan, V. Fresse, and F. Rousseau. In 22nd IEEE Int. Symp. on Rapid
System Prototyping, pages 186–192, 2011.

[14] D. Wang, N. E. Jerger, and J. G. Steffan. DART: a programmable
architecture for NoC simulation on FPGAs. In Proc. of the Fifth
ACM/IEEE Int. Symp. on NoC, NOCS ’11, pages 145–152, New York,
NY, USA, 2011. ACM.

[15] P. Wolkotte, P. Holzenspies, and G. J. M. Smit. Fast, accurate and
detailed NoC simulations. In First Int. Symp. on Networks-on-Chip,
pages 323–332, 2007.

[16] R.P. Dick, D.L. Rhodes, and W. Wolf. TGFF: task graphs for free. In
Sixth Int. Work. on Hardware/Software Codesign, pages 97–101, 1998.

[17] X. Li and O. Hammami. Multi-FPGA emulation of a 48-cores
multiprocessor with NOC. In Design and Test Workshop, pages 205–
208, 2008.

[18] System Management Bus. http://smbus.org/, [September 2014]
[19] Network Controller Sideband Interface (NC-SI) Specification.

http://www.dmtf.org/sites/default/files/standards/documents/DSP0222 -
1.0.1.pdf, [September 2014]


