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Università di Roma “Tor Vergata”
Via della Ricerca Scientifica 1, 00133 Roma, Italy

(Communicated by the associate editor name)

Abstract. We investigate the properties of the set of singularities of semicon-
cave solutions of Hamilton-Jacobi equations of the form

ut(t, x) +H(∇u(t, x)) = 0, a.e. (t, x) ∈ (0,+∞)×Ω ⊂ R
n+1 . (1)

It is well known that the singularities of such solutions propagate locally along
generalized characteristics. Special generalized characteristics, satisfying an
energy condition, can be constructed, under some assumptions on the structure
of the Hamiltonian H. In this paper, we provide estimates of the dissipative

behavior of the energy along such curves. As an application, we prove that the
singularities of any viscosity solution of (1) cannot vanish in a finite time.

1. Introduction. It is commonly accepted that, in optimal control, a crucial role
is played by the Hamilton-Jacobi equation

{

ut(t, x) +H
(

x,∇u(t, x)
)

= 0 (t, x) ∈ (0, T )× R
n

u(0, x) = u0(x) x ∈ R
n

(2)

where

• H : Rn × R
n → R is a C2 smooth function such that

(a) lim
|p|→∞

inf
x∈Rn

H(x, p)

|p|
= +∞

(b) D2
pH(x, p) > 0, ∀(x, p) ∈ R

n × R
n

• u0 : Rn → R is a Lipschitz function.
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Indeed, being able to characterize the value function as the unique solution of (2)
is the starting point towards a rigorous approach to dynamic programing.

The notion of viscosity solutions, introduced in the seminal papers [7] and [8],
provides the right class of generalized solutions to study existence, uniqueness, and
stability issues for problem (2). The reader will find an overview of the main features
of this theory in [4], for first order equations, and [11], for second order problems.

On the other hand, it is also well known that Hamilton-Jacobi equations have no
global smooth solutions, in general, because solutions may develop singularities—
i.e., discontinuities of the gradient—in finite time due to crossing of characteristics.

Indeed, the maximal regularity one may expect for solutions of (2) is that, for
any t > 0, u(t, ·) is locally semiconcave on R

n, that is, u(t, ·) can be represented
as the sum of a concave and a smooth function on each compact subset of Rn.
In fact, the notion of semiconcave solution was used in the past even to provide
existence and uniqueness results for (2) before the theory of viscosity solution was
developed, see [10], [12], and [13]. Nowadays, semiconcavity is still an important
property in the study of Hamilton-Jacobi when related to optimal control problems
in euclidean spaces ([5]) and even on Riemannian manifolds ([16]). However, it is
rather regarded as a regularizing effect of the nonlinear semigroup associated with
(2)—in some sense, a sign of irreversibility in Hamilton-Jacobi dynamics.

Another evidence of irreversibility for the equation

ut(t, x) +H
(

x,∇u(t, x)
)

= 0 (t, x) ∈ (0, T )× R
n (3)

is the persistence of singularities, that is, the fact that once a singularity is created,
it will propagate forward in time up to +∞. Unlike the gain of semiconcavity, such
a phenomenon is not well understood so far.

What is sufficiently clear to this date is the local propagating structure of the
singular set of a viscosity solution u of (3): if (t0, x0) ∈ [0,+∞)× R

n is a singular
point of u, then there exists a Lipschitz arc γ : [t0, t0 + τ) → R

n such that (t, γ(t))
is singular for all t ∈ [t0, t0+ τ), see [2], [17], and [6]. Therefore, the question we are
now interested in is to provide conditions to ensure that τ = +∞. We note that, in
general, this problem has a negative answer if H is allowed Lipschitz dependence
in (t, x) even for n = 1, see [5, Example 5.6.7].

A first, simple case where the answer to the above problem is positive is when
n = 1 and H is sufficiently smooth. Indeed, the x-derivative of u turns out to be a
solution of a conservation law for which the results in [9] ensure the persistence of
singularities. However, the one-dimensional case is very special because topological
obstructions prevent singularities from disappearing after their onset.

Another result that guarantees the global propagation of singularities in any
space dimension was obtained in [1] for concave solutions of the Hamilton-Jacobi
equation

ut +H(∇u) = 0.

Requiring concavity—unlike semiconcavity—for u is, however, a restrictive assump-
tion because it imposes a global constraint on solutions.

A last result, which is strongly related to the above problem, concerns the dis-
tance function, dΩ, from the boundary of a bounded open subset Ω of a Riemann-
ian manifold. Such a function is indeed the solution of a well known stationary
Hamilton-Jacobi equation, that is, the eikonal equation. In [3], it is shown that the
singular set of dΩ is invariant under the generalized gradient flow, a property which
is crucial to prove that Ω has the same homotopy type as the singular set of dΩ.
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In this paper, we address the above problem for solution of the Hamilton-Jacobi
equation

ut(t, x) +H(∇u(t, x)) = 0, (t, x) ∈ (0,+∞)× Ω, (4)

where Ω is a bounded domain in R
n and H : Rn → R is the quadratic form

H(p) =
1

2
Ap · p,

with A a positive definite n×n real matrix. Our main result, Theorem 4.2, ensures
that the singularities of any viscosity solution of (4) persist for all times, or at least
until the singular arc touches the boundary of Ω. More precisely, we show that,
if (t0, x0) is a singular point of u, then there exist T ∈ (0,+∞] and a Lipschitz
continuous arc γ : [t0, t0 +T ) → R

n, starting from x0, with (s, γ(s)) singular for all
s ∈ [t0, t0 + T ) and such that

lim
s→t0+T

γ(s) ∈ ∂Ω

whenever T < +∞.
The proof of the above result relies on two main ideas that are converted in

two technical results, respectively. In the first one, Lemma 3.2, we obtain, as
in [3], a sharp semiconcavity estimate for a suitable transform of the solution u.
In the second one, Theorem 4.1, we establish an inequality showing that the full
Hamiltonian associated with (4), that is,

F (τ, p) = τ +H(p),

decreases along a selection of the superdifferential of u, evaluated at any point of
a suitable arc. To be more specific, let (t0, x0) ∈ Q and let t̄ < t0. Then we prove
that there exist T ′ > 0 and a Lipschitz continuous arc γ : [t0, t0+T ′) → Ω, starting
from x0, such that

min
(τ,p)∈D+u(s,γ(s))

F (τ, p) ≤

(

t0 − t̄

s− t̄

)2

min
(τ0,p0)∈D+u(t0,x0)

F (τ0, p0) (5)

for every s ∈ [t0, t0 + T ′). Such a dissipative behavior is essential to deduce per-
sistence of singularities. Indeed, the above inequality yields that, if (t0, x0) is a
singular point of u, hence the minimum on the right-hand side is strictly negative,
then the minimum on the left side must be negative too, thus forcing the point
(s, γ(s)) to be singular as well for every s ∈ [t0, t0+T ′). Moreover, the quantitative
estimate (5) allows to reproduce the above reasoning starting from t0 + T ′ as long
as the arc γ stays away from the boundary of Ω.

Although the structure of the Hamiltonian in (4) is quite special, we believe
that our approach can be used to treat more complex classes of equations. In a
future work, we will show how to adapt the above ideas to treat time dependent
Hamilton-Jacobi equations on Riemannian manifolds.

2. Preliminaries. Let Ω ⊂ R
n be an open set. We consider the Hamilton-Jacobi

equation
{

ut(t, x) +H(∇u(t, x)) = 0 a.e. (t, x) ∈ (0,+∞)× Ω =: Q
u(t, x) = ϕ(t, x) for (t, x) ∈ ∂Q,

(6)

where H : Rn → R is the quadratic form

H(p) =
1

2
Ap · p,
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with A positive definite, and ϕ : Q → R is Lipschitz continuous. Here we define

ut =
∂u

∂t
and ∇u =

(

∂u

∂x1
, . . . ,

∂u

∂xn

)

,

whereas Du = (ut,∇u) indicates the gradient of u whenever it exists.
Let L denote the Legendre transform of H , i.e. L(q) = 1

2A
−1q · q. We assume

that the data ϕ satisfy the following compatibility condition

ϕ(t, x) − ϕ(s, y) ≤ (t− s)L

(

x− y

t− s

)

, (7)

for all (t, x), (s, y) ∈ ∂Q such that t > s ≥ 0.
Then, see [14], problem (6) has a unique viscosity solution u ∈ Lip(Q̄) which is

given by the Hopf formula

u(t, x) = min
(s, y) ∈ ∂Q

s < t

[

(t− s)L

(

x− y

t− s

)

+ ϕ(s, y)

]

. (8)

Equivalently, see [5], u given by (8) is the unique Lipschitz function on Q̄ which
satisfies (6) almost everywhere and is locally semiconcave on Q, that is, for every
convex compact K ⊂ Q there is a constant C ≥ 0 such that

u(X +H) + u(X −H)− 2u(X) ≤ C|h|2

for every X,H ∈ R
n+1 such that X +H,X −H ∈ K.

Since the function u given by (8) is in general non differentiable, we denote by
Σ(u) the set of points of non-differentiability for u. For X ∈ Q we introduce the
superdifferential of u at X

D+u(X) =

{

P ∈ R
n+1 : lim sup

Y→X

u(Y )− u(X)− 〈P, Y −X〉

|Y −X |
≤ 0

}

and the set of the reachable gradients of u at X

D∗u(X) =
{

P ∈ R
n+1 : Q \ Σ(u) ∋ Xi → X, Du(Xi) → P

}

.

The directional derivative of u at X in the direction V ∈ R
n+1 is defined by

∂u(X,V ) = lim
h→0+

u(X + hV )− u(X)

h

and the exposed face of D+u(X) in the direction V by

D+u(X,V ) =
{

P ∈ D+u(X) : 〈P, V 〉 ≤ 〈Q, V 〉 ∀Q ∈ D+u(X)
}

.

Since u is a locally semiconcave map, the set D+u(X) is the convex hull of
D∗u(X). Moreover, see [5], if K is a convex compact subset of Q and C ≥ 0 is a
semiconcavity constant of u on K, the superdifferential of u satisfies the following
monotonicity property:

〈P −Q,X − Y 〉 ≤ C|X − Y |2 (9)

for every P ∈ D+u(X), Q ∈ D+u(Y ) and X,Y ∈ K. The directional derivative
of the locally semiconcave map u can be connected to the superdifferential and the
reachable gradients in the following way:

∂u(X,V ) = min
P∈D+u(X)

〈P, V 〉 = min
P∈D∗u(X)

〈P, V 〉 (10)
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for any X ∈ Q and V ∈ R
n+1. Finally, we recall a result involving the exposed face

of u. Its proof can be found in [5].

Proposition 2.1. Let X ∈ Q and P ∈ R
n+1. Suppose that there are sequences

{Xi} ⊂ Q \ {X} and Pi ∈ D+u(Xi) satisfying

Xi → X, Pi → P and lim
i→∞

Xi −X

|Xi −X |
= V .

Then P ∈ D+u(X,V ).

3. A sharp monotonicity estimate. We first prove a technical lemma. Here,
for every X = (t, x) ∈ R

n+1, 0 < t̄ < t and R > 0, we denote by B(X,R) the ball
of centre X and radius R, while by Bt̄(X,R) we refer to the set

Bt̄(X,R) = ((t̄,+∞)× R
n) ∩B(X,R).

Lemma 3.1. For every X ′ = (t′, x′) ∈ Q there exist R > 0 and 0 < t̄ < t′ such

that Bt̄(X ′, R) ⊂ Q and

u(t, x) = min
y∈Ω

[

(t− t̄)L

(

x− y

t− t̄

)

+ u(t̄, y)

]

(11)

for each (t, x) ∈ Bt̄(X
′, R).

Proof. Let t̄ > 0 and set Qt̄ = (t̄,+∞)× Ω. First we observe that

u(t, x) = min
(s, y) ∈ ∂Qt̄

s < t

[

(t− s)L

(

x− y

t− s

)

+ u(s, y)

]

(12)

for every (t, x) ∈ Qt̄. Indeed, let (t, x), (s, y) ∈ ∂Qt̄ such that t > s ≥ t̄. Since t > t̄

and (t, x) ∈ ∂Qt̄, we have that x ∈ ∂Ω. If y ∈ ∂Ω, by (7) we obtain

u(t, x)− u(s, y) = ϕ(t, x) − ϕ(s, y) ≤ (t− s)L

(

x− y

t− s

)

.

Otherwise, let y ∈ Ω, so that s = t̄, and let (r, z) ∈ ∂Q such that r < s and

u(s, y) = (s− r)L

(

y − z

s− r

)

+ ϕ(r, z) . (13)
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Then, by (13), (7) and the structure of L, we have

u(t, x)− u(s, y)

=ϕ(t, x) − (s− r)L

(

y − z

s− r

)

− ϕ(r, z)

≤ (t− r)L

(

x− z

t− r

)

− (s− r)L

(

y − z

s− r

)

=(t− r)L

(

x− y

t− r

)

+
1

t− r
A−1(x− y) · (y − z) + (t− r)L

(

y − z

t− r

)

− (s− r)L

(

y − z

s− r

)

=(t− s)L

(

x− y

t− s

)

−
1

2(t− r)

(

s− r

t− s

)

A−1(x− y) · (x− y)

+
1

t− r
A−1(x− y) · (y − z)−

1

2(t− r)

(

t− s

s− r

)

A−1(y − z) · (y − z)

= (t− s)L

(

x− y

t− s

)

−
1

t− r
L

(

√

s− r

t− s
(x− y)−

√

t− s

s− r
(y − z)

)

≤ (t− s)L

(

x− y

t− s

)

.

In both cases, we obtain the compatibility condition

u(t, x)− u(s, y) ≤ (t− s)L

(

x− y

t− s

)

.

Then, see [14], the right hand side of (12) is the unique viscosity solution of
{

vt(t, x) +H(∇v(t, x)) = 0 a.e. (t, x) ∈ Qt̄

v(t, x) = u(t, x) for (t, x) ∈ ∂Qt̄ .

Hence it coincides on Qt̄ with the map u.
Now fix X ′ = (t′, x′) ∈ Q and let R′ > 0 be such that B(X ′, R′) ⊂ Q. For any

T > 0 the map u is Lipschitz continuous on [0, T ]×Ω, see for example [5]. Let l > 0
be a Lipschitz constant for u on the set [0, t′ +R′]× Ω. Let

λ = min{A−1z · z : z ∈ ∂B(0, 1)} > 0 (14)

and let K > R′ be such that

λ(K −R′)2

l(1 +K +R′)
≥ 1 . (15)

If max{0, t′ − 1
2} < t̄ < t′, then for every (t, x) ∈ Bt̄(X

′, R′) and (s, y) ∈ ∂Qt̄ such
that t̄ < s < t and |x′ − y| ≥ K, by (14) we obtain

(t− s)L

(

x− y

t− s

)

≥
λ|x − y|2

2(t− s)
> λ(K −R′)2 .

On the other hand, by (15) we have

|u(t, x)− u(s, y)| < l(1 +K +R′) ≤ λ(K −R′)2 .

Therefore, if max{0, t′ − 1
2} < t̄ < t′ and (t, x) ∈ Bt̄(X

′, R′), the minimum in (12)

is realized at some (s, y) ∈ B(X ′,K) ∩Q, such that (s, y) ∈ ∂Qt̄ and s < t. Let

M = sup { |u(X)| : X ∈ B(X ′,K) ∩Q} .



PROPAGATION OF SINGULARITIES FOR HAMILTON-JACOBI EQUATIONS 7

If 0 < R < R′ and max{0, t′ − 1
2} < t̄ < t′ satisfy

(d∂Ω(x
′)−R)2

t′ − t̄+R
>

4M

λ
,

then for every (t, x) ∈ Bt̄(X
′, R), t̄ < s < t and y ∈ ∂Ω we have

(t− s)L

(

x− y

t− s

)

+ u(s, y) =
1

2(t− s)
A−1(x− y) · (x− y) + u(s, y)

≥
1

2(t− s)
λ(d∂Ω(x

′)−R)2 + u(s, y) > M .

We just proved that if (t, x) ∈ Bt̄(X
′, R), the minimum in (12) is realized at some

point of the form (t̄, y), y ∈ Ω. Therefore we obtain (11).

In [3], the invariance under the generalized gradient flow of the singular set of a
solution u : Rm → R of the eikonal equation is proved. The argument of the proof
relies on the monotonicity estimate

〈u(X)P − u(Y )Q,X − Y 〉 ≤ |X − Y |2

for every P ∈ D+u(X), Q ∈ D+u(Y ) and X,Y ∈ R
m. This property is a direct

consequence of (9) and the global semiconcavity of the square of u with constant
C = 2. Consider now the viscosity solution u of (6). Lemma 3.1 can be exploited
in order to obtain some semiconcavity estimates for u. For example, fixed X ′ =
(t′, x′) ∈ Q, let R > 0 and 0 < t̄ < t′ be associated to X ′ as in Lemma 3.1. Using
(11), it is possible to verify that for every x, h ∈ R

n such that x−h, x+h ∈ B(x′, R),

u(t′, x+ h)− u(t′, x− h)− 2u(t′, x) ≤
Λ

t′ − t̄
|h|2 ,

where Λ = max{A−1z · z : z ∈ ∂B(0, 1)}. This semiconcavity property and (9)
imply

〈p− q, x− y〉 ≤
Λ|x− y|2

t′ − t̄

for every p ∈ ∇+u(t′, x), q ∈ ∇+u(t′, y) and x, y ∈ B(x′, R). Yet, in order to
study the propagation in time of the singularities of u, we need an estimate on the
monotonicity of the superdifferential jointly in time and space. For this reason, as
in [3], a suitable transform of the solution u is introduced: for any t̄ > 0, the map
vt̄ : (t̄,+∞)× Ω → R is defined by

vt̄(t, x) = (t− t̄)u(t, x) . (16)

In a similar way as before, given X ′ = (t′, x′) ∈ Q, for suitable 0 < t̄ < t′ and
R > 0 some semiconcavity properties of vt̄ on Bt̄(X

′, R) can be obtained, jointly in
time and space. In the following lemma, we derive the resulting sharp monotonicity
estimate for the superdifferential of vt̄.

Lemma 3.2. Let X ′ = (t′, x′) ∈ Q and let R > 0 and 0 < t̄ < t′ be associated to
X ′ as in Lemma 3.1. Then

〈P1 − P2, X1 −X2〉 ≤ 2L(x1 − x2)

for every X1, X2 ∈ Bt̄(X
′, R) and every Pi ∈ D+vt̄(Xi), i = 1, 2.
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Proof. Fix X ′ = (t′, x′) ∈ Q and let R and t̄ be such that (11) holds true for all
(t, x) ∈ Bt̄(X

′, R). Let (t, x) ∈ Bt̄(X
′, R) \ Σ(u). By (11) there exists y ∈ Ω such

that

u(t, x) = (t− t̄)L

(

x− y

t− t̄

)

+ u(t̄, y) .

Then

vt̄(t, x) = L (x− y) + (t− t̄)u(t̄, y) (17)

and it is easy to prove that Dvt̄(t, x) coincides with the gradient of the right hand
side of (17) at (t, x), that is

Dvt̄(t, x) = (u(t̄, y),∇L(x− y)) . (18)

In general, when (t, x) ∈ Bt̄(X
′, R), any element of the superdifferentialD+vt̄(t, x) is

the convex combination of elements of the form (18), since vt̄ is locally semiconcave.
Hence, given Xi = (ti, xi) ∈ Bt̄(X

′, R) and Pi ∈ D+vt̄(Xi), i = 1, 2, there exist

λk
i ≥ 0 and yki ∈ Ω for i = 1, 2 and k ∈ {0, . . . , n+ 1}, such that

∑n+1
k=0 λ

k
i = 1,

vt̄(Xi) = L(xi − yki ) + (ti − t̄)u(t̄, yki ) (19)

and

Pi =

n+1
∑

k=0

λk
i (u(t̄, y

k
i ),∇L(xi − yki )) . (20)

By (11), (16) and (19), for every k1, k2 ∈ {0, . . . , n+ 1} we obtain

L(x1 − yk1

1 ) + (t1 − t̄)u(t̄, yk1

1 ) ≤ L(x1 − yk2

2 ) + (t1 − t̄)u(t̄, yk2

2 ) (21)

and

L(x2 − yk2

2 ) + (t2 − t̄)u(t̄, yk2

2 ) ≤ L(x2 − yk1

1 ) + (t2 − t̄)u(t̄, yk1

1 ) . (22)

Thus, (20), (21) and (22) imply

〈P1 − P2, X1 −X2〉

=

n+1
∑

k1,k2=0

λk1

1 λk2

2

[

(u(t̄, yk1

1 )− u(t̄, yk2

2 ))(t1 − t2) + 〈∇L(x1 − yk1

1 )−∇L(x2 − yk2

2 ), x1 − x2〉
]

=

n+1
∑

k1,k2=0

λk1

1 λk2

2

[

(t1 − t̄)(u(t̄, yk1

1 )− u(t̄, yk2

2 )) + (t2 − t̄)(u(t̄, yk2

2 )− u(t̄, yk1

1 ))

+ 〈∇L(x1 − yk1

1 )−∇L(x2 − yk2

2 ), x1 − x2〉
]

≤

n+1
∑

k1,k2=0

λk1

1 λk2

2

[

L(x1 − yk2

2 )− L(x1 − yk1

1 ) + L(x2 − yk1

1 )− L(x2 − yk2

2 )

+ 〈∇L(x1 − yk1

1 )−∇L(x2 − yk2

2 ), x1 − x2〉
]

.

(23)

Observe that the special structure of L yield

L(x1 − yk2

2 )− L(x2 − yk2

2 ) =
1

2
A−1(x1 − x2) · (x1 − x2) +A−1(x1 − x2) · (x2 − yk2

2 )

= L(x1 − x2) + 〈∇L(x2 − yk2

2 ), x1 − x2〉 .

(24)
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Analogously,

L(x2 − yk1

1 )− L(x1 − yk1

1 ) = L(x1 − x2)− 〈∇L(x1 − yk1

1 ), x1 − x2〉 . (25)

Then, combining (23), (24) and (25), we obtain

〈P1 − P2, X1 −X2〉 ≤ 2L(x1 − x2)

concluding the proof.

4. Propagation of singularities. In what follows, we denote by F the full Hamil-
tonian associated with (6), that is, for every (τ, p) ∈ R× R

n we set

F (τ, p) = τ +H(p).

Let u be given by the Hopf formula (8). Then, see [5], u satisfies (3) at any point
(t, x) ∈ Q\Σ(u). Consequently, for every X ∈ Q and any (τ, p) ∈ D∗u(X), we have
F (τ, p) = 0. Since D+u(X) is the convex hull of D∗u(X), the special structure of
F implies that X ∈ Q is a singular point of u if and only if

min
(τ,p)∈D+u(X)

F (τ, p) (26)

is strictly negative. Sufficient conditions are provided in the literature, see for ex-
ample [6] and [15], for the existence of generalized characteristics, whose dynamics
are determined by selections of the superdifferentials of u that are ”energy mini-
mizing” in the sense of (26). To be more precise, in [6] it was proved that if for
any X0 = (t0, x0) ∈ Q there is a unique generalized characteristic starting from
X0, then any generalized characteristic ξ : [t0, t0 + T0) → Q admits right derivative
d

ds+ ξ(s) for all s ∈ [t0, t0 + T0), this is right-continuous and is given by

d

ds+
ξ(s) = DF (τ(s), p(s)) ,

where (τ(s), p(s)) ∈ D+u(ξ(s)) is such that

F (τ(s), p(s)) = min
(τ,p)∈D+u(ξ(s))

F (τ, p) . (27)

When H is a quadratic form, the uniqueness of the generalized characteristics,
given the initial data, is a consequence of Gronwall’s Lemma. Then, we can state
the following

Proposition 4.1. Let X ′ ∈ Q and R > 0 be such that B(X ′, R) ⊂ Q. Then, there
exists TR > 0 such that for every (t0, x0) ∈ B(X ′, R) there is a Lipschitz continuous
arc ξ : [t0, t0 + TR) → Q satisfying the following properties:

(i) ξ(t0) = (t0, x0);
(ii) the right derivative d

ds+ ξ(s) does exist for all s ∈ [t0, t0 + TR);

(iii) d
ds+ ξ(·) is right-continuous and

d

ds+
ξ(s) = DF (τ(s), p(s)) =

(

1
∇H(p(s))

)

, (28)

where (τ(s), p(s)) ∈ D+u(ξ(s)) satisfies (27).

Moreover,

d

ds+
u(ξ(s)) = τ(s) +Ap(s) · p(s) ∀ s ∈ [t0, t0 + TR) . (29)
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Proof. The first statement of the Proposition is a consequence of [6, Theorem 3.2,
Corollary 3.4] and of Gronwall’s Lemma. It remains to verify (29). First observe
that by (28) for every s ∈ [t0, t0 + TR) we have

d

ds+
u(ξ(s)) = ∂u

(

ξ(s),
d

ds+
ξ(s)

)

= ∂u

(

ξ(s),

(

1
∇H(p(s))

))

. (30)

Let (τ(s), p(s)) ∈ D+u(ξ(s)) satisfy (27) for every s ∈ [t0, t0 + TR). By (iii) of
Proposition 4.1 we obtain

lim
h↓0

ξ(s+ h) = ξ(s) lim
h↓0

(τ(s+ h), p(s+ h)) = (τ(s), p(s))

and

lim
h↓0

ξ(s+ h)− ξ(s)

|ξ(s+ h)− ξ(s)|
=

(1,∇H(p(s)))

|(1,∇H(p(s)))|
.

Then Proposition 2.1 yields

(τ(s), p(s)) ∈ D+u

(

ξ(s),
(1,∇H(p(s)))

|(1,∇H(p(s)))|

)

.

Equivalently,

(τ(s), p(s)) ∈ argmin(τ,p)∈D+u(ξ(s))

〈(

τ

p

)

,

(

1
∇H(p(s))

)〉

. (31)

Therefore, (30), (10), (31) and the special structure of H yield

d

ds+
u(ξ(s)) = τ(s) + p(s) · ∇H(p(s)) = τ(s) +Ap(s) · p(s) .

In [6], it was shown that, given a singular point X0 = (t0, x0) of u, the singularity
propagates locally in time following the generalized characteristic

ξ(s) =

(

t0
x0

)

+

∫ s

t0

(

1
∇H(p(r))

)

dr . (32)

We shall provide an upper bound for the dissipation of the minimal energy (27)
along this curve. Eventually, this estimate has the consequence that the singularities
cannot actually extinguish in a finite time.

Theorem 4.1. Let X ′ = (t′, x′) ∈ Q and let R > 0 and 0 < t̄ < t′ be associated
to X ′ as in Lemma 3.1. Then, there exists T ′ > 0 such that for every (t0, x0) ∈
Bt̄(X

′, R
2 ) the Lipschitz continuous arc defined by (32) satisfies

min
(τ,p)∈D+u(ξ(s))

F (τ, p) ≤

(

t0 − t̄

s− t̄

)2

min
(τ0,p0)∈D+u(t0,x0)

F (τ0, p0) (33)

for every s ∈ [t0, t0 + T ′).

Theorem 4.1 implies the global propagation of the singularities.

Theorem 4.2. Let (t0, x0) be a singular point of u. Then there exist T ∈ (0,+∞]
and a Lipschitz continuous arc γ : [t0, t0 + T ) → R

n starting from x0, satisfying

(s, γ(s)) ∈ Σ(u) ∀ s ∈ [t0, t0 + T )

and such that lims→t0+T γ(s) ∈ ∂Ω whenever T < +∞.
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Proof. Let ξ(·) =: (·, γ(·)) be the generalized characteristic starting from (t0, x0).
Set

T = sup{r ≥ 0 : ξ(t0 + r) ∈ Σ(u)}. (34)

By Theorem 4.1 we have that T > 0. Then either T = +∞ or 0 < T < +∞.
In the latter case we must have x′ := lims→t0+T γ(s) ∈ ∂Ω. Indeed, suppose by
contradiction that x′ ∈ Ω. Let R > 0 and 0 < t̄ < t0 + T be associated with the
point (t′, x′) := (t0 + T, x′) ∈ Q as in Lemma 3.1. Let T ′ > 0 be as provided by
Theorem 4.1 and let max{t̄, t′−T ′} < s < t′ be such that ξ(s) ∈ B(ξ(t′), R

2 ). Hence,
by Theorem 4.1 we have

min
(τ,p)∈D+u(ξ(t′))

F (τ, p) ≤

(

s− t̄

t′ − t̄

)2

min
(τ,p)∈D+u(ξ(s))

F (τ, p) < 0.

Then, ξ(t0+T ) ∈ Σ(u)∩Q and Theorem 4.1 contradicts the maximality in (34).

Before proving Theorem 4.1, we provide an example showing that the estimate
(33) is somehow sharp.
Example. For ε > 0 consider the problem

{

ut(t, x) +
1
2u

2
x(t, x) = 0 a.e. (t, x) ∈ (0,+∞)× R

u(0, x) = (|x|−1)2

2ε ,
(35)

The Hopf formula provides the unique viscosity solution of (35):

uε(t, x) =
1

2

(|x| − 1)2

t+ ε
.

The singular set of this map is Σ(uε) = (0,+∞)×{0} and the curve ξ : (0,+∞) →
R

2 defined by ξ(s) = (s, 0) is a generalized characteristic. If we compute the energy
minimizing selection of the superdifferential of uε along this curve, we obtain

argmin{F (τ, p) : (τ, p) ∈ D+uε(s, 0)} =

{(

−
1

2(s+ ε)2
, 0

)}

=: {(τ(s), p(s))} .

Then, given 0 < t0 ≤ s, we have

F (τ(s), p(s)) =

(

t0 + ε

s+ ε

)2

F (τ(t0), p(t0)) .

Letting ε ↓ 0 and considering the associated functions uε, the inequality (33) turns
out to be sharp.

Proof of Theorem 4.1. Fix X ′ = (t′, x′) ∈ Q. Let R > 0 and 0 < t̄ < t′ be
associated to X ′ as in Lemma 3.1, and TR be associated to X ′ and R as in
Proposition 4.1. If (t0, x0) ∈ Bt̄

(

X ′, R
2

)

, let ξ : [t0, t0 + TR) → Q be the gener-
alized characteristic starting from (t0, x0) and, for any s ∈ [t0, t0 + TR], the vector
(τ(s), p(s)) ∈ D+u(ξ(s)) satisfy

F (τ(s), p(s)) ≤ F (τ, p) ∀ (τ, p) ∈ D+u(ξ(s)).

Observe that, by (28), for every (t0, x0) ∈ Bt̄

(

X ′, R
2

)

the curve ξ is Lipschitz

continuous with constant lξ ≤ 1 + Λlu, where Λ = max{A−1z · z : z ∈ ∂B(0, 1)}

and lu is a Lipschitz constant of u on the set
[

0, t′ + R
2 + TR

]

×Ω. Setting T ′ = R
2lξ

,

for every (t0, x0) ∈ Bt̄

(

X ′, R2
)

we have that

ξ(s) ∈ Bt̄(X
′, R) ∀ s ∈ [t0, t0 + T ′) .
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In order to obtain the claim of the Theorem, we need to verify that

F (τ(s), p(s)) ≤

(

t0 − t̄

s− t̄

)2

F (τ(t0), p(t0)) ∀ s ∈ [t0, t0 + T ′) .

Fix (t0, x0) ∈ Bt̄

(

X ′, R2
)

. Recalling (28), for all s ∈ [t0, t0 + T ′] we can define
the arc γ by

ξ(s) =

(

t0
x0

)

+

∫ s

t0

(

1
∇H(p(r))

)

dr =:

(

s

γ(s)

)

.

Let vt̄ be defined as in (16) and fix s ∈ (t0, t0+T ′). Since ξ([t0, t0+T ′]) ⊂ Bt̄(X
′, R),

by Lemma 3.2, for every r ∈ [t0, s] and 0 < h < t0 + T ′ − s, we have

〈Ph − P, ξ(r + h)− ξ(r)〉 ≤ 2L(γ(r + h)− γ(r)) (36)

for any Ph ∈ D+vt̄(ξ(r + h)), P ∈ D+vt̄(ξ(r)). Let (t, x) ∈ Bt̄(X
′, R) \ Σ(u). By

Lemma 3.2, there is y ∈ Ω such that

u(t, x) = (t− t̄)L

(

x− y

t− t̄

)

+ u(t̄, y) .

Then one can prove that

Du(t, x) =

(

−L
(

x−y
t−t̄

)

1
t−t̄

∇L(x− y)

)

and Dvt̄(t, x) =

(

u(t̄, y)
∇L(x− y)

)

,

so that

Dvt̄(t, x) =

(

u(t, x)
0

)

+ (t− t̄)Du(t, x) .

This and the properties of the superdifferential of semiconcave functions yield that
for every (t, x) ∈ Bt̄(X

′, R)

D+vt̄(t, x) =

(

u(t, x)
0

)

+ (t− t̄)D+u(t, x) . (37)

By (36) and (37), we obtain in particular
〈(

u(ξ(r + h))
0

)

+(r + h− t̄)

(

τ(r + h)
p(r + h)

)

−

(

u(ξ(r))
0

)

+(r − t̄)

(

τ(r)
p(r)

)

,

(

h

γ(r + h)− γ(r)

)〉

≤ 2L (γ(r + h)− γ(r)) ,

that is

h [u(ξ(r + h))− u(ξ(r))] + h(r + h− t̄) [τ(r + h)− τ(r)] + h2τ(r)

+(r + h− t̄) 〈p(r + h)− p(r), γ(r + h)− γ(r)〉 + h 〈p(r), γ(r + h)− γ(r)〉

≤2L (γ(r + h)− γ(r)) .

Dividing by h2 and setting

τh(r) =
τ(r + h)− τ(r)

h
, ph(r) =

p(r + h)− p(r)

h
, γh(r) =

γ(r + h)− γ(r)

h

we obtain

u(ξ(r + h))− u(ξ(r))

h
+(r + h− t̄)τh(r) + τ(r)

+(r + h− t̄) 〈ph(r), γh(r)〉 + 〈p(r), γh(r)〉 ≤ 2L (γh(r)) .

(38)
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Let ρ(r) =
∫ r

t0
τ(z)dz, and ρh(r) =

ρ(r+h)−ρ(r)
h

. By Proposition 4.1 we have

u(ξ(r + h))− u(ξ(r))

h
=

1

h

∫ r+h

r

d

dz+
u(ξ(z))dz

= ρh(r) +
1

h

∫ r+h

r

Ap(z) · p(z)dz (39)

and

〈ph(r), γh(r)〉 =
d

dr+

(

1

2
A−1γh(r) · γh(r)

)

. (40)

By (38), (39) and (40) we obtain

2ρh(r)+ A−1γh(r) · γh(r) + (r + h− t̄) d
dr+

(

ρh(r) +
1
2A

−1γh(r) · γh(r)
)

≤ A−1γh(r) · γh(r)−
1
h

∫ r+h

r
Ap(z) · p(z)dz

+A−1γh(r) · γh(r) − 〈p(r), γh(r)〉

+ρh(r) −
d

dr+ ρ(r) . (41)

Setting

Gh(r) = (r + h− t̄)2
(

ρh(r) +
1

2
A−1γh(r) · γh(r)

)

,

the left hand side of (41) can be rewritten as (r+ h− t̄)−1 d
dr+Gh(r). Now consider

the right hand side of the inequality. Define

ωh(r) = sup
r≤z≤r+h

[|p(z)− p(r)|+ |τ(z)− τ(r)|] .

The sequence ωh(·) converges pointwise to 0 as h → 0+, since τ and p are right-
continuous. We have

A−1γh(r) · γh(r)−
1

h

∫ r+h

r

Ap(z) · p(z)dz ≤ 0 , (42)

∣

∣A−1γh(r) · γh(r) − 〈p(r), γh(r)〉
∣

∣ ≤ |γh(r)| ·
1

h

∫ r+h

r

|p(z)− p(r)|dz ≤ ‖Aluωh(r)

(43)
and

∣

∣

∣

∣

ρh(r) −
d

dr+
ρ(r)

∣

∣

∣

∣

≤
1

h

∫ r+h

r

|τ(z)− τ(r)|dz ≤ ωh(r) . (44)

Here lu > 0 is a suitable Lipschitz constant for u. Summarizing, (41), (42), (43)
and (44) yield

d

dr+
Gh(r) ≤ C(r + h− t̄)ωh(r) (45)

for some C > 0 independent on r and h. Integrating both sides of (45) on the
interval [t0, s], we obtain

Gh(s) ≤ Gh(t0) + C

∫ s

t0

(r + h− t̄)ωh(r) .

Taking the limit as h → 0 and using dominated convergence, we obtain

F (τ(s), p(s)) ≤

(

t0 − t̄

s− t̄

)2

F (τ(t0), p(t0)) .

This concludes the proof of the Theorem.
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