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KANTOROVICH DUALITY FOR GENERAL TRANSPORT COSTS AND

APPLICATIONS

NATHAEL GOZLAN, CYRIL ROBERTO, PAUL-MARIE SAMSON, PRASAD TETALI

Abstract. We introduce a general notion of transport cost that encompasses many costs used in
the literature (including the classical one and weak transport costs introduced by Talagrand and
Marton in the 90’s), and prove a Kantorovich type duality theorem. As a by-product we obtain
various applications in different directions: we give a short proof of a result by Strassen on the
existence of a martingale with given marginals, we characterize the associated transport-entropy
inequalities together with the log-Sobolev inequality restricted to convex/concave functions.
Some explicit examples of discrete measures satisfying weak transport-entropy inequalities are
also given.

1. Introduction

Concentration of measure phenomenon was introduced in the seventies by V. Milman [45] in his
study of asymptotic geometry of Banach spaces. It was then studied in depth by many authors
including Gromov [32, 31], Talagrand [60], Maurey [43], Ledoux [36, 10], Bobkov [6, 11] and many
others and played a decisive role in analysis, probability and statistics in high dimensions. We
refer to the monographs [37] and [15] for an overview of the field.

One classical example of such phenomenon can be observed for the standard Gaussian measure
γm on R

m. It follows from the well known Sudakov-Tsirelson-Borell isoperimetric result in Gauss
space [59, 14] that if X1, . . . , Xn are n i.i.d random vectors with law γm and f : (Rm)n → R is a
1-Lipschitz function (with respect to the Euclidean norm), then

(1.1) P(f(X1, . . . , Xn) > m+ t) ≤ e−(t−to)2/(2a), ∀t ≥ to,

with a = 1 and to = 0, and where m denotes the median of the random variable f(X1, . . . , Xn).
The remarkable feature of this inequality is that it does not depend on the sample size n. This
property was used in numerous applications [37].

The standard Gaussian measure is far from being the only example of a probability distribution
satisfying such a bound. In this introduction, we will say that a probability µ on some metric
space (X, d) satisfies the Gaussian dimension-free concentration of measure phenomenon if (1.1)
holds true, with a constant a independent on n, when the Xi’s are distributed according to µ and
f is a function which is 1-Lipschitz with respect to the distance d2 defined on Xn by

d2(x, y) =

[
n∑

i=1

d(xi, yi)
2

]1/2

, x, y ∈ Xn.

This is also equivalent to the following property: for all positive integers n, and all Borel set
A ⊂ Xn such that µn(A) ≥ 1/2, it holds

(1.2) µn(At) ≥ 1 − e−(t−to)2/(2a), ∀t ≥ to,

where At = {y ∈ Xn : ∃x ∈ A, d2(x, y) ≤ t}.
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For instance if µ is a probability measure on R
m, or even more generally on a smooth Riemannian

manifold M equipped with its geodesic distance d and has a density of the form e−V , where V is
some smooth function on M such that the so-called Bakry-Émery curvature condition holds

(1.3) Ric + HessV ≥ KId ,

for some K > 0, then the Gaussian dimension-free concentration of measure phenomenon holds
with the constant a = K (a direct proof can be found in [37]).

Another very classical sufficient condition for the Gaussian concentration of measure property
(1.1) is the Logarithmic Sobolev inequality introduced by Gross [33] (see also Stam [56] and Feder-
bush [21]). If, for some C > 0, µ satisfies

(1.4) Entµ(f2) ≤ 2C

∫
|∇f |2 dµ,

for all smooth functions f : M → R, then it satisfies (1.1) with a = C (a proof of this classical
result due to Herbst can be found in [37]). We recall that the entropy functional of a positive

function g is defined by Entµ(g) =
∫
g log

(
g∫
g dµ

)
dµ. Condition (1.4) - denoted LSI(C) in the

sequel - is less restrictive since, according to the famous Bakry-Émery criterion (1.3) implies (1.4).

It turns out that Condition (1.4) can be further relaxed. Indeed, in [62], Talagrand introduced
another remarkable functional inequality involving the Wasserstein distance W2 defined, for all
probability mesures µ, ν on M by

(1.5) W 2
2 (ν, µ) = inf

(X,Y )
E[d2(X,Y )],

where the infimum runs over all pairs of random variables (X,Y ), with X distributed according to
µ and Y according to ν. A probability measure µ satisfies Talagrand’s transport inequality T2(D)
for some D > 0, if

(1.6) W 2
2 (ν, µ) ≤ 2DH(ν|µ),

for all probability measure ν on M , where H(ν|µ) denotes the relative entropy defined by H(ν|µ) =
Entµ(h), h = dν/dµ if ν ≪ µ (i.e., ν absolutely continuous with respect to µ) and +∞ otherwise.
A nice argument first discovered by Marton [40] shows that (1.6) is a sufficient condition for the
Gaussian dimension-free concentration property (1.1) with a = D. One crucial ingredient to derive
dimension-free concentration from T2 is the tensorization property enjoyed by this inequality (the
same property holds for LSI): if µ satisfies T2(C), then for any positive integer n, the product
measure µn also satisfies T2(C). Condition (1.6) is again an improvement upon Condition (1.4)
since it was proved by Otto and Villani [48] (see [7] for an alternative proof and [27] and the
references therein for extensions to more general spaces) that (1.4) implies (1.6) with D = C.
It was then shown by the first author [22] that Condition (1.6) was not only sufficient but also
necessary for Gaussian dimension-free concentration. More precisely, if (1.1) holds true with some
a (and all n), then µ satisfies T2(a).

One of the main motivations behind this work, and a few satellite papers by the same authors
and Y. Shu [29, 55, 28, 30], is to understand what can replace each term in the chain of implications:

(1.3) ⇒ (1.4) ⇒ (1.6) ⇔ (1.1)

in a discrete setting (for instance, when the space is a graph, finite or otherwise).

While several useful variants of the logarithmic Sobolev inequality are well identified in discrete
(involving different natural discrete gradients, see e.g. [51, 12]), the other terms are far from being
understood.

After the works by Lott-Villani [39] and Sturm [58] extending (1.3) to non-smooth geodesic
spaces through convexity properties of the entropy functional on the space of probability measures
equipped with the Wasserstein distanceW2, the question of generalizing the Bakry-Émery condition
in a discrete setting attracted in recent years a lot of attention. We refer to the works by Ollivier
[46], Bonciocat-Sturm [13], Ollivier-Villani [47], Erbar-Mass [20], Hillion [34] and the work [29] by
the authors for different attempts to give a meaning to the notion of “discrete curvature”.
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In the present paper, the focus is put on the rightmost terms of our chain of implications:
namely, our purpose is to find out what type of dimension-free concentration results we can hope
for in a discrete setting and what type of transport inequalities can be related to it. At this stage,
it is worth noting that, unfortunately, Talagrand’s inequality is never satisfied in discrete (except
of course by a Dirac mass). For instance, it is proven in full generality in [27], that if µ is a
probability measure on a metric space (X, d) which satisfies T2, then its support is connected.
It follows from the equivalence (1.6) ⇔ (1.1), that Gaussian dimension-free concentration is also
never true in discrete.

One thus looks for a transport-cost sufficiently weaker than W 2
2 , to allow discrete measures

to satisfy the related transport inequality, but sufficiently strong to make the transport inequal-
ity stable under tensor products. A natural candidate would be the W1 distance: W1(ν, µ) :=
inf{E[d(X,Y )] : Law(X) = µ,Law(Y ) = ν}. Although transport inequalities involving W 2

1 in-
stead of W 2

2 (the so called T1 inequalities) make perfectly sense in discrete (see Bobkov-Götze
[8], Djelout-Guillin-Wu [18], Bobkov-Houdré-Tetali [9]), these inequalities tensorize only with a
constant depending on the dimension! So the W1 distance does not fulfill the second requirement.

The present paper is devoted to the study of a family of weak transport costs, one typical
element of which is the following weak version of the cost W 2

2 defined as follows. If µ and ν are

probability measures on a metric space (X, d), one defines the weak cost T̃2(ν|µ) as follows

T̃2(ν|µ) = inf
(X,Y )

E
[
E[d(X,Y )|X ]2

]

where again the infimum runs over all pairs (X,Y ) of random variables such that X follows the
law µ and Y the law ν. Jensen inequality immediately shows that

W 2
1 (ν, µ) ≤ T̃2(ν|µ) ≤ W 2

2 (ν, µ).

Two weak versions of Talagrand’s inequality are naturally associated to this cost: a probability µ

is said to satisfy T̃−
2 (C) for some C > 0 if

T̃2(µ|ν) ≤ CH(ν|µ), ∀ν
and to satisfy T̃+

2 (C) if

T̃2(ν|µ) ≤ CH(ν|µ), ∀ν.
Since T̃2 is not symmetric these two inequalities are not equivalent in general. Both are of course
implied by the usual T2(C) inequality. As we shall see in Theorem 5.1, which is one of our main

results, a probability measure µ on X satisfies the two inequalities T̃±
2 (C) for some C > 0 if and

only if it satisfies the following dimension-free concentration of measure property: for all positive
integer n and all set A ⊂ Xn such that µn(A) > 0, it holds

(1.7) µn(Ãt) ≥ 1 − 1

µn(A)
e−t2/D, ∀t ≥ 0,

for some D related to C. In this concentration inequality the enlargement Ãt of A is defined as
follows

Ãt = {y ∈ Xn : ∃p ∈ P(Xn) with p(A) = 1 such that

n∑

i=1

(∫
d(xi, yi) p(dx)

)2

≤ t2},

where P(Xn) is the set of all Borel probability measures on Xn. Taking p = δx with x ∈ A, we see

immediately that At ⊂ Ãt and therefore (1.7) is less demanding than (1.2).

Before going further into the presentation of our results, let us make some bibliographical
comments on these weak transport costs and on the concentration property (1.7). First of all, this
way of enlarging sets first appeared in the papers [60, 61] by Talagrand, in the particular case where
d(x, y) = 1x 6=y is the Hamming distance (see [60, Theorem 4.1.1] and [61, (1.2)]). It was shown by
Talagrand that any probability measure µ on a polish space X satisfies the concentration inequality
(1.7) with some universal constant D (and with the Hamming distance). This deep result known
as Talagrand’s convex hull concentration inequality has had a lot of interesting applications in
probability theory and combinatorics [60, 37, 2]. The result was given another proof by Marton in
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[42], where she introduced (again with d being the Hamming distance) the weak transport cost T̃2

(denoted d̄2 in her work) and proved that any probability measure µ satisfies

T̃2(ν1|ν2)1/2 ≤ (2H(ν1|µ))
1/2

+ (2H(ν2|µ))
1/2

,

for all probability measures ν1, ν2. Then she proved the tensorization property for this transport
inequality and derived from it, using an argument that will be recalled in Section 5, Talagrand’s
concentration result. A similar strategy was then developed by Dembo in [16] in order to recover
the sharp form of other concentration results by Talagrand involving a control by q points. Finally
the third named author extended in [52] the tensorization technique of Marton to some classes
of dependent random variables. In [54] he improved Marton’s transport inequality to recover
yet another sharp concentration inequality by Talagrand (discovered in [61]) related to deviation
inequalities for empirical processes. Besides the Hamming case, almost nothing is known on the

inequalities T̃±
2 . Note that Marton’s result shows at least that any probability measure on a

bounded metric space (X, d) (for instance a finite graph equipped with graph distance) satisfies

T̃±
2 (C) for C = 2Diam(X), but the optimal constant C can be much smaller. Note also that if

our primary motivation was to consider these inequalities on discrete spaces, the continuous case

is also of interest since the inequalities T̃±
2 could be a good substitute for probability measures not

satisfying the usual T2. The aim of the paper is thus to provide different tools that can be useful
in the study of these weak transport cost inequalities and to exhibit some new examples of such
inequalities (mostly on unbounded spaces).

The main new tool we introduce is a version of the Kantorovich duality theorem suitable for

the weak transport cost T̃2. Actually this duality result holds for a large family of transport costs
that we shall now describe. To each cost function c : X × P(X) → [0,∞], (where P(X) is the
set of Borel probability measures on X) we associate the optimal transport cost Tc defined, for all
probability measures µ, ν on X , by

(1.8) Tc(ν|µ) = inf
p

∫
c(x, px)µ(dx),

where the infimum runs over the set of all probability kernels p : X → P(X) : x 7→ px( · ) such
that µp = ν. Note that the usual cost W 2

2 corresponds to c(x, p) =
∫
d2(x, y) p(dy) and the weak

cost T̃2 to c(x, p) =
(∫
d(x, y) p(dy)

)2
. Under some easily satisfiable technical assumptions on c (an

important one being that c be convex with respect to its second variable p), we prove in Theorem
9.5 that

Tc(ν|µ) = sup

{∫
Rcϕ(x)µ(dx) −

∫
ϕ(y) ν(dy)

}
,

where the supremum runs over the set of bounded continuous functions, and

Rcϕ(x) = inf
p∈P(X)

{∫
ϕ(y) p(dy) + c(x, p)

}
, x ∈ X.

Note that, when c(x, p) =
∫
d2(x, y)p(dy), then Rcϕ(x) = infy∈X{ϕ(y) + d2(x, y)} and the result

reduces to the classical Kantorovich duality for W 2
2 (see e.g. [64, 65]). Up to our best knowledge,

this class of cost functionals has not been considered before in the literature on Optimal Transport
but we think that it may find interesting applications in this field. For example, denoting by T p

the weak cost associated to the cost function c(x, p) = ‖x −
∫
y p(dy)‖p defined on R

m × P(Rm)

where ‖ · ‖ is some norm on R
m, it turns out that the duality formula for T 1 immediately gives

back a well known result by Strassen [57] about the existence of martingales with given marginals.
This is detailed in Section 3.

The paper is organized as follows.

Section 2 introduces a general definition of optimal transport costs and presents in detail three

particular families of costs (all variants of Marton’s costs T̃2 defined above) which will play a role
in the rest of the paper. In particular, we state a Kantorovich duality formula for each of these
transport costs.

Section 3 is dedicated to the proof of Strassen’s theorem on the existence of martingales with
given marginals.
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Section 4 introduces the general definition of transport-entropy inequalities (involving general
transport costs of the form (1.8)) and presents their basic properties such as their dual formulation
and their tensorization.

Section 5 deals with the links between concentration of measure and transport-entropy inequal-
ities. We recall in particular the argument due to Marton that enables to deduce concentration
estimates from transport-entropy inequalities. We also extend to this general framework a re-
sult by the first author and show that in great generality dimension-free concentration gives back
transport-entropy inequalities. In particular, we give a characterization (in terms of a transport-
entropy inequality involving the cost T 2 defined above) of dimension-free Gaussian concentration
(1.1) restricted to Lipschitz convex (or concave) functions.

In Section 6 we recall the universal transport-entropy inequalities developed by Marton [42, 41],
Dembo [16] and Samson [53, 54] in order to recover some of Talagrand’s concentration inequalities
for product measures. We take advantage of our duality theorems to revisit and bring some
simplifications in the proof of [54].

In Section 7 we present the examples of Bernoulli, Binomial and Poisson laws for which some
sharp transport-entropy are proved in [30].

In Section 8 we show the equivalence between transport-entropy inequalities involving the trans-
port cost T 2 and the logarithmic-Sobolev inequality restricted to the class of log-convex or log-
concave functions. This enables us to get other examples for these transport inequalities.

Finally, Section 9 contains the proof of our general Kantorovich duality result, Theorem 9.5, for
a transport cost of the form (1.8).
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2. Optimal transport costs and duality

In this section, we introduce a general class of optimal transport costs and describe an associated
Kantorovich type duality formula.

2.1. Notations. Throughout the paper (X, d) is a complete separable metric space. The Borel
σ-field will be denoted by B. The space of all Borel probability measures on X is denoted by P(X).

If γ : R+ → R+ is a lower-semicontinuous function satisfying

(2.1) γ(0) = 0 and γ(u+ v) ≤ C(γ(u) + γ(v)), u, v ∈ R+,

for some constant C, then we set

Pγ(X) :=

{
µ ∈ P(X);

∫
γ(d(x, xo))µ(dx) < ∞

}

for some (hence all) xo ∈ X . In the specific cases where γr(u) := ur, u ≥ 0, r > 0, we use the
simpler notation Pr(X) := Pγr(X). We shall also consider the limit case γ0(u) := 1u6=0, u ≥ 0, for
which Pγ0(X) = P(X).

We also denote by Φγ(X) (resp. Φγ,b(X)) the set of continuous (resp. continuous and bounded
from below) functions ϕ : X → R satisfying the growth condition

(2.2) |ϕ(x)| ≤ a+ bγ(d(x, xo)), ∀x ∈ X ,

for some a, b ≥ 0 and some (hence all) xo ∈ X .

The spaces Φγ(X × X) and Pγ(X × X) are defined accordingly, with X × X equipped with
(say) the ℓ1 product metric.

The space Pγ(X) will always be equipped with the σ-field Fγ generated by the maps

Pγ(X) → [0, 1] : ν 7→ ν(A),

where A is a Borel set of X. In particular, one says that p : X → Pγ(X) : x 7→ px is a kernel if it is
measurable with respect to the Borel σ-field B on X and the σ-field Fγ on Pγ(X). This amounts
to requiring that, for all A ∈ B, the map X → [0, 1] : x 7→ px(A) be Borel measurable.
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2.2. Costs functions, couplings and weak optimal transport costs. In this paper, a cost
function will be a measurable function c : X × Pγ(X) → [0,∞], for some fixed γ satisfying (2.1).
For all π ∈ Pγ(X ×X), we set

Ic[π] =

∫
c(x, px)π1(dx),

where π1 is the first marginal of π and x 7→ px the (π1-almost everywhere, uniquely determined)
probability kernel such that

π(dxdy) = π1(dx)px(dy).

Note that if π ∈ Pγ(X × X), then px ∈ Pγ(X) for π1 almost all x ∈ X and thus the preceding
definition makes sense.

Given two probability measures µ and ν on X , we denote by

Π(µ, ν) = {π ∈ P(X ×X);π(dx×X) = µ(dx) and π(X × dy) = ν(dy)}
the set of all couplings π whose first marginal is µ and whose second marginal is ν. Note also that
if, µ, ν ∈ Pγ(X), then Π(µ, ν) ⊂ Pγ(X ×X).

Using the above notations, we introduce an extension of the well-known Monge-Kantorovich
optimal transport costs as follows.

Definition 2.3. Let c : X×Pγ(X) → [0,∞] and µ, ν ∈ Pγ(X). The optimal transport cost Tc(ν|µ)
between µ and ν is defined by

Tc(ν|µ) := inf
π∈Π(µ,ν)

Ic[π] = inf
π∈Π(µ,ν)

∫
c(x, px)µ(dx).

Let us first remark that optimal transport costs in the classical sense (see e.g. [64, 65]) enter
the framework of this definition. Namely, if ω : X ×X → [0,∞] is some measurable cost function,
and c(x, p) =

∫
ω(x, y) p(dy), for all x ∈ X and p ∈ P(X), then it is clear that

Tc(ν|µ) = inf

{∫∫
ω(x, y)π(dxdy) : π ∈ Π(µ, ν)

}
,

which is the usual optimal transport cost related to the cost function ω. In the sequel, we will
denote by Tω(ν, µ) the usual Monge-Kantorovich optimal transport cost, defined by the right hand
side above. One sees that while in the usual definition every elementary transport of mass from µ
to ν represented by px is penalized by its mean cost

∫
ω(x, y) px(dy), our definition allows other

types of penalization. See Section 2.4 below for some examples.

2.3. A Kantorovich type duality. If ω : X × X → [0,∞] is lower semi-continuous, then ac-
cording to the well known Kantorovich duality theorem (see for instance [65, Theorem 5.10]), it
holds

Tω(ν, µ) = sup

{∫
ψ(x)µ(dx) −

∫
ϕ(y) ν(dy)

}
,

where the supremum runs over the class of pairs (ψ, ϕ) of bounded continuous functions on X such
that

ψ(x) − ϕ(y) ≤ ω(x, y), ∀x, y ∈ X.

A classical and simple argument shows that one can always replace ψ by the function Qωϕ defined
by

Qωϕ(x) = inf
y∈X

{ϕ(y) + ω(x, y)}, x ∈ X.

Therefore, the duality formula above can be restated as follows

Tω(ν, µ) = sup

{∫
Qωϕ(x)µ(dx) −

∫
ϕ(y) ν(dy)

}
,

where the supremum runs over the class of bounded continuous functions ϕ. In case the function
Qωϕ is not measurable, then we understand

∫
Qωϕ(x)µ(dx) as the integral with respect to the

inner measure µ∗ induced by µ. Recall that if g : X → R is a function bounded from below, then
∫
g(x)µ∗(dx) = sup

∫
f(x)µ(dx),
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where the supremum runs over the set of bounded measurable functions f such that f ≤ g.

Under some semi-continuity and convexity assumptions on the cost function c, this duality
formula generalizes to our optimal transport costs in the sense of Definition 2.3. This duality
property is described in the following definition.

Definition 2.4. Let γ : R+ → R+ satisfy (2.1) and c : X × Pγ(X) → [0,+∞] be a measurable
cost function. One says that duality holds for the cost function c, if for all µ, ν ∈ Pγ(X), it holds

Tc(ν|µ) = sup
ϕ∈Φγ,b(X)

{∫
Rcϕ(x)µ∗(dx) −

∫
ϕ(y) ν(dy)

}
,

where

Rcϕ(x) := inf
p∈Pγ(X)

{∫
ϕ(y) p(dy) + c(x, p)

}
, x ∈ X, ϕ ∈ Φγ,b(X).

Section 9 is devoted to the proof of a general result showing that duality holds under mild
regularity conditions on c. Among these conditions, the main requirement is that c is convex
with respect to the p variable. We refer to Theorem 9.5 for a precise statement. Since we do not
know whether the conditions of Theorem 9.5 are minimal, we prefer to postpone its statement to
Section 9 and to focus on particular families of cost functions (which are especially relevant for the
applications we have in mind) for which the duality holds.

2.4. Particular cases. As we already observed, if ω : X×X → [0,∞] is a measurable function and
c(x, p) =

∫
ω(x, y) p(dy), x ∈ X, p ∈ P(X), then the associated optimal transport cost corresponds

the usual Monge-Kantorovich optimal transport cost Tω defined by

Tω(ν, µ) = inf
π∈Π(µ,ν)

∫∫
ω(x, y)π(dxdy).

Among these costs a popular choice consists of taking, for x, y ∈ X , ω(x, y) = α(d(x, y)), where
α : R+ → R

+ is a convex function.

The simple idea that leads from this classical family of cost functions to the family of cost
functions described below, is to weaken c by applying Jensen inequality:

c(x, p) =

∫
α (d(x, y)) p(dy) ≥ α

(∫
d(x, y) p(dy)

)
:= c̃(x, p).

Cost functions of the form c̃ as above appeared (in the particular case of the Hamming distance)
in papers by Marton [42, 41], Dembo [16], Samson [52, 53, 54] in their studies of transport-type
inequalities related to Talagrand’s universal concentration inequalities for independent random
variables. See Section 6 for more information on the topic.

2.4.1. Marton’s cost functions. Fix a function γ : R+ → R+ satisfying (2.1) and a convex function
α : R+ → [0,+∞]. The optimal transport cost associated to the cost function

(2.5) c(x, p) = α

(∫
γ(d(x, y)) p(dy)

)
, x ∈ X, p ∈ Pγ(X),

will be denoted by T̃α and is defined by

(2.6) T̃α(ν|µ) = inf
π∈Π(µ,ν)

∫
α

(∫
γ(d(x, y)) px(dy)

)
µ(dx)

where x 7→ px is the probability kernel defined as usual by π(dxdy) = µ(dx)px(dy). We will
refer to this family of cost functions / optimal transport costs as Marton’s costs since they were
first considered in [42] for γ = γ0 and α being the quadratic function, and therefore c(x, p) =(∫

1x 6=y p(dy)
)2

= p(X \ {x})2.

Note that, in general, T̃α is not symmetric in µ, ν. Moreover, as we already observed above, if
ω(x, y) = α(γ(d(x, y))), then by Jensen’s inequality,

T̃α(ν|µ) ≤ Tω(ν, µ).
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Finally, using probabilistic notations, one has

T̃α(ν|µ) = inf
(X,Y )

E

[
α
(
E [γ(d(X,Y )) |Y ]

) ]
,

where the infimum runs over the set of all pairs of random variables (X,Y ) where X has law µ
and Y has law ν. The following result gives sufficient conditions for duality for Marton’s costs.

Theorem 2.7. Assume either that

• (X, d) is a complete separable metric space, α : R+ → R+ is a convex continuous function
with α(0) = 0 and γ : R+ → R+ is continuous,

• or (X, d) is either a compact space or a countable set of isolated points, α : R+ → [0,+∞]
is a convex lower-semicontinuous function with α(0) = 0 and γ : R+ → R+ is lower-
semicontinuous.

Then, duality holds for the cost function c defined in (2.5). More precisely,

(2.8) T̃α(ν|µ) = sup
ϕ∈Φγ,b(X)

{∫
Q̃αϕ(x)µ(dx) −

∫
ϕ(y) ν(dy)

}
, µ, ν ∈ Pγ(X),

where

Q̃αϕ(x) = inf
p∈Pγ(X)

{∫
ϕ(y) p(dy) + α

(∫
γ(d(x, y)) p(dy)

)}
,

for x ∈ X, ϕ ∈ Φγ,b(X).

We observe that, anticipating the present paper, the duality formula (2.8) was already put to
use in [29], in connection with displacement convexity of the relative entropy functional on graphs.

2.4.2. A barycentric variant of Marton’s cost functions. When X ⊂ R
m (equipped with an arbi-

trary norm ‖ · ‖) is a closed set, a variant of Marton’s costs functions is obtained by choosing

(2.9) c(x, p) = θ

(
x−

∫
y p(dy)

)
, x ∈ X, p ∈ P1(X),

where θ : Rm → [0,∞] is a lower-semicontinuous convex function. The corresponding transport
cost is denoted by T θ and defined by

(2.10) T θ(ν|µ) = inf
π∈Π(µ,ν)

∫
θ

(
x−

∫
y px(dy)

)
µ(dx).

We use the notation T θ with a bar in reference to the barycenter entering its definition.

Using probabilistic notations, we have the following alternative definition

T θ(ν|µ) = inf
(X,Y )

E
[
θ (X − E[Y |X ])

]
,

where the infimum runs over the set of all pairs of random variables (X,Y ), with X having law µ
and Y having law ν. Moreover, if ω(x, y) = α(‖x− y‖), x, y ∈ R

m, where α : R+ → R+ is convex,
and θ(u) = α(‖u‖), u ∈ R

m, then the following holds:

Tω(ν, µ) ≥ T̃α(ν|µ) ≥ T θ(ν|µ).

As we shall see below, this family of transport costs has strong connections with convex functions,
and convex ordering of probability measures. In particular, the transport cost corresponding to
θ(x) = |x|, x ∈ R, will be involved in a new proof of a result by Strassen on the existence of a
martingale with given marginals (see Section 3).

Duality for this family of costs functions is established in the following result. Note that for
the “bar” transport cost, the duality formula for T θ can be expressed using only convex functions.
This fact will repeatedly be used in the applications.

Theorem 2.11. Let X ⊂ R
m be a closed subset of Rm equipped with a norm ‖·‖ and θ : Rm → R+

be a convex function such that θ(x) ≥ a‖x‖ + b, for all x ∈ R
m and for some a > 0 and b ∈ R.

Then duality holds for the cost function defined in (2.9). More precisely:
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(1) The following duality identity holds

T θ(ν|µ) = sup
ϕ∈Φ1,b(X)

{∫
Qθϕ(x)µ(dx) −

∫
ϕ(y) ν(dy)

}
, µ, ν ∈ P1(X),

where for all x ∈ R
m and all ϕ ∈ Φ1,b(X),

Qθϕ(x) = inf
p∈P1(X)

{∫
ϕ(y) p(dy) + θ

(
x−

∫
y p(dy)

)}
.

Since P1(X) ⊂ P1(Rm), the same conclusion holds replacing Φ1,b(X) by Φ1,b(R
m) in the

dual expression of T θ(ν|µ), and P1(X) by P1(Rm) in the definition of Qθϕ.
(2) For all ϕ ∈ Φ1,b(R

m) and all x ∈ R
m, it holds

Qθϕ(x) := inf
p∈P1(Rm)

{∫
ϕ(y) p(dy) + θ

(
x−

∫
y p(dy)

)}
= Qθϕ(x),

where ϕ denotes the greatest convex function h : Rm → R such that h ≤ ϕ, and we recall
that Qθg(x) = infy∈Rm{g(y) + θ(x − y)}, g ∈ Φ1,b(R

m), x ∈ R
m.

(3) For all µ, ν ∈ P1(X), it holds

T θ(ν|µ) = sup
{∫

Qθϕdµ−
∫
ϕdν;ϕ : Rm → R, convex,Lipschitz, bounded from below

}
.

The results (1 ), (2 ), (3 ) also hold when θ : R
m → [0,+∞] is a lower semi-continuous convex

function and X is either compact or a countable set of isolated points.

2.4.3. Samson’s cost functions. Let β : R+ → [0,+∞] be a lower-semicontinuous convex function
and µ0 be a reference probability measure on X . The choice

(2.12) c(x, p) =

∫
β

(
γ(d(x, y))

dp

dµ0
(y)

)
µ0(dy), x ∈ X,

if p ∈ P is absolutely continuous with respect to µ0 on X \{x}, and c(x, p) = +∞ otherwise, yields

the family of weak transport T̂β defined by

(2.13) T̂β(ν|µ) = inf
π∈Π(µ,ν)

∫∫
β

(
γ(d(x, y))

dpx
dµ0

(dy)

)
µ0(dy)µ(dx),

for all measures µ, ν ∈ P1(X), absolutely continuous with respect to µ0. Cost functions of this
type were introduced by the third named author in [54].

Again, if β = α is convex, then Jensen inequality gives

T̃β(ν|µ) ≤ T̂β(ν|µ),

but there is no clear comparison between T̂β(ν|µ) and Tω(ν|µ) with ω(x, y) = α(d(x, y)), x, y ∈ X.

Finally we state a duality theorem for the “hat” transport cost.

Theorem 2.14. Let (X, d) be a compact metric space or a countable set of isolated points. Let
β : R+ → [0,+∞] be a lower-semicontinuous convex function with β(0) = 0 and limx→∞ β(x)/x =
+∞. Assume that γ : R+ → R+ is lower-semicontinuous with γ(0) = 0 and γ(u) > 0 for all u > 0.
Let µ0 be a reference probability measure on X. Then duality holds for the cost function defined in
(2.12). More precisely, for all µ, ν ∈ Pγ(X) absolutely continuous with respect to µ0, it holds

T̂β(ν|µ) = sup
ϕ∈Φγ,b(X)

{∫
Q̂βϕ(x)µ(dx) −

∫
ϕ(y) ν(dy)

}
,

where for x ∈ X and ϕ ∈ Φγ,b(X),

Q̂βϕ(x) := inf
p∈Pγ(X), p≪µ0 onX\{x}

{∫
ϕ(y) p(dy) +

∫
β

(
γ(d(x, y))

dp

dµ0
(y)

)
dµ0(y)

}
.
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2.4.4. Notation. We end this section by introducing notations for the optimal transport costs

related to power functions. When α(x) = xp, x ≥ 0, p > 0, we will use the notation Tp and T̃p to
denote the costs above. Accordingly, if X = R

m is equipped with a norm ‖ · ‖ and θ(x) = ‖x‖p,
we will denote the third transport cost by T p.

3. Proof of a result by Strassen

In this short section, we show that the transport cost T θ can be used to recover an old result
by Strassen [57] about the existence of a martingale with given marginals.

In the sequel, we equip R
m with an arbitrary norm ‖ · ‖. Let µ, ν ∈ P1(Rm); one says that µ is

dominated by ν in the convex order sense, and one writes µ �C ν, if∫
f dµ ≤

∫
f dν,

for all convex1 f : Rm → R. Note that, in particular, this implies that
∫
f dµ =

∫
f dν for all affine

maps f : Rm → R.

It is not difficult to check that µ �C ν if and only if
∫
f dµ ≤

∫
f dν for all 1-Lipschitz and

convex f : Rm → R bounded from below2.

The following result goes back at least to the work of Strassen [57].

Theorem 3.1. Let µ, ν ∈ P(Rm); there exists a martingale (X,Y ), where X follows the law µ
and Y the law ν if and only if µ �C ν.

Below we obtain Strassen’s theorem as a consequence of the duality formula for the cost T 1

given in the following proposition.

Proposition 3.2. For all µ, ν ∈ P1(Rm),

T 1(ν|µ) = sup
{∫

ϕdµ−
∫
ϕdν;ϕ convex, 1-Lipschitz, bounded from below

}
.

Proof. We already know from Point (3) of Theorem 2.14 that for all µ, ν ∈ P1(Rm) it holds

T 1(ν|µ) = sup
{∫

Q1ϕdµ−
∫
ϕdν;ϕ convex, Lipschitz, bounded from below

}
.

with Q1ϕ(x) = infy∈Rm{ϕ(y) + ‖x− y‖}, x ∈ R
m. It is easy to check that if ϕ : Rm → R is convex

and bounded from below, so is Q1ϕ : Rm → R. Being an infimum of 1-Lipschitz functions, Q1ϕ is
itself 1-Lipschitz. Moreover, if ψ : Rm → R is some 1-Lipschitz convex function, then Q1ψ = ψ;
namely, for all x ∈ R

m, one has

0 ≥ Q1ψ(x) − ψ(x) ≥ inf
y∈Rm

{ψ(y) − ψ(x) + ‖x− y‖} ≥ 0.

From these considerations, we conclude that

T 1(ν|µ) = sup

{∫
Q1ϕdµ−

∫
ϕdν;ϕ convex Lipschitz bounded below

}

≤ sup

{∫
ψ dµ−

∫
ψ dν;ψ convex, 1-Lipschitz, bounded below

}

= sup

{∫
Q1ψ dµ−

∫
ψ dν;ψ convex, 1-Lipschitz, bounded below

}

≤ sup

{∫
Q1ϕdµ−

∫
ϕdν;ϕ convex, Lipschitz, bounded below

}
.

1Note that since µ, ν ∈ P1(Rm), any affine map is integrable with respect to µ and ν. Since a convex function
is always positive up to the addition of some affine map, we see that the integral of convex functions with respect
to µ and ν makes sense.

2One possible way to prove this is to use the fact that if f : Rm → R is convex, then the classical inf-convolution
operator Qtf(x) := infy∈Rm{f(y)+ 1

t
‖x−y‖} is convex, 1/t-Lipschitz and Qtf(x) ↑ f(x) when t → 0 for all x ∈ Rm.



12 N. GOZLAN, C. ROBERTO, P.-M. SAMSON, P. TETALI

This concludes the proof. �

Proof of Theorem 3.1. If π ∈ Π(µ, ν) denotes the law of (X,Y ), the condition that (X,Y ) is a
martingale is expressed by

(3.3)

∫
y px(dy) = x, for µ almost every x ∈ R

m.

Recall that T 1(ν|µ) = infπ∈Π(µ,ν)

∫
‖x−

∫
y px(dy)‖µ(dx). Therefore, there exists some π ∈ Π(µ, ν)

satisfying (3.3) if and only if T 1(ν|µ) = 0. Since, by Corollary 2.11,

T 1(ν|µ) = sup
{∫

f dµ−
∫
f dν; f : Rm → R, 1 − Lipschitz, convex and bounded below

}
,

the expected result follows. �

Remark 3.4. Let us note that we obtained in fact the following slightly more general result: Let
ε > 0 ; two probability measures µ, ν ∈ P1(Rm) satisfy

∫
f dµ ≤

∫
f dν + ε, for all 1-Lipschitz

convex functions f : Rm → R, if and only if there exists a pair (X,Y ) of random variables, with
X of law µ and Y of law ν, such that

E[‖X − E[Y |X ]‖] ≤ ε.

4. Transport-entropy inequalities: definitions, tensorization, and dual
formulation

In this section, we introduce a general notion of transport-entropy inequalities of Talagrand-type
and investigate them.

4.1. Definitions. We recall that if µ, ν are two probability measures on some space X , the relative
entropy of ν with respect to µ is defined by

H(ν|µ) =

∫
log

(
dν

dµ

)
dν ∈ R+ ∪ {+∞} ,

if ν ≪ µ. Otherwise, ones sets H(ν|µ) = +∞.

Definition 4.1 (Transport-entropy inequalities Tc(a1, a2) and Tc(b)).
Let c : X×Pγ(X) → [0,∞] be a measurable cost function associated to some lower-semicontinuous
function γ : R+ → R+ satisfying (2.1), and µ ∈ Pγ(X).

• The probability measure µ is said to satisfy Tc(a1, a2), for some a1, a2 > 0 if

(4.2) Tc(ν1|ν2) ≤ a1H(ν1|µ) + a2H(ν2|µ), ∀ν1, ν2 ∈ Pγ(X).

• The probability measure µ is said to satisfy T+
c (b) for some b > 0, if

(4.3) Tc(ν|µ) ≤ bH(ν|µ), ∀ν ∈ Pγ(X).

• The probability measure µ is said to satisfy T−
c (b) for some b > 0, if

(4.4) Tc(µ|ν) ≤ bH(ν|µ), ∀ν ∈ Pγ(X).

For the specific transport costs T̃p and T p introduced in Section 2.4.4 we may use the corresponding

notations T̃p(a1, a2), T̃±
p (b), respectively Tp(a1, a2), T

±

p (b).

Let us comment on this definition. First we note, that when c(x, p) =
∫
ω(x, y) p(dy), (4.3) and

(4.4) give back the usual transport-entropy inequalities of Talagrand type (see [37], [65] or [23]
for a general introduction on the subject). Also, we observe that Tc(a1, 0) or Tc(a2, 0) (which
are not considered in the above definition, since a1, a2 > 0) has no meaning. Indeed, if Tc(a1, 0)
holds, then Tc(ν1|ν2) ≤ a1H(ν1|µ) for all ν1, ν2 which in turn implies Tc(µ|ν2) = 0 for all ν2 which
is impossible. Finally, using the convention that 0 · ∞ = 0, we observe that T+

c (b) is formally
equivalent to Tc(b,∞), and T−

c (b) is equivalent to T−
c (∞, b).
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As for the classical inequality, Tc(a1, a2) does enjoy the tensorization property. Moreover, if
duality holds for the cost function c (in the sense of Definition 2.4), we can state a dual character-
ization of Tc(a1, a2) in the spirit of Bobkov-Götze dual formulation [8].

We now state these properties and characterizations.

4.2. Bobkov-Götze dual characterization. The following characterization extends, thanks to
the dual formulation of the transport cost [8]; see also [23].

Proposition 4.5 (Dual formulation). Let c : X × Pγ(X) → [0,∞] be a measurable cost function
associated to some lower-semicontinuous function γ : R+ → R+ satisfying (2.1). Assume that
c(x, δx) = 0 for all x ∈ X and that duality holds for the cost function c. For µ ∈ Pγ(X) and
a1, a2, b > 0, Items (i)’s and (ii)’s are equivalent:

• (i) Tc(a1, a2) holds;
(ii) for all ϕ ∈ Φγ,b(X) (resp. for all non-negative ϕ ∈ Φγ), it holds

(4.6)

(∫
exp

{
Rcϕ

a2

}
dµ

)a2
(∫

exp

{
− ϕ

a1

}
dµ

)a1

≤ 1;

• (i′) T+
c (b) holds;

(ii′) for all ϕ ∈ Φγ,b(X) (resp. for all non-negative ϕ ∈ Φγ), it holds

(4.7) exp

{∫
Rcϕdµ

}(∫
exp

{−ϕ
b

}
dµ

)b
≤ 1;

• (i′′) T−
c (b) holds;

(ii′′) for all ϕ ∈ Φγ,b(X) (resp. for all non-negative ϕ ∈ Φγ), it holds

(4.8)

(∫
exp

{
Rcϕ

b

}
dµ

)b
exp

{
−
∫
ϕdµ

}
≤ 1 ,

where we recall that Rcϕ(x) = infp∈Pγ(X)

{∫
ϕ(y) p(dy) + c(x, p)

}
, x ∈ X.

Moreover, specializing to the “bar” cost T θ, one can replace, in (ii), (ii′) and (ii′′), Rcϕ by
Qθϕ := infy∈Rm {ϕ(y) + θ( · − y)} and restrict to the set of functions ϕ that are convex, Lipschitz
and bounded from below.

Remark 4.9.

• The preceding result thus applies to the cost functions defined in Section 2.4 under the
assumptions of Theorems 2.7, 2.11 and 2.14 and more generally to all the cost functions
satisfying the assumptions of our general duality Theorem 9.5.

• In the result above, we implicitly assumed that functions Rcϕ were measurable. If it is not
the case, then integrals of Rcϕ with respect to µ have to be replaced by integrals with respect
to the inner measure µ∗.

• When c(x, p) = θ
(
x−

∫
y p(dy)

)
, x ∈ R

m, p ∈ P1(Rm), for some convex function θ :
R
m → R+, the inequality Tc(a1, a2) is thus equivalent to the following exponential type

inequality first introduced by Maurey [43] (the so-called convex (τ)-property):
(∫

e
Qθϕ

a2 dµ

)a2
(∫

e− ϕ
a1 dµ

)a1

≤ 1, ∀ϕ : Rm → R+ convex.

Proof. By duality (i.e. using Definition 2.4), Tc(a1, a2) is equivalent to have

a2

(∫
Rcϕ

a2
dν2 −H(ν2|µ)

)
+ a1

(∫
− ϕ

a1
dν1 −H(ν1|µ)

)
≤ 0 ,

for all ϕ ∈ Φγ,b(X) and all ν1, ν2 ∈ Pγ(X) with finite relative entropy with respect to µ. The
expected result follows by taking the (two independent) suprema, on the left hand side, over ν1

and ν2, and by using Lemma 4.10 below. Note that since c(x, δx) = 0 for all x ∈ X , one always has
Rcϕ ≤ ϕ, for all ϕ ∈ Φγ,b(X) and so the function ψ = Rcϕ/a2 satisfies the assumption of Lemma
4.10. This completes the proof of the equivalence (i) ⇔ (ii).
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Note that (4.6) is invariant under translations ϕ 7→ ϕ+a and so the functions ϕ can be assumed
non-negative.

The two last equivalences follow the same line (and the details are left to the reader). Similarly,
the specialization to the “bar” cost is identical, one just needs to apply Item (3) of Theorem
2.11. �

Lemma 4.10. Let µ ∈ Pγ(X) for some lower-semicontinuous function γ : R+ → R+ satisfying
(2.1); for all measurable function ψ : X → R such that ψ ≤ ϕ for some ϕ ∈ Φγ(X), it holds

sup
ν∈Pγ(X)

{∫
ψ dν −H(ν|µ)

}
= log

∫
eψ dµ.

Proof of Lemma 4.10. Consider the function U(x) = x log(x), x > 0. A simple calculation shows
that U∗(t) := supx>0{tx− U(x)} = et−1, t ∈ R. Since ψ ≤ ϕ, for some ϕ ∈ Φγ(X), one concludes
that

∫
[ψ]+ dν is finite for all ν ∈ Pγ(X), and thus

∫
ψ dν is well-defined in R ∪ {−∞}. Let ν ≪ µ

; applying Young’s inequality xy ≤ U(x) + U∗(y), x > 0, y ∈ R, one gets
∫
ψ dν ≤

∫
U∗(ψ) dµ+

∫
U

(
dν

dµ

)
dµ =

∫
eψ−1 dµ+H(ν|µ).

Applying this inequality to ψ + u, where u ∈ R, we get
∫
ψ dν −H(ν|µ) ≤ eu−1

∫
eψ dµ− u,

and this inequality is still true, even if ν is not absolutely continuous with respect to µ. Optimizing
over u ∈ R and over ν ∈ Pγ(X) yields:

sup
ν∈Pγ(X)

{∫
ψ dν −H(ν|µ)

}
≤ log

∫
eψ dµ.

To get the converse inequality, consider Ak = {x ∈ X ;ψ(x) ≤ k}, for k ≥ 0 large enough,

νk(dx) = eψ(x)∫
eψ1Ak

dµ
1Ak(x)µ(dx) . Since µ belongs to Pγ(X) and νk has a bounded density with

respect to µ, νk also belongs to Pγ(X). Furthermore
∫
ψ dνk −H(νk|µ) = log

(∫
eψ1Ak dµ

)
→ log

(∫
eψ dµ

)
,

when k → ∞. This completes the proof. �

4.3. Tensorization. In this section, we collect two important properties which will allow us to
deal with one-dimensional measures in applications.

Theorem 4.11 (Tensoring property). Let γ : R+ → R+ be a lower-semicontinuous function sat-
isfying (2.1), (X1, d1), . . . , (Xn, dn) be complete separable metric spaces equipped with measurable
cost functions ci : Xi×Pγ(Xi) → [0,∞], i ∈ {1, . . . , n} such that ci(xi, δxi) = 0 and pi 7→ ci(xi, pi)
is convex for all xi ∈ Xi. For all i ∈ {1, . . . , n}, let µi ∈ Pγ(Xi) satisfying the transport inequality

Tci(a
(i)
1 , a

(i)
2 ) for some a

(i)
1 , a

(i)
2 > 0. Then the product probability measure µ1 ⊗ · · · ⊗ µn satisfies

the transport inequality Tc(a1, a2), with a1 := maxi a
(i)
1 , a2 := maxi a

(i)
2 , for the cost function

c : X1 × · · · ×Xn × Pγ(X1 × · · · ×Xn) → [0,∞) defined by

c(x, p) = c1(x1, p1) + · · · + cn(xn, pn),

for all x = (x1, . . . , xn) ∈ X1 × · · · ×Xn, and for all p ∈ Pγ(X1 × · · · ×Xn), where pi denotes the
i-th marginal distribution of p.

The following is an immediate corollary of Theorem 4.11.

Corollary 4.12. Let γ : R+ → R+ be a lower-semicontinuous function satisfying (2.1) and assume
that µ ∈ Pγ(X) satisfies the transport inequality Tc(a1, a2) for some a1, a2 > 0 and some cost
function c : X × Pγ(X) → [0,∞] that satisfies c(x, δx) = 0 and p 7→ c(x, p) convex for all x ∈ X.
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Then for all positive integers n, the product probability measure µn ∈ Pγ(Xn) satisfies the inequality
Tcn(a1, a2), where cn : Xn × Pr(Xn) → [0,∞) is the cost function defined by

cn(x, p) :=
n∑

i=1

c(xi, pi), x = (x1, . . . , xn) ∈ Xn, p ∈ Pγ(Xn),

where pi denotes the i-th marginal distribution of p.

The proof of Theorem 4.11 is postponed to Appendix A.

5. Transport-entropy inequalities : link with dimension-free concentration

In this section, extending [22], we characterize the transport-entropy inequality Tc(a1, a2) in
terms of a dimension-free concentration property. We recall first (and introduce) some notation.

Let γ : R+ → R+ be a lower-semicontinuous function satisfying (2.1) and c : X×Pγ(X) → [0,∞)
such that c(x, δx) = 0 for all x ∈ X . Recall from Corollary 4.12 that for all integers n ≥ 1,

cn(x, p) :=

n∑

i=1

c(xi, pi), x = (x1, . . . , xn) ∈ Xn, p ∈ Pr(Xn),

where pi denotes the i-th marginal distribution of p. For all ϕ ∈ Φγ(Xn), define as before

Rcnϕ(x) = inf
p∈Pγ(Xn)

{∫
ϕdp+ cn(x, p)

}
, x ∈ Xn.

Finally for all Borel sets A ⊂ Xn, let

cnA(x) := inf
p∈Pγ(Xn):p(A)=1

cn(x, p), x ∈ Xn,

and, for t ≥ 0,
Ant := {x ∈ Xn : cnA(x) ≤ t} .

5.1. A general equivalence. We are now in a position to state our theorem.

Theorem 5.1. Let γ : R+ → R+ be a lower-semicontinuous function satisfying (2.1) and c :
X × Pγ(X) → [0,∞) a measurable cost function such that c(x, δx) = 0 for all x ∈ X, and for
which duality holds in the sense of Definition 2.4. For µ ∈ Pγ(X) and a1, a2 > 0, the following
are equivalent:

(i) µ satisfies Tc(a1, a2);
(ii) there exists a numerical constant K such that for all integers n ≥ 1, for all Borel sets

A ⊂ Xn, it holds

(5.2) µn(Xn \Ant )a2µn(A)a1 ≤ Ke−t ∀t ≥ 0.

(iii) there exists a numerical constant K such that for all integers n ≥ 1, for all non-negative
ϕ ∈ Φγ(Xn), it holds

µn(Rcnϕ > u)a2µn(ϕ ≤ v)a1 ≤ Ke−u+v ∀u, v ∈ R.

Remark 5.3.

• The implication (i) ⇒ (ii) was first discovered by Marton [40, 42, 41]. This nice observation
is at the origin of the interest in transport-entropy inequalities.

• The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are in fact true solely under the assumptions
c(x, δx) = 0 for all x ∈ X and p 7→ c(x, p) is convex, as the proof indicates.

Proof. First we prove that (i) implies (ii). Since µ satisfies Tc(a1, a2), by the tensorization prop-
erty, for all positive integers n, it holds

Tcn(ν1|ν2) ≤ a1H(ν1|µn) + a2H(ν2|µn),

for all ν1, ν2 ∈ Pγ(Xn). Let A ⊂ Xn be a Borel set and define ν1(dx) = 1A(x)
µn(A) µ

n(dx) and

ν2(dx) = 1B(x)
µn(B) µ

n(dx), where B = Xn \ Ant , for some t > 0. Then H(ν1|µn) = − logµn(A) and
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H(ν2|µn) = − logµn(B). Furthermore, if π ∈ Π(ν2, ν1) with disintegration kernel (px)x∈Xn , then
for ν2 almost all x ∈ Xn, px(A) = 1. Therefore,

∫
c(x, px) ν2(dx) ≥

∫
cnA(x)

1B(x)

µn(B)
µn(dx) ≥ t,

where the last inequality comes from the fact that cnA(x) > t for all x ∈ B = {x ∈ Xn : cnA(x) > t}.
Taking the infimum over all π ∈ Π(ν2, ν1) finally yields

t ≤ Tcn(ν1|µ2) ≤ −a1 log(µn(A)) − a2 logµn(Xn \Ant ),

which proves (ii).

Now we prove that (ii) implies (iii). Fix n ≥ 1, m ∈ R, t ≥ 0 and a non-negative ϕ ∈ Φγ(Xn).
We will prove that {Rcnϕ > m + t} ⊂ {cnA > t} with A := {ϕ ≤ m}. To that aim consider
x ∈ {Rcnϕ > m + t}. Then, for all p ∈ Pγ(Xn) with p(A) = 1, we have

∫
ϕdp ≤ m so that, by

definition of Rcn , it holds

m+ t <

∫
ϕdp+ cn(x, p) ≤ m+ cn(x, p).

Hence, taking the infimum over all p with p(A) = 1 leads to cnA(x) > t, which is the desired result.
Point (iii) then immediately follows applying Point (ii) to A.

Finally we prove that (iii) implies (i), following [24]. Fix ε ∈ (0, 1). Given f ∈ Φγ(X), non-
negative, let ϕ(x) = f(x1) + f(x2) + · · · + f(xn), x ∈ Xn. Then, ϕ ∈ Φγ(Xn) is also non-negative
and Rcnϕ(x) =

∑n
i=1 Rcf(xi), so that, using the product structure of µn,

(∫
e

Rcf
(1+ε)a2 dµ

)a2
(∫

e
− f

(1−ε)a1 dµ

)a1

=

(∫
e
Rcnϕ

(1+ε)a2 dµn
) a2

n
(∫

e
− ϕ

(1−ε)a1 dµn
) a1

n

.(5.4)

Our aim is to prove that the right hand side, to the power n, is bounded. Thanks to Point(iii),
for any v ∈ R it holds

∫
e
Rcnϕ

(1+ε)a2 dµn = 1 +

∫ ∞

0

euµn
(

Rcnϕ

(1 + ε)a2
> u

)
du

≤ 1 + µn
(

ϕ

(1 − ε)a1
≤ v

)−
a1
a2

K
1
a2 e

(1−ε)a1v

a2

∫ ∞

0

e−εu du

= 1 +
1

ε
µn
(

ϕ

(1 − ε)a1
≤ v

)−
a1
a2

K
1
a2 e

(1−ε)a1v

a2 .

In particular, for all v ∈ R,
(

−1 +

∫
e
Rcnϕ

(1+ε)a2 dµn
) a2
a1

e−vµn
(

ϕ

(1 − ε)a1
≤ v

)
≤ K

1
a1
e−εv

ε
a2
a1

.

Since
∫
e

− ϕ
(1−ε)a1 dµn =

∫∞

0
e−vµn

(
ϕ

(1−ε)a1
≤ v
)
dv, integrating the latter implies that

(
−1 +

∫
e
Rcnϕ

(1+ε)a2 dµn
) a2
a1
∫
e

− ϕ
(1−ε)a1 dµn ≤ K

1
a1

ε1+
a2
a1

.

This in turn implies, by simple algebra that
(∫

e
Rcnϕ

(1+ε)a2 dµn
)a2

(∫
e

− ϕ
(1−ε)a1 dµn

)a1

≤
(

1 +
1

ε

(
ε

∫
e

− ϕ
(1−ε)a1 dµn

)−
a1
a2

)a2 (∫
e

− ϕ
(1−ε)a1 dµn

)a1

=

((∫
e

− ϕ
(1−ε)a1 dµn

) a1
a2

+
1

ε1+
a1
a2

)a2

≤
(

1 +
1

ε1+
a1
a2

)a2

,

where in the last line we used that ϕ is a non-negative function.
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Plugging this bound into (5.4) leads, in the limit n → ∞, to
(∫

e
Rcf

(1+ε)a2 dµ

)a2
(∫

e
− f

(1−ε)a1 dµ

)a1

≤ 1.

Taking ε to 0 gives Tc(a1, a2), thanks to Proposition 4.5. �

5.2. Particular cases. In this section we focus on concentration inequalities related to the usual
Monge-Kantorovich transport-cost and to barycentric transport-costs.

5.2.1. Usual costs. Note that when c(x, p) =
∫
ω(x, y) p(dy), for some measurable ω : X × X →

[0,∞), the enlargement Ant of some set A ⊂ X reduces to

Ant = {x ∈ Xn; ∃y ∈ A s.t.

n∑

i=1

ω(xi, yi) ≤ t}.

In particular, when X = R
m and ω(x, y) = ‖x − y‖r, r ≥ 2, where ‖ · ‖ is a given norm on R

m,
then denoting by

(5.5) Bnr =

{
x ∈ (Rm)

n
;

n∑

i=1

‖xi‖r ≤ 1

}
,

it holds
Ant = A+ t1/rBnr .

Concentration of measure inequalities are usually stated for enlargements of sets of measure
bigger than 1/2 as in (1.2) (see [37]). In what follows we connect (5.2) to the usual definition for
some families of cost functionals.

Lemma 5.6. Consider a cost function c of the form

c(x, p) =

∫
γ(d(x, y)) p(dy), x ∈ X, p ∈ Pγ(X)

with γ : R+ → R+ an increasing convex function such that γ(0) = γ′(0) = 0 and suppose that γ
satisfies (2.1). Suppose also that, for a given n ∈ N

∗, a probability measure µ on X satisfies, for
some constants a > 0, b ≥ 1, the following concentration property :

(5.7) µn(Xn \Ant ) ≤ be−t/a, ∀t ≥ 0,

for all A ⊂ Xn such that µn(A) ≥ 1/2.
Then µ satisfies the following property : for all s ∈ (0, 1) and for all A ⊂ Xn ,

(5.8) µn(Xn \Ant )1/(1−s)r−1

µn(A)1/sr−1 ≤ be−t/a, ∀t ≥ 0,

where the exponent r is defined by r = supx>0 xγ
′
+(x)/γ(x) ∈ (1,∞) , (here γ′

+ stands for the right
derivative).

Conversely, if the concentration property (5.8) holds, then one has (by optimizing over all s ∈
(0, 1)), for all A ⊂ Xn such that µn(A) ≥ 1/2, for all t > max(a log(2b), 0),

µn(Xn \Ant ) ≤ inf
s∈(0,1)

(
b(1−s)r−1

2
(1−s)r−1

sr−1 e−t(1−s)r−1/a

)
= be−t(1−ε(t))r/a,

with ε(t) =
(

log 2
t
a−log b

)1/r

.

Proof. The fact that 1 < r < ∞ follows from (2.1) and the convexity inequalities γ(2x) ≥ γ(x) +
xγ′(x) and γ(x)/x < γ′(x), x > 0.

To clarify the notations, we will omit some of the dependencies in n in this proof. The fact that
(5.7) implies (5.8) is a consequence of the following set inclusions (that are justified at the end of
the proof):

(a) A ⊂ Xn \ ((Xn \Au)u) , ∀u ≥ 0 ,

and for all s ∈ (0, 1),
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(b) (Au)v ⊂ A(u1/r+v1/r)r ⊂ A u

sr−1 + v

(1−s)r−1
, ∀u, v ≥ 0.

The last inclusion above follows from the identity,

(5.9)
(
u1/r + v1/r

)r
= inf

s∈(0,1)

{
u

sr−1
+

v

(1 − s)r−1

}
.

Let t ≥ 0, s ∈ (0, 1) and A ⊂ Xn and let us consider the set B = Asr−1t.
If µ(B) ≥ 1/2 then by applying first (b) for u = sr−1t and v = (1 − s)r−1t, and then the
concentration property (5.7), we get

µ(Xn \At) ≤ µ
(
Xn \B(1−s)r−1t

)
≤ be−(1−s)r−1t/a.

If µ(B) < 1/2 then µ(Xn \ B) ≥ 1/2. Therefore by applying first (a) for u = sr−1t and then the
concentration property (5.7), we get

µ(A) ≤ µ (Xn \ ((Xn \B)sr−1t) ≤ be−sr−1t/a.

As a consequence in any case the concentration property (5.8) holds.

Now let us justify the inclusion properties (a) and (b).
To prove (a) let us show that A ∩ (Xn \Au)u = ∅. Suppose on the contrary that there is some
x ∈ A ∩ (Xn \Au)u, then there is some y ∈ Xn \ Au such that

∑n
i=1 γ(d(xi, yi)) ≤ u. But, since

y ∈ Xn \ Au, it holds
∑n

i=1 γ(d(yi, zi)) > u for all z ∈ A. In particular, taking z = x, one gets a
contradiction.
Finally, let us show (b). According to e.g. [26, Lemma 4.7], the function x 7→ γ1/r(x) is subbad-

ditive. It follows easily that (x, y) 7→ (
∑n
i=1 γ(d(xi, yi)))

1/r
defines a distance on Xn. Point (b)

then follows immediately from the triangle inequality. �

For the next corollary, recall the definition of Bnr given in (5.5).

Corollary 5.10. Let r ≥ 2 and consider the cost c(x, p) =
∫

‖x− y‖r p(dy), x ∈ R
m, p ∈ P1(Rm),

where ‖ · ‖ is a norm on R
m. For a probability measure µ ∈ Pr(Rm), the following propositions

are equivalent :

(1) There exist a1, b1 > 0 such that, ∀n ∈ N
∗,

µn(A+ t1/rBnr ) ≥ 1 − b1e
−t/a1 , ∀t ≥ 0,

for all sets A such that µn(A) ≥ 1/2.
(2) There exist a2, b2 > 0 such that, ∀n ∈ N

∗,

µn(f > med (f) + r) ≤ b2e
−tr/a2 , ∀t ≥ 0,

for all f : (Rm)
n → R which are 1-Lipschitz with respect to the norm ‖ · ‖nr defined on

(Rm)
n

by

‖x‖nr =

(
n∑

i=1

‖xi‖r
)1/r

, x ∈ (Rm)
n
.

(3) There exist a3, b3 > 0 such that, ∀n ∈ N
∗, ∀s ∈ (0, 1), and ∀A ⊂ (Rm)n ,

µn((Rm)
n \Ant )1/(1−s)r−1

µn(A)1/sr−1 ≤ b3e
−t/a3 , ∀t ≥ 0,

where Ant = {x ∈ (Rm)n ; cnA(x) ≤ t} = A+ t1/rBnr .
(4) ∃a4 > 0 such that ∀s ∈ (0, 1), µ satisfies

Tr(a4/s
r−1, a4/(1 − s)r−1) .

(5) ∃a5 > 0 such that µ satisfies T+
r (a5) (which is equivalent to T−

r (a5) for that cost).

Moreover (1) ⇔ (2) with a2 = a1 and b2 = b1, (3) ⇒ (4) with a4 = a3, (4) ⇒ (3) with a3 = a4

and b3 = 1, (4) ⇔ (5) with a4 = a5, (1) ⇒ (3) with a3 = a1 and b3 = b1, (3) ⇒ (1) with

b1 = b
(1−s)r−1

3 2
(1−s)r−1

sr−1 and a1 = a3

(1−s)r−1 for any s ∈ (0, 1).
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Note that this result is not as general as possible; see [22, Theorem 1.3] for a similar statement
involving more general cost functions.

Proof. The equivalence (1) ⇔ (2) is very classical (see e.g [37, Proposition 1.3]).
The implications (1) ⇒ (3) and (3) ⇒ (1) are given in Lemma 5.6. (3) ⇒ (4) and (4) ⇒ (3) are
consequences of Theorem 5.1.
If the property (4) holds, then for all ν1 ∈ Pr,

Tr(ν1, µ) = Tc(ν1|µ) ≤ a4

sr−1
H(ν1|µ) ∀s ∈ (0, 1).

As s goes to 1, we get (5), µ satisfies T+
r (a4) or equivalently T−

r (a4).
Conversely assume that (5) holds. By the triangular inequality, we get for all ν1, ν2 ∈ Pr,

Tc(ν1|ν2) = Tr(ν1, ν2) ≤
(

Tr(ν1, µ)1/r + Tr(µ, ν2)1/r
)r

≤
(

(a5H(ν1|µ))1/r + (a5H(ν2|µ))1/r
)r
.

The property (4) with a4 = a5 then follows from the identity (5.9). �

5.2.2. Barycentric costs. When c(x, p) = ‖x −
∫
y p(dy)‖r, x ∈ R

m, p ∈ P1(Rm), for some norm
‖ · ‖ on R

m, then the enlargement of a set A ⊂ (Rm)
n

reduces to

Ant = conv(A) + t1/rBnr ,

denoting by conv(A) the closed convex hull of A and Bnr as defined in (5.5). Indeed, denoting

‖ · ‖nr , for the norm defined on (Rm)
n

by ‖x‖nr = (
∑n

i=1 ‖xi‖r)1/r
, then, for all x ∈ (Rm)

n
, it holds

cA(x) = infy∈C{‖x− y‖nr } = infy∈C{‖x− y‖}, with C = {
∫
y p(dy); p ∈ P1(A)}. It is well known

that C = conv (A), which proves the claim.

The result below shows in particular that inequalities T±
2 are responsible for Gaussian dimension-

free concentration for convex and concave Lipschitz functions.

Corollary 5.11. Let r ≥ 2 and consider the cost c(x, p) = ‖x−
∫
y p(dy)‖r, x ∈ R

m, p ∈ P1(Rm).
For µ ∈ P1(Rm), the following propositions are equivalent :

(1) There exist a1, b1 > 0 such that, ∀n ∈ N
∗,

µn(A+ t1/rBnr ) ≥ 1 − b1e
−t/a1 , ∀t ≥ 0,

for any set A which is either convex or the complement of a convex set and such that
µn(A) ≥ 1/2.

(2) There exist a2, b2 > 0 such that, ∀n ∈ N
∗,

µn(f > med (f) + t) ≤ b2e
−tr/a2 , ∀t ≥ 0,

for all f : (Rm)
n → R which is either convex or concave and 1-Lipschitz with respect to

the norm ‖ · ‖nr defined on (Rm)
n

by

‖x‖nr =

(
n∑

i=1

‖xi‖r
)1/r

, x ∈ (Rm)n .

(3) There exist a3, b3 > 0 such that, ∀n ∈ N
∗, ∀s ∈ (0, 1), and ∀A ⊂ (Rm)

n
,

µn((Rm)
n \Ant )1/(1−s)r−1

µn(A)1/sr−1 ≤ b3e
−t/a3 , ∀t ≥ 0,

where Ant = {x ∈ (Rm)
n

; cnA(x) ≤ t} = convA+ t1/rBnr .

(4) There exists a4 > 0 such that µ satisfies Tr(
a4

sr−1 ,
a4

(1−s)r−1 ) ∀s ∈ (0, 1).

(5) There exists a5 > 0 such that µ satisfies T
+

r (a5) and µ satisfies T
−

r (a5).

Moreover (1) ⇔ (2) with a2 = a1 and b2 = b1, (3) ⇒ (4) with a4 = a3, (4) ⇒ (3) with a3 = a4

and b3 = 1, (4) ⇔ (5) with a4 = a5, (1) ⇒ (3) with a3 = a1 and b3 = b1, (3) ⇒ (1) with

b1 = b
(1−s)r−1

3 2
(1−s)r−1

sr−1 and a1 = a3

(1−s)r−1 for any s ∈ (0, 1).
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Proof. Adapting [37, Proposition 1.3], one sees easily that (1) ⇔ (2), and, according to Theorem
5.1, (3) ⇔ (4).

Let us show that (3) implies (1). Let A be a convex subset. As in Lemma 5.6, if µn(A) ≥
1/2, then, by applying (3) to A and since At = A + t1/rBnr , we get (1) for convex sets with

b1 = b
(1−s)r−1

3 2
(1−s)r−1

sr−1 and a1 = a3

(1−s)r−1 for s ∈ (0, 1). Let D = (Rm)n \ A and assume that

µ(D) ≥ 1/2. For all t > 0, the set C = (Rm)n \ (D + t1/rBnr ) is convex and satisfies for all t′ < t,

Ct′ = (C + t′1/rBnr ) ⊂ (Rm)n \D.
Since µn(D) ≥ 1/2, it follows that µn((Rm)n \ Ct′) ≥ 1/2. As a consequence, applying (3) to the
set C, we obtain for all t > t′ > 0, for all s ∈ (0, 1) ,

µn((Rm)n \ (D + t1/rBnr )) = µn(C) ≤ bs
r−1

3 2
sr−1

(1−s)r−1 e− sr−1t′

a3 .

As t′ goes to t, this implies the concentration property (1) for complement of convex sets.

We adapt the proof of Lemma 5.6 to get (1) ⇒ (3). The property (a) is replaced by the following,
for all subset A,

(a′) A ⊂ convA ⊂ (Rm)n \ [(X \Au) + u1/rBnr ], u ≥ 0.

Since Au = convA + u1/rBnr , this property (a′) is a simple consequence of the property (a)
applied to the set convA. For the same reason, the property (b) still holds. Then following the
proof of Lemma 5.6, by using (a′) and (b), with the set B = Asr−1t, s ∈ (0, 1), and applying the
concentration property (1) to the convex set B or to it’s complement (Rm)n\B, we get (1) =⇒ (3)
with a3 = a1 and b3 = b1.

The equivalence between (3) and (4) is a consequence of Theorem 5.1.

If the property (4) holds, then for all ν1, ν2 ∈ Pr and for all ∀s ∈ (0, 1),

T r(ν1|µ) ≤ a4

sr−1
H(ν1|µ), and T r(µ|ν2) ≤ a4

(1 − s)r−1
H(ν2|µ).

As s goes to 1 or to 0, we get (5) – that µ satisfies T
+

r (a4) and T
−

r (a4).
Conversely assume that (5) holds, then (4) follows with a4 = a5 by the following triangular
inequality, for all ν1, ν2 ∈ Pr,

T r(ν1|ν2)1/r ≤ T r(ν1|µ)1/r + T r(µ|ν2)1/r.

�

6. Universal transport cost inequalities with respect to Hamming distance and
Talagrand’s concentration of measure inequalities

This section is devoted to universal transport-entropy inequalities associated to the weak trans-

port costs T̃ and T̂ with respect to the Hamming distance.

6.1. Transport inequalities for Marton’s costs. In this section, we recall a transport-entropy
inequality obtained by Dembo [16], improving upon preceding works by Marton [41] and used in its
dual form by the third named author [54] to obtain optimal concentration bounds for supremum
of empirical processes.

Let us introduce some notation. For t ∈ (0, 1), define αt by

αt(u) =

{
t(1−u) log(1−u)−(1−tu) log(1−tu)

t(1−t) if 0 ≤ u ≤ 1

+∞ otherwise

and also set α0(u) = (1 − u) log(1 − u) + u and α1(u) = −u− log(1 − u) when u ∈ (0, 1) (and +∞
otherwise). Let us consider the cost of the form T̃ associated to αt:

T̃αt(ν1|ν2) = inf

∫
αt

(∫
1x 6=y px(dy)

)
ν2(dx) ,
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where the infimum runs over the set of kernels p such that ν2p = ν1.

Theorem 6.1. Let (X, d) be a polish space, t ∈ (0, 1) and µ ∈ P(X). Then, for all probability
measures ν1, ν2 on X, it holds

(6.2) T̃αt(ν1|ν2) ≤ 1

1 − t
H(ν1|µ) +

1

t
H(ν2|µ).

For t = 0, it also holds

T̃α0 (ν1|µ) ≤ H(ν1|µ),

and for t = 1,

T̃α1 (µ|ν2) ≤ H(ν2|µ).

The transport inequality (6.2) is due to Dembo [16, Theorem 1.(i)]. A short proof of this theorem
is given in [54] (see Lemma 2.1.) As shown in [54], the behavior of the family of cost functions αt
allows to capture optimal bounds for the deviations of suprema of empirical bounded processes.

Let us just recall simple and useful corollaries of Theorem 6.1. First observing that αt(u) ≥
u2/2, we immediately recover using Theorem 5.1 (implication (i) ⇒ (ii)) the following celebrated
concentration result by Talagrand (see [60, Theorem 4.1.1]).

Corollary 6.3. For any probability measure µ on X, it holds

µn(Xn \Ant ) ≤ 1

µn(A)s/(1−s)
e−st/2, ∀t > 0, ∀s ∈ (0, 1),

for all A ⊂ Xn and n ∈ N
∗, where

Ant =
{
y ∈ Xn : ∃p ∈ P(Xn) with p(A) = 1 such that

n∑

i=1

(∫
1xi 6=yi p(dx)

)2

≤ t
}
.

We refer to [60, 37, 2, 19, 50] for applications of this concentration inequality, under the so-called
convex hull distance .

Corollary 6.4. Suppose that µ is a probability on R
m (equipped with some arbitrary norm ‖ ·

‖) such that the diameter of supp(µ) is bounded by M > 0. Then µ satisfies the inequality

T̃2(4M2, 4M2) and thus T2(4M2, 4M2).

Proof. Observe that α̃t(u) ≥ u2/2, for all u ∈ [0, 1] and t = 1/2. Furthermore, if ν1, ν2 are abso-
lutely continuous with respect to µ then supp(νi) ⊂ supp(µ). Therefore, if π(dxdy) = ν1(dx)px(dy)
is a coupling between ν1 and ν2, then

∫
‖x − y‖ px(dy) ≤ M

∫
1{x 6=y} px(dy), for ν1-almost all x,

and so

1

2M2

∫ (∫
‖x− y‖ px(dy)

)2

ν1(dx) ≤
∫
α̃t

(
1

M

∫
‖x− y‖ px(dy)

)
ν1(dx)

≤
∫
α̃t

(∫
1{x 6=y} px(dy)

)
ν1(dx).

Optimizing over all π, and then using Theorem 6.1 for t = 1/2, completes the proof. �

We recover from the preceding result, and Corollary 5.11, the well-known fact that any prob-
ability measure with a bounded support satisfies dimension-free Gaussian type concentration for
convex/concave Lipschitz functions.

6.2. Transport inequalities for Samson’s costs. Now we consider a stronger variant of Theo-

rem 6.1 involving costs of the form T̂ . To state this result we need to introduce additional notation.
For t ∈ (0, 1), one sets

βt(u) := sup
s∈R

{su− β∗
t (s)} , u ∈ R.

where β∗
t is defined by

β∗
t (s) :=

te(1−t)s + (1 − t)e−ts − 1

t(1 − t)
, s ∈ R.
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We extend the definition for t ∈ {0, 1} by setting

β∗
0 (s) = es − s− 1 and β∗

1 (s) = e−s + s− 1, ∀s ∈ R.

In general, βt does not have an explicit expression, but for t ∈ {0, 1} an easy calculation shows
that

β0(u) = (1 + u) log(1 + u) − u, u ≥ −1

β1(u) = β0(−u) = (1 − u) log(1 − u) + u, u ≤ 1.

Finally, consider the cost of the form T̂ associated to these functions:

T̂βt(ν1|ν2) = inf

∫∫
βt

(
1x 6=y

dpx
dµ

(dy)

)
µ(dy)ν2(dx),

where the infimum runs over the set of kernels p such that, in addition, px ≪ µ for ν2-almost all
x ∈ X .

Theorem 6.5. Let (X, d) be a compact metric space or a countable set of isolated points. Let
t ∈ (0, 1) and µ ∈ P(X). Then, for all probability measures ν1, ν2 on X, it holds

(6.6) T̂βt(ν1|ν2) ≤ 1

1 − t
H(ν1|µ) +

1

t
H(ν2|µ).

For t = 0, it also holds

T̂β0(ν1|µ) ≤ H(ν1|µ),

and for t = 1,

T̂β1(µ|ν2) ≤ H(ν2|µ).

By Proposition 4.5 and Theorem 2.14, one sees that Theorem 6.5 is exactly the dual form of
Theorem 1.1 of [54] (for n = 1). This new expected formulation of Theorem 1.1 in [54] is therefore
a direct consequence of the generalization of the Kantorovich theorem (Theorem 9.5).

A direct consequence of Theorem 6.5 and implication (i) ⇒ (ii) of Theorem 5.1 is the following
deep concentration result that improves the one by Talagrand [61, Theorem 4.2.].

Corollary 6.7. For any probability measure µ on X, it holds

µn(Xn \Ans,t) ≤ 1

µn(A)s/(1−s)
e−st, ∀t > 0, ∀s ∈ (0, 1),

for all A ⊂ Xn and n ∈ N
∗, where

Ans,t =

{
y ∈ Xn : ∃p ∈ P(Xn) with p(A) = 1 and pi ≪ µ, ∀i

such that

n∑

i=1

∫
βs

(
1xi 6=yi

dpi
dµ

(xi)

)
µ(dx) ≤ t

}
,

where we recall that pi denotes the i-th marginal of p.

In Talagrand’s paper [61], this kind of concentration result is the main ingredient to get devia-
tion inequalities of Bernsteintype for suprema of centered bounded empirical processes. Starting
from the optimal transport inequality of Theorem 6.5, the third-named author has obtained op-
timal constants in the Bernstein bounds for the deviations under and above the mean [54]. This
transportation method is an alternative of the entropy method introduced by Ledoux [36], and
then developed by many authors. We refer to the book by Boucheron, Lugosi and Massart [15] for
more development in this field.

Below, we sketch the proof of Theorem 6.5, by revisiting and to some extent simplifying some of
the arguments given in [54] with the help of the duality results developed in the present paper and

in [24]. The first of these duality formulas is Kantorovich duality for the cost T̂ given in Theorem
2.14. The second formula is more classical and is recalled in the following proposition.
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Proposition 6.8. Let β : [0,∞) → R be a lower semi-continuous strictly convex and super-linear
function (i.e. β(x)/x → +∞ as x → ∞). Let µ be a probability measure on a polish space X and
denote by Uβ the function defined on P(X) by

Uβ(ν) =

∫
β

(
dν

dµ

)
dµ,

if ν is absolutely continuous with respect to µ and +∞ otherwise. Then, for any bounded continuous
function ϕ on X, it holds

sup
ν∈P(X)

{∫
ϕ(x) p(dx) − Uβ(ν)

}
= inf

t∈R

{∫
β⊛(ϕ(x) + t)µ(dx) − t

}
,

where β⊛ denotes the monotone conjugate of β, defined by β⊛(x) = supy≥0{xy − β(y)}, x ∈ R.

We refer to [24, Proposition 2.9] for a short and elementary proof of this result.

We begin with an elementary lemma connecting monotone and usual conjugates of our functions
βt. The proof is left to the reader.

Lemma 6.9. For all u ∈ R, β⊛

t (u) = β∗
t ([u]+).

The next lemma gives an expression of Q̂βtϕ, which will be crucial in order to establish the dual
form of the transport inequality.

Lemma 6.10. Let (X, d) be a compact metric space or a countable set of isolated points and
t ∈ [0, 1]. For all bounded continuous function ϕ : X → R, there exists a function v : X → R such
that v(x) ≤ ϕ(x) for all x ∈ X and such that

Q̂βtϕ(x) = v(x) −
∫
β∗
t ([v(x) − v(y)]+) µ(dy).

Proof. Fix x ∈ X and recall that

Q̂βtϕ(x) = inf

{∫
ϕ(y) p(dy) +

∫
βt

(
1x 6=y

dp

dµ
(y)

)
µ(dy)

}
,

where the infimum runs over the set of probability measures p ≪ µ on X \ {x}.
A probability p of this set can be written p = αδx + (1 − α)q, with α = p({x}) and where q is

another probability such that q ≪ µ and q({x}) = 0. So

Q̂βtϕ(x) − ϕ(x) = inf
α∈[0,1]

inf
q≪µ,q({x})=0

{∫
(1 − α)(ϕ(y) − ϕ(x)) q(dy) +

∫
βt

(
(1 − α)1x 6=y

dq

dµ
(y)

)
µ(dy)

}
.

(6.11)

Consider the probability measure µx with the following density with respect to µ: dµx
dµ (y) =

λ−11x 6=y, where λ = µ(X \ {x}) > 0 (we assume of course that µ is not the Dirac mass at point

x), then q({x}) = 0 and q ≪ µ if and only if q ≪ µx and in this case dq
dµx

= λ dqdµ , µx-almost

everywhere. Therefore, (6.11) becomes

Q̂βtϕ(x) − ϕ(x) = inf
α∈[0,1]

inf
q≪µx

{∫
(1 − α)(ϕ(y) − ϕ(x)) q(dy) + λ

∫
βt

(
(1 − α)

λ

dq

dµx
(y)

)
µx(dy)

}
.



24 N. GOZLAN, C. ROBERTO, P.-M. SAMSON, P. TETALI

So it holds

Q̂βtϕ(x) − ϕ(x) = inf
α∈[0,1)

inf
q≪µx

{∫
(1 − α)(ϕ(y) − ϕ(x)) q(dy) + λ

∫
βt

(
(1 − α)

λ

dq

dµx
(y)

)
µx(dy)

}

= inf
α∈[0,1)

− inf
r∈R

{
λ

∫
β⊛

t

(
(1 − α)(ϕ(x) − ϕ(y)) + r

(1 − α)

)
µx(dy) − r

}

= inf
α∈[0,1)

− inf
v∈R

{∫
β∗
t ([v − ϕ(y)]+) 1x 6=y µ(dy) − (1 − α)(v − ϕ(x))

}

= inf
α∈[0,1]

sup
v∈R

{
(1 − α)(v − ϕ(x)) −

∫
β∗
t ([v − ϕ(y)]+) 1x 6=y µ(dy)

}

= sup
v∈R

inf
α∈[0,1]

{
(1 − α)(v − ϕ(x)) −

∫
β∗
t ([v − ϕ(y)]+) 1x 6=y µ(dy)

}

= sup
v∈R

{
−[v − ϕ(x)]− −

∫
β∗
t ([v − ϕ(y)]+) 1x 6=y µ(dy)

}
,

where the second equality comes from Proposition (6.8) and Lemma 6.9, and the last one from (an
elementary version of) the Min-Max theorem. In particular,

Q̂βtϕ(x) = ϕ(x) − [v(x) − ϕ(x)]− −
∫
β∗
t ([v(x) − ϕ(y)]+) 1x 6=y µ(dy),

= min(v(x), ϕ(x)) −
∫
β∗
t ([v(x) − ϕ(y)]+) 1x 6=y µ(dy).

for some function v (realizing the supremum in the last identity).

For a fixed x ∈ X , consider the function F (v) = −[v − ϕ(x)]− −
∫
β∗
t ([v − ϕ(y)]+) 1x 6=y µ(dy),

v ∈ R. Since β∗
t is increasing on [0,∞), the function F is clearly non-increasing on [ϕ(x),+∞).

Therefore F reaches its supremum on (−∞, ϕ(x)]. On (−∞, ϕ(x)), the function F is differentiable
and it holds

F ′(v) = 1 −
∫
e(1−t)[v(x)−ϕ(y)]+1v(x)>ϕ(y)1x 6=y µ(dy) +

∫
e−t[v(x)−ϕ(y)]+1v(x)>ϕ(y)1x 6=y µ(dy)

= 1 −
∫
e(1−t)[v(x)−ϕ(y)]+1x 6=y µ(dy) +

∫
e−t[v(x)−ϕ(y)]+1x 6=y µ(dy).

It is not difficult to prove the existence of a point v̄ (independent of x) such that

(6.12)

∫
e(1−t)[v̄−ϕ(y)]+1x 6=y µ(dy) = 1 +

∫
e−t[v̄−ϕ(y)]+1x 6=y µ(dy)

and to check that the function F reaches its supremum at v(x) := min(v̄, ϕ(x)).

Finally, note that [v(x) − ϕ(y)]+ = [v(x) − v(y)]+, which completes the proof. �

The next result is Lemma 2.2 of [54].

Lemma 6.13. Let µ be some probability on a measurable space X. For every bounded function
v : X → R, it holds for all t ∈ [0, 1] ,

(∫
etv(x)−t

∫
β∗
t ([v(x)−v(y)]+)µ(dy)µ(dx)

)1/t(∫
e−(1−t)v(x)µ(dx)

)1/(1−t)

≤ 1.

With these lemmas in hand, we are now in a position to prove Theorem 6.5.

Proof Theorem 6.5. Fix t ∈ (0, 1) ; according to Proposition 4.5, the transport inequality (6.6) is
equivalent to proving that

(6.14)

(∫
etQ̂βtϕ(x) µ(dx)

)1/t(∫
e−(1−t)ϕ(x) µ(dx)

)1/(1−t)

≤ 1,

for all bounded continuous function ϕ : X → R. But according to Lemma 6.10,

Q̂βtϕ(x) = v(x) −
∫
β∗
t ([v(x) − v(y)]+)µ(dy),
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for some function v ≤ ϕ (possibly depending on t and on µ). According to Lemma 6.13, it holds
(∫

etQ̂βtϕ(x) µ(dx)

)1/t(∫
e−(1−t)v(x) µ(dx)

)1/(1−t)

≤ 1.

Since v ≤ ϕ, this gives (6.14) and completes the proof. �

Now for the sake of completeness, we give a quick proof of Lemma 6.13 in the particular case
t = 1. The general case is more tricky and the interested reader is referred to [54].

Proof of Lemma 6.13 for t = 1. In this case, the conclusion of the lemma amounts to proving that
for all bounded measurable v : X → R, it holds

(6.15)

∫
eH(v(x))dµ(x) ≤ 1,

where

H(v(x)) = v(x) −
∫
v(y)dµ(y) −D(v(x)),

with D(v(x)) =
∫
β∗

1([v(x) − v(y)]+)dµ(y). Replacing everywhere v by λv, λ ≥ 0, it is equivalent
to showing that for all λ ≥ 0,

φ(λ) =

∫
eH(λv(x))dµ(x) ≤ 1.

Since φ(0) = 1, it is sufficient to get that φ′(λ) ≤ 0 for all λ ≥ 0. Let us first observe that since
β∗

1(h) = e−h + h− 1,

H(λv(x)) =

∫ (
1 − e−λ[v(x)−v(y)]+

)
dµ(y) −

∫
λ[v(y) − v(x)]+dµ(y).

It follows that for λ ≥ 0,

φ′(λ) =

∫ (∫
[v(x) − v(y)]+e

−λ[v(x)−v(y)]+dµ(y) −
∫

[v(y) − v(x)]+dµ(y)
)
eH(λv(x))dµ(x)

=

∫∫
[v(x) − v(y)]+

(
e−λ[v(x)−v(y)]++H(λv(x)) − eH(λv(y))

)
dµ(x)dµ(y)

For v(x) ≥ v(y) one has

−λ[v(x) − v(y)]+ +H(λv(x)) −H(λv(y)) = D(λv(y)) −D(λv(x)) ≤ 0,

and therefore φ′(λ) ≤ 0 for λ ≥ 0. This ends the proof of (6.15). �

7. Discrete examples : Bernoulli, Binomial and Poisson laws

In this section, we gather some basic examples of probability measures satisfying weak transport
inequalities. These examples are studied in detail in [30]. We start with the Bernoulli measure,
from which we derive weak transport inequalities for the binomial law and the Poisson distribution.
Let us mention that [30] also contains transport-entropy inequalities for the uniform measure on
the symmetric group that give back the concentration results obtained by Talagrand in [60].

We first consider some results for the Bernoulli measure, derived in [53], and as such introduce
some notations from there.

Given ρ ∈ (0, 1), define uρ,0 : R → R+ ∪ {+∞} as

uρ,0(h) =

{
1−ρ(1−h)

ρ log 1−ρ(1−h)
1−ρ + (1 − h) log(1 − h) , if − 1−ρ

ρ ≤ h ≤ 1

+∞ otherwise

and define uρ,1 : R → R+ ∪ {+∞} as

uρ,1(h) =

{
1
ρ

[
(1 − ρ− h) log 1−ρ−h

1−ρ − (1 − h) log(1 − h)
]
, if h ≤ 1 − ρ

+∞ otherwise
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Finally we define, for t ∈ {0, 1},

θρ,t(h) =

{
uρ,t(h) if h ≥ 0

u1−ρ,t(−h) if h < 0 .

In [30], using a result from [53] and the duality results proved in Section 2.4, the following
weak transport inequalities are obtained for the non symmetric Bernoulli measure. Set µρ :=
(1 − ρ)δ0 + ρδ1, ρ ∈ [0, 1].

Proposition 7.1. For all ρ ∈ (0, 1), it holds

(7.2) T θρ,1(µρ|ν) ≤ H(ν|µρ) and T θρ,0 (ν|µρ) ≤ H(ν|µρ) ∀ν ∈ P({0, 1}).

In [30], a family of transport inequalities is given that interpolates between the two transport
inequalities of (7.2) for t = 0 and t = 1, as in Theorems 6.1 and 6.5. Moreover in this paper, other

related weak transport inequalities with cost types T̃θ are given.

As explained in [30], the cost functions θρ,0 and θρ,1 correspond to the optimal choice in the
transport inequalities (7.2).

By Theorem 4.11, the weak transport inequalities for the Bernoulli measure µρ given in Propo-
sition 7.1 tensorize. Hence, the product of Bernoulli measures µnρ := µρ⊗· · ·⊗µρ on the hypercube

{0, 1}n satisfies the following n-dimensional version of the T -transport-entropy inequalities. Recall
that the corresponding n-dimensional costs are defined, for all x = (x1, . . . , xn) ∈ {0, 1}n and all
p ∈ P({0, 1}n), respectively by

c̄
(n)
ρ,t (x, q) :=

n∑

i=1

θρ,t

(
xi −

∫

{0,1}

yi qi(dyi)

)
.

where qi ∈ P({0, 1}) is the i-th marginal of q, and t ∈ {0, 1}. We denote by T
c̄

(n)
ρ,t

the corresponding

transport cost. Applying Theorem 4.11, we immediately get, from Proposition 7.1, the following
weak transport-entropy inequalities for product of Bernoulli measures.

Corollary 7.3. For all ρ ∈ (0, 1) and all integers n ≥ 1, it holds

T
c̄

(n)
ρ,1

(µnρ |ν) ≤ H(ν|µnρ ) and T
c̄

(n)
ρ,0

(ν|µnρ ) ≤ H(ν|µnρ ) ∀ν ∈ P({0, 1}n).

To prove weak transport cost inequalities for the binomial distribution B(n, ρ), ρ ∈ (0, 1), the
basic idea of [30] is to project the n-dimensional transport cost inequalities of Corollary 7.3, from
the hypercube {0, 1}n onto In := {0, 1, . . . , n}, the state space of B(n, ρ). Projection arguments
are useful tools to reach transport-entropy inequalities as explained in the seminal work by Maurey
(see Lemma 2 [43]). Let µn,ρ denote the binomial measure on In, i.e. µn,ρ(k) =

(
n
k

)
ρk(1 − ρ)n−k

for all k ∈ In. By using the fact that the image measure of µnρ by the projection ϕ : {0, 1}n ∋
(x1, . . . , xn) 7→ ∑n

i=1 xi ∈ In is the measure µn,ρ, Corollary 7.3 provides the following transport-
entropy inequalities.

Corollary 7.4. [30] For all ρ ∈ (0, 1) and all integers n ≥ 1, it holds

T θρ,1,n(µn,ρ|ν) ≤ H(ν|µn,ρ), and T θρ,0,n(ν|µn,ρ) ≤ H(ν|µn,ρ), ∀ν ∈ P(In),

where θρ,t,n(h) := nθρ,t(h/n), h ∈ R, t ∈ {0, 1}.

Following [30], this result implies weak transport-entropy inequalities for the Poisson probability

measure pλ, with parameter λ > 0, defined for all k ∈ N by pλ(k) = λk

k! e
−λ. The idea is to use the

weak convergence of the binomial distribution µn,ρn , with ρn := λ/n, towards the Poisson measure
pλ.

Set, for t ∈ {0, 1}, h ∈ R, cλ,t(h) := limn→∞ nθρn,t
(
h
n

)
. One has

cλ,0(h) = λw

(
h

λ

)
1h≤0, and cλ,1(h) := λw

(−h
λ

)
1h≤0,
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where w(h) = (1 − h) log(1 − h) + h for h ≤ 1 and w(h) = +∞ if h > 1. The result for the Poisson
measure is the following.

Proposition 7.5. [30] For all λ > 0, it holds

T cλ,0(pλ|ν) ≤ H(ν|pλ), and T cλ,1(ν|pλ) ≤ H(ν|pλ), ∀ν ∈ P(N).

Remark 7.6. Observe that these transport inequalities are optimal, i.e. the constant 1 cannot be
improved. Indeed, e.g. the second inequality proposition 7.5 is equivalent, thanks to Proposition
4.5, to

exp

{∫
Qcλ,0f dpλ

}∫
e−f dpλ ≤ 1 ,

which is an equality for f(x) = −tx, x ∈ R, t ≥ 0 (the same holds for the first inequality).

8. Weak transport-entropy and log-Sobolev type inequalities

In this section, our aim is to give some explicit links between the weak transport-entropy in-
equalities introduced in Definition 4.1 and functional inequalities of log-Sobolev type. Except for
the first result below, we are not able to deal with general costs. Hence (except for Section 8.1), we
restrict to the specific case (already of interest) of T θ (introduced in Section 2.4). Furthermore, to
avoid technicalities, we may restrict to the particular choice θ(x) = ‖x‖2 (for some norm on R

m),
even if most of the results below could be extended to more general convex functions (at the price
of denser statements and more technical proofs). As an application, using the characterization of

T
−

2 by means of log-Sobolev type inequalities and results from [1], we may give more examples of
measures satisfying such a transport-entropy inequality on the line.

8.1. Transport-entropy and (τ)-log-Sobolev inequalities. In this section, we generalize the
notion of (τ)-log-Sobolev inequality introduced in [25] (see also [26]) and describe some connection
to weak transport-entropy inequalities.

First we need some notation. Given λ > 0 and ϕ ∈ Φγ(X), define

Rλcϕ(x) := inf
p∈Pγ(X)

{∫
ϕ(y) p(dy) + λc(x, p)

}
, x ∈ X.

Observe that R1
c = Rc, where Rc is defined in Theorem 9.5. Following [25], we introduce the

(τ)-log-Sobolev inequality as follows. We recall that for any non-negative function g, one denotes

Entµ(g) =
∫
g log

(
g∫
g dµ

)
dµ.

Definition 8.1 ((τ)−LSIc(λ,C)). Let γ : R+ → R+ be a lower-semicontinuous function satisfying
(2.1), c : X × Pγ(X) → [0,∞) and C ∈ (0,∞). Then µ ∈ Pγ(X) is said to satisfies the (τ)-log-
Sobolev inequality with constant C, λ and cost c (or in short (τ) − LSIc(λ,C)) if, for all f with∫
fefdµ < ∞, it holds

(8.2) Entµ(ef ) ≤ C

∫
(f −Rλc f)ef dµ.

The following result extends [25, Theorem 2.1].

Proposition 8.3. Let γ : R+ → R+ be a lower-semicontinuous function satisfying (2.1) and c :
X × Pγ(X) → [0,∞) be a cost function. If µ ∈ Pγ(X) satisfies T−

c (b), then it satisfies (τ) −
LSIc(λ,

1
1−λb ) for all λ ∈ (0, 1/b).

Remark 8.4. In R
n [25], and more generally in metric spaces [26], if one considers the usual

transport cost T2 (with cost ω(x, y) = d(x, y)2), it is proved that the corresponding T−
2 (b) is actually

equivalent to some (τ)-log-Sobolev inequality. In order to get such a result in the setting of the
present paper, one would need to develop a general Hamilton-Jacobi theory which is not available
at present (see [55] for some developments). This is the primary reason for us restricting ourselves
to the specific case of the “bar” cost in the next sections.
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Proof. Fix a function f : X → R with
∫
fefdµ < ∞, λ ∈ (0, 1/C) and define dνf = ef∫

ef dµ
dµ.

One has

H(νf |µ) =

∫
log

(
ef∫
ef dµ

)
ef∫
ef dµ

dµ =

∫
f dνf − log

∫
ef dµ ≤

∫
f dνf −

∫
f dµ,

where the last inequality comes from Jensen’s inequality. Consequently, if π(dxdy) = νf (dx)px(dy)
is a probability measure on X ×X with first marginal νf and second marginal µ,

H(νf |µ) ≤
∫∫

(f(x) − f(y))π(dxdy) =

∫ (∫
(f(x) − f(y)) px(dy)

)
νf (dx).

It follows from the definition of Rλc that −
∫
f(y) px(dy) ≤ −Rλc f(x) + λc(x, px) for all x ∈ X , so

using that px is a probability measure,∫
(f(x) − f(y)) px(dy) = f(x) −

∫
f(y) px(dy) ≤ f(x) −Rλc f(x) + λc(x, px), x ∈ X.

Hence,

H(νf |µ) ≤
∫ (

f(x) −Rλc f(x)
)
νf (dx) + λ

∫
c(x, px) νf (dx).

Optimizing over all π (or equivalently over all px) with marginals νf and µ, it holds

H(νf |µ) ≤
∫ (

f(x) −Rλc f(x)
)
νf (dx) + λTc(µ|νf )

≤ 1∫
ef dµ

∫ (
f −Rλc f

)
efdµ+ λbH(νf |µ).

The thesis follows by noticing that
(∫
ef dµ

)
H(νf |µ) = Entµ

(
ef
)
. �

8.2. Weak transport-entropy inequalities T ±

2 . In this section we give different equivalent

forms of T
±

2 in terms of the classical log-Sobolev-type inequality of Gross [33] restricted to con-
vex/concave functions, to the (τ)-log-Sobolev inequality (8.2) and to the hypercontractivity of the
(classical) Hamilton-Jacobi semi-group, also restricted to some class of functions.

Throughout this section, we consider the cost

c(x, p) =
1

2

∥∥∥∥x−
∫
y p(dy)

∥∥∥∥
2

, x ∈ R
m, p ∈ P1(Rm),

where ‖ · ‖ is a norm on R
m whose dual norm we denote by ‖ · ‖∗. We recall that ‖x‖∗ =

maxy∈Rm,‖y‖=1 x ·y. Recall the definition of T 2 from Section 2.4 and the (τ)-log-Sobolev inequality

(8.2) defined with such a cost. As usual, ‖f‖p := (
∫

|f |p dµ)
1
p , p ∈ R

∗ (including negative real
numbers) and ‖f‖0 := exp{

∫
log |f | dµ} whenever this makes sense. Also, given ϕ : Rm → R, t > 0,

let

(8.5) Qtϕ(x) := inf
y∈Rm

{
ϕ(y) +

1

2t
‖x− y‖2

}
, x ∈ R

m,

Ptϕ(x) := sup
y∈Rm

{
ϕ(y) − 1

2t
‖x− y‖2

}
, x ∈ R

m.

We will make use of the following observation (see Theorem 2.11): for any ϕ : Rm → R convex,
Lipschitz and bounded from below, it holds

Q1ϕ = Rcϕ = inf
p∈P1(X)

{∫
ϕ(y) p(dy) + c(x, p)

}
.

In the result below, we assume that ‖ · ‖∗ is strictly convex, i.e. it is such that

(8.6) (x 6= y with ‖x‖∗ = ‖y‖∗ = 1) ⇒ ‖(1 − t)x+ ty‖∗ < 1.

This assumption is made to ensure that the operation f 7→ Qtf transforms a convex function into
a C1-smooth convex function (this well known property is recalled in Lemma 8.12 below). The
proof could certainly be adapted without this assumption, but we dont want to enter into these
technical complications.
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Remark 8.7. It is well known that the strict convexity of the dual norm ‖ · ‖∗ is equivalent to
the C1-smoothness of the initial norm ‖ · ‖ on R

m \ {0}. These equivalent conditions are fulfilled
for instance by the classical p-norms : ‖x‖p = [

∑m
i=1 |xi|p]1/p, x ∈ R

m, for 1 < p < +∞.

Theorem 8.8. Suppose that ‖ · ‖∗ is a strictly convex norm and let µ ∈ P1(Rm). Then the
following are equivalent:

(i) there exists b > 0 such that T
−

2 (b) holds;
(ii) there exists λ,C > 0 such that (τ) − LSIc(λ,C) holds;

(iii) there exists ρ > 0 such that for all C1-smooth function ϕ : Rm → R convex, Lipschitz and
bounded from below, it holds

(8.9) Entµ(eϕ) ≤ 1

2ρ

∫
‖∇ϕ‖2

∗e
ϕ dµ.

(iv) There exists ρ′ > 0 such that for every t > 0, every a ≥ 0 and every ϕ : Rm → R convex,
Lipschitz and bounded from below, it holds

(8.10) ‖eQtϕ‖a+ρ′t ≤ ‖eϕ‖a.

Moreover

(i) ⇒ (ii) for all λ ∈ (0, 1/b) and with C = 1/(1 − bλ);
(ii) ⇒ (iii) with ρ = λ

C ;
(iii) ⇒ (iv) with ρ′ = ρ;
(iv) ⇒ (i) with b = 1

ρ′ .

Remark 8.11. The implication (ii) ⇒ (i) is a variant of a well known result due to Otto and
Villani [48] showing that the logarithmic Sobolev inequality implies the classical transport-entropy
inequality T2. Here we will make use of the arguments developed in [7]. On the other hand, in the
classical setting, the equivalence (i) ⇐⇒ (ii) was studied and developed in [25, 26, 27].

Observe that the relations between the various constants are almost optimal. Indeed, starting

from T
−

2 (b), we deduce from (ii) ⇒ (iii) that the log-Sobolev inequality (8.9) holds with ρ =
supλ∈(0,1/b) λ/C = supλ∈(0,1/b) λ(1 − bλ) = 1

4b (the maximum is reached at λ = 1/(2b)). From this

we deduce (iv) with ρ′ = 1/(4b) which gives back T
−

2 (4b), and in all we are off only by a factor 4.

We may make use of the above result to obtain example of measures satisfying T
−

2 (b) in Section
8.3. Indeed, the “convex” log-Sobolev inequality (8.9) was studied in the literature [1].

We will use the following classical smoothing property of the infimum convolution operator.

Lemma 8.12. Let ‖ · ‖ be a norm on R
m whose dual norm is strictly convex. If ϕ : Rm → R is

a convex function, then for all t > 0, the function Qtϕ defined by

Qtϕ(x) = inf
y∈Rm

{
ϕ(y) +

1

2t
‖x− y‖2

}
, x ∈ R

m.

is also convex and C1-smooth on R
m.

Proof. The fact that Qtϕ is convex is well-known and easy to check. Consider the Fenchel-Legendre
transform of Qtϕ defined by

(Qtϕ)∗(x) = sup
y∈Rm

{x · y −Qtϕ(y)}, x ∈ R
m.

A simple calculation shows that (Qtϕ)∗(x) = ϕ∗(x) + 1
2 ‖x‖2

∗, for all x ∈ R
m. By assumption, ‖ · ‖∗

satisfies (8.6). This easily implies that (and is in fact equivalent to) the convex function x 7→ ‖x‖2
∗

is strictly convex (in the usual sense : if x 6= y, then ‖(1 − t)x + ty‖2
∗ < (1 − t)‖x‖2

∗ + t‖y‖2
∗, for

all t ∈ (0, 1)). Therefore, the function x 7→ (Qtϕ)∗(x) is strictly convex on R
m. A classical result

in Fenchel-Legendre duality (see e.g. [35, Theorem E.4.1.1]) then implies that (Qtϕ)∗∗ = Qtϕ is
C1-smooth on R

m. �
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Proof of Theorem 8.8. That (i) implies (ii) is given in Proposition 8.3.

To prove that (ii) implies (iii), fix ϕ : Rm → R a C1-smooth function which is convex, Lipschitz
and bounded from below. Then, by convexity, for all x, y ∈ R

m, it holds

ϕ(x) − ϕ(y) ≤ ∇ϕ(x) · (x− y) .

where u · v denotes the scalar product of u, v ∈ R
m. Hence, given λ > 0 and x ∈ R

m, by the
Cauchy-Schwarz inequality u · v ≤ 1

2λ‖u‖2
∗ + λ

2 ‖v‖2, u, v ∈ R
m, we have

ϕ(x) −Rλcϕ(x) = sup
p∈P1(Rm)

{∫
[ϕ(x) − ϕ(y)] p(dy) − λ

2
‖x−

∫
y p(dy)‖2

}

≤ sup
p∈P1(Rm)

{∫
∇ϕ(x) · (x− y) p(dy) − λ

2
‖x−

∫
y p(dy)‖2

}

= sup
p∈P1(Rm)

{
∇ϕ(x) · (x−

∫
y p(dy)) − λ

2
‖x−

∫
y p(dy)‖2

}

≤ 1

2λ
‖∇ϕ(x)‖2

∗ .

The expected result follows.

To prove that (iii) implies (iv), we follow the now classical argument from [7] based on the
Hamilton-Jacobi equation satisfied by (t, x) 7→ Qtϕ(x). Since we do not assume that µ is absolutely
continuous with respect to Lebesgue measure (one of our main motivations is to study transport
inequalities for discrete measures), there are some technical difficulties to clarify in order to adapt
the proof of [7, Theorem 2.1] to our framework. First, as shown in [27] or [4], the following
Hamilton-Jacobi equation holds for all t > 0 and x ∈ R

m :

(8.13)
d+

dt
Qtϕ(x) = −1

2
|∇−Qtϕ|2(x),

where, d+/dt stands for the right derivative, and by definition |∇−f |(x) is a notation for the local
slope of a function f at a point x, defined by

|∇−f |(x) = lim sup
y→x

[f(y) − f(x)]−
‖y − x‖ .

Here, since ϕ is convex, the regularization property of the inf-convolution operator Qt given in
Lemma 8.12 implies that for all t > 0, the function x 7→ Qtf(x) is actually C1-smooth on R

m. It is
then easily checked that |∇−Qtϕ|(x) = ‖∇Qtϕ(x)‖∗. Moreover, according to Lemma 8.12 again,
if ϕ : Rm → R is convex, then so does Qtϕ. Therefore, (8.9) can be applied to the function Qtϕ
for all t > 0. To complete the proof of the implication, we leave it to the reader to follow the proof
of [7, Theorem 2.1] (see also [27, Theorem 1.11]).

Finally we prove that (iv) implies (i). We observe that, at t = 1 and a = 0, (8.10) means
precisely that, ∫

eρ
′Q1ϕ dµ ≤ eρ

′
∫
ϕdµ.

This is equivalent to T
−

2 (1/ρ′), thanks to Proposition 4.5 and to the fact that, as recalled above,
Q1ϕ = Rcϕ = inf

p∈P1(X)

{∫
ϕ(y) p(dy) + c(x, p)

}
, for any ϕ : Rm → R convex, Lipschitz and bounded

from below. This completes the proof. �

In order to give a series of equivalent formulations of T
+

2 (b), we need to introduce the notion
of c-convexity (see e.g. [65]). We recall that if c : X × X is some cost function on a space X , a
function f : X → R∪{±∞} is said to be c-convex, if there exists some function g : X → R∪{±∞}
such that

f(x) = sup
y∈X

{g(y) − c(x, y)}, ∀x ∈ X.

In what follows, we will use this notion with c(x, y) = λ
2 ‖x − y‖2, x, y ∈ R

m, where λ > 0 and
‖ · ‖ is some norm on X = R

m, such that ‖ · ‖∗ is a strictly convex norm in the sense of (8.6). In
other words, a function f : Rm → R∪ {±∞} is λ

2 ‖ · ‖2-convex, if there exists g : Rm → R∪ {±∞}
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such that f = P 1
λ
g (recall the definition of Pt from 8.5). In [27, Proposition 2.2], for example, it

is proved that f is λ
2 ‖ · ‖2-convex if and only if f = P 1

λ
Q 1
λ
f . Furthermore, if f is of class C2 and

‖ · ‖ = | · | is the Euclidean norm, then f is λ
2 | · |2-convex if and only if Hessf ≥ −λId (as a

matrix), where Hess denotes the Hessian (see e.g. [27, Proposition 2.3]).

To avoid the use of too heavy a terminology, we will denote by Fλ(Rm), λ > 0, the class of all
functions f : Rm → R that are concave, Lipschitz, bounded from above and λ

2 ‖ · ‖2-convex.

Remark 8.14. According to Lemma 8.12, if g is concave on R
m and λ > 0, then Q1/λ(−g)

is convex and C1-smooth. In particular, f = −Q1/λ(−g) is concave and C1-smooth. But f =

−Q1/λ(−g) = P1/λ(g) and thus f is also λ
2 ‖ · ‖2-convex. Furthermore, if g is assumed to be

Lipschitz and bounded from above, then f is also Lipschitz and bounded from above. This shows
that the class Fλ(Rm) ∩ C1(Rm) is not empty.

Theorem 8.15. Suppose that ‖ · ‖∗ is a strictly convex norm and let µ ∈ P1(Rm). Then the
following are equivalent:

(i) there exists b > 0 such that T
+

2 (b) holds;
(ii) there exist λ,C > 0 such that for all ϕ ∈ Fλ(Rm), it holds

(8.16) Entµ(eϕ) ≤ C

∫
(ϕ−Q1/λϕ)eϕ dµ;

(iii) there exist ρ, λ′ > 0 such that for all C1-smooth function ϕ ∈ Fλ′(Rm), it holds

(8.17) Entµ(eϕ) ≤ 1

2ρ

∫
‖∇ϕ‖2

∗e
ϕ dµ.

Moreover

(i) ⇒ (ii) for all λ ∈ (0, 1/b) and with C = 1/(1 − bλ);

(ii) ⇒ (iii) for all λ′ ∈ (0, λ) and with ρ = λ−λ′

C ;

(iii) ⇒ (i) with b = ρ+λ′

ρλ′ .

Remark 8.18. Also, Equation (8.16) is very close to (yet different from) the (τ)-log-Sobolev
inequality (8.2). The difference is coming from the fact that, for concave functions, Rcf 6= Qf ,
while equality holds for convex functions.

In particular, we emphasize the fact that T
−

2 (b) encompasses information about convex functions,

while T
+

2 (b) about concave functions.

Finally, we observe that the constants in the various implications are almost optimal. Indeed,

starting from T
+

2 (b), we end up with T
+

2 (b′), with b′ = (λ−λ′)(1−bλ)+λ′

λ′(λ−λ′)(1−bλ) with λ ∈ (0, 1/b) and

λ′ ∈ (0, λ). Choosing λ = 1/(2b) and λ′ = 1/(4b) one gets b′ = 12b and we are off by a factor 12,
at the most.

Proof. To prove that (i) implies (ii), we follow the argument of the proof of Proposition 8.3.
Consider a concave function f , Lipschitz and bounded above, λ ∈ (0, 1/b) and define for simplicity

s = 1/λ and dνf = exp{Psf}∫
exp{Psf} dµ

dµ. By Jensen’s Inequality we have

H(νf |µ) =

∫
log

(
ePsf∫
ePsf dµ

)
ePsf∫
ePsf dµ

dµ =

∫
Psf dνf − log

∫
ePsf dµ

≤
∫
Psf dνf −

∫
Psf dµ

=

∫
[Psf − f ] dνf −

∫
Psf dµ+

∫
f dνf

≤
∫

[Psf − f ] dνf + λT 2(νf |µ).
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where in the last line we used the homogeneity of the transport cost (as a function of the cost (recall
that s = 1/λ)) and the duality theorem (Corollary 2.11) to ensure that (since Q1(−ϕ) = −P1ϕ)

T 2(νf |µ) = sup

{∫
Q1ϕdµ−

∫
ϕdνf ; ϕ convex, Lipschitz, bounded from below

}

= sup

{
−
∫
P1ϕdµ+

∫
ϕdνf ; ϕ concave, Lipschitz, bounded from above

}
.

Applying T
+

2 (b) and rearranging the terms, we end up with the following inequality (since
∫

exp{Psf} dµH(νf |µ) =
Entµ (exp{Psf})):

Entµ
(
ePsf

)
≤ 1

1 − λb

∫
[Psf − f ]ePsf dµ ,

which holds for any f concave, Lipschitz and bounded above, and for any λ ∈ (0, 1/b) and s = 1/λ.
Now, our aim is to get rid of Psf . To that purpose, we observe that, since f is concave, Lipschitz
and bounded above, Qsf is also concave, Lipschitz and bounded above3 (for any s ≥ 0), so that,
if we assume in addition that f is λ

2 ‖ · ‖2-convex, applying the latter to Qsf and using that
PsQsf = f , we finally get the desired result of Item (ii).

Now we prove that (ii) implies (iii). Assume Item (ii) and consider a function f ∈ Fλ′(Rm),

with λ′ ∈ (0, λ). Our aim is to make use of the λ′

2 ‖ · ‖2-convexity property of f to bound f−Q1/λf

from above by ‖∇f‖2
∗; we may follow [27].

Since f is λ′

2 ‖ · ‖2-convex, it satisfies PsQsf = f , where for simplicity s = 1/λ′ (see e.g.

[27, Proposition 2.2]). Define m(x) =
{
ȳ ∈ R

m : f(x) = g(ȳ) − λ′

2 ‖x− ȳ‖2
}

, i.e. the set of points

where the supremum is reached, which is is non-empty by simple compactness arguments (see [27,
Lemma 2.6]). Given ȳ ∈ m(x), we have for all z ∈ R

m ,

(8.19) f(x) = Qsf(ȳ) − λ′

2
‖x− ȳ‖2 ≤ f(z) +

λ′

2

(
‖z − ȳ‖2 − ‖x− ȳ‖2

)
.

Since f is concave and C1-smooth, it holds

f(z) ≤ f(x) + ∇f(x) · (z − x), ∀z ∈ R
m.

Inserting this inequality in (8.19), one gets

0 ≤ ∇f(x) · (z − x) +
λ′

2
(‖z − ȳ‖2 − ‖x− ȳ‖2), ∀z ∈ R

m.

Applying this to zt = (1 − t)x+ tȳ, with t ∈ (0, 1), one obtains

0 ≤ t∇f(x) · (ȳ − x) +
λ′

2
((1 − t)2 − 1)‖x− ȳ‖2.

Dividing by t and letting t → 0, one ends up with the inequality

λ′‖x− ȳ‖2 ≤ ∇f(x) · (ȳ − x) ≤ ‖∇f(x)‖∗‖x− ȳ‖.
According to (8.19), the triangle inequality, and the inequality ‖x− ȳ‖ ≤ 1

λ′ ‖∇f(x)‖∗, one gets

f(x) ≤ f(z) +
λ′

2

(
‖z − x‖2 + 2‖z − x‖‖x− ȳ‖

)

≤ f(z) +
λ′

2

(
‖z − x‖2 + 2‖z − x‖‖∇f(x)‖∗

λ′

)

≤ f(z) +
λ

2
‖z − x‖2 +

(
‖z − x‖‖∇f(x)‖∗ − λ− λ′

2
‖z − x‖2

)

≤ f(z) +
λ

2
‖z − x‖2 +

1

2(λ− λ′)
‖∇f(x)‖2

∗.

3These facts follow from the fact that Qsf(x) = infy{f(x − y) + s

2
‖y‖2}. Hence Qsf is concave as infimum of

concave functions. On the other hand, x 7→ f(x − y) + s

2
‖y‖2 are uniformly (in y) Lipschitz functions so that Qsf

is again Lipschitz as infimum of Lipschitz functions. Finally, Qsf ≤ f and therefore is bounded above.
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Optimizing over z ∈ R
m, one gets the inequality

f(x) −Q1/λf(x) ≤ 1

2(λ− λ′)
‖∇f(x)‖2

∗ ,

which inserted into (8.16) yields (8.17).

It remains to prove that (iii) implies (i). To that purpose, let ℓ(t) := −ρ(1−t), t ∈ (0, 1) (observe
that ℓ(t) ≤ 0), set s = −ℓ(t)/λ′, and consider a convex, Lipschitz and bounded below function
f : Rm → R. We shall apply the log-Sobolev inequality to ϕ = ℓ(t)Qtf for a given t ∈ (0, 1). We
need first to verify that ϕ is concave, Lipschitz, bounded above and λ′c-convex. Since f is convex,
Qtf is convex and so, since ℓ(t) ≤ 0, ϕ is concave. On the other hand, since f is Lipschitz, so
does ϕ. Also, f being bounded below, Qtf ≥ inf f and ℓ(t) ≤ 0, we have ϕ = ℓ(t)Qtf ≤ ℓ(t) inf f
which proves that ϕ is bounded above. Finally, since Qt is a semi-group and since in general
Qu(g) = −Pu(−g), we have for all t ∈ ( ρ

ρ+λ′ , 1) (to ensure that s ≤ t) ,

ϕ = ℓ(t)Qs(Qt−sf) = −ℓ(t)Ps(−Qt−sf) = P s
−ℓ(t)

(ℓ(t)Qt−sf)

= P 1
λ′

(ℓ(t)Qt−sf),

hence ϕ is λ′c-convex. In turn, applying the log-Sobolev inequality to ϕ (which is C1-smooth
according to Lemma 8.12), we end up with the following inequality that we shall use later on:

∫
ℓ(t)Qtfe

ℓ(t)Qtfdµ− H(t) logH(t) = Entµ(eℓ(t)Qtf ) ≤ ℓ(t)2

2ρ

∫
‖∇Qtf‖2

∗e
ℓ(t)Qtfdµ ,

where H(t) :=
∫
eℓ(t)Qtfdµ. Hence, by the Hamilton-Jacobi equation (8.13),

d+

dt

(
1

ℓ(t)
logH(t)

)
=

1

ℓ(t)2H(t)
(−ℓ′(t)H(t) logH(t) + ℓ(t)H ′(t))

=
1

ℓ(t)2H(t)

(
ℓ′(t) Entµ(eℓ(t)Qtf ) + ℓ(t)2

∫
∂Qtf

∂t
eℓ(t)Qtf dµ

)

=
ℓ′(t)

ℓ(t)2H(t)

(
Entµ(eℓ(t)Qtf ) +

ℓ(t)2

2ℓ′(t)

∫
‖∇Qtf‖2

∗e
ℓ(t)Qtf dµ

)

≤ ℓ′(t)

2H(t)

(
1

ρ
− 1

ℓ′(t)

)∫
‖∇Qtf‖2

∗e
ℓ(t)Qtf dµ = 0 ,

since ℓ′(t) = ρ. Therefore the function t 7→ ‖eQtf‖ℓ(t) is non-increasing on ( ρ
ρ+λ′ , 1). In particular,

in the limit, we get

‖eQ1f‖ℓ(1) ≤
∥∥∥∥e
Q ρ

ρ+λ′
f
∥∥∥∥
ℓ( ρ

ρ+λ′ )

that we can rephrase as

e
∫
Q1fdµ

(∫
e

− ρλ′

ρ+λ′Q ρ

ρ+λ′
f
dµ

) ρ+λ′

ρλ′

≤ 1.

Now, since Quf ≤ f , we conclude that

e
∫
Q1fdµ

(∫
e

− ρλ′

ρ+λ′ fdµ

) ρ+λ′

ρλ′

≤ 1 ,

which implies T
+

2 (ρ+λ′

ρλ′ ) by Proposition 4.5 and Corollary 2.11. This completes the proof. �

8.3. Sufficient condition for T
−

2 on the line. In this short section, we would like to take
advantage of some known results from [1] to give a sufficient condition for the transport-entropy

inequality T
−

2 to hold on the line.

Our starting point is the following result.
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Theorem 8.20 ([1]). Let µ be a symmetric probability measure on the line. Assume that there
exists c > 0 and α < 1 such that for all x ≥ 0, µ([x + c

x ,∞)) ≤ αµ([x,∞)). Then, there exists
C(c, α) ∈ (0,∞) such that for every smooth, convex function ϕ : R → R, it holds

Entµ(eϕ) ≤ C(c, α)

∫
ϕ′2eϕdµ.

Observe that we assumed symmetry for simplicity. It is not essential and a similar result holds
for non-symmetric measures.

Corollary 8.21. Let µ be a symmetric probability measure on the line. Assume that there exists
c > 0 and α < 1 such that for all x ≥ 0, µ([x + c

x ,∞)) ≤ αµ([x,∞)). Then, there exists

C = C(c, α) ∈ (0,∞) such that T
−

2 (C) holds.

Proof. Theorem 8.20 guarantees that Item (iii) of Theorem 8.8 holds, with 1/(2ρ) = C(c, α)
(Choose ‖ · ‖ = | · |, where | · | is the absolute value, so that ‖ · ‖∗ = | · |). The desired result follows
from Theorem 8.8. �

We refer to [28] for a complete characterization of the inequalities T
±

2 (and other T inequalities)

on the line. As proved there in [28, Theorem 1.2], a probability measure µ satisfies T
−

(C) and

T
+

(C) for some C is and only if there exists some D > 0 such that the monotone increasing re-
arrangement map U transporting the symmetric exponential probability measure ν(dx) = 1

2e
−|x| dx

on µ satisfies the following growth condition:

sup
x

|U(x+ u) − U(x)| ≤ 1

D

√
u+ 1, ∀u > 0.

See [28] for an explicit relation between the constants C and D, and also for a more general
statements.

9. Generalization of Kantorovich duality

9.1. Notations. First let us recall and complete the notations introduced in Section 2.1. Through-
out this section, (X, d) is a complete separable metric space. The space of all Borel probability
measures on X is denoted by P(X) and the space of all Borel signed measures by M(X).

If γ : R+ → R+ is a lower-semicontinuous function satisfying (2.1), we set

Mγ(X) :=

{
µ ∈ M(X);

∫
γ(d(x, xo)) |µ|(dx) < ∞

}

for some (hence all) xo ∈ X .

We equip Mγ(X) with the coarsest topology that makes continuous the linear functionals
µ 7→

∫
ϕdµ, ϕ ∈ Φγ(X), where we recall that Φγ(X) denotes the set of continuous functions

ϕ : X → R satisfying the growth condition (2.2). This topology is denoted by σ(Mγ(X)). To be
more specific, a basis for this topology is given by all finite intersections of sets of the form

(9.1) Uϕ,a,ε :=

{
m ∈ Mγ(X);

∣∣∣∣
∫
ϕdm− a

∣∣∣∣ < ε

}
, ϕ ∈ Φγ(X), a ∈ R, ε > 0.

The set Pγ(X) := P(X) ∩ Mγ(X) is equipped with the trace topology denoted by σ(Pγ(X)).
Let us remark that if γ is bounded, then Pγ(X) = P(X) and the topology σ(Pγ(X)) is the usual
weak topology on P(X).

We define similarly the spaces Pγ(X ×X) ⊂ Mγ(X × X) and equip them with the topologies
σ(Mγ(X × X)) and σ(Pγ(X × X)) defined with the class Φγ(X × X) of continuous functions
ϕ : X ×X → R such that there exist a, b ≥ 0 and xo ∈ X such that |ϕ(x, y)| ≤ a+ b(γ(d(xo, x)) +
γ(d(xo, y))) for all x, y ∈ X .

Finally, we recall that Φγ,b(X) is the set of the elements of Φγ(X) that are bounded from below.
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Before stating our main result, we need to introduce some technical assumptions and comment
on them. Below we denote by π(dxdy) = px(dy)π1(dx) the disintegration of a probability measure
π on X ×X with respect to its first marginal π1.

Definition 9.2 (Conditions (C), (C′), (C′′)). Given (X, d) a complete separable metric space
and c : X × Pγ(X) → [0,∞] a cost function associated to some lower-semicontinuous function
γ : R+ → R+ satisfying (2.1), we say the condition (C) holds if

(C1) For all µ ∈ Pγ(X), the function π 7→ Ic[π] :=
∫
c(x, px)π1(dx) is lower-semicontinuous on

the set

Π(µ, · ) := {π ∈ Pγ(X ×X);π(dx×X) = µ(dx)}.
In other words, for all s ≥ 0, the set {π ∈ Π(µ, · ); Ic[π] ≤ s} is closed for the topology
σ(Pγ(X × X)).

(C2) The function p 7→ c(x, p) is convex for all x ∈ X.
(C3) The function (x, p) 7→ c(x, p) is continuous with respect to the product topology.
(C4) The cost c is such that if µ ∈ Pγ(X) and (px)x∈X are measurable probability kernels such

that px ∈ Pγ(X) for all x ∈ X and
∫
c(x, px)µ(dx) < ∞, then ν = µp ∈ Pγ(X).

Similarly we say that condition (C′) holds if (C1), (C2), (C4) hold together with

(C′
3) (X, d) is compact and the function (x, p) 7→ c(x, p) is lower-semicontinuous with respect to

the product topology,

and that condition (C′′) holds if (C2), (C4) hold together with

(C′′
3 ) X is a countable set of isolated points and for all x ∈ X, the function p 7→ c(x, p) is

lower-semicontinuous.

The above conditions are technical. However, Condition (C2) is the least we can hope for.

As for applications, the main difficulty is coming from Condition (C1). Let us make some
comments about this assumption. First specializing to µ = δx, condition (C1) implies that for all
x ∈ X , the function p 7→ c(x, p) is lower semicontinuous on Pγ(X). In the discrete setting, the
converse is also true : as shown in the proof of Theorem 9.5, Condition (C′′

3 ) implies Condition
(C1) (this is why the latter does not appear in Condition (C′′)). For more general spaces, we
do not know if Condition (C1) is strictly stronger than lower-semicontinuity of the cost function
c. Nevertheless, we have the following rather general abstract result whose proof is postponed to

Section 9.5. In particular, such a result applies to the transport costs T̃ , T and T̂ introduced in
Section 2.4.

Proposition 9.3. Let (X, d) be complete separable metric space. Let (ϕk)k∈N be a sequence of
elements of Φγ(X × X) (with γ : R+ → R+ satisfying (2.1)) such that ϕ0 ≡ 0. Assume that the
cost function c : X × Pγ(X) → [0,∞] is defined by

(9.4) c(x, p) = sup
k∈N

∫
ϕk(x, y) p(dy), ∀x ∈ X, ∀p ∈ Pγ(X).

Then Conditions (C1) and (C2) hold and c : X × Pγ(X) → [0,∞] is lower-semicontinuous with
respect to the product topology.

We are now in a position to state the main result of this section: a generalization of the
Kantorovich duality theorem.

Theorem 9.5. Let (X, d) be a complete separable metric space. Let c : X × Pγ(X) → [0,∞] be
a cost function associated to some lower-semicontinuous function γ : R+ → R+ satisfying (2.1).
Assume that condition (C), (C′) or (C′′) holds. Then, for all µ, ν ∈ Pγ(X), the following duality
formula holds:

Tc(ν|µ) = sup
ϕ∈Φγ,b(X)

{∫
Rcϕ(x)µ(dx) −

∫
ϕ(y) ν(dy)

}
,
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where

Rcϕ(x) := inf
p∈Pγ(X)

{∫
ϕ(y) p(dy) + c(x, p)

}
, x ∈ X, ϕ ∈ Φγ,b(X).

Remark 9.6. Note that since c ≥ 0, Rcϕ is bounded from below as soon as ϕ is bounded from
below. Therefore,

∫
Rcϕ(x)µ(dx) is always well defined in (−∞,∞]. Note also, that Rcϕ is always

measurable. This is clear under Condition (C3), since in this case Rcϕ is lower-semicontinuous as
an infimum of continuous functions. Under Condition (C′

3), it is not difficult to check that Rcϕ
remains lower-semicontinuous, using the fact that Pγ(X) is compact.

The proof of Theorem 9.5 uses classical tools from convex analysis that we recall in a separate
subsection (see Section 9.3 below), and then apply them to our specific setting. We refer to Mikami
[44], Léonard [38], Tan-Touzi [63] for similar strategies.

9.2. Fenchel-Legendre duality. The main tool used in the proof of Theorem 9.5 is the following
Fenchel-Legendre duality theorem (see for instance [66, Theorem 2.3.3]).

Theorem 9.7 (Fenchel-Legendre duality theorem). Let E be a Hausdorff locally convex topological
vector space and E′ its topological dual space. For any lower semicontinuous convex function
F : E →] − ∞,∞], it holds

F (x) = sup
ℓ∈E′

{ℓ(x) − F ∗(ℓ)}, x ∈ E,

where the Fenchel-Legendre transform F ∗ of F is defined by

F ∗(ℓ) = sup
x∈E

{ℓ(x) − F (x)}, ℓ ∈ E′.

To apply Theorem 9.7 in our framework, one needs to identify the topological dual space of
(Mγ(X), σ(Mγ(X))) equipped with the topology defined in Section 9.1. More precisely, the next

lemma will enable us to identify the dual space (Mγ(X), σ(Mγ(X)))
′

to the set Φγ(X).

Lemma 9.8. A linear form ℓ : Mγ(X) → R is continuous with respect to the topology σ(Mγ(X))
if and only if there exists ϕ ∈ Φγ(X) such that

ℓ(m) =

∫
ϕdm, ∀m ∈ Mγ(X).

The proof of this lemma appears, for instance, in the book by Deuschel and Stroock [17]. We
recall it here for the sake of completeness.

Proof of Lemma 9.8. The fact that linear functionals of the form m 7→
∫
ϕdm, ϕ ∈ Φγ are con-

tinuous comes from the very definition of the topology σ(Mγ(X)). Conversely, let ℓ be a con-
tinuous linear functional and let us show that ℓ is of the preceding form. Define ϕ(x) = ℓ(δx),
x ∈ X (where δx is the Dirac mass at x). First we will show that ϕ belongs to Φγ(X). The
map X ∋ x 7→ δx ∈ Mγ(X) is continuous. Namely, for all ϕ1, . . . , ϕn ∈ Φγ , it holds {x ∈
X ; δx ∈ ∩ni=1Uϕi,ai,εi} = {x ∈ X ; |ϕi(x) − ai| < εi, ∀i ≤ n}, (where Uϕi,ai,εi is defined by (9.1))
and this set is open, which proves that x 7→ δx is continuous on X . As a result ϕ is continu-
ous. It remains to prove that ϕ satisfies the growth condition (2.2). Since ℓ is continuous, the
set O := {m ∈ Mγ(X); |ℓ(m)| < 1} is open and contains 0. By the definition of the topology
σ(Mγ(X)), there exist an integer n, ϕ1, . . . , ϕn ∈ Φγ , a1, . . . , an ∈ R and ε1, . . . , εn > 0 such that
O contains ∩ni=1Uϕi,ai,εi and 0 ∈ ∩ni=1Uϕi,ai,εi . As a result,

0 ∈
n⋂

i=1

Uϕi,ai,εi ⇒ A := max
i∈{1,...,n}

∣∣∣∣
ai
εi

∣∣∣∣ < 1,

and (given m ∈ Mγ(X))

n∑

i=1

∣∣∣∣
∫
ϕi
εi
dm

∣∣∣∣ < 1 −A ⇒ m ∈ O.
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Thus, since m/ℓ(m) /∈ O,

|ℓ(m)| ≤ 1

1 −A

n∑

i=1

∣∣∣∣
∫
ϕi
εi
dm

∣∣∣∣ , ∀m ∈ Mγ(X).

Applying this inequality to m = δx and using the growth conditions (2.2) satisfied by the ϕ′
is, one

sees that ϕ verifies (2.2).

Finally, let us show that ℓ(m) =
∫
ϕdm, for all m ∈ Mγ(X). If m is a linear combination of

Dirac measures, then this identity is clearly satisfied. Since any measure m can be approached
in the topology σ(Mγ(X)) by some sequence mn of measures with finite support, the equality
ℓ(m) =

∫
ϕdm extends to any m ∈ Mγ(X). �

During the proof of Theorem 9.5, we will also use the following easy extension of Prokhorov’s
theorem.

Theorem 9.9. A set A ⊂ Pγ(X) is relatively compact for the topology σ(Mγ(X)) if and only if
for all ε > 0, there exists a compact set Kε ⊂ X such that

∫

X\Kε

(1 + γ(d(xo, x))) ν(dx) ≤ ε, ∀ν ∈ A,

where xo is some arbitrary fixed point.

9.3. Proof of Theorem 9.5 (Duality).

Proof of Theorem 9.5. Fix µ ∈ Pγ(X) and let us consider the function F defined on Mγ(X) by

F (m) = Tc(m|µ), if m ∈ Pγ(X) and F (m) = +∞ otherwise.

Let us show that the function F satisfies the assumptions of Theorem 9.7.

First we will prove that F is convex on Mγ(X). According to the definition of F , it is clearly
enough to prove the convexity of F over (the convex set) Pγ(X). Take ν0, ν1 ∈ Pγ(X) and
πi ∈ Π(µ, νi) i = 0, 1 with disintegration kernels (p0

x)x∈X , (p
1
x)x∈X . Then for all t ∈ [0, 1], πt :=

(1 − t)π0 + tπ1 ∈ Π(µ, (1 − t)ν0 + tν1) and its disintegration kernel satisfies ptx = (1 − t)p0
x + tp1

x,
for µ almost every x ∈ X. Since the cost function c is convex in its second argument, it holds

F ((1 − t)ν0 + tν1) ≤ Ic[πt] =

∫
c(x, ptx)µ(dx) ≤ (1 − t)Ic[π0] + tIc[π1] .

Optimizing over π0, π1 gives F ((1 − t)ν0 + tν1) ≤ (1 − t)F (ν0) + tF (ν1), which proves the desired
convexity property.

Next we will prove that F is lower-semicontinuous, for the topology σ(Mγ(X)), on Mγ(X).
Let (mn)n be a sequence of Mγ(X) converging to some m. One needs to show that F (m) ≤
lim infn→∞ F (mn). One can assume without loss of generality that F (mn) < ∞ for all n. By
the definition of Tc( · |µ), for all n ∈ N

∗, there exists πn ∈ Π(µ,mn) such that Ic[πn] − 1/n ≤
Tc(mn|µ) ≤ Ic[πn]. Since mn is a converging sequence, the set {mn;n ∈ N

∗} ∪ {µ} is relatively
compact. Therefore, according to Theorem 9.9, for some arbitrary fixed point xo ∈ X , for all
ε > 0, there exists a compact set Kε ⊂ X such that

sup
n∈N∗

∫

X\Kε

1 + γ(d(xo, y))mn(dy) ≤ ε

and ∫

X\Kε

1 + γ(d(xo, x))µ(dx) ≤ ε.
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Therefore, letting M := supn∈N∗

∫
γ(d(xo, x))mn(dx) < ∞ and Kc

ε := X \Kε, it holds

∫

X×X\(Kε×Kε)

1 + γ(d(xo, x)) + γ(d(xo, y))πn(dxdy)

≤
∫

X×Kc
ε

1 + γ(d(xo, x)) + γ(d(xo, y))πn(dxdy) +

∫

Kc
ε×X

1 + γ(d(xo, x)) + γ(d(xo, y))πn(dxdy)

≤ mn(Kc
ε)

∫
γ(d(xo, x))µ(dx) +

∫

Kc
ε

1 + γ(d(xo, y))mn(dy) +

∫

Kc
ε

1 + γ(d(xo, x))µ(dx) + µ(Kc
ε)M

≤ ε

(
2 +M +

∫
γ(d(xo, x))µ(dx)

)
.

So according to Theorem 9.9, it follows that {πn;n ∈ N
∗} is relatively compact. Extracting a

subsequence if necessary, one can assume without loss of generality that πn converges to some
π∗ ∈ Pγ(X × X). This π∗ has the correct marginals µ and m. Furthermore, denoting by ℓ =
lim infn→∞ Ic[πn] = lim infn→∞ Tc(mn|µ), we see that, for all r > 0,

πn ∈ {π ∈ Pγ(X ×X);π(dx×X) = µ(dx) and Ic[π] ≤ ℓ+ r} := Aℓ+r ,

for infinitely many n ∈ N
∗. By assumption (C1), the set Aℓ+r is closed for the topology σ(Pγ(X ×

X)). Therefore, the limit π∗ also belongs to Aℓ+r. In other words,

F (m) = Tc(m|µ) ≤ Ic[π
∗] ≤ lim inf

n→∞
Tc(mn|µ) + r, ∀r > 0.

Since r > 0 is arbitrary, this concludes the proof of the lower-semicontinuity of F.

According to Lemma 9.8, the topological dual space of Mγ(X) can be identified with the set of
linear functionals m 7→

∫
ϕdm, where ϕ ∈ Φγ(X). Applying Theorem 9.7 together with Lemma

9.8 we conclude that, for any m ∈ Pγ(X),

F (m) = sup
ϕ∈Φγ(X)

{∫
ϕdm− F ∗(ϕ)

}
= sup
ϕ∈Φγ(X)

{∫
−ϕdm− F ∗(−ϕ)

}
.

Now we show that the last supremum can be restricted to Φγ,b(X). Observe that

F ∗(−ϕ) = sup
m∈Pγ(X )

{∫
−ϕdm− F (m)

}

= sup
k∈R

sup
m∈Pγ(X)

{∫
−(ϕ ∨ k) dm− F (m)

}
= sup

k∈R

F ∗(−(ϕ ∨ k)) ,

so that for all ϕ ∈ Φγ(X) and m ∈ Pγ(X) , we have

∫
−ϕdm− F ∗(−ϕ) = lim

k→−∞

∫
−(ϕ ∨ k) dm− F ∗(−(ϕ ∨ k)).

Therefore,

F (m) = sup
ϕ∈Φγ(X)

{∫
−ϕdm− F ∗(−ϕ)

}
≤ sup
ϕ∈Φγ,b(X)

{∫
−ϕdm− F ∗(−ϕ)

}
,

and since the other inequality is obvious, the two quantities are equal. To conclude the proof, it
remains to show that

(9.10) F ∗(−ϕ) = −
∫
Rcϕ(x)µ(dx), ∀ϕ ∈ Φγ,b(X).
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For all ϕ ∈ Φγ,b, it holds

F ∗(−ϕ) = sup
m∈Pγ(X )

{∫
−ϕdm− Tc(m|µ)

}

= sup
m∈Pγ(X )

sup
π∈Π(µ,m)

{∫
−ϕdm− Ic[π]

}

= sup

{∫ [∫
−ϕ(y) px(dy) − c(x, px)

]
µ(dx); (px)x∈X probability kernel such that µp ∈ Pγ(X)

}

= − inf

{∫ [∫
ϕ(y) px(dy) + c(x, px)

]
µ(dx); (px)x∈X probability kernel such that µp ∈ Pγ(X)

}
.

By definition, Rcϕ(x) = infp∈Pγ(X){
∫
ϕdp+ c(x, p)}. Therefore, one has

F ∗(−ϕ) ≤ −
∫
Rcϕ(x)µ(dx).

Let us show the converse inequality. One can assume without loss of generality that
∫
Rcϕ(x)µ(dx) ∈

(−∞,∞). For all ε > 0 and x ∈ X , consider the set M ε
x defined by

M ε
x :=

{
p ∈ Pγ(X);

∫
ϕdp+ c(x, p) ≤ Rcϕ(x) + ε

}
.

Note that, since ϕ is bounded from below and c ≥ 0, Rcϕ(x) > −∞, for all x ∈ X , we have that
M ε
x is non-empty for all ε > 0.

Assume that for all ε > 0, there exists a measurable kernel X → Pγ(X) : x 7→ pεx such that
for all x ∈ X , pεx ∈ M ε

x. Then, if ϕ is bounded below by k, one sees that
∫
c(x, pεx)µ(dx) ≤

−k+ ε+
∫
Rcϕdµ < ∞. According to condition (C4) one concludes that νε = µpε ∈ Pγ(X). So it

holds

F ∗(−ϕ) ≥ −
∫ ∫

ϕ(y) pεx(dy) + c(x, pεx)µ(dx) ≥ −
∫
Rcϕ(x)µ(dx) − ε ,

which gives the desired inequality when ε → 0.

When the condition (C3) holds, the kernel pεx is obtained by applying the elementary measurable
selection result of Lemma 9.11 below. Indeed, note that the function H(x, p) =

∫
ϕdp + c(x, p)

is continuous (and thus upper-semicontinuous), and that Y = Pγ(X) equipped with the topology
σ(Pγ(X)) is metrizable (for instance, by the Kantorovich metric Wr if γ = γr, or the Lévy-
Prokhorov distance for the usual weak-topology if γ = γ0) and separable (see [65, Theorem 6.18],
[5, Proposition 7.20]).

Under condition (C′
3), the space X is compact and the function H defined above is lower-

semicontinuous. The selection Lemma 9.12 below ensures that there exists a measurable kernel
X → Pγ(X) : x 7→ px such that Rcϕ(x) = infp∈Pγ(X)H(x, p) = H(x, px). The conclusion easily
follows.

Under condition (C′′
3 ), X is a countable set of isolated points. So all subsets of X are open (the

topology on X is thus the discrete one) and all functions are measurable (and even continuous).
Therefore by choosing for each x in X , some element pεx in the non-empty set M ε

x , we get a
measurable kernel X → Pγ(X) : x 7→ pεx. The same conclusion follows.

To complete the proof, one needs to justify that Condition (C1) follows from Condition (C′′
3 ).

Assume that (X, d) is a countable set of isolated points and that for all x ∈ X , the function
p 7→ c(x, p) is lower-semicontinuous and let us show that π 7→ Ic[π] is lower semicontinuous on
Π(µ, · ). Let (πn)n be a sequence in Π(µ, ·) converging to some π for the topology σ(Pγ(X ×X)).
Write πn(dxdy) = px,n(dy)µ(dx) and denote by νn (resp. ν) the second marginal of πn (resp. π).
The sequence νn converges to ν, therefore it is relatively compact and so according to Theorem 9.9,
for all ε > 0, there is some compact Kε ⊂ X (i.e. a finite set) such that

∫
Kc
ε
γ(d(xo, y)) νn(dy) ≤ ε,

where xo is some fixed point in X. In other words,
∑

y∈Kc
ε

∑

x∈X

γ(d(xo, y))px,n({y})µ({x}) ≤ ε .
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In particular, for all x ∈ X in the support of µ, it holds
∑

y∈Kc
ε

γ(d(xo, y))px,n({y}) ≤ ε/µ({x}),

and so, according to Theorem 9.9, {px,n;n ∈ N} is relatively compact. Without loss of generality
(extracting a subsequence if necessary), one can assume that Ic[πn] =

∫
c(x, px,n)µ(dx) converges.

Since for all x in the support of µ, {px,n;n ∈ N} is relatively compact, the classical diagonal
extraction argument enables us to construct an increasing map σ : N → N such that p̃x,σ(n)

converges to some px ∈ Pγ(X) as n → ∞, for all x in the support of µ. Finally, using Fatou’s
lemma and the lower-semicontinuity of p 7→ c(x, p), one gets

lim
n→∞

Ic[πn] = lim
n→∞

∫
c(x, px,σ(n))µ(dx)

≥
∫

lim inf
n→∞

c(x, px,σ(n))µ(dx)

≥
∫
c(x, px)µ(dx).

It remains to show that the last term is equal to Ic[π]. But if f : X × X → R is bounded
(continuous), then by dominated convergence,

∫
f(x, y)π(dxdy) = lim

n→∞

∫
f(x, y)πσ(n)(dxdy)

= lim
n→∞

∫ (∫
f(x, y) px,σn(x)(dy)

)
µ(dx)

=

∫ (∫
f(x, y) px(dy)

)
µ(dx).

Since this holds for all f , one concludes that px(dy)µ(dx) = π(dxdy) and so in particular,∫
c(x, px)µ(dx) = Ic[π] , which completes the proof. �

In the proof of Theorem 9.5 we used the following results, elementary proofs of which can be
found in [5] (see Proposition 7.34 and Proposition 7.33).

Lemma 9.11. Let X be a metrizable space, Y a metrizable and separable space and H : X ×Y →
R∪{+∞} be an upper-semicontinuous function. Denoting by H(x) = infy∈Y H(x, y) ∈ R∪{±∞},
for all ε > 0, there exists a measurable function x 7→ sε(x) such that

H(x, sε(x)) ≤
{
H(x) + ε if H(x) > −∞
−1/ε if H(x) = −∞.

Lemma 9.12. Let X be a metrizable space, Y a compact metrizable space and H : X × Y →
R ∪ {+∞} be a lower-semicontinuous function. Then there exists a measurable function x 7→ s(x)
such that for all x ∈ X

H(x, s(x)) = inf
y∈Y

H(x, y).

9.4. Proofs of Theorems 2.7, 2.11 and 2.14.

9.4.1. Proof of the usual Kantorovich duality theorem. As a warm up, let us begin with the proof
of the classical Kantorovich duality that we restate below.

Theorem 9.13. Let (X, d) be a complete separable metric space. Assume that ω : X×X → [0,∞]
is some lower-semicontinuous cost function.Then it holds,

(9.14) Tω(ν, µ) = sup
ϕ∈Cb(X)

{∫
Qωϕ(x)µ∗(dx) −

∫
ϕ(y) ν(dy)

}
, µ, ν ∈ P(X),

where µ∗ denotes the inner measure induced by µ and

Qωϕ(x) = inf
y∈X

{ϕ(y) + ω(x, y)} , x ∈ X, ϕ ∈ Cb(X).
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Proof of Theorem 9.13. First assume that ω : X × X → [0,∞) is continuous and bounded from
above. Then c(x, p) =

∫
ω(x, y) p(dy) is convex in p and continuous on X × P(X), with P(X)

equipped with the usual weak topology. Moreover Ic[π] =
∫
ω(x, y)π(dxdy) and so π 7→ Ic[π] is

continuous on P(X × X). So assumptions (C1), (C2), (C3), (C4) of Theorem 9.5 are fulfilled with
Pγ(X) = P(X) and Φγ,b = Φ0. It follows that

Tω(ν, µ) = sup
ϕ∈Φ0(X)

{∫
Rcϕ(x)µ(dx) −

∫
ϕ(y) ν(dy)

}
,

with

Rcϕ(x) = inf
p∈P(X)

{∫
ϕ(y) + ω(x, y) p(dy)

}
= inf

y∈X
{ϕ(y) + ω(x, y)} = Qcϕ(x),

which completes the proof in the case of a bounded continuous cost function. Once Kantorovich
duality is established for bounded continuous cost functions, one can apply a rather standard
approximation argument to extend the duality to lower-semicontinuous cost functions. This is
explained for instance in [64, Point 3 in the proof of Theorem 1.3]. �

9.4.2. Proof of Theorem 2.7.

Proof of Theorem 2.7. Depending on the assumption on the space and on α, one needs to verify
that Condition (C), (C′) or (C′′) of Theorem 9.5 is satisfied. We distinguish between the different
cases.

Assume first that α : R+ → R+ is convex and continuous. Then the cost c(x, p) = α
(∫
γ(d(x, y)) p(dy)

)

is clearly convex with respect to p and, by definition of the topology σ(Pγ(X)), it is continuous on
X × Pγ(X) (equipped with the product topology). So assumptions (C2), (C3) of Theorem 9.5 are
fulfilled. Condition (C4) follows at once from Jensen’s inequality. As for Condition (C1), let us set
α(t) = +∞ for t < 0, so that α is lower-semicontinuous on R. According to the Fenchel-Legendre
duality Theorem 9.7,

α(t) = sup
s≥α′(0)

{st− α∗(s)} = sup
s≥0

{st− α∗(s)},

where α′(0) is the non-negative right-derivative of α at point 0, and α∗(s) = supt≥0{st−α(t)}. So

c(x, p) = sup
s≥0

∫
sγ(d(x, y)) − α∗(s) p(dy) = sup

(s,t)∈epi(α∗)

∫
sγ(d(x, y)) − t p(dy) = sup

k∈N

∫
ϕk(x, y) p(dy),

with ϕ0 = 0 and ϕk(x, y) = skγ(d(x, y)) − tk, k ≥ 1 where (sk, tk)k≥1 is any dense subset of
epi(α∗) = {(s, t) ∈ [0,∞) × R; t ≥ α∗(s)}. For all k ∈ N, ϕk ∈ Φγ(X × X) and so according to
Proposition 9.3, the cost function c verifies (C1).

Now assume that α : R → [0,+∞] is convex and lower-semicontinuous. Then c is also clearly
convex with respect to p (hence Condition (C2) is satisfied). Since γ is lower-semicontinuous,
there exists an increasing sequence (γN )N∈N of Lipschitz continuous functions γN : R+ → R+ that
converges to γ (for example γN (u) = infv∈R{γ(v) + N |u − v|}). By using the Fenchel-Legendre
duality for α as above and by monotone convergence, one has

c(x, p) = sup
(s,t)∈epi(α∗)

sup
N∈N

∫
sγN (d(x, y)) − t p(dy)

= sup
k∈N

∫
ϕk(x, y) p(dy),

with ϕ0 = 0 and ϕk(x, y) = sℓ(k)γN(k)(d(x, y)) − tℓ(k), k ≥ 1, where (sl, tl)l∈N is any dense subset
of epi(α∗) = {(s, t) ∈ [0,∞) × R; t ≥ α∗(s)}, and the map N

∗ ∋ k 7→ (N(k), ℓ(k)) ∈ N × N is
one to one. By Proposition 9.3, the conditions (C1), and (C′

3) are fulfilled when X is compact,
and respectively (C′′

3 ) when X is a countable set of isolated points. Condition (C4) is again a
consequence of Jensen’s inequality.

The result of the corollary is finally a direct consequence of Theorem 9.5. �
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9.4.3. Proof of Theorem 2.11.

Proof of Theorem 2.11.
(1) The proof of the first point is similar to that of Corollary 2.7. Namely, if θ : Rm → R is a convex
function, assumptions (C2), (C3) are satisfied with γ = γ1. Since θ(x) ≥ a‖x‖ + b for some a > 0
and b ∈ R, Condition (C4) follows easily from Jensen’s inequality. Finally, using Fenchel-Legendre
duality for θ, one sees that

c(x, p) = θ

(
x−

∫
y p(dy)

)
= sup

(s,t)∈epi(θ∗)

∫
s · (x− y) − t p(dy),

with epi(θ∗) = {(s, t) ∈ R
m ×R; θ∗(s) ≤ t}. Taking a dense countable subset (sk, tk)k≥1 of epi(θ∗),

one concludes that

c(x, p) = sup
k∈N

∫
ϕk(x, y) p(dy),

with ϕ0 = 0 and ϕk(x, y) = sk(x− y) − tk. These functions belong to Φ1(X ×X), so according to
Proposition 9.3, the cost function c verifies (C1).

If θ : Rm → (−∞,+∞] is a lower-semicontinuous convex function, we show similarly that (C1),
(C2), (C4) are fulfilled, along with (C′

3) when X is compact, and respectively (C′′
3 ) when X is

discrete.

(2) Let ϕ ∈ Φ1,b(R
m), it holds for all x ∈ R

m ,

Qθϕ(x) = inf
p∈P1(Rm)

{∫
ϕdp+ θ

(
x−

∫
y p(dy)

)}

= inf
z∈Rm

{g(z) + θ (x− z)} ,

where

g(z) := inf

{∫
ϕdp; p ∈ P1(Rm),

∫
y p(dy) = z

}
, z ∈ R

m.

The function g is easily seen to be convex on R
m. This implies that g ≤ ϕ. Let us show that

g ≥ ϕ. Since ϕ is bounded from below, there is some a ∈ R such that ϕ(y) ≥ a, for all y ∈ R
m.

Then by the definition of ϕ, it holds ϕ(y) ≥ a, for all y ∈ R
m. Since ϕ ≤ ϕ, it follows that ϕ is

finite everywhere. As a consequence, one can apply Jensen’s inequality: if p ∈ P1(Rm) is such that∫
y p(dy) = z, then

∫
ϕ(y) p(dy) ≥

∫
ϕ(y) p(dy) ≥ ϕ

(∫
y p(dy)

)
= ϕ(z).

Optimizing over p, one concludes that g(z) ≥ ϕ(z), for all z ∈ R
m and so finally g = ϕ.

(3) Let µ, ν ∈ P1(Rm) and ϕ ∈ Φ1,b(R
m). According to Point (2), since ϕ ≤ ϕ, it holds

∫
Qθϕdµ−

∫
ϕdν =

∫
Qθϕ dµ−

∫
ϕdν ≤

∫
Qθϕdµ−

∫
ϕdν.

The function ϕ is convex, bounded from below and, since ϕ ∈ Φ1(Rm), satisfies ϕ(x) ≤ a+ b‖x‖,
x ∈ R

m, for some a, b ≥ 0. This shows that ϕ ∈ Φ1,b(R
m). From these considerations, it follows

that

T θ(ν|µ) ≤ sup

{∫
Qθϕdµ−

∫
ϕdν;ϕ ∈ Φ1,b(R

m)

}

≤ sup

{∫
Qθψ dµ−

∫
ψ dν;ψ ∈ Φ1,b(R

m) convex

}

≤ sup

{∫
Qθψ dµ−

∫
ψ dν;ψ ∈ Φ1,b(R

m)

}

= T θ(ν|µ).

The third inequality is a consequence of Point (2), since ψ = ψ for all convex functions ψ ∈
Φ1,b(R

m). Remarking that a convex function belongs to Φ1(Rm) if and only if it is Lipschitz, the
proof of Point (3) is complete. �
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9.4.4. Proof of Theorem 2.14. We start with an alternative representation of c(x, p) that will be
useful subsequently. We recall that c : X × Pγ(X) → R+ is defined by

c(x, p) =

∫
β

(
γ(d(x, y))

dp

dµ0
(y)

)
µ0(dy) ,

if p ≪ µ0 on X \{x} and +∞ otherwise, where µ0 is a reference probability measure and β : R+ →
[0,∞] is a lower-semicontinuous convex function such that β(0) = 0 and β(x)/x → ∞ as x → ∞.
As before γ : R+ → R+ is a lower-semicontinuous function satisfying (2.1).

Lemma 9.15. Let X be a metric space being either compact or a countable set of isolated points.
The cost function c defined above satisfies the following duality identity:

c(x, p) = sup
h∈Φ0(X),h≥0

{∫
h(y)γ(d(x, y)) p(dy) −

∫
β∗(h)(y)µ0(dy)

}
,

where β∗(y) = supx≥0{xy − β(x)}, y ∈ R, denotes the Fenchel-Legendre transform of β.

Proof. The proof is easily adapted from Theorem B.2 in [39]. �

Proof of Theorem 2.14. First, we observe that Condition (C2) is a simple consequence of the con-
vexity of β and Condition (C4) of Jensen’s inequality. According to Lemma 9.15, it holds

c(x, p) = sup
h∈Φ0(X),h≥0

{∫
h(y)γ(d(x, y)) p(dy) −

∫
β∗(h)(y)µ0(dy)

}
(9.16)

= sup
h∈Φ0(X),h≥0

sup
N∈N

∫
(h(y)γN (d(x, y)) −B∗(h)) p(dy),

where (γN )N∈N is (as in the proof of Corollary 2.7) an increasing sequence of Lipschitz continuous
functions converging to γ and B∗(h) =

∫
β∗(h)dµ0.

For all h ∈ Φ0(X) non-negative and all N ∈ N, the function (x, y) 7→ h(y)γN (d(x, y)) is
continuous. Therefore, p 7→

∫
h(y)γ(d(x, y))p(dy) is a continuous function on X × Pγ(X). Being

a supremum of continuous functions, c is lower-semicontinuous on X × Pγ(X). In particular, this
shows (C′

3) and (C′′
3 ).

Next we will check that Condition (C1) holds (in the compact case).

Since (X, d) is compact, the space Φ0(X) of continuous functions (equipped with the norm
‖ · ‖∞) on X is separable (see [5, Proposition 7.7]). Let {hℓ, ℓ ∈ N} be a countable dense subset
of Φ0(X). Since β∗ is convex and finite on R it is continuous on R. Therefore, the function
Φ0(X) → R : h 7→ B∗(h) is continuous. It follows that

(9.17) c(x, p) = sup
k∈N

∫
ϕk(x, y) p(dy), ∀x ∈ X, p ∈ Φγ(X) ,

where ϕ0 = 0 and ϕk(x, y) = hℓ(k)(y)γN(k)(d(x, y))−B∗(hℓ(k)), k ≥ 1, and N
∗ ∋ k 7→ (ℓ(k), N(k)) ∈

N × N is one-to-one. Since, for all k ∈ N, the function ϕk belongs to Φγ(X,X), the lower-
semicontinuity of Ic follows from Proposition 9.3.

Corollary 2.14 now follows from Theorem 9.5. �

9.5. Proof of Proposition 9.3. The proof of Proposition 9.3 is adapted from [3, Theorem 2.34].

Proof of Proposition 9.3. The function p 7→ c(x, p) is convex as a supremum of linear functions.

For all n ∈ N, define cn(x, p) := supk≤n

∫
ϕk(x, y) p(dy). When n goes to ∞, cn(x, p) is a

nondecreasing sequence converging to c. Let π ∈ Π(µ, · ), π(dxdy) = px(dy)µ(dx) such that (9.4)
holds for µ-almost all x. Defining Icn [π] =

∫
cn(x, px)µ(dx), the monotone convergence theorem

shows that Ic[π] = supn∈N Icn [π]. Since a supremum of lower-semicontinuous functions is itself
lower-semicontinuous, it is enough to prove that Icn is lower-semicontinuous at point π. We will
now prove such a property.
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For µ-almost all x, define ψk(x) =
∫
ϕk(x, y) px(dy), k ≤ n. Then it holds

Icn [π] =

∫
sup
k≤n

ψk(x)µ(dx) = sup
(fk)k≤n

∫ n∑

k=0

fk(x)ψk(x)µ(dx),

where the supremum runs over the set of continuous functions fk taking values in [0, 1] and such
that f0 + · · ·+fn ≤ 1. Let us admit this claim for a moment and finish the proof of the proposition.
For all f0, . . . , fn as above, it holds

∫ n∑

k=0

fk(x)ψk(x)µ(dx) =

∫ n∑

k=0

fk(x)ϕk(x, y)π(dxdy) .

Since
∑n

k=0 fkϕk ∈ Φγ(X × X), the function π 7→
∫ ∑n

k=0 fkϕk dπ is continuous on Π(µ, · ).
Since a supremum of continuous functions is lower-semicontinuous, this proves that Icn is lower-
semicontinuous at point π .

It remains to prove the claim. Obviously, if f0, f1, . . . , fn take values in [0, 1] and are such that∑n
k=0 fk ≤ 1, then it holds
∫ n∑

k=0

fk(x)ψk(x)µ(dx) ≤
∫ n∑

k=0

fk(x)[ψk]+(x)µ(dx) ≤
∫

sup
j

[ψj ]+(x)

n∑

k=0

fk(x)µ(dx)

≤
∫

sup
j

[ψj ]+(x)µ(dx) = Icn [π],

where the last equality comes from the fact that supj [ψj ]+ = supj ψj since ϕ0 = 0 and ψ0 = 0.
This shows that

Icn [π] ≥ sup
(fk)k≤n

∫ n∑

k=0

fk(x)ψk(x)µ(dx).

To prove the converse inequality, let for all k ≤ n, Ak := {x ∈ X ; [ψk]+ = supj [ψj ]+(x)}, and
define recursively B0 = A0, Bk = Ak \ (B0 ∪ · · · ∪Bk−1). Then it holds

Icn [π] =

n∑

k=0

∫

Bk

[ψk]+(x)µ(dx) .

When (X, d) is a discrete space, the functions fk = 1Bk are continuous and
∑n

k=0 fk = 1. Since
ψk is non-negative on Ak, one has

Icn [π] =

n∑

k=0

∫
fk(x)ψk(x)µ(dx),

and the claim follows in this case.

Assume now that (X, d) is complete and separable. For all k ≤ n, consider the finite Borel
measure µk(dx) = [ψk]+(x)µ(dx). Let ε > 0 ; since finite Borel measures on a complete separable
metric space are inner regular (see for instance [49, Theorems 3.1 and 3.2]), for all k ≤ n there is
a compact set Ck ⊂ Bk such that µk(Bk) ≤ µk(Ck) + ε/(n+ 1). So it holds

Icn [π] =

n∑

k=0

∫

Bk

[ψk]+(x)µ(dx) ≤
n∑

k=0

∫

Ck

[ψk]+(x)µ(dx) + ε =

n∑

k=0

∫

Ck

ψk(x)µ(dx) + ε.

The compact sets Ck are pairwise disjoint, so δo = mini6=j d(Ci, Cj) > 0. Consider the family of
continuous functions fk,δ : X → [0, 1] defined by

fk,δ(x) =

[
1 − d(x,Ck)

δ

]

+

, x ∈ X, k ≤ n, δ > 0.

When δ < δo/2, for any x ∈ X , at most one of the functions is not zero at x and therefore∑n
k=0 fk,δ(x) ≤ 1. Passing to the limit when δ → 0, we see that

n∑

k=0

∫
fk,δ(x)ψk(x)µ(dx) →

n∑

k=0

∫

Ck

ψk(x)µ(dx).
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So if δ is small enough it holds

Icn [π] ≤
n∑

k=0

∫
fk,δ(x)ψk(x)µ(dx) + 2ε.

Taking the supremum over all possible functions fk, and then letting ε go to 0, gives the desired
inequality

Icn [π] ≤ sup
(fk)k≤n

∫ n∑

k=0

fk(x)ψk(x)µ(dx),

and completes the proof. �

Appendix A. Proof of Theorem 4.11

The proof of the tensorization property for transport-entropy inequalities uses the chain rule
formula for the entropy on the one hand, and on the other, a similar property for the transport
cost, which we now state in the following lemma of independent interest.

Lemma A.1 (Chain rule inequality for the transport cost). Let γ : R+ → R+ be a lower-
semicontinuous function satisfying (2.1), (X1, d1), (X2, d2) be complete separable metric spaces
equipped with cost functions ci : Xi × Pγ(Xi) → [0,∞], i ∈ {1, 2} such that ci(xi, δxi) = 0
and pi 7→ ci(xi, pi) is convex for all xi ∈ Xi. Define c : X1 × X2 × Pγ(X1 × X2) → [0,∞) by
c(x, p) = c1(x1, p1) + c2(x2, p2), x = (x1, x2) ∈ X1 × X2, p ∈ Pγ(X1 × X2), where pi denotes the
i-th marginal distribution of p.

Then, for all ν, ν′ ∈ Pγ(X1 ×X2), all ε > 0, there exists a kernel pε1 such that

Tc(ν′|ν) ≤ Tc1(ν′
1|ν1) +

∫

X1×X1

Tc2 (ν′
2(y1, · )|ν2(x1, · ))pε1(x1, dy1)ν1(dx1) + 2ε ,

where ν1 and ν′
1 are the first marginals of ν, ν′ respectively; the kernels x1 7→ ν2(x1, · ) and y1 7→

ν′
2(y1, · ) are such that

ν(dx1dx2) = ν1(dx1)ν2(x1, dx2) and ν′(dy1dy2) = ν′
1(dy1)ν′

2(y1, dy2);

and the kernel pε1, defined so that πε1(dx1dy1) := ν1(dx1)pε1(x1, dy1) ∈ Π(ν1, ν
′
1), satisfies Tc1 (ν1|ν′

1) ≥∫
X1×X1

c1(x1, p
ε
1(x1, · )) ν1(dx1) − ε.

Remark A.2. If one assumes that the cost functions c1 and c2 satisfy assumption (C1), then the
error term ε can be chosen 0. Indeed, under assumption (C1) the function π 7→

∫
c1(x, px) ν′

1(dx1)
is lower semicontinuous on the set Π(ν′

1, ν1) which is easily seen to be compact (using Theorem 9.9
below). Therefore it attains its infimum and so there exists some kernel p1 such that Tc1 (ν1|ν′

1) =∫
c1(x1, p1(x1, · )) ν′

1(dx1). The same applies for cost functions based on the cost c2.

Proof of Lemma A.1. Fix ν, ν′ ∈ Pγ(X1 × X2) and ε > 0. Our aim is first to define a probability
kernel p appropriately related to ν and ν′.

To that purpose, let p1 be a probability kernel (that depends on ε although not explicitly stated
for simplicity) so that π1(dx1dy1) := ν1(dx1)p1(x1, dy1) ∈ Π(ν1, ν

′
1) and

(A.3)

∫

X1×X1

c1(x1, p1(x1, · )) ν1(dx1) ≤ Tc1(ν′
1|ν1) + ε.

Similarly, for all x1, y1 ∈ X1, let X2 ∋ x2 7→ qx1,y1

2 (x2, · ) ∈ P(X2) be a probability kernel (that
depends also on ε) satisfying πx1,y1

2 (dx2dy2) := ν2(x1, dx2)qx1,y1

2 (x2, dy2) ∈ Π(ν2(x1, · ), ν′
2(y1, · ))

and

(A.4)

∫

X2×X2

c2(x2, q
x1,y1

2 (x2, · )) ν2(x1, dx2) ≤ Tc2(ν′
2(y1, · )|ν2(x1, · )) + ε .
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Then observe that, for all f : X1 ×X2 → R, it holds:
∫
f(y1, y2)p1(x1, dy1)qx1,y1

2 (x2, dy2) ν(dx1dx2)

=

∫
f(y1, y2)p1(x1, dy1)qx1,y1

2 (x2, dy2) ν2(x1, dx2)ν1(dx1)

=

∫
f(y1, y2)p1(x1, dy1)ν′

2(y1, dy2)ν1(dx1)

=

∫
f(y1, y2)ν′

2(y1, dy2)ν′
1(dy1)

=

∫
f(y)ν′(dy).

Hence, p(x, dy) := p1(x1, dy1)qx1,y1

2 (x2, dy2) is a probability kernel satisfying π(dxdy) := p(x, dy)ν(dx) ∈
Π(ν, ν′). Let

p2(x, · ) :=

∫

X1

p1(x1, dy1)qx1,y1

2 (x2, · ) ∈ P(X2)

be the second marginal of p(x1, · ), observing that p1(x, ·) is its first marginal.

Finally, using the definition of the transport cost, the definition of the cost and Jensen’s in-
equality, it holds:

Tc(ν′|ν) ≤
∫

X1×X2

c(x, p)ν(dx)

=

∫

X1

c1(x1, p1(x1, · ))ν1(dx1) +

∫

X1×X2

c2(x2, p2(x, · ))ν(dx)

≤ Tc1 (ν′
1|ν1) + ε+

∫

X2
1 ×X2

c2(x2, q
x1,y1

2 (x2, · ))p1(x1, dy1)ν(dx)

= Tc1 (ν′
1|ν1) + ε+

∫

X2
1

(∫

X2

c2(x2, q
x1,y1

2 (x2, · ))ν2(x1, dx2)

)
p1(x1, dy1)ν1(dx1)

≤ Tc1 (ν′
1|ν1) + ε+

∫

X2
1

(Tc2 (ν′
2(y1, · )|ν2(x1, · )) + ε) p1(x1, dy1)ν1(dx1) ,

where the last two inequalities follow from (A.3) and (A.4) respectively. The expected result follows
and the proof of the lemma is complete. �

Proof of Theorem 4.11. By induction, it is enough to consider the case n = 2. Given ν, ν′ ∈
Pγ(X1 ×X2), thanks to Lemma A.1, for all ε > 0, there exists a kernel pε1 such that

Tc(ν′|ν) ≤ Tc1(ν′
1|ν1) +

∫

X1×X1

Tc2(ν′
2(y1, · )|ν2(x1, · ))pε1(x1, dy1)ν1(dx1) + 2ε ,

where ν, ν′
1, ν2, ν

′
2 are defined in Lemma A.1. Applying the transport-entropy inequalities that hold

for µ1 and µ2, we get

Tc(ν′|ν) ≤ a
(1)
1 H(ν′

1|µ1) + a
(1)
2 H(ν1|µ1) + 2ε

+

∫

X1×X1

[
a

(2)
1 H(ν′

2(y1, · )|µ2) + a
(2)
2 H(ν2(x1, · )|µ2)

]
pε1(x1, dy1)ν1(dx1)

≤ a1

[
H(ν′

1|µ1) +

∫

X1

H(ν′
2(y1, · )|µ2)ν′

1(dy1)

]

+ a2

[
H(ν1|µ1) +

∫

X1

H(ν2(x1, · )|µ2)ν1(dx1)

]
+ 2ε

= a1H(ν′|µ) + a2H(ν|µ) + 2ε ,

where we used that
∫
X1
pε1(x1, dx

′
1) = 1,

∫
X1
pε1(x1, · )ν1(dx1) = ν′

1( · ) and the chain rule formula

for the entropy (recall that we set a1 := max(a
(1)
1 , a

(2)
1 ) and a2 := max(a

(1)
2 , a

(2)
2 )). Letting ε go to

zero completes the proof of the theorem. �
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Remark A.5. Alternatively, following [54], one could give a proof based on the dual characteri-
zation of Proposition 4.5.
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France



KANTOROVICH DUALITY FOR GENERAL COSTS AND APPLICATIONS 49

School of Mathematics & School of Computer Science, Georgia Institute of Technology, Atlanta,
GA 30332

E-mail address: nathael.gozlan@univ-mlv.fr, croberto@math.cnrs.fr, paul-marie.samson@univ-mlv.fr,

tetali@math.gatech.edu


	1. Introduction
	2. Optimal transport costs and duality
	2.1. Notations
	2.2. Costs functions, couplings and weak optimal transport costs
	2.3. A Kantorovich type duality
	2.4. Particular cases

	3. Proof of a result by Strassen
	4. Transport-entropy inequalities: definitions, tensorization, and dual formulation
	4.1. Definitions
	4.2. Bobkov-Götze dual characterization
	4.3. Tensorization

	5. Transport-entropy inequalities : link with dimension-free concentration
	5.1. A general equivalence
	5.2. Particular cases

	6. Universal transport cost inequalities with respect to Hamming distance and Talagrand's concentration of measure inequalities
	6.1. Transport inequalities for Marton's costs
	6.2. Transport inequalities for Samson's costs

	7. Discrete examples : Bernoulli, Binomial and Poisson laws
	8. Weak transport-entropy and log-Sobolev type inequalities
	8.1. Transport-entropy and ()-log-Sobolev inequalities
	8.2. Weak transport-entropy inequalities T2
	8.3. Sufficient condition for T-2 on the line

	9. Generalization of Kantorovich duality
	9.1. Notations
	9.2. Fenchel-Legendre duality
	9.3. Proof of Theorem 9.5 (Duality)
	9.4. Proofs of Theorems 2.7, 2.11 and 2.14.
	9.5. Proof of Proposition 9.3

	Appendix A. Proof of Theorem 4.11
	References

