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Abstract

In France, non-residential buildings account for a sigaifigpart of energy con-
sumption. A large part of this consumption is due to HVAC (titeg Ventilation
and Air-Conditioning) systems, which are in most cases lgdwoaindled. The
present work deals with an efficient approach allowing epeansumption to be
minimized while still ensuring thermal comfort. We propaseredictive con-
trol strategy for existing zoned HVAC systems and considerRMV (Predicted
Mean Vote) index as a thermal comfort indicator. In orderdst this strategy,
we modelled a non-residential building located in Perpigfsmuth of France) us-
ing the EnergyPlus software. The twofold aim is to limit thees during which
the HVAC sub-systems are turned on and to ensure a satisfabtymal comfort
when people are working in the considered building. Thigljgteve approach,
computationally tractable, allows thermal comfort regaients to be met without
wasting energy.

Keywords: non-residential building, energy consumption, zoned H\#4&tem,
thermal comfort, artificial neural networks, model prefietcontrol.

1. Introduction

Within non-residential buildings, almost half of the elggty consumption
is due to Heating, Ventilation and Air-Conditioning (HVAGystems [1]. As a
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consequence, new approaches are needed to make HVAC systemsfficient.
First, energy efficiency can be improved in central heatysjesns by introduc-
ing zoned heating. This allows a more granular applicatibheat and HVAC
sub-systems can be controlled independently. Another &y s indoor thermal
comfort. Thermal comfort is subjective, hard to define anehdvarder to achieve
in a non-residential building. It is mainly related to indamnditions and im-
pacted in a significant way by the effectiveness of the boagdinvelope and the
way the HVAC system is used.

Over the last few years, many studies have been conductdteamal com-
fort management. These studies are based on the use oédifteols [2], such as
fuzzy logic [3][4] or genetic algorithms [5]. Bermejo et #] proposed an adap-
tive system based on fuzzy logic, capable of learning thetheemal sensation to
maintain an optimal comfort. Dounis and Manolakis [7] deysld an algorithm
to regulate the PMV index using a fuzzy system, capable ofrotimg both the
temperature and humidity in a room. Fraisse et al. [8] usealfdearning fuzzy
controller to find the optimal heating start time. With theception of the last
one, these approaches require to turn on the HVAC systemyadatime and this
can impact negatively thermal comfort if the system is sthtbo late, or energy
consumption if triggering happens too soon.

Predictive control [9][10][11] is a very good alternativethe above-mentioned
approaches. Indeed, predictive algorithms can take aadgardf the intermittent
use of buildings, whose occupancy is regular and known. thqodar, Artificial
Neural Networks (ANN) have demonstrated on several ocnagiteir efficiency
in control and energy consumption optimization. Huang efl&] worked on a
predictive model based on ANN to forecast temperature éaidarea by taking
into account the coupling effect between zones. Morel ef18] and Argiriou
et al. [14][15] worked on similar predictive control strgtes based on outdoor
temperature and solar radiation forecasting. In [7] a wWlagating system is con-
trolled in isolated rooms while in [8] an electrical heatisgstem is controlled
over individual solar houses. Control was done for only aieaawithout consid-
ering thermal exchanges. Morosan et al. [16] developedtilulited predictive
approach to control several areas simultaneously whilagakto account ther-
mal transfers. In this case, thermal comfort was defined @bdsis of a reference
temperature. The proposed algorithm is useful but on-Ipterazation is needed
and computation time is extensive. As a result, such a solwnnot be imple-
mented easily in an embedded systektvarez et al. [17] developed a predictive
approach to control an HVAC system composed of solar calidatlds. A key
point was to ensure an acceptable thermal comfort in theréifit areas of the



considered building despite limited thermal resources PNV index was used
as a thermal comfort indicator. Moreover, many solutiorest@sed on control-
ling local heating systems in small areas [18]. This kindmgraaches is not well
adapted to changes in human activity but thermal comfortirements can be met
without wasting energy. Moreover, additional heating sybtems are sometimes
needed. Kolokotsa et al. [19] developed a predictive cdletrasing a bilinear
model. Comfort has been defined on the basis of both a fixedeetyse and a
humidity bandgap to satisfy.

Pyrescom Company has developed a monitoring system tha<aut me-
teorological parameters and energy measurements to im@oergy efficiency
in non-residential buildings (Batnrj project). The cotied data are used to find
out possible ways to develop an efficient HVAC control sggteSeveral build-
ings are currently instrumented using the Pyrescom mangaystem, including
a non-residential building located in the city of Perpigiisouth of France). This
reference (pilot) building has been modeled using the Bi¥dug software and
allowed the strategy about HYAC management we propose tedbed and evalu-
ated. Energy consumption, thermal comfort and computaitio@ are considered
as performance indicators. Computation time is a key pairihé project. For
each instrumented building, an embedded system is usedi¢otatata from var-
ious sensors (temperature, humidity, energy consumgstor), and these data are
sent to a remote server. This server has a significant commeadpower but
the embedded systems have limited capabilities. That istivaynain objective
of the work we present in this paper is to develop a computatip tractable
approach for managing energy resources and satisfyinm#i@omfort require-
ments in non-residential buildings. The proposed straigd¢pased on predictive
control and aims at managing thermal comfort in severalsaoéaon-residential
buildings equipped with HVAC sub-systems without on-lingimization. Ther-
mal comfort is based on the PMV (Predicted Mean Vote [20]eiydvhich is
a standardized indicator designed to estimate the theramalsion of the occu-
pants. This criterion allows temperature to be adjustedidnilaing according to
the period of the year, occupant behaviour and activitiesredver, air tempera-
ture set-point may be reduced when the wall temperatureases, while keeping
an identical comfort. So, we used first feedforward Artifidieural Networks
(ANN) to model the non-linear behaviour of the PMV index, migifrom so-
lar radiation, outdoor temperature and internal gains (Ab#sed PMV models).
Then, we considered the PMV index as a control set-point headrtal comfort
can be maintained in a desired interval which can be adjustguople working
in a given building.



The present paper is organized as follows: first, the reéerépilot) building
we modelled using the EnergyPlus software is describedigse?). Next, section
3 focuses on thermal comfort and the way the PMV index can & as a relevant
comfort indicator. The following section (section 4) is abohe development
and validation of the ANN-based PMV models (the interactian heat transfer,
between the three rooms we considered in the non-resitiénilding is taken
into account or not). The predictive control strategy wealeped for HVAC sub-
systems is presented in section 5. Finally, the results waireddd are analyzed
and compared with the results provided by standard (nodigiree) management
strategies. The paper ends with a conclusion and an outtofkure work.

2. Non-residential (reference) building

To evaluate the proposed strategy, a reference buildinbéers modelled us-
ing the EnergyPlus software, which is able to perform adeuipailding simula-
tions. The considered building is a real two-storey buidid 1000 m?, built in
2008 and located in Perpignan (south of France). It is fasmgh and agrees
with the French "Thermal Regulation 2005” [21]. This nosiceential building is
divided into three main areas 880 m? each (figure 1), with different uses. About
a dozen employees work in offices at the ground and first flagpee( and yellow
area). The red area in the first floor is a manufacturing zonerevabout 6 per-
sons work seated or in a standing position. The last roomeofitbund floor is a
warehouse (blue area) that is not heated.

For both the warehouse and the manufacturing area, cedi®i§( m. In the
offices, a suspended ceiling stand2.d0 m. The materials used in the building

Figure 1: Topology of the considered non-residential fexiee) building.



Table 1: Properties of the materials used in the exteriolswiaik the thickness) the conductivity,
p the density and’ the specific heat of a material.

Layer [ A p C
(cm) (Wm K™ (kgm™) (Jkg™K™)
Brick 10 0.89 1920 790
Heavy weight concrete 20 1.45 2000 1000
Insulation board 5 0.03 43 1210
Gypsumboard 2 0.16 800 1090

Table 2: Characteristics of the three considered areas.

Characteristics Ground floor Manufacturing First floor

offices area offices
Surface fn?) 165 230 155
\Volume (m?) 450 900 420
Heating power{V) 5000 10000 5000
Number of occupants 8 6 5
Metabolic activity V-m~2) 70 116 70
Lighting power (V) 1000 1400 1000

are listed in table 1. The exterior walls consist of seveagéts of different ma-
terials. From the outside to the inside are juxtaposed & lbiger, heavy weight
concrete, an insulation board, and finally a gypsum boare. ifiterior walls are
composed of two gypsum boards, for a total thermal resigtfi2.2m? - K-W—1!,
The south face and a part of the west face of the building aenfram glass.
Glass has been treated to filter infrared radiation and amadheating in summer.
The other glasses in the building consis8imm double glazed bays.

The present study focuses on the three following (occumedeguipped with
sensors) areas: the offices on both floors and the manufagtamea, that is com-
posed of an open space2#0 m? and three storage rooms bf0 m? (not heated).
Heating is handled in the building by a zoned electrical H\V&yStem consisting
in several sub-systems, one for each area, where only theetatare set-point
can be adjusted. Each sub-system is managed by a local bemfftie character-
istics of the different HVAC sub-systems for each area atedi by table 2. All the
units have a coefficient of performance (CoP) equal to 3.8prsiously stated,
the proposed management approach is based on a model peedattroller that
will supervise the HVAC sub-systems (figure 2).
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Figure 2: The three considered rooms equipped with sensor$1&#AC sub-systems. Only the
temperature set-points can be adjusted.

Weather data (outdoor temperature, solar radiation, wieed) are required
to perform the simulation process. We used real data from 3@#&1 provided
by the Pyrescom monitoring system. Since atmospheric presseasurements
were missing, we used data from the Perpignan airport whidtated km away
from the building. Measurements were carried out with a tate@ of 30 seconds
while averaged values were saved every 15 minutes and stoaethtabase. As a
consequence, the simulation time step is 15 minutes, wizdiies because of the
characteristics of the building a reactive control apphaacbe developed. Let us
note that Perpignan benefits from a relatively mild mediteean climate. Figure
3 shows how outdoor temperature evolves at 6 a.m., from danadecember
2011 (during the simulation period).

3. Thermal comfort

The Predicted Mean Vote (PMV) index is used as a thermal cdnmidicator.
This indicator was developed by Fanger [20], before to bedstadized by inter-
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Figure 3: Evolution of outdoor temperature at 6 a.m., fromuay to December 2011.

Table 3: Thermal sensation scale.

PMV value Thermal sensation

+3 hot

+2 warm

+1 slightly warm
0 neutral

-1 slightly cool
-2 cool

-3 cold

national organizations [22][23]. The PMV index quantifiae thermal sensation
felt by some people in a room. This sensation is describedsiogla ranging from

-3 (cold) to +3 (hot) (table 3). The exchange of heat betwhermtiman body and
its environment strongly governs thermal comfort. It ishtjgsubjective and can
be considered as perfect when the sum of exchanges is zevati@yl depicts

the way one can compute the PMV index:

PMYV = [0.303exp™ %93 1.0.028] x L (1)
with L the difference between the heat produced and the heat lost.
L:M—W—Hl—Hg—Hg—H4—H5—H6 (2)

For the roomyj, V5 € [1;3], M; is the metabolism (described belowjl’;
is the external work and is considered to be null,, ..., Hg are the heat losses
coefficients W-m~2). H, is the heat loss by diffusion through the skin afiiglis
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Figure 4: Evolution of clothing thermal insulation, frornieary to December 2011.

Table 4: Clothing thermal insulation.

Interval ICL value (clo)
te < —5°C 1
—5°C' < tg < 5°C'" 0.818 — 0.0364¢¢
5oC S tﬁ < 26OC 10—0.1635—0.0066t6
tg > 26°C 0.46

the heat loss by sweatingl; and H, are the losses by latent and dry respiration,
respectively. FinallyH; is the heat loss by radiance aif} is the heat loss by
convection. To calculate these heat losses coefficienteralgparameters about
environment and occupants are taken into account: indodgemperature®;),
radiant temperaturel{**"), relative humidity ( ;), air speed "), metabolic
activity, and clothing thermal insulation. Let us note thiaspeed is not calculated
by the EnergyPlus software. However, this missing inforamats not critical
because air speed has no influence on the PMV value as longeasains below
0.1m-s~! [22]. This is mostly the case within the non residential dnity we
considered as a reference building. Moreover, metabotigigcis supposed to
be constant and only depends on the considered area. Inspffieeple work in
a sitting position most of the time and, as a resiit,is set to70 W-m~2 (i.e.
1.2 met). Activity in the manufacturing area is more dynamic avids set higher
t0 116 W-m~2 (i.e. 2 met).

Depending on outdoor temperature, people dress diffgrehdla result, cloth-
ing thermal insulation varies over time. Schiavon and Leg ffeveloped a pre-
dictive model to estimate clothing thermal insulation ge&iCL). So, itis defined,



each day, from the outdoor temperature observed at 6 &)na¢ shown in table
4. According to theses equations, clothing thermal ingutataries fron.58 clo,
during winter time, t00.46 clo, during summer time. Figure 4 depicts the way
such a parameter evolves between January and Decemben28idl.clothes for
summer are a pant with a short-sleeved shirt, while duringewj usual clothes
are a trouser with a long-sleeved shirt. Looking at figurehé, result seems to
be realistic. It can be highlighted that the 2011 winter walslnso the clothing
thermal insulation was moderate. At the end of January,cauttemperature has
strongly decreased and, as a result, the algorithm has atit@ity adjusted the
clothing thermal insulation value.

4. ANN-based PMV models

4.1. Structure of the models

A model of the system to be controlled is required to evaltimepredictive
control strategy and check if the PMV index can be maintainéal the desired
interval during occupancy periods-0.5; +0.5]. In a first single-area approach,
we used a linear state-space model. We obtained good résultse local con-
troller used to regulate the air temperature in the buildind whose behaviour is
unknown induces nonlinearities. As a consequence, we eleédat feedforward
Artificial Neural Networks (ANN) [25] [26] to model the mutarea system. This
kind of network consists of a series of layers. The first lageonnected to the
network’s input vector while each subsequent layer is cotatketo the previous
layer. The final layer produces the network’s output. Fesvddod artificial neural
networks can be used for any kind of input to output mappingth\éhly one
hidden layer and enough neurons in this layer, such netwaaksapproximate
any nonlinear continuous function to any desired degreeairacy [27]. A key
point in using ANN to describe nonlinear dynamics is to defimeright topology
of the networks in order to avoid poorly fitted or overfittedaets (generalization

Tout (k)
SR (k) ANN-based
1G; (k) PMYV model PMV;(k + 1)
PMV; (k) ANN;
T (k)

Figure 5: ANN-based PMV model for the roomv; € [1; 3] (no interaction between the rooms).
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Figure 6: ANN-based PMV model for the roomg andm, Vj,1,m € [1;3] such ag # [ # m
(with interaction between the rooms).

ability is affected in a significant way by overfitting). Indition, training has to
be done using an efficient learning algorithm (for examgie, well-known and
efficient Levenberg-Marquardt (LM) algorithm [28] or, whaging self-growing
feedforward artificial neural networks, the Cascade-Qatian (CC) algorithm)
and an adequate database of examples [29].

The proposed strategy is first designed to manage thermdbcaamthe three
considered areas (the offices in both floors and the manuifagtarea) in a sepa-
rate way. As aresult, no interaction (i.e. heat transferdissidered between these
areas and three models, one per area, are needed. So, a mksltié PMV in-
dex (at timek + 1) in the roomy, Vj € [1; 3], with outdoor temperatureff,,),
solar radiation § ) and internal heat gair/(7;) at timek. The most common
sources of internal heat gain are metabolism, applianéestyenic devices, and
lighting. In addition, the influence of the heating systenit@ room; is taken
into account through the air temperature set-pdiiit). Let us remember that a
local controller operates in the three considered areasgidate the air tempera-
ture. Finally, the PMV index in the roorpat timek is also considered as a model
input (figure 5). Equation 3 formulates the PMV index in themoj, without
interaction with the two other considered rooms. Bp¢ [1; 3]:

PMV;(k+1) = ANNj (PMV(k), Tous(k), SR(k), IG;(k), T;*(k))  (3)

In a second time, thermal comfort is managed in the buildaking into ac-
count the existing interaction (i.e. heat transfer) betw® three areas. As a



result, the PMV indexes in the roonjis/ andm are simultaneously computed at
time k + 1 with an overall model ANN#'™), This model (figure 6) uses as inputs
all the air-temperature set-poin&(, 7;”” and7;?), internal heat gaind (&, G,
and/G,,) and PMV indexes®PMV;, PMV, andPMYV,,) attimek. In equation 4,
ANNj:’l’m denotes tha’ M V;(k+1) is the selected output among the three outputs
of the model. Soyj, [, m € [1;3] such ag # [ # m:

| PMV;(k), PMVy(k), PMV,,(k),...
PMVj(k+1) = ANNIY™ | SR(k), 1G,(k), IGI( ), IG . (K), . .. (4)
Tout(k)stp(k) ( )7 (k)

J

4.2. Training phase and generalization ability

A training phase is needed to identify the parameters of thdlAased mod-
els (the synaptic weights and biases) from examples. Soewergted a database
of examples using the EnergyPlus model of the consideredegidential build-
ing. Of course, training efficiency is highly related to dagétevance. We sim-
ulated the behavior of the building during a whole year anddad on and off
the HVAC sub-systems randomly every day (2 to 6 hours befeople arrive at
the building or after they left the building). In additionevwselected randomly
temperature set-points in the interyad °C; 26 °C]. These set-points remained
unchainged during all the day. Let us note that in a real mgldthe identifi-
cation process will be carried out from measurements peavigy the Pyrescom
monitoring system. So, the thermal model of the considetgldihg is not nec-
essary. Using simulated (or measured) data, the trainiagelts achieved using
Matlald® and its neural network toolbox. Because overfitting can betfeed by a
badly-sized training subset, we decided to train the nétsvasing different sub-
sets of data randomly picked up among all the available el@snpVe used the
Levenberg-Marquardt algorithm as learning algorithm [28F accurate, fast and
uses matrix decompositions to limit the amount of memorydudée validation
phase has been carried out using new data sets dealing wiitticescenarios.

The parametric study we carried out to model the PMV indexhm toom
j when interaction between the three considered areas isken into account
(modelANN;, Vj € [1; 3]) has highlighted that generalization is very good when
using feedforward neural networks with 30 hidden neuronigewising about 15%
of the available data during the training phase. As a coresezp) we selected this
configuration. In this case, the Mean Relative Error (MRE3roxalidation data
is about 5%, whatever the room. Figure 7 depicts the impagemeralization of
the number of hidden neurons and the quantity of training daed. This figure
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Figure 7: MRE [%] during validation, according to the numb€&hidden neurons and the percent-
age of data used to train the netwoANN;, room of the building: manufacturing area).

is related to the manufacturing area. Learning is achievedbout 20 seconds, so
it can be easily handled by a remote server without penalithe other running
applications. Taking a look at figure 7, one can also notewthan using less than
15 hidden neurons (whatever the quantity of training datuthe PMV model
is under-parameterized. In opposition, very good reswdts also be achieved
with 40 to 50 hidden neurons and 25 to 50% of the available ulsgd during the
training phase. However, in this case, computation timeghdr than it is with
the selected configuration.

When taking into account the interaction (i.e. heat tramdfetween the three
considered areas (mod&NN»!'™, ;[ m € [1;3] such asj # [ # m), general-
ization is also very good for a feedforward artificial neuratwork with 30 hid-
den neurons while using about 10% of the available data dtinetraining phase.
Again, the Mean Relative Error (MRE) over validation datab®ut 5%, whatever
the room. Taking a look at figure 8 (manufacturing area), @rermote that when
using less than 10 hidden neurons (whatever the quantitsairfing data used)
the PMV model is under-parameterized. In opposition, itisrgparameterized
when considering about 40 hidden neurons. Finally, figuredvs values of the
PMYV index given by EnergyPlus and the ANN-based models (foergod of five
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Figure 8: MRE [%] during validation, according to the numbghidden neurons and the percent-
age of data used to train the netwoAgNNj’l’m, room of the building: manufacturing area).

days), for each of the three considered rooms (interactidakien into account).
The HVAC sub-systems are turned on only during occupandggerwith a tem-
perature set-point set to 22. It clearly appears that the ANN-based models are
able to estimate accurately the PMV index in the differeabarwhen taking into
account interaction.

4.3. Exogenous variables forecasting

In order to estimate the PMV index, forecasting values ofrtteelel exoge-
nous variables are needed. Because the internal heat gaidsectly related to
the building occupation, they can be easily estimated. Asa@guence, only out-
door temperature and solar radiation have to be forecabtecel et al. [13] and
Argiriou et al. [14] developed neural network models to t@st theses variables
but such a solution implies more calculation time. As a rtesvé considered first
as a forecasted value, the value measured the previous tay same time{ R
andT,,;). Next, with the aim of increasing the accuracy of the fosted tem-
perature, a correction term has been added by using theetiffe between the
current value and the value of the previous day at the sange(gouation 5)k is
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the PMV given by EnergyPlus and the blue dashed line is thimaton given by the ANN-based

PMV models ANNJ)'L™ /5 1 m € [1;3] such agj # | # m).



the present time, andthe forecasting horizon:

SR(k+i) = SR(k+i— 24h) ©)
Tour(k+1) = Tou(k+i— 24h) + Toue(k) — Tous(k — 240)

5. Control strategy

5.1. Control of thermal comfort

Since our objective is to satisfy thermal comfort requiratsen the three
considered rooms of the building, the HVAC air temperatetepoint?;” (V) <
[1; 3])) has to be adjusted as necessary. As a key point, we neegbaisttor the
PMV index (PMV;”) to be reached. From this set-point as welll#s", HR;,
v;.””" and M; (figure lO),Tj” is estimated. Because of both the complexity and
non-linearities of the PMV equation, one cannot solve ithgially to find the
appropriate air temperature set-point. That is why a nuwakmethod has been
considered to solve equation’5;” is then set according to this computed value:

PMV(T},6;) = PMV*™ (6)

with 6; bringing togethe ", H R;, v¢" and M; and PM V" the PMV set-
point value from which we computed the air temperature sétt;”. So, the
final objective is to find the best value 6} (k) such as iff;(k) = T;”(k) then
PMV;(k) = 0.

In order to solve this problem, different iterative methbdse been evaluated
with the aim of finding the fastest and the most efficient ohe @tandard algo-
rithms used are detailed in [30]). The stopping criterion telerance of 0.0%"
onT;". First, we used the binary search algorithm. The numbereadtions is
related to the desired accuracy, given that convergenaeeiarl The initial values
of the minimal and maximal thresholds were set to 15 artd’3@espectively. At

PMVP ——(" )

J Comfort
HR; —»] level —— 7P
controller

Mj—»\_

Figure 10: Control of thermal comfort.



Table 5: Evaluation of the tested algorithms.

Method Number of Computation
iterations time (ms)
Binary search 9 4.6
Newton-Raphson 2-3 5
Secant 4-5 2.4

each iteration, the gap around the solution is reduced iinsllower than the
desired accuracy. The second algorithm used is the Newtgohd$on method.
The solution is computed on the basis of a correction terrmeéfas the ratio
between the function and its derivative. Since it is not flmego find the deriva-
tive analytically, it is approximated. The initial value svaet to 20C. The main
advantage of the Newton-Raphson method lies in its quadrativergence. The
third algorithm we considered is the secant method. It isecgimilar to the New-
ton—Raphson method, but uses a specific equation to appateitme derivative,
based on the two previous values. The initial values wereosg® C and 25C.

Table 5 summarizes performance results for the three metivedested. Al-
though the Newton-Raphson method needs three time leatiotes to reach the
solution than the binary search algorithm, computatioretisxsimilar. Slowness
is due to the PMV index being calculated three times pertitaranstead of just
one time with the binary search algorithm. With the secarthow convergence
is slightly slower but the PMV index is computed only once peration. As a
consequence, computation time is reduced by half and tlaasewthod has been
chosen among the three tested methods.

5.2. Predictive control strategy

The block diagram of the proposed control predictive styaie presented by
figure 11. EnergyPlus is used to simulate the behaviour afehlenon-residential
building, considered as the reference building. The cdiett@utput is the PMV
index. The proposed Model Predictive Controller (MPC) ukesdentified ANN-
based PMV models to perform some predictions and optimieevidy the heat-
ing sub-systems will operate (we seach for the optimal timmswitch on or off
the sub-systems), taking into account the constraintstabhetmal comfort dur-
ing occupancy periods. The controller computes the HVAQeimperature set-
point (the manipulated input) for the roofn V5 € [1;3]. Based on previous
day values, the forecasting unit estimates the exogenastigridancesm(,;, SR
andIG;). As previously mentioned, thermodynamic simulationsceied out
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Figure 11: Block diagram of the predictive control strategy
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using EnergyPlus with MPC set-point values computed by afigtl These two
softwares are interfaced using the MLE+ toolbox [31]. Inl rea@n-residential
buildings equipped with HVAC sub-systems, EnergyPlus $thans are no more
needed. To assess performance, energy consumption anthtteemfort during
occupancy periods are considered. The main objective igtiehg thermal com-
fort requirements when the different areas are occupiedaaoil energy waste
during the rest of the time. The thermal comfort intervaledimed on the basis of
a PMV value ranging betweeﬁMV;.mm = —0.5andPMV"** = 0.5. The tem-
perature set-point is computed to obtain a PMV index equakto in the room
J,» Vi € [1;3]. In real buildings, these parameters will be adjusted it tigree,
according to people’s feelings. With the proposed strategg can optimize the
way the HVAC sub-systems switch from one operation mode tarean (on/off).
The optimization problem related to the search for the ogtiiime to switch
the HVAC sub-systems on can be formalized in a standard wayv#3C problem.
The aim is to minimize the time during which the HVAC sub-gyst are on
before the arrival of the first occupant (at tipje The criterion to be minimized is
defined by equation 7, considerihge N the actual time angd € N the prediction



horizon. u;(k + i/k) is the vector of the manipulated variables for the ropm
HVAC;(k +i/k) = 1if the HVAC sub-systemis on anHV AC;(k +i/k) =0
if it is off. Let us note thatX (k + i/k) is the forecasted value of at timek + 1,
based on the knowledge af at timek:

p
i, (= 3tk +4/5) (7)

Thus, HVAC;(k +i/k) = u;(k +i/k) and it HVAC;(k + i/k) = 1 then
TP (k+i/k) = T;"(k), with T;* (k) the set-point temperature computed to ensure
PMYV;(k) = 0 (see equation 6 and figure 11). Elseffit” AC;(k + i/k) = 0 then
T;P(k +i/k) = 0. So, the vectofi = [u;(k + 1/k), ..., u;(k+p/k)] € {1;0}?
andu; (k) is a binary variable. One can note that we consider an integer|1; p]
which exists so that the constraints defined by equation 8atrsfied. With such
an assumption, the HVAC sub-system of the ropim switched on only once:

{[UJ(]{?—Fl/]{?),,uj(]{;+nj_1/k>] — {0}"1_1 (8)
[uj(k+mn;/k), ... ,uj(k+p/k)] = {1}t

The terminal constraints related to thermal comfort rezyaignts are given by
equation 9:

PMV™™ < PMV(k + p/k) < PMV™* 9)

The PMV index in the roony, Vj € [1;3], is forecasted using the ANN-
based model we presented in section 4 (equation 10). Equatios about the
forecasting of the exogenous variables, whflts; the function that defines the
occupancy of the room and computes the internal heat gain. Equation 12 deals
with the computation of the air temperature set-point:

PMV;(k +i/k), Tous (k +/k), . ..
PMVj(k+i+1/k)ANNJ-(SR(k+i/k),IGj(k+i/k),... ) (10)
TP (k +i/k)

SR(k+i/k) = SR(k-+i— 24h) (11)

Tout(k + Z/k) — Tout(k —|— 'l - 24h) + Tout(k) - Tout(k - 24h)
IG;(k+i/k) = SIG;(k+1i)

T;*(k +i/k) = T;"(k) such as ifT;(k) = T;"(k) thenPMVj(k) =0 (12)



As a key point, the criterion to be minimized can be reforrtedato avoid
searching the solution for eaehj(k + i/k). With such a reformulation, we only
need to find the best value of as an integer parameter (equation 13), which is
enough to find the vector of the manipulated variables, as/sho equation 8.
The constraints remain unchanged:

i —n,; 13
”J'rg[[llrfpﬂ(p nj) ( )

The optimization problem related to the search for the ogltittme to switch
the HVAC sub-systems off can be formalized in the same wayr goal is to
maximize the time during which the sub-systems are off leefmople leave the
building (at timep). So, the criterion is defined as follows (equation 14):

—n; 14
nfgm(p n;) (14)

Except for thermal comfort requirements, the constraiatsain the same as
for the first optimization problem (the search for the oplitirae to switch the
HVAC sub-systems on). So, because thermal comfort has todietamed until
the end of the prediction horizop)( equation 9 is replaced by equation 15. So
Vi e [1;p]:

PMV™" < PMV;(k +i/k) < PMV™ (15)

Finally, with a centralized MPC controllet, is the same for all the considered
areas and is so noted Moreover, the constraints related to thermal comfort
when searching for the optimal time to switch on or off the HB/Aub-systems
(equations 9 and 15) have to be respected in each of the evedidboms at the
same time, i.eVi € [1;p]. In addition, PA/V; is computed for the room using
the modelANNj:’l’m, Vj,l,m € [1;3] such asj # [ # m, in order to take into
account the existing interaction (i.e. heat transfer) letwthe different areas of
interest (equation 16):

PMVj(k+i+1/k) =

PMVi(k +i/k), PMVi(k +i/k), PMVp(k +i/k),. ..
IG;(k+i/k), IG/(k +i/k), [G(k +i/k),. .. (16)
TPk +i/k), T (k+i/k), TP (k+i/k),. ..

SR(k +i/k), Tpu(k +1i/k)

ANNL®

In order to avoid on-line optimization that needs computggpurces, we pro-
pose an algorithm allowing the optimal switching time (itee optimal time to



turn on and off the HVAC sub-systems) to be found without mation. Only
one simulation of the prediction modelNN; or ANNji’l’m) for each of the con-
sidered rooms is needed. Figure 12 depicts the predicty@itim used. As
mentioned above, the sampling time is 15 minutes. The ocmymchedule (peo-
ple are present from 8:00 a.m. to 6:00 p.m.) is identical ierthree considered
areas. First, the air temperature set-points are compatebtain PM V> = 0.
Depending on the presence or not of people in the building,different cases
can be highlightedy; € [1; 3]:

(i) When the building is occupied; = 1 for the roomj), the objective is to
turn off the HVAC sub-systems as soon as possible while érgptinat thermal
comfort will meet requirements (equation 15) until all treople leave the differ-
ent areas, taking into account their thermal inertias. Al HVAC sub-systems
are considered to be turned off {f AC; (k) = 0) along the forecasting horizgn
while outdoor temperature and solar radiation (both argerous disturbances)
are estimated on the basis of the previous day values (equatl). The PMV
index is forecasted using the proposed ANN-based modelsafen 10). As
long as the building is occupied, the predictive algoritimeaks if thermal com-
fort requirements are satisfied in each area of interestgfthend floor and first
floor offices as well as the manufacturing area). If the canstis are not met, it
means that the HVAC sub-systems must not be turned off atithesand, as a
result, the air-temperature set-points are set to the sakeecomputed initially
(equation12). When the building is no more occupigg € 0 for the roomj),
thermal comfort is necessarily satisfied and all the HVAC-systems are turned
off (HVAC;(k) = 0).

(if) When the building is empty4; = 0 for the roomj), the predictive algo-
rithm searches for the last moment to turn on the HVAC sultesys. The optimal
time to switch the sub-systems on is defined as the time allpttiermal comfort
requirements to be met when the first worker arrives at thiglingi. If thermal
comfort is ensured at least two time steps before the firskevarrival, decision
is delayed and the HVAC sub-systems stay &fi{AC; (k) = 0). If thermal com-
fortis not ensured at least one time step before the firstevankival (equation 9),
the HVAC sub-systems are switched dhl( AC;(k) = 1) and the air temperature
set-points computed initially are used (equation12).

6. Results

In order to evaluate performance regarding thermal com¥eet considered
the percentage of time for which the PMV value remains betwe@5 and0.5,



the building being occupied. This percentage is of coursscty related to con-

straints satisfaction. In addition, calculation of eneagynsumption is based on
an average consumption per day and square meter. With thiesgac one can

compare the proposed predictive strategy with non-priedicines. Finally, the

time needed to compute the air temperature set-points isded. This allows

computation requirements to be evaluated. The resultsratgpgd in table 6.

Table 6: Performance of the strategies (simulation is franuary to February 2011). (C) is for the
Continuous strategy, (S) is for the Scheduler operatingenand (P) is for the Predictive strategy.

“Occupancy”  “Vacancy” Consumption Comfort
set-point set-point  (Wh/day-m?) criterion (%)

S1(C) ij = 22°C ij = 22°C 232 78.2
S2 (C) PMV].S” =0 PMV].S” =0 253 74.1
S3(S) Tjs” = 22°C Off 88 82.6
S4 (S) PMpr =0 Off 98 79.3
S5 (P) PMpr =0 Off 102 84.9
S6 (P) PMpr =0 Off 82.9 87.2
S7(P) PMV].S” =0 Off 82 86.6
S8 (P) PMV]-SZ’ =0 Off 81.6 86.8

6.1. Standard (non-predictive) strategies

The situation described below is the reference scenarip (81he real non-
residential building, the HVAC sub-systems are turned ahthe air temperature
set-points remain the samé( = 22°C in the roomj, V;j € [1;3]) during day-
time, nighttime and week-end periods. With this scenathermal comfort is
slightly lower than zero and exceeds this value when outtlyaperature and/or
solar radiation are high. Figures 13a and 14a depict the wtythe PMV index
(top) and power consumption (bottom) evolves during twaatiristic weeks (a
cold one and a milder one). Scenario S2 allows the same gjredebe applied
but using a PMV set-point, instead of an air-temperaturgpegit. This time,
the average PMV index is very close to zero, but we observedhee problem
as previously, that is to say overheating in case of high &atpre and/or solar
radiation. This explains why the comfort criterion is loweven with a higher
consumption of energy.

As an other option, we used a scheduler to stop the HVAC satesys dur-
ing the night and the week-ends and to turn them on in the mgyitwo hours
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before people arrive in the manufacturing area. Two housssendard amount
of time to heat a building during the cold period of the yeanaarned by heat-
ing. On this basis, we defined two scenarios: $3 (= 22°C in the roomy,
Vj € [1;3]) and S4 PMV;* = 0 in the roomyj, V5 € [1;3]). Quite logically,
the results we obtained highlight a significant decreasenérgy consumption:
-62.1% (144 Wh/day-m?) with S3 and -57.8% 134 Wh/day-m?) with S4,
taking as a reference the results we obtained with scenarim@&ddition, thermal
comfort is improved : turning off the heating systems dunegiods of vacancy
attenuates and delays overheating effects. Figures 13bdmshow that scenario
S3 suffers from a lack of flexibility. Indeed, thermal contfigrsometimes reached
too early (for example during mild days), which leads to ggevaste, while it is
reached too late some other days. In this case, thermal corafpuirements are
not satisfied.

6.2. Predictive control strategy

The next scenario (S5) introduces a predictive control w&igingle-area ap-
proach somewhat conservative because heat transfer lmetinestinree considered
areas is not taken into accdount. As a result, the HVAC sgbegys are turned on
too early and turned off too late. Otherwise, thermal cotmfogood, even tough
electrical consumption is slightly higher than for bothrsmeos S3 and S4. As a
key point, overheating is limited compared to what is obsémwhen applying the
non-predictive strategies. The three last scenarios (5én8 S8) are based on the
multi-area predictive algorithm. Due to the forecastingime used for outdoor
temperature and solar radiation, they give different tes@cenario S6 is the ideal
case because the real values of outdoor temperature amdasdikion are used.
For scenario S7, uncorrected previous-day values are #sedlly, scenario S8
uses corrected previous-day values for outdoor temperésee section 4.3) (fig-
ure 13c). These three scenarios allow the impact on thetsesfuthe forecasting
procedure to be highlighted: with an ideal prediction ofdmar temperature and
solar radiation (S6), the comfort criterion is the best. @irse, such a situation is
not realistic because forecasting outdoor temperaturesalad radiation without
error is impossible. So, these results are only given touatalthe performances
of the other strategies in comparison with the ideal casandJsnly the previ-
ous day values (S7) is efficient, but sometimes leads to gsiierss turned on too
soon or too late. With the correction factor (S8), this peobis solved most of the
time: the consumption of energy is slightly lower while tme comfort is better.
These results suggest the robustness of the proposed appi®a, an advanced
forecasting approach, leading probably to an increasempatation time, seems



to be unnecessary. In addition, a study of the robustnessegiroposed strategy
has been carried out and is presented in section 6.4.

The multi-area predictive strategy allows the problemsoantered by the
standard strategies to be solved. During cold days or atekvends, the anticipa-
tion time is longer than in case of warm days. The thermal cotméquirements
are just met when the first worker arrives at the building mittorning. As a re-
sult, energy waste is low and thermal comfort is very goodddition, the HVAC
sub-systems are switched off before the end of the day, altpenergy savings
without impacting thermal comfort in a negative way. Thisiag the overheating
problem encountered when applying the non-predictivdegiras. During warm
weeks, the predictive strategy has other advantages. Tiogation time is much
shorter than when using the scheduler and the HVAC sub+sgstiee often turned
off before the end of the morning, which allows big energyirsgs during the af-
ternoon. Thermal comfort requirements are met until thevlasker leaves the
building. In comparison to the strategy currently beingsped in the building
(scenario S1), the multi-area approach (scenario S8) sleavergy consumption
to be reduced of about 65%, while the duration of thermalatigfort is almost
halved 150 Wh/day-m?). In comparison to scenario S3, which is an efficient
scenario, energy saving is about 7.3%(4 Wh/day-m?) and thermal comfort is
better. As a reminder, the building is occupied by peoplenf&00 a.m. to 6:00
p.m. With the scheduler strategy, the HVAC sub-systems laraya turned on 2
hours before the beginning of an occupation period and tuaflewhen people
leave the non-residential building. Tables 7 and 8 highlile optimal on/off
switching times for two simulation periods, when using stemS8: from Jan-
uary 4 to 11 (figure 13c) and from November 2 to 9 (figure 14c},1200n/off
switching times are related to outdoor temperature and sathation. As a key
point, optimization strongly reduces the HVAC sub-systemarating time.

6.3. Computation time

Strategies consisting in a direct control of temperatureataequire any com-
putation. In opposition, when the temperature set-poiotbe applied to the
HVAC sub-systems are defined on the basis of the PMV indexasapatation
is required. Duration is directly related to the resolutfmocess, computation
time is ther2.4 ms for each of the considered areas. Of course, predictiveaont
is the slowest strategy. Duration is variable and stronglyeshds on the number
of time steps needed to find the optimal solution of the prolfat each time step
the ANN-based models are used to forecast the PMV indexielstopping cri-
terion is reached soon (i.e. thermal comfort is achievedreebccupancy or not
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Figure 13: The simulation period is from January 4 to 11, 2@tthe top: temperature set-point
(dotted line), PMV index (discontinuous line) and thermadnfort constraints (blue dashed line).

At the bottom: power consumption. Green, orange and red bme for the ground floor offices,
the first floor offices and the manufacturing area, respdygtive
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Figure 14: The simulation period is from November 2 to 9, 20Atlthe top: temperature set-point
(dotted line), PMV index (discontinuous line) and thermainfort constraints (blue dashed line).
At the bottom: power consumption. Green, orange and red bme for the ground floor offices,
the first floor offices and the manufacturing area, respdygtive



Table 7: On/off switching times using scenario S8 (from &ampul to 11, 2011) and operating
time saved in comparison to scenario S3. January 8 (Safuaddy® (Sunday), 2011, are weekend
days.

Day Jan.4 Jan. 5 Jan. 6 Jan. 7
Startingtime 6:00a.m. 6:00a.m. 6:30a.m. 6:45a.m.
Stopping time  4:30 p.m. 4:15p.m. 12:15p.m. 12:15p.m.

Time saved (h) 1:30 1:45 6:15 6:30
Day Jan.8 Jan. 9 Jan. 10 Jan. 11
Starting time n.a. n.a. 6:15a.m. 6:15a.m.
Stopping time n.a. n.a. 2:15p.m. 12:15p.m.
Time saved (h) n.a. n.a. 4:00 6:00

Table 8: On/off switching times using scenario S8 (from Nuber 2 to 9, 2011) and operating
time saved in comparison to scenario S3. November 5 (Satuadal 6 (Sunday), 2011, are
weekend days.

Day Nov. 2 Nov. 3 Nov. 4 Nov. 5

Starting time 7:30a.m. 7:45a.m. 7:30a.m. n.a.
Stopping time 9:45a.m. 10:00a.m. 10:00 a.m. n.a.
Time saved (h) 9:45 9:45 9:30 n.a.
Day Nov. 6 Nov. 7 Nov. 8 Nov. 9
Starting time n.a. 6:45a.m. 7:00a.m. 7:15a.m.
Stopping time n.a. 12:15p.m. 9:00a.m. 8:45a.m.
Time saved (h) n.a. 6:30 10:00 10:30

maintained while occupancy), computation is done in alioQtms. Otherwise,
computation last400 ms at the maximum. As a consequence, the use of artificial
neural networks has to be carefully considered in ordetfeproposed manage-
ment solution to be implemented in an embedded system whes®ny size and
operation capability are limited.

6.4. Robustness of the predictive controller

The MPC strategy requires forecasting the exogenous VasiaBonsequently,
evaluating how accuracy impacts on efficiency is neces§&uoywe carried out a
complementary study about the robustness of the propossegt. This study
highlights the impact of underestimated or overestimatamhenous variables.
We considered scenario S6 and we applied an error rangingebrt-50% and
+50% to forecasted outdoor temperatufg,() and solar radiationqR) values.
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Figure 15: Robustness of the predictive control strategygizlering the manufacturing area as
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February, 2011. The blue line is for the average energy eoptan and the red line is about the
comfort criterion (the percentage of time for which the PM&lue remains between0.5 and
0.5).



Figure 15 depicts the results about robustness we obtainadidering the manu-
facturing area as well as both the ground and first floor offiEegure 15a is about
outdoor temperature. Whéhy,,; is underestimated (outdoor temperature is higher
than estimated by the proposed model), energy consumptmeases. In this
case, the control algorithm decided for a PMV index and mione is needed to
reach the desired comfort level at 08:00 a.m. As a resultH¥&C sub-systems
are turned on earlier than when outdoor temperature is atyrestimated. In
the same way, the predictive controller has estimated the¢ the HVAC sub-
systems are shutted down, thermal comfort will decreaseeimaoms faster than
it really does. As a consequence, the action to turn the HVdt&ssy/stems off is
delayed. Likewise, an overestimation’fif,; (outdoor temperature is lower than
estimated by the model used) generates an opposite behaleating starts too
late, what decreases energy consumption but affectingiélexomfort. However,
one can note that a forecasting error ranging between -4@% 30 affects only
slightly thermal comfort. As a result, the robustness ofrttealel predictive con-
troller with respect to the uncertainty in forecastifg; is quite good. Beyond
this interval, thermal comfort deteriorates in a more digant way.

Figure 15b is about solar radiation. Taking a look at thisrfggone can clearly
note that a forecasting error does not really affect coqgesformance. Changes
in both thermal comfort and energy consumption are very I8w.a result, the
proposed model predictive controller can be consideredasistent. As one can
see in the figure, the HVAC sub-systems are turned on earlgamtorning (at
dawn). From this time to the time people arrive at the nomndesgial building
to work, solar radiation is vey low. So, the prediction efmpacts in a more
significant way when the HVAC sub-systems must be turnedL&ff.us note that
solar radiation and outdoor temperature are linked togettieen solar radiation
is low, because of clouds, outdoor temperature is also low.

Overall, accuracy in forecastirij,,; andS R impacts on thermal comfort and
energy consumption. The robustness of the proposed predaintrol strategy
is quite good, even if accuracy is not high. Howevet, if; (and/orS R) is under-
estimated, the HVAC sub-systems are turned on too earlyndetestimation is
moderate, thermal comfort is improved but to the detrimérn@rgy consump-
tion. In opposition, if underestimation is significant, dveating can be high-
lighted and thermal comfort is deteriorated. An overestiomaof 7,,; (and/or
SR) reduces energy consumption and thermal comfort. If seldiation is over-
estimated, the impact of overestimation can be considesedsggnificant. This
impact is slightly higher when outdoor temperature is osengated. However,
the predictive controller is still performing in a good way.



7. Conclusion

The aim of the work presented in this paper was to developfanesit strat-
egy based on predicitive control to satisfy thermal comfequirements in non-
residential buildings equipped with zoned HVAC systems kadl controllers,
while minimizing energy consumption. We used the PMV (Rt Mean Vote)
index as a thermal comfort indicator. With such an indicadoe can estimate the
thermal sensation of people in a building. The algorithm eeatbped allows the
air temperature set-points of the HVAC sub-systems to begpcbed and the PMV
set-points to be reached. Energy consumption can be miadhifioperation time
is reduced. Thus, we proposed a model predictive contriollerder to supervise
the local controllers and estimate the optimal time to tumraad off the HVAC
sub-systems.

Low-order models based on Atrtificial Neural Networks (ANNgvie been
identified to forecast the PMV index in the considered roofres mon-residential
building. These ANN-based models are used as internal mad¢he predictive
controller. We evaluated two different approaches: firgt,developed one model
per room. In this case, interaction (i.e. heat transferjvbet the rooms is not
taken into account. In a second time, we proposed a globaehfodall of the
rooms we considered. With such a model, interaction is atbfer. In both cases,
thermal comfort is improved and comfort constraints are. met

In order to evaluate the proposed strategy, a dedicateda@ftfor building
simulation has been used to develop a complete model of anosatesidential
building located in Perpignan (south of France). This higtier model allowed
different strategies and scenarios to be evaluated andar@thpAs a key point,
one can note that the predictive controller based on theagdBNN-based model
(interaction between the rooms is taken into account) ®#esignificant improve-
ment in energy efficiency and thermal comfort assessmeris Skrategy allows
saving up to 65% of energy when compared with the currentesfyaused in the
real building. With this strategy, the HVAC sub-systems anmed on and off
at the right time, that is turned on a few hours before the negtipation period
to satisfy thermal comfort requirements (when people aratvthe building) and
turned off to reduce energy consumption before people ldavbuilding.

In comparison to a standard scheduler, the proposed predsttategy is more
flexible, the switching times being automatically adaptethe actual state of the
building, occupancy (internal heat gain) and exogenousigstions (the weather
conditions). Moreover, the developped algorithm is corapahnaly tractable (it
does not need extensive on-line optimization like with dead MPC) and will



be implemented in an embedded system. So, one can note ¢hegghlts we
obtained meet the objectives that were defined at the stéredatnrj project.

Future work will first focus on trying out the proposed préidie strategy in
the real non-residential (reference) building. Then, teeetbped algorithm will
be refined in order to compute an optimal and particular $vitgtime for each
of the HVAC sub-systems. Finally, the strategy should berowed to optimize
the cooling process during summer time.
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