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Abstract

In France, non-residential buildings account for a significant part of energy con-
sumption. A large part of this consumption is due to HVAC (Heating, Ventilation
and Air-Conditioning) systems, which are in most cases poorly handled. The
present work deals with an efficient approach allowing energy consumption to be
minimized while still ensuring thermal comfort. We proposea predictive con-
trol strategy for existing zoned HVAC systems and consider the PMV (Predicted
Mean Vote) index as a thermal comfort indicator. In order to test this strategy,
we modelled a non-residential building located in Perpignan (south of France) us-
ing the EnergyPlus software. The twofold aim is to limit the times during which
the HVAC sub-systems are turned on and to ensure a satisfactory thermal comfort
when people are working in the considered building. This predictive approach,
computationally tractable, allows thermal comfort requirements to be met without
wasting energy.

Keywords: non-residential building, energy consumption, zoned HVACsystem,
thermal comfort, artificial neural networks, model predictive control.

1. Introduction

Within non-residential buildings, almost half of the electricity consumption
is due to Heating, Ventilation and Air-Conditioning (HVAC)systems [1]. As a
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consequence, new approaches are needed to make HVAC systemsmore efficient.
First, energy efficiency can be improved in central heating systems by introduc-
ing zoned heating. This allows a more granular application of heat and HVAC
sub-systems can be controlled independently. Another key point is indoor thermal
comfort. Thermal comfort is subjective, hard to define and even harder to achieve
in a non-residential building. It is mainly related to indoor conditions and im-
pacted in a significant way by the effectiveness of the building envelope and the
way the HVAC system is used.

Over the last few years, many studies have been conducted on thermal com-
fort management. These studies are based on the use of different tools [2], such as
fuzzy logic [3][4] or genetic algorithms [5]. Bermejo et al.[6] proposed an adap-
tive system based on fuzzy logic, capable of learning the user thermal sensation to
maintain an optimal comfort. Dounis and Manolakis [7] developed an algorithm
to regulate the PMV index using a fuzzy system, capable of controlling both the
temperature and humidity in a room. Fraisse et al. [8] used a self-learning fuzzy
controller to find the optimal heating start time. With the exception of the last
one, these approaches require to turn on the HVAC system at a fixed time and this
can impact negatively thermal comfort if the system is started too late, or energy
consumption if triggering happens too soon.

Predictive control [9][10][11] is a very good alternative to the above-mentioned
approaches. Indeed, predictive algorithms can take advantage of the intermittent
use of buildings, whose occupancy is regular and known. In particular, Artificial
Neural Networks (ANN) have demonstrated on several occasions their efficiency
in control and energy consumption optimization. Huang et al. [12] worked on a
predictive model based on ANN to forecast temperature inside an area by taking
into account the coupling effect between zones. Morel et al.[13] and Argiriou
et al. [14][15] worked on similar predictive control strategies based on outdoor
temperature and solar radiation forecasting. In [7] a waterheating system is con-
trolled in isolated rooms while in [8] an electrical heatingsystem is controlled
over individual solar houses. Control was done for only one area, without consid-
ering thermal exchanges. Moroşan et al. [16] developed a distributed predictive
approach to control several areas simultaneously while taking into account ther-
mal transfers. In this case, thermal comfort was defined on the basis of a reference
temperature. The proposed algorithm is useful but on-line optimization is needed
and computation time is extensive. As a result, such a solution cannot be imple-
mented easily in an embedded system.Álvarez et al. [17] developed a predictive
approach to control an HVAC system composed of solar collector fields. A key
point was to ensure an acceptable thermal comfort in the different areas of the



considered building despite limited thermal resources. The PMV index was used
as a thermal comfort indicator. Moreover, many solutions are based on control-
ling local heating systems in small areas [18]. This kind of approaches is not well
adapted to changes in human activity but thermal comfort requirements can be met
without wasting energy. Moreover, additional heating sub-systems are sometimes
needed. Kolokotsa et al. [19] developed a predictive controller using a bilinear
model. Comfort has been defined on the basis of both a fixed temperature and a
humidity bandgap to satisfy.

Pyrescom Company has developed a monitoring system that carries out me-
teorological parameters and energy measurements to improve energy efficiency
in non-residential buildings (Batnrj project). The collected data are used to find
out possible ways to develop an efficient HVAC control strategy. Several build-
ings are currently instrumented using the Pyrescom monitoring system, including
a non-residential building located in the city of Perpignan(south of France). This
reference (pilot) building has been modeled using the EnergyPlus software and
allowed the strategy about HVAC management we propose to be tested and evalu-
ated. Energy consumption, thermal comfort and computationtime are considered
as performance indicators. Computation time is a key point to the project. For
each instrumented building, an embedded system is used to collect data from var-
ious sensors (temperature, humidity, energy consumption,etc.) and these data are
sent to a remote server. This server has a significant computational power but
the embedded systems have limited capabilities. That is whythe main objective
of the work we present in this paper is to develop a computationally tractable
approach for managing energy resources and satisfying thermal comfort require-
ments in non-residential buildings. The proposed strategyis based on predictive
control and aims at managing thermal comfort in several areas of non-residential
buildings equipped with HVAC sub-systems without on-line optimization. Ther-
mal comfort is based on the PMV (Predicted Mean Vote [20]) index, which is
a standardized indicator designed to estimate the thermal sensation of the occu-
pants. This criterion allows temperature to be adjusted in abuilding according to
the period of the year, occupant behaviour and activities. Moreover, air tempera-
ture set-point may be reduced when the wall temperature increases, while keeping
an identical comfort. So, we used first feedforward Artificial Neural Networks
(ANN) to model the non-linear behaviour of the PMV index, mainly from so-
lar radiation, outdoor temperature and internal gains (ANN-based PMV models).
Then, we considered the PMV index as a control set-point and thermal comfort
can be maintained in a desired interval which can be adjustedby people working
in a given building.



The present paper is organized as follows: first, the reference (pilot) building
we modelled using the EnergyPlus software is described (section 2). Next, section
3 focuses on thermal comfort and the way the PMV index can be used as a relevant
comfort indicator. The following section (section 4) is about the development
and validation of the ANN-based PMV models (the interaction, i.e. heat transfer,
between the three rooms we considered in the non-residential building is taken
into account or not). The predictive control strategy we developed for HVAC sub-
systems is presented in section 5. Finally, the results we obtained are analyzed
and compared with the results provided by standard (non-predictive) management
strategies. The paper ends with a conclusion and an outlook to future work.

2. Non-residential (reference) building

To evaluate the proposed strategy, a reference building hasbeen modelled us-
ing the EnergyPlus software, which is able to perform accurate building simula-
tions. The considered building is a real two-storey building of 1000m2, built in
2008 and located in Perpignan (south of France). It is facingsouth and agrees
with the French ”Thermal Regulation 2005” [21]. This non-residential building is
divided into three main areas of340m2 each (figure 1), with different uses. About
a dozen employees work in offices at the ground and first floors (green and yellow
area). The red area in the first floor is a manufacturing zone where about 6 per-
sons work seated or in a standing position. The last room of the ground floor is a
warehouse (blue area) that is not heated.

For both the warehouse and the manufacturing area, ceiling is 3.90m. In the
offices, a suspended ceiling stands at2.70m. The materials used in the building

Figure 1: Topology of the considered non-residential (reference) building.



Table 1: Properties of the materials used in the exterior walls. l is the thickness,λ the conductivity,
ρ the density andC the specific heat of a material.

Layer l λ ρ C
(cm) (W·m−1·K−1) (kg·m−3) (J·kg−1·K−1)

Brick 10 0.89 1920 790
Heavy weight concrete 20 1.45 2000 1000

Insulation board 5 0.03 43 1210
Gypsum board 2 0.16 800 1090

Table 2: Characteristics of the three considered areas.

Characteristics Ground floor Manufacturing First floor
offices area offices

Surface (m2) 165 230 155
Volume (m3) 450 900 420

Heating power (W) 5000 10000 5000
Number of occupants 8 6 5

Metabolic activity (W·m−2) 70 116 70
Lighting power (W) 1000 1400 1000

are listed in table 1. The exterior walls consist of several layers of different ma-
terials. From the outside to the inside are juxtaposed a brick layer, heavy weight
concrete, an insulation board, and finally a gypsum board. The interior walls are
composed of two gypsum boards, for a total thermal resistivity of 2.2m2·K·W−1.
The south face and a part of the west face of the building are made from glass.
Glass has been treated to filter infrared radiation and avoidoverheating in summer.
The other glasses in the building consist in3mm double glazed bays.

The present study focuses on the three following (occupied and equipped with
sensors) areas: the offices on both floors and the manufacturing area, that is com-
posed of an open space of230m2 and three storage rooms of110m2 (not heated).
Heating is handled in the building by a zoned electrical HVACsystem consisting
in several sub-systems, one for each area, where only the temperature set-point
can be adjusted. Each sub-system is managed by a local controller. The character-
istics of the different HVAC sub-systems for each area are listed by table 2. All the
units have a coefficient of performance (CoP) equal to 3.8. Aspreviously stated,
the proposed management approach is based on a model predictive controller that
will supervise the HVAC sub-systems (figure 2).
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Figure 2: The three considered rooms equipped with sensors and HVAC sub-systems. Only the
temperature set-points can be adjusted.

Weather data (outdoor temperature, solar radiation, wind speed) are required
to perform the simulation process. We used real data from year 2011 provided
by the Pyrescom monitoring system. Since atmospheric pressure measurements
were missing, we used data from the Perpignan airport which is located7 km away
from the building. Measurements were carried out with a timestep of 30 seconds
while averaged values were saved every 15 minutes and storedin a database. As a
consequence, the simulation time step is 15 minutes, what enables because of the
characteristics of the building a reactive control approach to be developed. Let us
note that Perpignan benefits from a relatively mild mediterranean climate. Figure
3 shows how outdoor temperature evolves at 6 a.m., from January to December
2011 (during the simulation period).

3. Thermal comfort

The Predicted Mean Vote (PMV) index is used as a thermal comfort indicator.
This indicator was developed by Fanger [20], before to be standardized by inter-
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Figure 3: Evolution of outdoor temperature at 6 a.m., from January to December 2011.

Table 3: Thermal sensation scale.

PMV value Thermal sensation
+3 hot
+2 warm
+1 slightly warm
0 neutral
-1 slightly cool
-2 cool
-3 cold

national organizations [22][23]. The PMV index quantifies the thermal sensation
felt by some people in a room. This sensation is described by ascale ranging from
-3 (cold) to +3 (hot) (table 3). The exchange of heat between the human body and
its environment strongly governs thermal comfort. It is highly subjective and can
be considered as perfect when the sum of exchanges is zero. Equation 1 depicts
the way one can compute the PMV index:

PMV = [0.303exp−0.036M + 0.028]× L (1)

with L the difference between the heat produced and the heat lost.

L = M −W −H1 −H2 −H3 −H4 −H5 −H6 (2)

For the roomj, ∀j ∈ J1; 3K, Mj is the metabolism (described below).Wj

is the external work and is considered to be null.H1, ..., H6 are the heat losses
coefficients (W·m−2). H1 is the heat loss by diffusion through the skin andH2 is
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Figure 4: Evolution of clothing thermal insulation, from January to December 2011.

Table 4: Clothing thermal insulation.

Interval ICL value (clo)
t6 < −5◦C 1

−5◦C ≤ t6 < 5◦C 0.818− 0.0364t6
5◦C ≤ t6 < 26◦C 10−0.1635−0.0066t6

t6 ≥ 26◦C 0.46

the heat loss by sweating.H3 andH4 are the losses by latent and dry respiration,
respectively. Finally,H5 is the heat loss by radiance andH6 is the heat loss by
convection. To calculate these heat losses coefficients, several parameters about
environment and occupants are taken into account: indoor air temperature (Tj),
radiant temperature (Twall

j ), relative humidity (HRj), air speed (vairj ), metabolic
activity, and clothing thermal insulation. Let us note thatair speed is not calculated
by the EnergyPlus software. However, this missing information is not critical
because air speed has no influence on the PMV value as long as itremains below
0.1m·s−1 [22]. This is mostly the case within the non residential building we
considered as a reference building. Moreover, metabolic activity is supposed to
be constant and only depends on the considered area. In offices, people work in
a sitting position most of the time and, as a result,M is set to70W·m−2 (i.e.
1.2met). Activity in the manufacturing area is more dynamic andM is set higher
to 116W·m−2 (i.e. 2met).

Depending on outdoor temperature, people dress differently. As a result, cloth-
ing thermal insulation varies over time. Schiavon and Lee [24] developed a pre-
dictive model to estimate clothing thermal insulation (notedICL). So, it is defined,



each day, from the outdoor temperature observed at 6 a.m. (t6), as shown in table
4. According to theses equations, clothing thermal insulation varies from0.58 clo,
during winter time, to0.46 clo, during summer time. Figure 4 depicts the way
such a parameter evolves between January and December 2011.Usual clothes for
summer are a pant with a short-sleeved shirt, while during winter, usual clothes
are a trouser with a long-sleeved shirt. Looking at figure 4, the result seems to
be realistic. It can be highlighted that the 2011 winter was mild, so the clothing
thermal insulation was moderate. At the end of January, outdoor temperature has
strongly decreased and, as a result, the algorithm has automatically adjusted the
clothing thermal insulation value.

4. ANN-based PMV models

4.1. Structure of the models

A model of the system to be controlled is required to evaluatethe predictive
control strategy and check if the PMV index can be maintainedinto the desired
interval during occupancy periods[−0.5;+0.5]. In a first single-area approach,
we used a linear state-space model. We obtained good resultsbut the local con-
troller used to regulate the air temperature in the buildingand whose behaviour is
unknown induces nonlinearities. As a consequence, we decided for feedforward
Artificial Neural Networks (ANN) [25] [26] to model the multi-area system. This
kind of network consists of a series of layers. The first layeris connected to the
network’s input vector while each subsequent layer is connected to the previous
layer. The final layer produces the network’s output. Feedforward artificial neural
networks can be used for any kind of input to output mapping. With only one
hidden layer and enough neurons in this layer, such networkscan approximate
any nonlinear continuous function to any desired degree of accuracy [27]. A key
point in using ANN to describe nonlinear dynamics is to definethe right topology
of the networks in order to avoid poorly fitted or overfitted models (generalization

ANN-based

PMV model

Figure 5: ANN-based PMV model for the roomj, ∀j ∈ J1; 3K (no interaction between the rooms).
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Figure 6: ANN-based PMV model for the roomsj, l andm, ∀j, l,m ∈ J1; 3K such asj 6= l 6= m
(with interaction between the rooms).

ability is affected in a significant way by overfitting). In addition, training has to
be done using an efficient learning algorithm (for example, the well-known and
efficient Levenberg-Marquardt (LM) algorithm [28] or, whenusing self-growing
feedforward artificial neural networks, the Cascade-Correlation (CC) algorithm)
and an adequate database of examples [29].

The proposed strategy is first designed to manage thermal comfort in the three
considered areas (the offices in both floors and the manufacturing area) in a sepa-
rate way. As a result, no interaction (i.e. heat transfer) isconsidered between these
areas and three models, one per area, are needed. So, a model links the PMV in-
dex (at timek + 1) in the roomj, ∀j ∈ J1; 3K, with outdoor temperature (Tout),
solar radiation (SR) and internal heat gain (IGj) at timek. The most common
sources of internal heat gain are metabolism, appliances, electronic devices, and
lighting. In addition, the influence of the heating system ofthe roomj is taken
into account through the air temperature set-point (T sp

j ). Let us remember that a
local controller operates in the three considered areas to regulate the air tempera-
ture. Finally, the PMV index in the roomj at timek is also considered as a model
input (figure 5). Equation 3 formulates the PMV index in the room j, without
interaction with the two other considered rooms. So,∀j ∈ J1; 3K:

PMVj(k + 1) = ANNj

(

PMVj(k), Tout(k), SR(k), IGj(k), T
sp
j (k)

)

(3)

In a second time, thermal comfort is managed in the building taking into ac-
count the existing interaction (i.e. heat transfer) between the three areas. As a



result, the PMV indexes in the roomsj, l andm are simultaneously computed at
timek + 1 with an overall model (ANNj,l,m). This model (figure 6) uses as inputs
all the air-temperature set-points (T sp

j , T sp

l andT sp
m ), internal heat gains (IGj , IGl

andIGm) and PMV indexes (PMVj ,PMVl andPMVm) at timek. In equation 4,
ANNj,l,m

j denotes thatPMVj(k+1) is the selected output among the three outputs
of the model. So,∀j, l,m ∈ J1; 3K such asj 6= l 6= m:

PMVj(k + 1) = ANNj,l,m
j





PMVj(k), PMVl(k), PMVm(k), . . .
SR(k), IGj(k), IGl(k), IGm(k), . . .
Tout(k), T

sp
j (k), T sp

l (k), T sp
m (k)



 (4)

4.2. Training phase and generalization ability

A training phase is needed to identify the parameters of the ANN-based mod-
els (the synaptic weights and biases) from examples. So, we generated a database
of examples using the EnergyPlus model of the considered non-residential build-
ing. Of course, training efficiency is highly related to datarelevance. We sim-
ulated the behavior of the building during a whole year and turned on and off
the HVAC sub-systems randomly every day (2 to 6 hours before people arrive at
the building or after they left the building). In addition, we selected randomly
temperature set-points in the interval[19 ◦C; 26 ◦C]. These set-points remained
unchainged during all the day. Let us note that in a real building, the identifi-
cation process will be carried out from measurements provided by the Pyrescom
monitoring system. So, the thermal model of the considered building is not nec-
essary. Using simulated (or measured) data, the training phase is achieved using
MatlabR© and its neural network toolbox. Because overfitting can be favoured by a
badly-sized training subset, we decided to train the networks using different sub-
sets of data randomly picked up among all the available examples. We used the
Levenberg-Marquardt algorithm as learning algorithm [28]. It is accurate, fast and
uses matrix decompositions to limit the amount of memory used. The validation
phase has been carried out using new data sets dealing with realistic scenarios.

The parametric study we carried out to model the PMV index in the room
j when interaction between the three considered areas is not taken into account
(modelANNj, ∀j ∈ J1; 3K) has highlighted that generalization is very good when
using feedforward neural networks with 30 hidden neurons while using about 15%
of the available data during the training phase. As a consequence, we selected this
configuration. In this case, the Mean Relative Error (MRE) over validation data
is about 5%, whatever the room. Figure 7 depicts the impact ongeneralization of
the number of hidden neurons and the quantity of training data used. This figure
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Figure 7: MRE [%] during validation, according to the numberof hidden neurons and the percent-
age of data used to train the network (ANNj, room of the building: manufacturing area).

is related to the manufacturing area. Learning is achieved in about 20 seconds, so
it can be easily handled by a remote server without penalizing the other running
applications. Taking a look at figure 7, one can also note thatwhen using less than
15 hidden neurons (whatever the quantity of training data used) the PMV model
is under-parameterized. In opposition, very good results can also be achieved
with 40 to 50 hidden neurons and 25 to 50% of the available dataused during the
training phase. However, in this case, computation time is higher than it is with
the selected configuration.

When taking into account the interaction (i.e. heat transfer) between the three
considered areas (modelANNj,l,m, ∀j, l,m ∈ J1; 3K such asj 6= l 6= m), general-
ization is also very good for a feedforward artificial neuralnetwork with 30 hid-
den neurons while using about 10% of the available data during the training phase.
Again, the Mean Relative Error (MRE) over validation data isabout 5%, whatever
the room. Taking a look at figure 8 (manufacturing area), one can note that when
using less than 10 hidden neurons (whatever the quantity of training data used)
the PMV model is under-parameterized. In opposition, it is over-parameterized
when considering about 40 hidden neurons. Finally, figure 9 shows values of the
PMV index given by EnergyPlus and the ANN-based models (for aperiod of five
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Figure 8: MRE [%] during validation, according to the numberof hidden neurons and the percent-
age of data used to train the network (ANN

j,l,m
j , room of the building: manufacturing area).

days), for each of the three considered rooms (interaction is taken into account).
The HVAC sub-systems are turned on only during occupancy periods, with a tem-
perature set-point set to 22◦C. It clearly appears that the ANN-based models are
able to estimate accurately the PMV index in the different areas when taking into
account interaction.

4.3. Exogenous variables forecasting

In order to estimate the PMV index, forecasting values of themodel exoge-
nous variables are needed. Because the internal heat gains are directly related to
the building occupation, they can be easily estimated. As a consequence, only out-
door temperature and solar radiation have to be forecasted.Morel et al. [13] and
Argiriou et al. [14] developed neural network models to forecast theses variables
but such a solution implies more calculation time. As a result, we considered first
as a forecasted value, the value measured the previous day atthe same time (SR
andTout). Next, with the aim of increasing the accuracy of the forecasted tem-
perature, a correction term has been added by using the difference between the
current value and the value of the previous day at the same time (equation 5).k is
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the present time, andi the forecasting horizon:
{

SR(k + i) = SR(k + i− 24h)
Tout(k + i) = Tout(k + i− 24h) + Tout(k)− Tout(k − 24h)

(5)

5. Control strategy

5.1. Control of thermal comfort

Since our objective is to satisfy thermal comfort requirements in the three
considered rooms of the building, the HVAC air temperature set-pointT sp

j (∀j ∈
J1; 3K) has to be adjusted as necessary. As a key point, we need a set-point for the
PMV index (PMV sp

j ) to be reached. From this set-point as well asTwall
j , HRj ,

vairj andMj (figure 10),T sp
j is estimated. Because of both the complexity and

non-linearities of the PMV equation, one cannot solve it analytically to find the
appropriate air temperature set-point. That is why a numerical method has been
considered to solve equation 6.T sp

j is then set according to this computed value:

PMV (Tj , θj) = PMV sp (6)

with θj bringing togetherTwall
j , HRj, vairj andMj andPMV sp

j the PMV set-
point value from which we computed the air temperature set-point T sp

j . So, the
final objective is to find the best value forT sp

j (k) such as ifTj(k) = T sp
j (k) then

PMVj(k) = 0.
In order to solve this problem, different iterative methodshave been evaluated

with the aim of finding the fastest and the most efficient one (the standard algo-
rithms used are detailed in [30]). The stopping criterion isa tolerance of 0.05◦C
on T sp

j . First, we used the binary search algorithm. The number of iterations is
related to the desired accuracy, given that convergence is linear. The initial values
of the minimal and maximal thresholds were set to 15 and 30◦C, respectively. At

Comfort

level

controller

Figure 10: Control of thermal comfort.



Table 5: Evaluation of the tested algorithms.

Method Number of Computation
iterations time (ms)

Binary search 9 4.6
Newton-Raphson 2-3 5

Secant 4-5 2.4

each iteration, the gap around the solution is reduced untilit is lower than the
desired accuracy. The second algorithm used is the Newton–Raphson method.
The solution is computed on the basis of a correction term defined as the ratio
between the function and its derivative. Since it is not possible to find the deriva-
tive analytically, it is approximated. The initial value was set to 20◦C. The main
advantage of the Newton-Raphson method lies in its quadratic convergence. The
third algorithm we considered is the secant method. It is quite similar to the New-
ton–Raphson method, but uses a specific equation to approximate the derivative,
based on the two previous values. The initial values were setto 20◦C and 25◦C.

Table 5 summarizes performance results for the three methods we tested. Al-
though the Newton-Raphson method needs three time less iterations to reach the
solution than the binary search algorithm, computation time is similar. Slowness
is due to the PMV index being calculated three times per iteration instead of just
one time with the binary search algorithm. With the secant method, convergence
is slightly slower but the PMV index is computed only once periteration. As a
consequence, computation time is reduced by half and the secant method has been
chosen among the three tested methods.

5.2. Predictive control strategy

The block diagram of the proposed control predictive strategy is presented by
figure 11. EnergyPlus is used to simulate the behaviour of thereal non-residential
building, considered as the reference building. The controlled output is the PMV
index. The proposed Model Predictive Controller (MPC) usesthe identified ANN-
based PMV models to perform some predictions and optimize the way the heat-
ing sub-systems will operate (we seach for the optimal time to switch on or off
the sub-systems), taking into account the constraints about thermal comfort dur-
ing occupancy periods. The controller computes the HVAC airtemperature set-
point (the manipulated input) for the roomj, ∀j ∈ J1; 3K. Based on previous
day values, the forecasting unit estimates the exogenous disturbances (Tout, SR
andIGj). As previously mentioned, thermodynamic simulations arecarried out
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Figure 11: Block diagram of the predictive control strategy.

using EnergyPlus with MPC set-point values computed by MatlabR©. These two
softwares are interfaced using the MLE+ toolbox [31]. In real non-residential
buildings equipped with HVAC sub-systems, EnergyPlus simulations are no more
needed. To assess performance, energy consumption and thermal comfort during
occupancy periods are considered. The main objective is to satisfy thermal com-
fort requirements when the different areas are occupied andavoid energy waste
during the rest of the time. The thermal comfort interval is defined on the basis of
a PMV value ranging betweenPMV min

j = −0.5 andPMV max
j = 0.5. The tem-

perature set-point is computed to obtain a PMV index equal tozero in the room
j, ∀j ∈ J1; 3K. In real buildings, these parameters will be adjusted in real time,
according to people’s feelings. With the proposed strategy, one can optimize the
way the HVAC sub-systems switch from one operation mode to another (on/off).

The optimization problem related to the search for the optimal time to switch
the HVAC sub-systems on can be formalized in a standard way asa MPC problem.
The aim is to minimize the time during which the HVAC sub-systems are on
before the arrival of the first occupant (at timep). The criterion to be minimized is
defined by equation 7, consideringk ∈ N the actual time andp ∈ N the prediction



horizon. uj(k + i/k) is the vector of the manipulated variables for the roomj.
HVACj(k + i/k) = 1 if the HVAC sub-system is on andHVACj(k + i/k) = 0
if it is off. Let us note thatX(k + i/k) is the forecasted value ofX at timek + i,
based on the knowledge ofX at timek:

min
ū∈{0;1}p

(p−

p
∑

i=1

(uj(k + i/k))) (7)

Thus,HVACj(k + i/k) = uj(k + i/k) and if HVACj(k + i/k) = 1 then
T sp
j (k+ i/k) = T sp

j (k), with T sp
j (k) the set-point temperature computed to ensure

PMVj(k) = 0 (see equation 6 and figure 11). Else, ifHVACj(k + i/k) = 0 then
T sp
j (k + i/k) = 0. So, the vector̄u = [uj(k + 1/k), . . . , uj(k + p/k)] ∈ {1; 0}p

anduj(k) is a binary variable. One can note that we consider an integernj ∈ J1; pK
which exists so that the constraints defined by equation 8 aresatisfied. With such
an assumption, the HVAC sub-system of the roomj is switched on only once:

{

[uj(k + 1/k), . . . , uj(k + nj − 1/k)] = {0}nj−1

[uj(k + nj/k), . . . , uj(k + p/k)] = {1}p−nj+1 (8)

The terminal constraints related to thermal comfort requirements are given by
equation 9:

PMV min
j ≤ PMVj(k + p/k) ≤ PMV max

j (9)

The PMV index in the roomj, ∀j ∈ J1; 3K, is forecasted using the ANN-
based model we presented in section 4 (equation 10). Equation 11 is about the
forecasting of the exogenous variables, withSIGj the function that defines the
occupancy of the roomj and computes the internal heat gain. Equation 12 deals
with the computation of the air temperature set-point:

PMVj(k + i+ 1/k) = ANNj





PMVj(k + i/k), Tout(k + i/k), . . .
SR(k + i/k), IGj(k + i/k), . . .
T sp
j (k + i/k)



 (10)







Tout(k + i/k) = Tout(k + i− 24h) + Tout(k)− Tout(k − 24h)
SR(k + i/k) = SR(k + i− 24h)
IGj(k + i/k) = SIGj(k + i)

(11)

T sp
j (k + i/k) = T sp

j (k) such as ifTj(k) = T sp
j (k) thenPMVj(k) = 0 (12)



As a key point, the criterion to be minimized can be reformulated to avoid
searching the solution for eachuj(k + i/k). With such a reformulation, we only
need to find the best value ofnj as an integer parameter (equation 13), which is
enough to find the vector of the manipulated variables, as shown in equation 8.
The constraints remain unchanged:

min
nj∈J1;pK

(p− nj) (13)

The optimization problem related to the search for the optimal time to switch
the HVAC sub-systems off can be formalized in the same way. Our goal is to
maximize the time during which the sub-systems are off before people leave the
building (at timep). So, the criterion is defined as follows (equation 14):

max
nj∈J1;pK

(p− nj) (14)

Except for thermal comfort requirements, the constraints remain the same as
for the first optimization problem (the search for the optimal time to switch the
HVAC sub-systems on). So, because thermal comfort has to be maintained until
the end of the prediction horizon (p), equation 9 is replaced by equation 15. So
∀i ∈ J1; pK:

PMV min
j ≤ PMVj(k + i/k) ≤ PMV max

j (15)

Finally, with a centralized MPC controller,nj is the same for all the considered
areas and is so notedn. Moreover, the constraints related to thermal comfort
when searching for the optimal time to switch on or off the HVAC sub-systems
(equations 9 and 15) have to be respected in each of the considered rooms at the
same time, i.e.∀i ∈ J1; pK. In addition,PMVj is computed for the roomj using
the modelANNj,l,m

j , ∀j, l,m ∈ J1; 3K such asj 6= l 6= m, in order to take into
account the existing interaction (i.e. heat transfer) between the different areas of
interest (equation 16):

PMVj(k + i+ 1/k) =

ANNj,l,m
j









PMVj(k + i/k), PMVl(k + i/k), PMVm(k + i/k), . . .
IGj(k + i/k), IGl(k + i/k), IGm(k + i/k), . . .
T sp
j (k + i/k), T sp

l (k + i/k), T sp
m (k + i/k), . . .

SR(k + i/k), Tout(k + i/k)









(16)

In order to avoid on-line optimization that needs computingresources, we pro-
pose an algorithm allowing the optimal switching time (i.e.the optimal time to



turn on and off the HVAC sub-systems) to be found without optimization. Only
one simulation of the prediction model (ANNj or ANNj,l,m

j ) for each of the con-
sidered rooms is needed. Figure 12 depicts the predictive algorithm used. As
mentioned above, the sampling time is 15 minutes. The occupancy schedule (peo-
ple are present from 8:00 a.m. to 6:00 p.m.) is identical for the three considered
areas. First, the air temperature set-points are computed to obtainPMV sp

j = 0.
Depending on the presence or not of people in the building, two different cases
can be highlighted,∀j ∈ J1; 3K:

(i) When the building is occupied (Zj = 1 for the roomj), the objective is to
turn off the HVAC sub-systems as soon as possible while ensuring that thermal
comfort will meet requirements (equation 15) until all the people leave the differ-
ent areas, taking into account their thermal inertias. All the HVAC sub-systems
are considered to be turned off (HVACj(k) = 0) along the forecasting horizonp
while outdoor temperature and solar radiation (both are exogenous disturbances)
are estimated on the basis of the previous day values (equation 11). The PMV
index is forecasted using the proposed ANN-based models (equation 10). As
long as the building is occupied, the predictive algorithm checks if thermal com-
fort requirements are satisfied in each area of interest (theground floor and first
floor offices as well as the manufacturing area). If the constraints are not met, it
means that the HVAC sub-systems must not be turned off at thistime and, as a
result, the air-temperature set-points are set to the values we computed initially
(equation12). When the building is no more occupied (Zj = 0 for the roomj),
thermal comfort is necessarily satisfied and all the HVAC sub-systems are turned
off (HV ACj(k) = 0).

(ii) When the building is empty (Zj = 0 for the roomj), the predictive algo-
rithm searches for the last moment to turn on the HVAC sub-systems. The optimal
time to switch the sub-systems on is defined as the time allowing thermal comfort
requirements to be met when the first worker arrives at the building. If thermal
comfort is ensured at least two time steps before the first worker arrival, decision
is delayed and the HVAC sub-systems stay off (HV ACj(k) = 0). If thermal com-
fort is not ensured at least one time step before the first worker arrival (equation 9),
the HVAC sub-systems are switched on (HVACj(k) = 1) and the air temperature
set-points computed initially are used (equation12).

6. Results

In order to evaluate performance regarding thermal comfort, we considered
the percentage of time for which the PMV value remains between −0.5 and0.5,



the building being occupied. This percentage is of course directly related to con-
straints satisfaction. In addition, calculation of energyconsumption is based on
an average consumption per day and square meter. With these criteria, one can
compare the proposed predictive strategy with non-predictive ones. Finally, the
time needed to compute the air temperature set-points is recorded. This allows
computation requirements to be evaluated. The results are grouped in table 6.

Table 6: Performance of the strategies (simulation is from January to February 2011). (C) is for the
Continuous strategy, (S) is for the Scheduler operating mode, and (P) is for the Predictive strategy.

“Occupancy” “Vacancy” Consumption Comfort

set-point set-point (Wh/day·m2) criterion (%)
S1 (C) T sp

j = 22◦C T sp
j = 22◦C 232 78.2

S2 (C) PMV sp
j = 0 PMV sp

j = 0 253 74.1
S3 (S) T sp

j = 22◦C Off 88 82.6
S4 (S) PMV sp

j = 0 Off 98 79.3
S5 (P) PMV sp

j = 0 Off 102 84.9
S6 (P) PMV sp

j = 0 Off 82.9 87.2
S7 (P) PMV sp

j = 0 Off 82 86.6
S8 (P) PMV sp

j = 0 Off 81.6 86.8

6.1. Standard (non-predictive) strategies
The situation described below is the reference scenario (S1). In the real non-

residential building, the HVAC sub-systems are turned on and the air temperature
set-points remain the same (T sp

j = 22◦C in the roomj, ∀j ∈ J1; 3K) during day-
time, nighttime and week-end periods. With this scenario, thermal comfort is
slightly lower than zero and exceeds this value when outdoortemperature and/or
solar radiation are high. Figures 13a and 14a depict the way both the PMV index
(top) and power consumption (bottom) evolves during two characteristic weeks (a
cold one and a milder one). Scenario S2 allows the same strategy to be applied
but using a PMV set-point, instead of an air-temperature set-point. This time,
the average PMV index is very close to zero, but we observe thesame problem
as previously, that is to say overheating in case of high temperature and/or solar
radiation. This explains why the comfort criterion is lower, even with a higher
consumption of energy.

As an other option, we used a scheduler to stop the HVAC sub-systems dur-
ing the night and the week-ends and to turn them on in the morning, two hours
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Figure 12: Predictive control algorithm for the roomj, ∀j = 1, 2 or 3 (no interaction between the
rooms), or forj = 1, 2 and3 (with interaction between the rooms).



before people arrive in the manufacturing area. Two hours isa standard amount
of time to heat a building during the cold period of the year concerned by heat-
ing. On this basis, we defined two scenarios: S3 (T sp

j = 22◦C in the roomj,
∀j ∈ J1; 3K) and S4 (PMV sp

j = 0 in the roomj, ∀j ∈ J1; 3K). Quite logically,
the results we obtained highlight a significant decrease in energy consumption:
-62.1% (−144Wh/day·m2) with S3 and -57.8% (−134Wh/day·m2) with S4,
taking as a reference the results we obtained with scenario S1. In addition, thermal
comfort is improved : turning off the heating systems duringperiods of vacancy
attenuates and delays overheating effects. Figures 13b and14b show that scenario
S3 suffers from a lack of flexibility. Indeed, thermal comfort is sometimes reached
too early (for example during mild days), which leads to energy waste, while it is
reached too late some other days. In this case, thermal comfort requirements are
not satisfied.

6.2. Predictive control strategy

The next scenario (S5) introduces a predictive control witha single-area ap-
proach somewhat conservative because heat transfer between the three considered
areas is not taken into accdount. As a result, the HVAC sub-systems are turned on
too early and turned off too late. Otherwise, thermal comfort is good, even tough
electrical consumption is slightly higher than for both scenarios S3 and S4. As a
key point, overheating is limited compared to what is observed when applying the
non-predictive strategies. The three last scenarios (S6, S7 and S8) are based on the
multi-area predictive algorithm. Due to the forecasting method used for outdoor
temperature and solar radiation, they give different results. Scenario S6 is the ideal
case because the real values of outdoor temperature and solar radiation are used.
For scenario S7, uncorrected previous-day values are used.Finally, scenario S8
uses corrected previous-day values for outdoor temperature (see section 4.3) (fig-
ure 13c). These three scenarios allow the impact on the results of the forecasting
procedure to be highlighted: with an ideal prediction of outdoor temperature and
solar radiation (S6), the comfort criterion is the best. Of course, such a situation is
not realistic because forecasting outdoor temperature andsolar radiation without
error is impossible. So, these results are only given to evaluate the performances
of the other strategies in comparison with the ideal case. Using only the previ-
ous day values (S7) is efficient, but sometimes leads to sub-systems turned on too
soon or too late. With the correction factor (S8), this problem is solved most of the
time: the consumption of energy is slightly lower while thermal comfort is better.
These results suggest the robustness of the proposed approach. So, an advanced
forecasting approach, leading probably to an increase in computation time, seems



to be unnecessary. In addition, a study of the robustness of the proposed strategy
has been carried out and is presented in section 6.4.

The multi-area predictive strategy allows the problems encountered by the
standard strategies to be solved. During cold days or after week-ends, the anticipa-
tion time is longer than in case of warm days. The thermal comfort requirements
are just met when the first worker arrives at the building in the morning. As a re-
sult, energy waste is low and thermal comfort is very good. Inaddition, the HVAC
sub-systems are switched off before the end of the day, allowing energy savings
without impacting thermal comfort in a negative way. This avoids the overheating
problem encountered when applying the non-predictive strategies. During warm
weeks, the predictive strategy has other advantages. The anticipation time is much
shorter than when using the scheduler and the HVAC sub-systems are often turned
off before the end of the morning, which allows big energy savings during the af-
ternoon. Thermal comfort requirements are met until the last worker leaves the
building. In comparison to the strategy currently being pursued in the building
(scenario S1), the multi-area approach (scenario S8) allows energy consumption
to be reduced of about 65%, while the duration of thermal discomfort is almost
halved (−150Wh/day·m2). In comparison to scenario S3, which is an efficient
scenario, energy saving is about 7.3% (−6.4Wh/day·m2) and thermal comfort is
better. As a reminder, the building is occupied by people from 8:00 a.m. to 6:00
p.m. With the scheduler strategy, the HVAC sub-systems are always turned on 2
hours before the beginning of an occupation period and turned off when people
leave the non-residential building. Tables 7 and 8 highlight the optimal on/off
switching times for two simulation periods, when using scenario S8: from Jan-
uary 4 to 11 (figure 13c) and from November 2 to 9 (figure 14c), 2011. On/off
switching times are related to outdoor temperature and solar radiation. As a key
point, optimization strongly reduces the HVAC sub-systemsoperating time.

6.3. Computation time

Strategies consisting in a direct control of temperature donot require any com-
putation. In opposition, when the temperature set-points to be applied to the
HVAC sub-systems are defined on the basis of the PMV indexes, computation
is required. Duration is directly related to the resolutionprocess, computation
time is then2.4ms for each of the considered areas. Of course, predictive control
is the slowest strategy. Duration is variable and strongly depends on the number
of time steps needed to find the optimal solution of the problem (at each time step
the ANN-based models are used to forecast the PMV index). If the stopping cri-
terion is reached soon (i.e. thermal comfort is achieved before occupancy or not
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(a) Scenario S1. consumption is257Wh/day·m2.
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(b) Scenario S3. consumption is111.5Wh/day·m2.
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(c) Scenario S8. Consumption is108.4Wh/day·m2.

Figure 13: The simulation period is from January 4 to 11, 2011. At the top: temperature set-point
(dotted line), PMV index (discontinuous line) and thermal comfort constraints (blue dashed line).
At the bottom: power consumption. Green, orange and red lines are for the ground floor offices,
the first floor offices and the manufacturing area, respectively.
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(a) Scenario S1. Consumption is131.8Wh/day·m2.
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(b) Scenario S3. Consumption is49.6Wh/day·m2.
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(c) Scenario S8. Consumption is31.1Wh/day·m2.

Figure 14: The simulation period is from November 2 to 9, 2011. At the top: temperature set-point
(dotted line), PMV index (discontinuous line) and thermal comfort constraints (blue dashed line).
At the bottom: power consumption. Green, orange and red lines are for the ground floor offices,
the first floor offices and the manufacturing area, respectively.



Table 7: On/off switching times using scenario S8 (from January 4 to 11, 2011) and operating
time saved in comparison to scenario S3. January 8 (Saturday) and 9 (Sunday), 2011, are weekend
days.

Day Jan. 4 Jan. 5 Jan. 6 Jan. 7
Starting time 6:00 a.m. 6:00 a.m. 6:30 a.m. 6:45 a.m.

Stopping time 4:30 p.m. 4:15 p.m. 12:15 p.m. 12:15 p.m.
Time saved (h) 1:30 1:45 6:15 6:30

Day Jan. 8 Jan. 9 Jan. 10 Jan. 11
Starting time n.a. n.a. 6:15 a.m. 6:15 a.m.

Stopping time n.a. n.a. 2:15 p.m. 12:15 p.m.
Time saved (h) n.a. n.a. 4:00 6:00

Table 8: On/off switching times using scenario S8 (from November 2 to 9, 2011) and operating
time saved in comparison to scenario S3. November 5 (Saturday) and 6 (Sunday), 2011, are
weekend days.

Day Nov. 2 Nov. 3 Nov. 4 Nov. 5
Starting time 7:30 a.m. 7:45 a.m. 7:30 a.m. n.a.

Stopping time 9:45 a.m. 10:00 a.m. 10:00 a.m. n.a.
Time saved (h) 9:45 9:45 9:30 n.a.

Day Nov. 6 Nov. 7 Nov. 8 Nov. 9
Starting time n.a. 6:45 a.m. 7:00 a.m. 7:15 a.m.

Stopping time n.a. 12:15 p.m. 9:00 a.m. 8:45 a.m.
Time saved (h) n.a. 6:30 10:00 10:30

maintained while occupancy), computation is done in about100ms. Otherwise,
computation lasts400ms at the maximum. As a consequence, the use of artificial
neural networks has to be carefully considered in order for the proposed manage-
ment solution to be implemented in an embedded system whose memory size and
operation capability are limited.

6.4. Robustness of the predictive controller

The MPC strategy requires forecasting the exogenous variables. Consequently,
evaluating how accuracy impacts on efficiency is necessary.So, we carried out a
complementary study about the robustness of the proposed strategy. This study
highlights the impact of underestimated or overestimated exogenous variables.
We considered scenario S6 and we applied an error ranging between -50% and
+50% to forecasted outdoor temperature (Tout) and solar radiation (SR) values.
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(a) Impact of underestimated (negative percentage error) or overestimated (positive per-
centage error) values of outdoor temperature (Tout) on both energy consumption and ther-
mal comfort
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(b) Impact of underestimated (negative percentage error) or overestimated (positive per-
centage error) values of solar radiation (SR) on both energy consumption and thermal
comfort

Figure 15: Robustness of the predictive control strategy (considering the manufacturing area as
well as both the ground and first floor offices). The simulationis carried out from January to
February, 2011. The blue line is for the average energy consumption and the red line is about the
comfort criterion (the percentage of time for which the PMV value remains between−0.5 and
0.5).



Figure 15 depicts the results about robustness we obtained,considering the manu-
facturing area as well as both the ground and first floor offices. Figure 15a is about
outdoor temperature. WhenTout is underestimated (outdoor temperature is higher
than estimated by the proposed model), energy consumption increases. In this
case, the control algorithm decided for a PMV index and more time is needed to
reach the desired comfort level at 08:00 a.m. As a result, theHVAC sub-systems
are turned on earlier than when outdoor temperature is correctly estimated. In
the same way, the predictive controller has estimated that once the HVAC sub-
systems are shutted down, thermal comfort will decrease in the rooms faster than
it really does. As a consequence, the action to turn the HVAC sub-systems off is
delayed. Likewise, an overestimation ofTout (outdoor temperature is lower than
estimated by the model used) generates an opposite behaviour: heating starts too
late, what decreases energy consumption but affecting thermal comfort. However,
one can note that a forecasting error ranging between -40% and +30% affects only
slightly thermal comfort. As a result, the robustness of themodel predictive con-
troller with respect to the uncertainty in forecastingTout is quite good. Beyond
this interval, thermal comfort deteriorates in a more significant way.

Figure 15b is about solar radiation. Taking a look at this figure, one can clearly
note that a forecasting error does not really affect controlperformance. Changes
in both thermal comfort and energy consumption are very low.As a result, the
proposed model predictive controller can be considered as consistent. As one can
see in the figure, the HVAC sub-systems are turned on early in the morning (at
dawn). From this time to the time people arrive at the non-residential building
to work, solar radiation is vey low. So, the prediction errorimpacts in a more
significant way when the HVAC sub-systems must be turned off.Let us note that
solar radiation and outdoor temperature are linked together: when solar radiation
is low, because of clouds, outdoor temperature is also low.

Overall, accuracy in forecastingTout andSR impacts on thermal comfort and
energy consumption. The robustness of the proposed predictive control strategy
is quite good, even if accuracy is not high. However, ifTout (and/orSR) is under-
estimated, the HVAC sub-systems are turned on too early. If underestimation is
moderate, thermal comfort is improved but to the detriment of energy consump-
tion. In opposition, if underestimation is significant, overheating can be high-
lighted and thermal comfort is deteriorated. An overestimation of Tout (and/or
SR) reduces energy consumption and thermal comfort. If solar radiation is over-
estimated, the impact of overestimation can be considered as insignificant. This
impact is slightly higher when outdoor temperature is overestimated. However,
the predictive controller is still performing in a good way.



7. Conclusion

The aim of the work presented in this paper was to develop an efficient strat-
egy based on predicitive control to satisfy thermal comfortrequirements in non-
residential buildings equipped with zoned HVAC systems andlocal controllers,
while minimizing energy consumption. We used the PMV (Predicted Mean Vote)
index as a thermal comfort indicator. With such an indicator, one can estimate the
thermal sensation of people in a building. The algorithm we developed allows the
air temperature set-points of the HVAC sub-systems to be computed and the PMV
set-points to be reached. Energy consumption can be minimized if operation time
is reduced. Thus, we proposed a model predictive controllerin order to supervise
the local controllers and estimate the optimal time to turn on and off the HVAC
sub-systems.

Low-order models based on Artificial Neural Networks (ANN) have been
identified to forecast the PMV index in the considered rooms of a non-residential
building. These ANN-based models are used as internal models of the predictive
controller. We evaluated two different approaches: first, we developed one model
per room. In this case, interaction (i.e. heat transfer) between the rooms is not
taken into account. In a second time, we proposed a global model for all of the
rooms we considered. With such a model, interaction is allowed for. In both cases,
thermal comfort is improved and comfort constraints are met.

In order to evaluate the proposed strategy, a dedicated software for building
simulation has been used to develop a complete model of a realnon-residential
building located in Perpignan (south of France). This high-order model allowed
different strategies and scenarios to be evaluated and compared. As a key point,
one can note that the predictive controller based on the global ANN-based model
(interaction between the rooms is taken into account) offers a significant improve-
ment in energy efficiency and thermal comfort assessment. This strategy allows
saving up to 65% of energy when compared with the current strategy used in the
real building. With this strategy, the HVAC sub-systems areturned on and off
at the right time, that is turned on a few hours before the nextoccupation period
to satisfy thermal comfort requirements (when people arrive at the building) and
turned off to reduce energy consumption before people leavethe building.

In comparison to a standard scheduler, the proposed predictive strategy is more
flexible, the switching times being automatically adapted to the actual state of the
building, occupancy (internal heat gain) and exogenous perturbations (the weather
conditions). Moreover, the developped algorithm is computationnaly tractable (it
does not need extensive on-line optimization like with standard MPC) and will



be implemented in an embedded system. So, one can note that the results we
obtained meet the objectives that were defined at the start ofthe Batnrj project.

Future work will first focus on trying out the proposed predictive strategy in
the real non-residential (reference) building. Then, the developed algorithm will
be refined in order to compute an optimal and particular switching time for each
of the HVAC sub-systems. Finally, the strategy should be improved to optimize
the cooling process during summer time.
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