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EXPONENTIAL STABILITY OF SLOWLY DECAYING

SOLUTIONS TO THE KINETIC-FOKKER-PLANCK EQUATION

S. MISCHLER, C. MOUHOT

Abstract. The aim of the present paper is twofold:
(1) We carry on with developing an abstract method for deriving decay

estimates on the semigroup associated to non-symmetric operators in Banach
spaces as introduced in [10]. We extend the method so as to consider the
shrinkage of the functional space. Roughly speaking, we consider a class of
operators writing as a dissipative part plus a mild perturbation, and we prove
that if the associated semigroup satisfies a decay estimate in some reference
space then it satisfies the same decay estimate in another—smaller or larger—
Banach space under the condition that a certain iterate of the “mild perturba-
tion” part of the operator combined with the dissipative part of the semigroup
maps the larger space to the smaller space in a bounded way. The cornerstone
of our approach is a factorization argument, reminiscent of the Dyson series.

(2) We apply this method to the kinetic Fokker-Planck equation when the
spatial domain is either the torus with periodic boundary conditions, or the
whole space with a confinement potential. We then obtain spectral gap es-
timates for the associated semigroup for various metrics, including Lebesgue
norms, negative Sobolev norms, and the Monge-Kantorovich-Wasserstein dis-
tance W1.

Mathematics Subject Classification (2000): 47D06 One-parameter semigroups
and linear evolution equations [See also 34G10, 34K30], 35P15 Estimation of eigen-
values, upper and lower bounds, 47H20 Semigroups of nonlinear operators [See also
37L05, 47J35, 54H15, 58D07], 35Q84 Fokker-Planck equations, 76P05 Rarefied gas
flows, Boltzmann equation [See also 82B40, 82C40, 82D05].
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1. Introduction

1.1. The question at hand. This paper deals with the study of decay proper-
ties of linear semigroups and their link with spectral properties as well as some
applications to the Fokker-Planck equations with various types of confinement. It
continues the program of research [19, 10] where quantitative methods for enlarging
the functional space of spectral gap estimates were developed with application to ki-
netic equations; specifically in [10] spectral gap estimates were obtained in Lebesgue
spaces for Boltzmann and Fokker-Planck equations in the spatially homogeneous
and spatially periodic frameworks.

Our approach is based on the following abstract question: consider two Banach
spaces E ⊂ E with E is dense in E , and two unbounded closed linear operators L
and L respectively on E and E with spectrum Σ(L),Σ(L) ⊂ C, which are assumed
to generate C0-semigroups (SL(t))t≥0 on E and (SL(t))t≥0 on E respectively and
so that L|E = L; can one deduce quantitative informations on Σ(L) and SL(t) in
terms of informations on Σ(L) and SL(t) (enlargement issue), or can one deduce
quantitative informations on Σ(L) and SL(t) in terms of informations on Σ(L) and
SL(t) (shrinkage issue)?

We prove, under some assumptions discussed below, (i) that the spectral gap
property of L in E (resp. of L in E) can be shown to hold for L in the space E
(resp. for L in E) and (ii) explicit estimates on the rate of decay of the semigroup
SL(t) (resp. the semigroup SL(t)) can be computed from the ones on SL(t) (resp.
SL(t)). This holds for a class of operators L which split as L = A+B, where A is
bounded, B’s spectrum is well localized and some appropriate combination ofA and
the semigroup SB(t) of B has some regularising properties. This last “semigroup
commutator condition” is reminiscent of Hörmander’s commutator conditions [17].

The Fokker-Planck equations we consider are then shown to belong to this gen-
eral class of operators and, as a consequence, we extend the hypocoercivity results—
usually obtained in L2 or H1 spaces with inverse Gaussian type tail and endowed
with convenient twisted scalar product—into sharp exponential decay estimates on
the semigroup in many larger Lebesgue and Sobolev spaces.
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1.2. The abstract result. We denote C (E) the set of closed operators on a Ba-
nach space E, B(E) the set of bounded operators on E, and B(E, E) the set of
bounded operators between two Banach spaces. We say that P ∈ C (E) is hypodis-
sipative if it is dissipative for some norm equivalent to the canonical norm of E and
we say that P is dissipative for the norm ‖ · ‖ on E if

∀ f ∈ Domain(P ), ∀ f∗ ∈ E∗ s.t. 〈f, f∗〉 = ‖f‖2E = ‖f∗‖2E∗ , ℜe 〈Pf, f∗〉 ≤ 0

where the 〈·, ·〉 denotes the duality bracket between E and its dual E∗. Finally we
denote ∆a := {z ∈ C; ℜe z > a}.

Theorem 1.1 (Change of the functional space of the semigroup decay). Given E,
E, L, L defined as above, assume that there are A,B ∈ C (E), A,B ∈ C (E) so that

L = A+ B, L = A+B, A = A|E , B = B|E,

and a real number a ∈ R such that

(i) (B − a) is hypodissipative on E, (B − a) is hypodissipative on E;
(ii) A ∈ B(E), A ∈ B(E);
(iii) there is n ≥ 1 and Ca > 0 such that (semigroup commutator condition)

∥

∥(ASB)
(∗n)(t)

∥

∥

B(E,E)
+
∥

∥(SBA)(∗n)(t)
∥

∥

B(E,E)
≤ Ca e

at.

Then the following two properties are equivalent:

(1) There are distinct ξ1, . . . , ξk ∈ ∆a and finite rank projectors Πj,L ∈ B(E),
1 ≤ j ≤ k, which commute with L and satisfy Σ(L|Πj,L

) = {ξj}, so that the
semigroup SL(t) satisfies for any a′ > a

(1.1) ∀ t ≥ 0,

∥

∥

∥

∥

∥

∥

SL(t)−
k
∑

j=1

SL(t)Πj,L

∥

∥

∥

∥

∥

∥

B(E)

≤ CL,a′ e
a′ t

with some constant CL,a′ > 0.
(2) There are distinct ξ1, . . . , ξk ∈ ∆a and finite rank projectors Πj,L ∈ B(E),

1 ≤ j ≤ k, which commute with L and satisfy Σ(L|Πj,L
) = {ξj}, so that the

semigroup SL(t) satisfies for any a′ > a

(1.2) ∀ t ≥ 0,

∥

∥

∥

∥

∥

∥

SL(t)−
k
∑

j=1

SL(t)Πj,L

∥

∥

∥

∥

∥

∥

B(E)

≤ CL,a′ e
a′ t

with some constant CL,a′ > 0.

Remarks 1.2. (a) The constants in this statement can be estimated explicitly
from the proof.

(b) The same result holds in the case {ξ1, . . . , ξk} = ∅, that we denote as a
convention as the case k = 0.

(c) The condition “E ⊂ E” can be replaced by “E∩E is dense in E and E with
continuous embedding”.

(d) Note that in the LHS of condition (iii), any of the two terms (at order n)
can be deduced from the other (at order n+1) with the help of assumptions
(i) and (ii).
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1.3. The main PDE results. Let us briefly present the evolution PDEs of Fokker-
Planck types on which we are able to make use of Theorem 1.1 in order to establish
exponential asymptotic stability of their equilibria.

(a) “Flat” confinement. The model is the kinetic Fokker-Planck equation

(1.3) ∂tf + v · ∇xf = ∇v · (∇vf +∇vΦ f) ,

on the density f = f(t, x, v), t ≥ 0, x ∈ Td the flat d-dimensional torus, v ∈ Rd, for
a friction potential Φ = Φ(v) satisfying Φ ≈ |v|γ , γ ≥ 1, for large velocities.

Remark 1.3. Observe that this model contains as a subcase the (spatially homoge-
neous) Fokker-Planck equation

(1.4) ∂tf = ∆vf + divv(∇vΦ f), f = f(t, v), t ≥ 0, v ∈ R
d,

when the probability density f = f(t, v) is independent of the space variable.

(b) Confinement by a potential. The model is the kinetic Fokker-Planck equation
in the whole space with a space confinement potential

(1.5) ∂tf + v · ∇xf −∇xΨ · ∇vf = ∇v · (∇vf + v f) ,

on the density f = f(t, x, v), t ≥ 0, x ∈ R
d, v ∈ R

d, for a confinement potential
Ψ = Ψ(x) on the space variable which behaves like |x|β , β ≥ 1, for large values of
the vector position.

For these models, we prove semigroup exponential decay estimates in weighted
Sobolev spaces with weight function increasing like polynomial function or a stretch
exponential function, so much slower than the usual inverse of the Gaussian equi-
librium.

Theorem 1.4. Consider L the Fokker-Planck operator as defined above in (a) or
(b), and µ the unique positive associated equilibrium with mass 1. Consider the
weighted Sobolev space E := W σ,p(m) with σ ∈ {−1, 0, 1} and p ∈ [1,∞], where
the precise conditions on the weight m (so that it is confining enough) are given in
Theorems 3.1 and 4.1.

Then there exist a < 0 and Ca > 0 so that

(1.6) ∀ f0, g0 ∈ E , ‖SL(t)f0 − SL(t)g0‖E ≤ Ca e
at ‖f0 − g0‖E

between two solutions with same mass; this implies the exponential convergence
towards the projection on the first eigenspace Rµ (associated with the eigenvalue
0).

In the case (a) (periodic confinement), we also establish a similar decay estimate
in Monge-Kantorovich-Wasserstein distance: for all f0, g0 probability measures
with first moment bounded

W1 (SL(t)f0,SL(t)g0) ≤ Ca e
a tW1(f0, g0).

This theorem is proved by combining:

• the spectral gap property of the Fokker-Planck semigroup which is clas-
sically known in the space of self-adjointness L2(µ−1/2) in a spatially ho-
mogeneous setting (Poincaré inequality) and has been recently proved in a
series of works about “hypocoercivity” in the spaces L2(µ−1/2) orH1(µ−1/2)
for the kinetic Fokker-Planck semigroup with periodic or potential confine-
ments [16, 24, 9];
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• an appropriate decomposition of the operator with:
– some dissipativity estimates in the “target” functional spaces, for the

“dissipative part” of the decomposition (this is the main difficulty in
the case of confinement by a potential and we introduce specifically
weight multipliers inspired from commutator conditions on deriva-
tives);

– some regularisation estimates adapted on the semigroup inspired from
ultracontractivity estimates in the spirit of Nash’s regularity estimate
[22] in the spatially homogeneous case and Hérau-Villani’s quantitative
global hypoellipticity estimate [15]-[24, section A.21.3] in the spatially
inhomogeneous case;

– the application of Theorem 1.1 (whose assumptions are established
by the previous items) which establishes the decay estimates of the
semigroup in the target functional space;

– finally theW1 estimate is obtained by some additional technical efforts
in estimating the decay in weighted W−1,1 type spaces.

Remark 1.5. Some decay estimates for kinetic Fokker-Planck semigroups with flat
confinement had been already established in [10]. In this setting this new paper
improves on these previous paper as follows: we use new integral identity in order
to deal with any integrability exponent p ∈ [1,∞] and we introduce an appropriate
duality argument in order to deal with the regularity exponent σ = −1.

Remark 1.6. Let us mention that there is an important literature in the probability
community, see for instance [25, 3], that deals with exponential relaxation to equi-
librium for stochastic processes whose law follows kinetic Fokker-Planck equations.
From an analysis viewpoint, these results typically correspond to the exponential
decay of solutions to the PDE in weighted total variation norms, assuming higher
moments or integrability on the initial data, and without quantitative estimate on
the rate. It is worth pointing out that our dissipativity estimates on the dissipative
part of the decomposition of the operator, discussed above, are reminiscent of the
so-called “Lyapunov condition” at the core of these probability works (on the whole
operator). Their uses and the results obtained are different though as we aim at
semigroup decay estimates rather than functional inequalities, and take advantage
of an already existing decay estimate in a (typically) smaller functional space.

1.4. Plan of the paper. The outline of the paper is as follows. We prove the main
abstract theorem in Section 2. We prove the decay estimates on kinetic Fokker-
Planck semigroups with periodic (or spatially homogeneous) confinements in Sec-
tion 3. Finally we prove the decay estimates on kinetic Fokker-Planck semigroups
with confinement by a potential in Section 4.

Acknowledgements. We thank José Alfrédo Cañizo and Maria P. Gualdani for
fruitful comments and discussions. We thank the anonymous referees for many
useful comments. The first author’s work is supported by the french “ANR blanche”
project Stab: ANR-12-BS01-0019. The second author’s work is supported by the
ERC starting grant MATKIT.
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2. Factorisation of semigroups in Banach spaces and applications

The section is devoted to the proof of Theorem 1.1. After having recalled some
notation, we present the proof of Theorem 1.1 that we split into two steps, namely
the analysis of the spectral problem and the semigroup decay.

2.1. Notations and definitions. We denote by G (E) ⊂ C (E) the space of semi-
group generators and for Λ ∈ G (E) we denote by SΛ(t) = eΛt, t ≥ 0, its semigroup,
by D(Λ) its domain, by N (Λ) its null space, by

M (Λ) = ∪α≥1N (Λα)

its algebraic null space, and by R(Λ) its range. We also denote by Σ(Λ) its spec-
trum, so that for any ξ ∈ C\Σ(Λ) the operator Λ− ξ is invertible and the resolvent
operator

RΛ(ξ) := (Λ− ξ)−1

is well-defined, belongs to B(E) and has range equal to D(Λ).
We recall that ξ ∈ Σ(Λ) is said to be an eigenvalue if N (Λ−ξ) 6= {0}. Moreover

an eigenvalue ξ ∈ Σ(Λ) is said to be isolated if

Σ(Λ) ∩ {z ∈ C, |z − ξ| < r} = {ξ} for some r > 0.

In the case when ξ is an isolated eigenvalue we may define ΠΛ,ξ ∈ B(E) the spectral
projector by

(2.1) ΠΛ,ξ :=
i

2π

∫

|z−ξ|=r′
(Λ − z)−1 dz

with 0 < r′ < r. Note that this definition is independent of the value of r′ by
Cauchy’s theorem as the application

C \ Σ(Λ) → B(E), z 7→ RΛ(z)

is holomorphic in B(z, r). It is well-known [18, III-(6.19)] that Π2
Λ,ξ = ΠΛ,ξ is a

projector, and its range R(ΠΛ,ξ) is the closure of the algebraic eigenspace associated
to ξ. Moreover the range of the spectral projector is finite-dimensional if and only
if there exists α0 ∈ N∗ such that

dimN (Λ− ξ)α0 <∞, N (Λ− ξ)α = N (Λ− ξ)α0 for any α ≥ α0,

so that

M (Λ− ξ) = M (Λ − ξ) = N ((Λ − ξ)α0).

In that case, we say that ξ is a discrete eigenvalue, written as ξ ∈ Σd(Λ). Observe
that RΛ is meromorphic on (C \ Σ(Λ)) ∪ Σd(Λ) (with non-removable finite-order
poles). Finally for any a ∈ R such that Σ(Λ) ∩∆a = {ξ1, . . . , ξk} where ξ1, . . . , ξk
are distinct discrete eigenvalues, we define without any risk of ambiguity

ΠΛ,a := ΠΛ,ξ1 + · · ·+ΠΛ,ξk .

We need the following definition on the convolution of semigroup (corresponding
to composition at the level of the resolvent operators).

Definition 2.1 (Convolution of semigroups). Consider some Banach spaces X1,
X2, X3. For two given functions

S1 ∈ L1(R+;B(X1, X2)) and S2 ∈ L1(R+;B(X2, X3)),
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we define the convolution S2 ∗ S1 ∈ L1(R+;B(X1, X3)) by

∀ t ≥ 0, (S2 ∗ S1)(t) :=

∫ t

0

S2(s)S1(t− s) ds.

When S = S1 = S2 and X1 = X2 = X3, we define inductively S (∗1) = S and
S (∗ℓ) = S ∗ S (∗(ℓ−1)) for any ℓ ≥ 2.

2.2. Factorization and spectral analysis when changing space.

Theorem 2.2. Consider E, E , L,A,B,L,A,B as above and assume that

(i′) Σ(B) ∩∆a = Σ(B) ∩∆a = ∅ for some a ∈ R;
(ii) A ∈ B(E) and A ∈ B(E);

(iii′) there is n ≥ 1 such that for any ξ ∈ ∆a, the operators (ARB(ξ))
n and

(RB(ξ)A)n are bounded from E to E.

Then the following two properties are equivalent, with the same family of distinct
complex numbers and the convention {ξ1, . . . , ξk} = ∅ if k = 0:

(1) Σ(L) ∩∆a = {ξ1, . . . , ξk} ⊂ Σd(L) (distinct discrete eigenvalues).

(2) Σ(L) ∩∆a = {ξ1, . . . , ξk} ⊂ Σd(L) (distinct discrete eigenvalues).

Moreover, in both cases, there hold

(3) For any z ∈ ∆a \ {ξ1, . . . , ξk} the resolvent operators RL and RL satisfy:

RL(z) =

n−1
∑

ℓ=0

(−1)ℓRB(z) (ARB(z))
ℓ
+ (−1)nRL(z) (ARB(z))

n
(2.2)

RL(z) =

n−1
∑

ℓ=0

(−1)ℓ (RB(z)A)
ℓ
RB(z) + (−1)n (RB(z)A)

n
RL(z).(2.3)

(4) For any j = 1, . . . , k, we have


























N (L − ξj)
α = N (L − ξj)

α, ∀α ≥ 1

M (L− ξj) = M (L − ξj)

(ΠL,ξj )|E = ΠL,ξj

SL,ξj (t) = SL(t)ΠL,ξj = SL(t)ΠL,ξj .

Remarks 2.3. (1) In this theorem, the implication (1) ⇒ (2) has been estab-
lished in [10, Theorem 2.1]; since E ⊂ E , this is a recipe for enlarging the
functional space where a property of localization of the discrete spectrum
holds. The implication (2) ⇒ (1) is a recipe for shrinking the functional
space where a property of localization of the discrete spectrum holds.

(2) In the simplest case where A ∈ B(E , E), the assumption (iii′) is satisfied
with n = 1.

(3) The hypothesis (i)-(ii)-(iii) (for some a ∈ R) in Theorem 1.1 imply the
hypothesis (i′)-(ii)-(iii′) above, for any a′ > a.

(4) A similar result holds when we replace the assumption E ⊂ E by the as-
sumption that E ∩ E is dense in both E and E .
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Proof of Theorem 2.2. Because of Remark 2.3-(1), we only have to prove the im-
plication (2) ⇒ (1). Let us denote Ω := ∆a \ {ξ1, . . . , ξk} and define for z ∈ Ω

U(z) :=

n−1
∑

ℓ=0

(−1)ℓ (RB(z)A)
ℓ
RB(z) + (−1)n (RB(z)A)

n
RL(z).

Observe that thanks to the assumptions (i′)-(ii)-(iii′) and (2), the operator U(z)
is well-defined and bounded on E.

Step 1. U(z) is a left-inverse of (L− z) on Ω. For any z ∈ Ω, we compute

U(z)(L− z) =

n−1
∑

ℓ=0

(−1)ℓ (RB(z)A)
ℓ
RB(z) (A+ (B − z))

+(−1)n (RB(z)A)
n
RL(z) (L− z)

=
n−1
∑

ℓ=0

(−1)ℓ (RB(z)A)
ℓ+1 +

n−1
∑

ℓ=0

(−1)ℓ (RB(z)A)
ℓ

+(−1)n (RB(z)A)
n
= IdE .

Step 2. (L − z) is invertible on Ω. Consider z0 ∈ Ω. First observe that if the
operator (L − z0) is bijective, then composing to the right the equation

U(z0)(L − z0) = IdE

by (L−z0)−1 = RL(z0) yields RL(z0) = U(z0) and we deduce that the inverse map
is bounded (i.e. (L − z0) is an invertible operator in E) together with the desired
formula for the resolvent.

Since (L− z0) has a left-inverse it is injective. Let us prove that it is surjective.
Consider g ∈ E. Since L − z0 is invertible and therefore bijective there is f ∈ E so
that

(L − z0)f = g and thus Id +RB(z0)Af = RB(z0)g = RB(z0)g.

We denote ḡ := RB(z0)g ∈ E and G(z0) := RB(z0)A and write

f = ḡ − G(z0)f =

n−1
∑

ℓ=0

(−1)ℓG(z0)ℓḡ + (−1)nG(z0)nf.

Because of (i′)-(ii)-(iii′), it implies that f ∈ E, and in fact since D(B) = D(L),
we further have f ∈ D(L) ⊂ E. We conclude that (L − z0)f = g in E, and the
proof of this step is complete.

Step 3. Spectrum, eigenspaces and spectral projectors. On the one hand, we have

N (L − ξj)
α ⊂ N (L − ξj)

α, j = 1, . . . , k, α ∈ N,

so that Σ(L) ∩ ∆a ⊂ {ξ1, . . . , ξk}. On the other hand, consider ξj ∈ Σ(L) ∩ ∆a,
α ∈ N

∗ and f ∈ N (L − ξj)
α:

(L − ξj)
α
f = 0.

Denote gβ := (L − ξj)
β f , β = 0, . . . , α and argue by induction on β decreasingly

to prove that gβ ∈ E. The initialisation β = α is clear. Assume gβ+1 ∈ E and
write (L − ξj) gβ = gβ+1. Using L = A + B and composing to the left by RB(ξj),
we get

(G(ξj) + Id) gβ = RB(ξj)gβ+1 ∈ E with G(ξj) := RB(ξj)A.
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We deduce that

gβ = (−1)nG(ξj)ngβ+1 +
n−1
∑

k=0

G(ξj)kRB(ξj)gβ+1.

Since G(ξj)n is bounded from E to E, and G(ξj) is bounded from E to E, with in
each the range included in D(B) = D(L), we deduce that gβ ∈ D(L) ⊂ E, and
the proof of the induction is complete. Finally g0 = f ∈ D(L) ⊂ E. Since the
eigenvalues are discrete, this completes the proof of (1).

Finally, the fact that ΠL,ξj |E = ΠL,ξj is a straightforward consequence ofRL(z)f =
RL(z)f when f ∈ E and the formula (2.1) for the projection operator. This con-
cludes the proof of (3)-(4). �

2.3. Factorization and semigroup decay when changing spaces. We now
prove Theorem 1.1. First we notice that the assumptions of Theorem 2.2 are met
since (i′) follows from (i) and (ii)-(iii) imply (iii′). Because of Theorem 2.2 we
know that R(ΠL,a) = R(ΠL,a) ⊂ E, and then for any f0 ∈ R(ΠL,a), there holds

SL(t) f0 = SL(t) f0 =

k
∑

j=1

eLjtΠL,ξjf0,

where Lj := L|Xj
, Xj := R(ΠL,ξj). By linearity, it is enough to prove the equivalent

estimates (1.1) and (1.2) in the supplementary space of the subspace R(ΠL,a). We
split the proof into two steps.

Step 1. Enlargement of the functional space. We give here an alternative presen-
tation of the proof of (1) ⇒ (2) in Theorem 1.1 which is in the spirit of [1] while
the original (but similar) proof in [10] uses an iterate Duhamel formula. We assume
(1.1) and denote ft := SL(t)f0 the solution to the evolution equation ∂tf = Lf .
We decompose

f = ΠL,aft + g1 + g2 + · · ·+ gn+1,

∂tg
1 = Bg1, g10 = f0 −ΠL,af0,

∂tg
k = Bgk +Agk−1, gk0 = 0, 2 ≤ k ≤ n,

∂tg
n+1 = Lgn+1 +Agn, gn+1

0 = 0,

and we remark that this system of equations on gk, 1 ≤ k ≤ n + 1, is compatible
with the equation satisfied by f . Moreover, by induction

Agk(t) = (ASB)
(∗k)(t)(f0 −ΠL,af0), 1 ≤ k ≤ n,

so that Agn(t) ∈ E, because of assumption (iii), and thus the equation on gn+1 is
set in E and writes

∂tgn+1 = Lgn +Agn, gn+1(0) = 0.

We deduce successively the estimates (for a′ > a)

‖gk(t)‖E . tkeat‖f0 −ΠL,af0‖E , 1 ≤ k ≤ n,

‖gk(t)‖E .a′ e
a′t‖f0 −ΠL,af0‖E , 1 ≤ k ≤ n,

‖Agn(t)‖E . tneat‖f0 −ΠL,af0‖E ,
‖(Id− ΠL,a)gn+1(t)‖E . ‖(Id−ΠL,a)gn+1(t)‖E .a′ e

a′t‖f0 −ΠL,af0‖E ,
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and since, from the definition of the decomposition,

ΠL,agn+1 = −ΠL,ag1 − · · · −ΠL,agn

we have, using the previous decay estimates,

‖ΠL,agn+1(t)‖E ≤
n
∑

k=1

‖ΠL,agk(t)‖E .a′ e
a′t ‖f0 −ΠL,af0‖E ,

which concludes the proof of (1.2) by piling up these estimates on f .

Step 2. Shrinkage of the functional space. We assume (1.2) and f0 ∈ E and write
the following family of operators depending on time on E through a factorization
formula:

S∗(t) = SL(t)ΠL,a +

n−1
∑

ℓ=0

(−1)ℓ (SB(t)A)
(∗ℓ)

SB(t)(Id −ΠL,a)

+ (−1)n (SB(t)A)(∗n) SL(t)(Id−ΠL,a).

Using the assumptions and (1.2) one gets

‖SL(t)(Id −ΠL,a)‖B(E,E) .a′ e
a′t

∥

∥

∥(SB(t)A)
(∗n)
∥

∥

∥

B(E,E)
.a′ e

a′t

‖SB(t)A‖B(E,E) .a′ e
a′t

which proves that

‖S∗(z)− SL(t)ΠL,a‖B(E,E) .a′ e
a′t.

Therefore the Laplace transform U∗(z) of t 7→ (S∗(t) − SL(t)ΠL,a) is well-defined
on ℜe z > a′, and is

U∗(z) =
n−1
∑

ℓ=0

(−1)ℓ (RB(z)A)
ℓRB(z)(Id−ΠL,a)+(−1)n (RB(z)A)nRL(z)(Id−ΠL,a)

which is exactly U∗(z) = RL(z)(Id − ΠL,a) from Theorem 2.2. By uniqueness of
the Laplace transform we deduce that S∗(t) = SL(t), and this proves the decay
(1.1). �

2.4. A practical criterion. We finally prove a criterion implying both (iii′) in
Theorem 2.2 and (iii) in Theorem 1.1.

Lemma 2.4. Consider two Banach spaces E and E such that E∩E is dense into E
and E with continuous embedding. Consider L an operator on E + E so that there
exist some operators A and B on E + E such that L splits as L = A+B. Denoting
with the same letter A, B and L the restriction of these operators on E and E, we
assume that there hold:

(a) (B − a) is hypodissipative in E and E for some a ∈ R;
(b) A ∈ B(E) and A ∈ B(E);
(c) for some b ∈ R and Θ ≥ 0 there holds ‖ASB(t)‖B(E,E) ≤ Cebt t−Θ and

‖SB(t)A‖B(E,E) ≤ Cebtt−Θ.
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Then for any a′ > a, there is some constructive n ∈ N, Ca′ ≥ 1 such that

∀ t ≥ 0, ‖(ASB)
(∗n)(t)‖B(E,E) + ‖(SBA)(∗n)(t)‖B(E,E) ≤ Ca′e

a′t.

As a consequence, (ARB(z))
n and (RBA)n are bounded from E to E for any z ∈ ∆a.

Remark 2.5. It is necessary to include the non-integrable time factor in (c) for
later application since (c) will be proved by hypoelliptic regularity which has this
possibly non-integrable behavior at time zero.

Proof of Lemma 2.4. When Θ ≥ 1, we denote by J the integer such that Θ < J ≤
Θ + 1 and we set θ := Θ/J ∈ [0, 1). We define the family of intermediate com-
plex interpolation spaces Ej = [E, E ]j/J . Thanks to the Riesz-Thorin interpolation
theorem, we have

ASB(t) : Eδ,δ′ := [[E0, E1]δ, E0]δ′ → Eδ,δ′ := [[E0, E1]δ, E1]δ′
with the following estimate on the operator norm

‖ASB(t)‖Eδ,δ′→Eδ,δ′ ≤ ‖ASB(t)‖(1−δ)(1−δ
′)

E0→E0
‖ASB(t)‖δ(1−δ

′)
E1→E1

‖ASB(t)‖δ
′

E0→E1
.

Since

Eδ,δ′ = [[E0, E1]δ, [E0, E1]0]δ′ = [E0, E1](1−δ′)δ
Eδ,δ′ = [[E0, E1]δ, [E0, E1]1]δ′ = [E0, E1](1−δ′)δ+δ′ ,

by taking δ′ = 1/J and δ = j/(J − 1), we get

‖ASB(t)‖Ej→Ej+1 ≤ ‖ASB(t)‖1−(j+1)/J
B(E) ‖SB(t)‖j/JB(E) ‖ASB(t)‖1/JB(E,E)

.
1

tθ
e[(1−1/J)a+b/J]t.

We define now n := ℓ J so that (ASB)
(∗n) = T

(∗ℓ)
J with TJ := (ASB)

(∗J). From
the assumptions and the previous estimate, for any a′′ > a

‖TJ(t)‖E→E .a′′ e
a′t, ‖TJ(t)‖E→E . ebt, ‖TJ(t)‖E→E .a′′ e

a′t.

As a consequence, we obtain

‖(ASB)
(∗n)(t)‖E→E .a′ e

[(1−1/ℓ)a′+b/ℓ] t,

which concludes the proof by fixing ℓ large enough so that (1− 1/ℓ)a′′ + b′/ℓ < a′.
The estimate on (SBA)(∗n) is proved by the same argument. �

3. The kinetic Fokker-Planck equation with flat confinement

This section is dedicated to the proof of semigroup decay estimates for the kinetic
Fokker-Planck equation (1.3) where the confinement is ensured by spatial periodic-
ity, for initial data in a large class of Banach spaces, including the case of negative
Sobolev spaces, and with slow decay at large velocities. We deduce decay estimates
in Wasserstein distance as well. Our results apply to the simpler case where the
solution is spatially homogeneous and solves (1.4).
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3.1. Main result. Consider the Fokker-Planck equation

(3.1) ∂tf = Lf := ∇v · (∇vf + Ff)− v · ∇xf,

on the density f = f(t, x, v), t ≥ 0, x ∈ Td (the torus’ volume is normalised to
one), v ∈ Rd, where the (exterior) force field F = F (v) ∈ Rd takes the form

(3.2) F = ∇vΦ with ∀ |v| ≥ R0, Φ(v) =
1

γ
〈v〉γ + Φ0

for some constantsR0 ≥ 0 and γ ≥ 1. Here and below, we denote 〈v〉 := (1+|v|2)1/2.
We define µ(v) := e−Φ(v) with Φ0 ∈ R such that µ is a probability measure.
Observe that µ is a steady state for the evolution equation (3.1). We shall consider
separately along this section the case where f does not depend on x, commenting
on the simpler proofs and sharper estimates in this case.

Let us now introduce the key assumptions:

Assumptions on the functional spaces

Polynomial weights: For any γ ≥ 2, σ ∈ {−1, 0, 1} and p ∈ [1,∞], we introduce the
weight functions

(3.3) m := 〈v〉k, k > |σ|+ |σ|
√
d(γ − 2) +

(

1− 1

p

)

(d+ γ − 2)

and the abscissa

aσ(p,m) :=

{ |σ|+ (1 − 1/p)d− k if γ = 2,

−∞ if γ > 2.

Stretched exponential weights: For any γ ≥ 1, σ ∈ {−1, 0, 1} and p ∈ [1,∞], we
introduce the weight functions

m := eκ 〈v〉s with s ∈ [2− γ, γ), κ > 0, s > 0,(3.4)

or with s = γ, κ ∈ (0, 1/γ),

and the abscissa

aσ(p,m) :=



















κ2 − κ if γ = s = 1,

−κs if γ + s = 2, s < γ,

−∞ in the other cases.

Definition of the spaces: For any weight function m, we define Lp(m), 1 ≤ p ≤ ∞,
as the Lebesgue weighted space associated to the norm

‖f‖Lp(m) := ‖f m‖Lp ,

and W 1,p(m), 1 ≤ p ≤ ∞, as the Sobolev weighted space associated to the norm

‖f‖W 1,p(m) := (‖mf‖pLp + ‖m∇f‖pLp)
1/p

when p ∈ [1,∞) and

‖f‖W 1,∞(m) := max {‖mf‖L∞, ‖m∇f‖L∞} .
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We also define W−1,p(m), p ∈ [1,∞], as the weighted negative Sobolev space asso-
ciated to the dual norm

(3.5) ‖f‖W−1,p(m) := ‖f m‖W−1,p := sup
‖φ‖

W1,p′ ≤1

〈f, φm〉, p′ :=
p

p− 1
,

where it is worth insisting that in this last equation the condition ‖φ‖W 1,p′ ≤ 1

refers to the standard Sobolev space W 1,p′ (without weight).

Observe that for σ ∈ {−1, 0, 1}, p ∈ [1,∞] and m satisfying (3.3) or (3.4),

the Sobolev space W σ,p(m) defined as above is such that 1 ∈ W σ′,p′(m−1) with
σ′ = −σ ∈ {−1, 0, 1} and p′ := p/(p − 1) ∈ [1,∞]. As a consequence, for any
f ∈ W σ,p(m), we may define the “mass of f” by

〈〈f〉〉 := 〈f, 1〉Wσ,p(m),Wσ′,p′(m−1) =

〈

mf,
1

m

〉

Wσ,p,Wσ′,p′

where the double bracket recalls that there are two variables x and v. In the case
σ = 0, 1, there holds W σ,p(m) ⊂ L1 (here L1 denotes the usual Lebesgue space
without weight) and therefore the “mass of f” corresponds to the usual definition

〈〈f〉〉 :=
∫

Td×Rd

f(x, v) dxdv

and else this is the mass of the associated measure. Observe also that when f does
not depend on x, this reduces thanks to the normalisation of the torus volume to

〈〈f〉〉 = 〈f〉 :=
∫

Rd

f(v) dv.

We finally define the projector Π⊥
1 on the orthogonal supplementary of the first

eigenspace:

∀ f ∈W σ,p(m), Π⊥
1 f := f − 〈〈f〉〉µ.

Theorem 3.1. Consider σ ∈ {−1, 0, 1} and m, p ∈ [1,+∞] that satisfy conditions
(3.3) or (3.4) above (this implies aσ(p,m) < 0). For any a > max {aσ(p,m),−λ},
there exists Ca = Ca(σ, p,m) such that for any f0, g0 ∈ W σ,p(m) with the same
mass, there holds

(3.6) ‖SL(t)f0 − SL(t)g0‖Wσ,p(m) ≤ Ca e
at ‖f0 − g0‖Wσ,p(m) ,

which implies in particular the relaxation to equilibrium

(3.7) ‖SL(t)f0 − 〈f0〉µ‖Wσ,p(m) ≤ Ca e
at ‖f0 − 〈f0〉µ‖Wσ,p(m) ,

where λ := λ(d, σ, p,m) > 0 is constructive from the proof.
Moreover, when γ ∈ [2, 2+1/(d−1)), there exists ã(γ) < 0 and for any a > ã(γ)

there exists Ca ∈ (0,∞) so that for any probability measures f0, g0 with bounded
first moments, there holds

(3.8) W1 (SL(t)f0,SL(t)g0) ≤ Ca e
a tW1(f0, g0)

which implies the relaxation to equilibrium

(3.9) W1 (SL(t)f0, 〈f0〉µ) ≤ Ca e
a tW1(f0, 〈f0〉µ).

Remarks 3.2. We first list the remarks in the spatially homogeneous case.
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(1) For m = µ−1/2, p = 2 and σ = 0, (3.7) reduces to the classical spectral gap
inequality for the Fokker-Planck semigroup in L2(µ−1/2). In that case the
semigroup spectral gap is equivalent to the Poincaré inequality. Denoting
as λP the best constant in the Poincaré inequality, the estimate (3.7) holds
with a = −λP and Ca = 1.

(2) Our proof in the general case is based on the above mentioned semigroup
spectral gap estimate in L2(µ−1/2) and on the abstract extension Theo-
rem 1.1. More precisely, our approach allows one to prove an equivalence
between Poincaré’s inequality and semigroup decay of the Fokker-Planck
equation in Banach spaces, including the case of negative Sobolev spaces.
The meaning of the sentence is that the functional inequality

(3.10) ∀ a′ > a, (Lf, f)L2(µ−1/2) ≤ a′ ‖Π⊥
1 f‖2L2(µ−1/2)

is equivalent to the semigroup decay estimate (3.7) for a large class of weight
function m.

(3) For γ ≥ 2, it has been proved recently in [5] that a semigroup decay estimate
similar to (3.7) holds for the Monge-Kantorovich-Wasserstein distance W2,
or in other words that for any probability measure f0 with bounded second
moment, there holds

(3.11) W2(SL(t)f0, 〈f0〉µ) ≤ C eα tW2(f0, 〈f0〉µ).
In the above inequality C = 1 and −α is the optimal constant in the “WJ
inequality” (introduced in [5, Definition 3.1]), which corresponds to the
optimal constant in the “log-Sobolev inequality” for convex potential and
in particular −α is smaller than the optimal constant λP in the Poincaré
inequality (3.10). Our estimate (3.9) can be compared to (3.11). However
we note that it had not been proved yet in the probability literature, even
in the spatially homogeneous case, that the Poincaré inequality implies the
convergence inW1 distance (whereas the converse is known, see for instance
[12]).

(4) It is worth emphasizing that in Theorem 3.1, the function space can be
chosen smaller in term of tail decay than the space of self-adjointness
L2(µ−1/2): one can choose for instance L2(µ−θ/2) with θ ∈ (1, 2).

(5) Note that this statement implies in particular that for a strong enough
weight function, so that the essential spectrum move far enough to the left,
there holds

Σ (L) ⊂ {z ∈ C | ℜe(z) ≤ −λP } ∪ {0}
and that the null space of L is exactly Rµ.

(6) Moreover, thanks to Weyl’s Theorem, we know that in the L2(µ−1/2) space
the spectrum is constituted of discrete eigenvalues denotes as ξℓ, ℓ ∈ N, with
ℓ 7→ ℜeξℓ decreasing. In any Banach spaceW σ,p(m), exactly the same proof
as for Theorem 3.1 (same splitting L = A+ B and same application of the
abstract extension Theorem 1.1) yields to the more accurate description of
the spectrum

Σ (L) ∩∆aσ(p,m) = {ξℓ; ℜe(ξℓ) > aσ(p,m)}
as well as the more accurate estimate (1.2) for any a > aσ(p,m) and with
k defined by k = sup{ℓ; ℜe(ξℓ) > aσ(p,m)}.
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(7) As a consequence of the preceding point, we may improve the intermediate
asymptotic for the heat equation established in [4]. Consider g the solution
to the heat equation

∂tg = ∆vg, g(0) = g0,

with g0 ∈ Lp(m), m = 〈v〉k, k > d/p′+n− 1, n ∈ N∗. Assume furthermore
that

∀ ℓ ∈ N
d, |ℓ| ≤ n− 1,

∫

Rd

g0Hℓ dx = 0,

where (Hℓ) stands for the family of Hermite polynomials (see [4] and the
references therein). In particular 〈g0〉 = 0 since H0 = 1. We observe that
the function f defined thanks to

g(t, x) = R−d f(logR, v/R), R = R(t) =
√
1 + 2t,

is a solution to the harmonic Fokker Planck equation

∂tf = Lf = ∆vf + divv(vf), f(0) = g0,

and that (Hℓ) is an orthogonal family of eigenfunctions associated to the
adjoint operator L∗ (Hℓ is associated to the eigenvalue |ℓ| = ℓ1 + · · · + ℓd
for any ℓ ∈ Nd). An immediate application of our method implies

‖ft‖Lp(m) ≤ Cd,p,n e
−nt ‖g0‖Lp(m) ∀ t ≥ 0,

which improves (3.7) (which holds in that context with a = −λP = −1)
whenever n ≥ 2. Coming back to the function g we obtain the optimal
intermediate asymptotic estimate

‖gt‖Lp(m) ≤
Cd,p,n

(1 + t)n/2+d/(2p′)
‖g0‖Lp(m) ∀ t > 0.

That last estimate improves [4, Corollary 4] because the range of initial
data is larger and the rate in time is better (it is in fact optimal).

Remarks 3.3. We now list the remarks specific to the spatially periodic case.

(1) The value of λ in our quantitative estimate is related to the hypocoercivity
estimate in L2(µ−1) setting. However the best rate in general is the real
part of the second eigenvalue defined by

(3.12) λ := sup
‖·‖∼‖·‖Wσ,p(m)

inf
f∈C∞

c (Rd)

(

−〈Lf, f∗〉
‖Π⊥

1 f‖

)

where C∞
c (Rd) denotes the smooth compactly supported functions, and

where the supremum is taken over all norms ‖ · ‖ on W σ,p(m) equivalent

to the ambiant norm, and where f∗ ∈ W σ′,p′(m) is the unique element in

W σ′,p′(m) such that ‖f‖2 = ‖f∗‖2∗ = 〈f∗, f〉, where ‖·‖∗ is the correspond-
ing dual norm. Let us mention that similar results have been proved for
diffusion processes in [6].

(2) Our result partially generalize to a spatially inhomogeneous setting the
estimate on the Monge-Kantorovich-Wasserstein distance obtained recently
in [5].
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(3) Our proof is based on the semigroup spectral gap estimate in H1(µ−1/2)
established in [20, 24] and on the abstract extension Theorem. As a conse-
quence, it gives an alternative proof for the semigroup spectral gap estimate
obtained in [8, 9] for the Lebesgue space L2(µ−1/2).

(4) Again, the proof holds for F := ∇Φ+U which fulfills the conditions of [10,
section 3]. In particular the associated Fokker-Planck operator does not
take the AA∗ +B structure of [24] (where the term ∇v(Uf) is included in
the “B” part).

The proof of Theorem 3.1 is split into several steps:

(1) We recall existing results for proving (3.7) in the space of E = H1(µ−1/2):

Lemma 3.4. ([20, Theorem 1.1]) The result in Theorem 3.1 is true in the
Hilbert space H1(µ−1/2) associated to the norm

‖f‖H1(µ−1/2) :=
(

‖f‖2L2(µ−1/2) + ‖∇xf‖2L2(µ−1/2) + ‖∇vf‖2L2(µ−1/2)

)1/2

.

Such a result has been proved in [20], see also [16, 15, 13, 8, 9].
(2) We devise an appropriate decomposition L = A + B with B = L −MχR

where χR is a smooth characteristic function of the set |v| ≤ R with
M |∇vχR| small.

(3) We need then to establish the dissipativity of B in the spacesW σ,p(m) and
of B := B|E in E. The coercivity of B in these spaces is established in
Lemma 3.8, 3.9 and 3.10. The coercivity of B in E follows also from the
same Lemma since the weight m = µ−1/2 is allowed. The latter could be
proved by adapting the proof of [20, Theorem 1.1]. Or finally it could be
checked more generally that the coercivity of B in E follows from that of
L combined with the strengthened Poincaré inequality as described below.

(4) We prove that the semigroup SB(t) is regularizing in L2(µ−1/2).
(5) We conclude by applying Theorem 1.1.

Remark 3.5. Observe that since we need only applying regularization estimates for
the semigroup of B after a composition by the operator A, it is enough to prove
these regularisation estimates with the usual weight µ−1/2.

3.2. Simplifications in the spatially homogeneous case. Let us start by
pointing out the simplifications in the spatially homogeneous case. First the de-
cay (3.7) in the space E = L2(µ−1/2) follows from the Poincaré inequality:

Lemma 3.6. There exists a constant λP > 0 so that for f ∈ D(Rd) with 〈f〉 = 0

(3.13)

∫

Rd

∣

∣

∣

∣

∇v

(

f

µ

)∣

∣

∣

∣

2

µ(v) dv ≥ λP

∫

Rd

f2 µ−1(v) dv

and moreover for λ < λP , there is ε(λ) > 0 so that
∫

Rd

∣

∣

∣

∣

∇v

(

f

µ

)∣

∣

∣

∣

2

µ(v) dv ≥ λ

∫

Rd

f2 µ−1(v) dv

+ε

∫

Rd

(

f2 |∇vΦ|2 + |∇vf |2
)

µ−1(v) dv.

Proof of Lemma 3.6. The proof of Lemma 3.6 is classical. We refer to [2] for a com-
prehensive proof of (3.13). For the sake of completeness, we present a quantitative
proof of (3.14) as a consequence of (3.13) in the spirit of [21].
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On the one hand, by developing the LHS term, we find

T :=

∫

Rd

∣

∣

∣

∣

∇v

(

f

µ

)∣

∣

∣

∣

2

µ(v) dv =

∫

Rd

|∇vf |2 µ−1 dv −
∫

Rd

f2 (∆vΦ)µ
−1 dv.

On the other hand, a similar computation leads to the following identity

T =

∫

Rd

∣

∣

∣∇v(fµ
−1/2)µ1/2 + (fµ−1/2)∇vµ

1/2
∣

∣

∣

2

µ(v) dv

=

∫

Rd

∣

∣

∣∇v(f µ
−1/2)

∣

∣

∣

2

dv +

∫

Rd

f2

(

1

4
|∇vΦ|2 −

1

2
∆vΦ

)

µ−1 dv.

The two above identities together with (3.13) imply that for any θ ∈ (0, 1)

T ≥ (1− θ)λP

∫

Rd

f2 µ−1 dv + θ

∫

Rd

f2

(

1

16
|∇vΦ|2 −

3

4
∆vΦ

)

µ−1 dv

+
θ

16

∫

Rd

f2 |∇vΦ|2 µ−1 dv +
θ

2

∫

Rd

|∇vf |2 µ−1 dv.

Observe that |∇Φ|2 − 12∆Φ ≥ 0 for v large enough, and we can choose θ > 0 small
enough to conclude the proof. �

We define

(3.14) Af :=MχRf, Bf := Lf −MχRf

where M > 0, χR(v) = χ(v/R), R > 1, and 0 ≤ χ ∈ D(Rd) is such that χ(v) = 1
for any |v| ≤ 1. The dissipativity estimates are proved as in the spatially periodic
case in Lemmata 3.8-3.9-3.10-3.11. Finally the regularisation estimates are proved
by using Nash’s inequality:

Lemma 3.7. For any 1 ≤ p ≤ q ≤ ∞ and for any R,M as in the definition (3.14)
of B, there exists b = b(R,M) > 0 so that for any σ ∈ {−1, 0, 1}

(3.15) ∀ t ∈ [0, 1], ‖SB(t)f‖Wσ,q(m) .
ebt

t
d
2 (

1
p−

1
q )

‖f‖Wσ,p(m)

and for any −1 ≤ σ < s ≤ 1

(3.16) ∀ t ∈ [0, 1], ‖SB(t)f‖Hs(m) .
ebt

ts−σ
‖f‖Hσ(m).

Proof of Lemma 3.7. The proof is classical and is a variation around Nash’s in-
equality, together with Riesz-Thorin interpolation Theorem. We refer for instance
to [10, Lemma 3.9] for some similar results. �

3.3. Dissipativity property of B. We define

(3.17) Af :=MχRf, Bf := Lf −MχRf

where M > 0, χR(v) = χ(v/R), R > 1, and 0 ≤ χ ∈ D(Rd) is such that χ(v) = 1
for any |v| ≤ 1.

Lemma 3.8. For any exponents γ ≥ 1, p ∈ [1,∞], for any weight function m given
by (3.3) or (3.4) and for any a > a0(m, p), we can choose R,M large enough in
the definition (3.17) of B such that the operator B − a is dissipative in Lp(m).
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Proof of Lemma 3.8. We start by establishing an identity satisfied by the operator
L. For any smooth, rapidly decaying and positive function f , we make the splitting
∫

Td×Rd

(L f) fp−1mp dxdv =

∫

Td×Rd

fp−1mp (∆vf + divv(F f)) dxdv =: T1 + T2.

For the second term T2, we use integration by part in v:

T2 =

∫

Td×Rd

fp−1mp divv(F f) dxdv

=

∫

Td×Rd

fp−1mp (divvF f + F · ∇vf) dxdv

=

∫

Td×Rd

fp (divvF )m
p dv − 1

p

∫

Td×Rd

fp divv(F m
p) dxdv

=

∫

Td×Rd

fp
[(

1− 1

p

)

divvF − F · ∇vm

m

]

mp dxdv.

For the first term T1, we use integrations by part in v and the identity m∇m−1+
m−1∇m = 0 in order to get with the notation h = fm

T1 =

∫

Td×Rd

hp−1m∆v

(

hm−1
)

dxdv

= −
∫

Td×Rd

∇v

(

hp−1
)

·
(

∇vh+ hm∇vm
−1
)

dxdv

−
∫

Td×Rd

hp−1∇vm ·
(

∇vhm
−1 + h∇vm

−1
)

dxdv

= −
∫

Td×Rd

∇vh
p−1 · ∇vh dxdv +

(

1− 2

p

)∫

Td×Rd

(∇vh
p · ∇vm)m−1 dxdv

−
∫

Td×Rd

hp
(

∇vm · ∇vm
−1
)

dxdv

= −(p− 1)

∫

Td×Rd

|∇vh|2 hp−2 dxdv

+

∫

Td×Rd

hp
[(

2

p
− 1

)

∇v

(∇vm

m

)

+
|∇vm|2
m2

]

dxdv

= −(p− 1)

∫

Td×Rd

|∇v(fm)|2 (fm)p−2 dxdv

+

∫

Td×Rd

(fm)p
[(

2

p
− 1

)

∆vm

m
+ 2

(

1− 1

p

) |∇vm|2
m2

]

dxdv.

All together, we then have established

(3.18)

∫

Td×Rd

(B f) fp−1mp dxdv

= −(p− 1)

∫

Td×Rd

|∇v(mf)|2 (mf)p−2 dxdv +

∫

Td×Rd

fpmp ψ0
m,p dxdv,

with

ψ0
m,p :=

(

2

p
− 1

)

∆vm

m
+2

(

1− 1

p

) |∇vm|2
m2

+

(

1− 1

p

)

divvF −F · ∇vm

m
−M χR.
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Introducing the notation s := 0, κ := 1 when m = 〈v〉k and k := s when m :=
eκ 〈v〉s , we have

ψ0
m,p =

(

2

p
− 1

)

(

κkd〈v〉s−2 + κk(k − 2)|v|2〈v〉s−4 + κ2s2|v|2〈v〉2s−4
)

+

(

2− 2

p

)

κ2k2 |v|2 〈v〉2s−4 +

(

1− 1

p

)

(

d〈v〉γ−2 + (γ − 2) |v|2 〈v〉γ−4
)

−κk |v|2 〈v〉γ+s−4 −M χR

which gives the asymptotic behaviors

ψ0
m,p(v) ∼

|v|→∞
κ2s2|v|2s−2 − κs |v|γ+s−2 if s > 0

ψ0
m,p(v) ∼

|v|→∞

[(

1− 1

p

)

(d+ γ − 2)− k

]

|v|γ−2 if s = 0.

As a consequence, when m = eκ 〈v〉s , γ ≥ s > 0, γ + s ≥ 2, κ > 0 (with κ < 1/γ
if s = γ) we obtain

ψ0
m,p −−−→

v→∞
κ2 − κ if γ = s = 1,

ψ0
m,p −−−→v→∞

−κs if γ + s = 2, s < γ,

ψ0
m,p −−−→v→∞

−∞ in the other cases.

When γ ≥ 2 and m = 〈v〉k, we get

ψ0
m,p −−−→

v→∞

(

1− 1

p

)

d− k if γ = 2,

ψ0
m,p −−−→v→∞

−∞ if γ > 2 and k >

(

1− 1

p

)

(d+ γ − 2).

Observe that in all cases when γ + s > 2, we have

(3.19) ψ0
m,p ∼

|v|→∞
−θ 〈v〉γ+s−2, for some constant θ > 0.

We have then proved the following estimate: for any a > ap,m, θ′ ∈ (0, a −
a0(p,m)) small enough and p ∈ [1,∞), we then can choose R,M large enough in
such a way that ψ0

m,p(v) ≤ a− θ′ for any v ∈ Rd, and

(3.20)

∫

Td×Rd

(Bf) fp−1mp dxdv ≤ a

∫

Td×Rd

|f |pmp dxdv

− θ′
∫

Td×Rd

|f |pmp 〈v〉γ+s−2 dxdv − (1− p)

∫

Td×Rd

|∇v(fm)|2 (fm)p−2 dxdv.

As a consequence and in particular, throwing out the two last terms, we have

∀ f ∈ Lp(m), ‖SB(t)f‖Lp(m) ≤ eat ‖f‖Lp(m).

Since p 7→ a0(p,m) is increasing, we may pass to the limit as p → ∞ in the above
inequality and we thus conclude that B−a is dissipative in Lp(m) for any p ∈ [1,∞]
and any a > a0(p,m). �
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Lemma 3.9. For any exponents γ ≥ 1, p ∈ [1,∞], for any weight function m given
by (3.3) or (3.4) and for any a > a1(m, p), we can choose R,M large enough in the
definition (3.17) of B such that the operator B − a is hypodissipative in W 1,p(m).

Proof of Lemma 3.9. The decay of∇xSB(t)f = SB(t)∇xf is proved as in Lemma 3.8
since x-derivatives commute with the equation. We hence have

∫

Td×Rd

(Bf) fp−1mp dxdv ≤ a

∫

Td×Rd

|f |pmp dxdv,

∫

Td×Rd

∂xi(Bf) ∂xif |∂xif |p−2mp dxdv ≤ a

∫

Td×Rd

|∂xif |pmp dxdv.

For any i ∈ {1, . . . , d}, we compute

∫

Td×Rd

(∂viL f) ∂vif |∂vif |p−2mp dxdv

=

∫

Td×Rd

∂vif |∂vif |p−2mp



∆v∂vif +

d
∑

j=1

∂vi∂vj (Fj f)



 dxdv

−
∫

Td×Rd

∂xif∂vif |∂vif |p−1mp dxdv =: T1 + T2 + T3.

For the first term T1, proceeding exactly as in the proof of Lemma 3.8, we find

T1 = −(p− 1)

∫

Td×Rd

|∇v(m∂vif)|2 |m∂vif |p−2 dxdv

+

∫

Td×Rd

|∂vif |pmp

{(

2

p
− 1

)

∆vm

m
+ 2

(

1− 1

p

) |∇vm|2
m2

}

dxdv.

For the second term T2, we have

T2 =

∫

Td×Rd

d
∑

j=1

(

∂vi∂vjFj f + ∂viFj ∂vjf
)

∂vif |∂vif |p−2mp dxdv

+

∫

Td×Rd

|∂vif |p
[

(divvF )

(

1− 1

p

)

− F · ∇vm

m

]

mp dxdv.

For the third term T3, we use Young inequality to split it as

T3 ≤ ε−1

∫

Td×Rd

|∂xif |pmp dxdv + ε

∫

Td×Rd

|∂vif |pmp dxdv

where ε will later be chosen small.



STABILITY OF SLOWLY DECAYING SOLUTIONS. . . 21

Using the Young inequality, we get

∑

i

∫

Td×Rd

(∂viB f) ∂vif |∂vif |p−2mp dxdv

=
∑

i

{

T1 + T2 + T3 −
∫

Td×Rd

∂vi(M χR f) ∂vif |∂vif |p−2mp dxdv

}

≤
∫

Td×Rd

|f |p
p′

Z mp +

∫

Td×Rd

ψ1
m,p

(

d
∑

i=1

|∂vif |p
)

mp dxdv

+ε−1

∫

Td×Rd

(

d
∑

i=1

|∂xif |p
)

mp dxdv,

with

Z :=

d
∑

i,j=1

|∂vi∂vjFj |+ (M/R) |(divvχ)R|

and

ψ1
m,p :=

1

p
Z +

1

p′
sup
i

∑

j

|∂viFj |+
1

p
sup
j

∑

i

|∂viFj |+ ψ0
m,p + ε.

On the one hand, the function Z is always negligible with respect to the dominant
term in ψ0

m,p (which is F · ∇v lnm). On the other hand, we compute

sup
i

∑

j

|∂viFj | ≤
(

1 +
√
d (γ − 2)

)

〈v〉γ−2,

sup
j

∑

i

|∂viFj | ≤
(

1 +
√
d (γ − 2)

)

〈v〉γ−2.

We deduce

lim supψ1
m,p ≤ lim sup ψ̃1

m,p

with

ψ̃1
m,p :=

(

1 +
√
d (γ − 2)

)

〈v〉γ−2 + ψ0
m,p + ε.

When m = eκ〈v〉
s

, γ ≥ s > 0, γ + s ≥ 2, γ ≥ 1, κ > 0, we observe that
ψ̃1
m,p ∼v→∞ ψ0

m,p, and when m = 〈v〉k, γ ≥ 2, we observe that

lim sup
v→∞

ψ̃1
m,p ≤ 1 +

(

1− 1

p

)

d− k + ε if γ = 2,

lim sup
v→∞

ψ̃1
m,p = −∞ if γ > 2 and k > 1 +

√
d(γ − 2) +

(

1− 1

p

)

(d+ γ − 2).

Summing up, for any a > a1(p,m), η ∈ (0, a− a1(p,m)) and p ∈ [1,∞), we can
choose R,M large enough and ε small enough in such a way that ψ1

m,p(v) ≤ a− η
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for any v ∈ Rd. We then have established the following estimate

d
∑

i=1

∫

Td×Rd

(∂viBf) ∂vif |∂vif |p−2mp dxdv ≤

≤ C

∫

Td×Rd

|f |pmp 〈v〉γ−2 dxdv + C

∫

Td×Rd

(

d
∑

i=1

|∂xif |p
)

mp dxdv

+ a

∫

Td×Rd

(

d
∑

i=1

|∂vif |p
)

mp dxdv

− θ

2

∫

Td×Rd

(

d
∑

i=1

|∂vif |p
)

mp 〈v〉γ+s−2 dxdv

− (p− 1)
d
∑

i,j=1

∫

Td×Rd

|∂vi((∂jf)m)|2∂vif |∂vif |p−2mp dxdv

where C depends on M and R.
As a consequence, any solution f to the linear evolution equation

∂tf = B f, f(0) = f0 ∈W 1,p(m)

satisfies

d

dt

∫

Td×Rd

(

d
∑

i=1

|∂vif |p
)

mp

p
dxdv ≤ C

∫

Td×Rd

|f |pmp 〈v〉γ−2 dxdv

+ C

∫

Td×Rd

(

d
∑

i=1

|∂xif |p
)

mp dxdv + a

∫

Td×Rd

(

d
∑

i=1

|∂vif |p
)

mp dxdv.

Defining the equivalent norm ‖ · ‖W̃ 1,p(m) thanks to

‖f‖p
W̃ 1,p(m)

:= ‖f‖pLp(m) +

d
∑

i=1

‖∂xif‖pLp(m) + ζ

d
∑

i=1

‖∂vif‖pLp(m)

and choosing ζ > 0 small enough, we conclude thanks to Lemma 3.8 and the
estimate (3.19) that (B − a) is dissipative in W̃ 1,p(m) for any a > a1(p,m) and
p ∈ (1,∞), and therefore in W 1,p(m) for any a > a1(p,m) and p ∈ [1,∞]. �

Lemma 3.10. For any p ∈ [1,∞], for any force F given by (3.2), any weight
function m given by (3.3) or (3.4), and for any a > a−1(m, p), we can choose
R,M large enough in the definition (3.17) of B such that the operator B − a is
hypodissipative in W−1,p(m).

Proof of Lemma 3.10. We split the proof into three steps.

Step 1. We first observe that if

Cf := Af +B · ∇vf +∆v f − v · ∇xf,

and we make the change of unknown h := fm with m = m(v), then the corre-
sponding operator Cmh = m C(m−1h) writes

Cmh := Am h+Bm · ∇vh+∆v h− v · ∇xh
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with

Am :=

[

−∆vm

m
+ 2

|∇vm|2
m2

+A−B · ∇vm

m

]

, Bm :=

[

B − 2
∇vm

m

]

.

We also observe that the dual operator C∗ writes

C∗φ := A∗ φ+B∗ · ∇vφ+∆v φ+ v · ∇xφ

with

A∗ := (A− divv B), B∗ := −B.
Defining

Bf := (divvF −MχR) f + F · ∇vf +∆vf − v · ∇xf

and using the two above identities, we get

(3.21) B∗
mφ =

[

∆vm

m
−MχR − F · ∇vm

m

]

φ−
[

F − 2
∇vm

m

]

·∇vφ+∆vφ+v·∇xφ.

Besides, any solution g to the equation

∂tg = α g + β · ∇vg +∆vg ± v · ∇xg

satisfies at least formally (by performing two integrations by parts) the identity

d

dt

∫

Td×Rd

|g|p
p

dxdv = −(p− 1)

∫

Td×Rd

|∇vg|2 |g|p−2 dxdv

+

∫

Td×Rd

(

α− divvβ

p

)

|g|p dxdv.

As a consequence, for φ solution to the equation

(3.22) ∂tφ = B∗
mφ,

we have
d

dt

∫

Td×Rd

|φ|p
p

dxdv ≤
∫

Td×Rd

|φ|p ψ2
p,m dxdv,

with

(3.23) ψ2
p,m :=

(

1− 2

p

)

∆vm

m
+

1

p
divvF +

2

p

|∇vm|2
m2

− F · ∇vm

m
−MχR.

Recalling that

∆vm

m
∼

v→∞
kκ (d+ s− 2)|v|s−2 + k2κ2 |v|2s−2, divvF ∼

v→∞
(d+ γ − 2) |v|γ−2,

|∇vm|2
m2

∼
v→∞

κ2k2 |v|2s−2, F · ∇vm

m
∼

v→∞
kκ|v|γ+s−2,

we have for an exponential weight function (so that s > 0 and k = s)

ψ2
p,m ∼

v→∞
κ2s2 |v|2s−2 − sκ|v|γ+s−2,

and for a polynomial weight function (so that s = 0), we have

ψ2
p,m ∼

v→∞

(

d+ γ − 2

p
− k

)

|v|γ−2,
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with again ψ2
p,m(v) ∼ −θ〈v〉γ+s−2 for large v when γ + s > 2. In both case, we

conclude that for any a > ap,m

(3.24)
1

p

d

dt
‖φ‖p

Lp(Rd)
≤ a‖φ‖p

Lp(Rd)
− θ′

∥

∥

∥φ〈·〉(γ+s−2)/p
∥

∥

∥

p

Lp(Rd)

for some small θ′, uniformly when p→ ∞.

Step 2. Now, we write

∂t(∂viφ) = ∂viB∗
mφ

= ∆v(∂viφ)−
d
∑

j=1

∂vi

(

Fj − 2
∂vjm

m

)

∂vjφ−
[

F − 2
∇vm

m

]

· ∇v(∂viφ)

+

[

∆vm

m
− F · ∇vm

m
−M χR

]

∂viφ+ ∂vi

[

∆vm

m
− F · ∇vm

m
−M χR

]

φ

−v · ∇x (∂viφ)− ∂xiφ

=: ∆v(∂viφ)−
d
∑

j=1

∂viB
∗
m,j (∂vjφ)−B∗

m · ∇v(∂viφ) +A∗
m (∂viφ) + (∂viA

∗
m)φ

−v · ∇x (∂viφ)− ∂xiφ.

By integration by parts, we deduce

1

p

d

dt

∫

Td×Rd

(

d
∑

i=1

|∂viφ|p
)

dxdv =
d
∑

i=1

∫

Td×Rd

(∂t∂viφ) ∂viφ|∂viφ|p−2 dxdv

≤
∫

Td×Rd

(

A∗
m +

1

p
divvB

∗
m

)

(

d
∑

i=1

|∂viφ|p
)

dxdv

+
d
∑

i=1

∫

Td×Rd

[

(∂viA
∗
m)φ− (∂viB

∗
m,j) ∂vjφ

]

∂viφ|∂viφ|p−2

+

d
∑

i=1

∫

Td×Rd

∂xiφ∂viφ|∂viφ|p−2 dxdv

≤
∫

Td×Rd

(

εp

p
+ ψ3

p,m +
1

p
sup

i=1,...,d
|∂viA∗

m|
) (

d
∑

i=1

|∂viφ|p
)

dxdv

+
1

p′εp′

∫

Td×Rd

(

d
∑

i=1

|∂xiφ|p
)

dxdv +
1

p′

∫

Td×Rd

(

∑

i

|∂viA∗
m|
)

|φ|p dxdv

where

ψ3
p,m := sup

i=1,...,d

d
∑

j=1

|∂vjB∗
m,i|+A∗

m +
1

p
divvB

∗
m.

We have

sup
i=1,...,d

d
∑

j=1

|∂jB∗
m,i| ≤

(

1 + (γ − 2)
√
d
)

|v|γ−2 + 2kκ
(

1 + (s− 2)
√
d
)

|v|s−2,
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as well as

A∗
m(v) +

1

p
divvB

∗
m(v) ∼

(

1− 2

p

)

∆m

m
+

2

p

|∇m|2
m2

+
1

p
divF − F · ∇m

m
∼ ψ0

p,m(v)

and

∂viA
∗
m ∼



























k(γ − 2)(k + d− 3)

when γ ≥ 2 and m(v) = 〈v〉k,
[

2κ2s2 + κ2s2(2s− 4)
]

vi|v|2s−4 − [2κs+ κs(γ + s− 4)] vi|v|γ+s−4

when γ ≥ 1 and m(v) = eκ〈v〉
s

,

which yields

|∂viA∗
m| .W (v), W (v) := 〈v〉max{2s,s+γ}−3.

For an exponential weight function (so that s > 0), we have thus

ψ3
p,m(v) ∼ ψ2

p,m(v) ∼ κ2k2 |v|2s−2 − kκ|v|γ+s−2

and for a polynomial weight function (so that s = 0), we have

lim supψ3
p,m ≤

(

1 + (γ − 2)
√
d+

d+ γ − 2

p
− k
)

|v|γ−2.

In both case, we conclude that for any a > a1(p,m) and for M,R large enough

1

p

d

dt

(

d
∑

i=1

‖∂viφ‖pLp

)

≤ a

(

d
∑

i=1

‖∂viφ‖pLp

)

+ C

(

d
∑

i=1

‖∂xiφ‖pLp

)

+ C‖φ‖pLp(W )

for some C depending on a, uniformly when p→ ∞. Defining again the norm

‖φ‖W̃ 1,p(m) := ‖φ‖Lp(m) +

d
∑

i=1

‖∂xiφ‖Lp(m) + ζ

d
∑

i=1

‖∂viφ‖Lp(m)

for ζ small enough, equivalent to W 1,p(m), and using that W ≤ C〈v〉γ+s−2, we
obtain the following differential inequality

1

p

d

dt
‖φ‖p

W̃ 1,p(m)
≤ a ‖φ‖p

W̃ 1,p(m)

uniformly as p→ ∞. We have thus proved

∀ t ≥ 0, ∀φ ∈W 1,p, ‖SB∗
m
(t)φ‖W 1,p ≤ C eat‖φ‖W 1,p

for some C > 0 (depending on a), uniformly as p→ ∞.

Step 3. For any h ∈W−1,p and φ ∈W 1,p′ , we have

〈SBm(t)h, φ〉 = 〈h,SB∗
m
(t)φ〉

≤ ‖h‖W−1,p ‖SB∗
m
(t)φ‖W 1,p′ ≤ C eat ‖h‖W−1,p ‖φ‖W 1,p′ ,

so that

∀h ∈ W−1,p, ‖SBm(t)h‖W−1,p ≤ C eat ‖h‖W−1,p .

Then, coming back to the operator B, we conclude with

‖SB(t) f‖W−1,p(m) ≤ Cea t ‖f‖W−1,p(m),

so that B − a is hypodissipative in W−1,p(m) for any 1 ≤ p ≤ ∞. �
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We introduce for ζ > 0 the norm

‖ψ‖F∞
:= max

{

‖ψ 〈v〉−1‖L∞ ; sup
i=1,...,d

‖∂xiψ‖L∞ ; ζ sup
i=1,...,d

‖∂viψ‖L∞

}

,

and the associated space

F∞ :=
{

ψ ∈W 1,∞
loc ; ‖ψ‖F∞

<∞
}

and its dual (F∞)′. Observe that

‖f‖L1(〈v〉) := sup
φ∈L∞, ‖φ‖L∞≤1

∫

Td×Rd

〈v〉 f φdxdv

= sup
ψ∈L∞

loc
;‖ψ〈v〉−1‖L∞≤1

∫

Td×Rd

f ψ dxdv,

so that L1(〈v〉) ⊂ (F∞)′.

Lemma 3.11. Assume that γ ∈ [2, 2 + 1/(d− 1)), then for any

a > ãγ := (d− 1)(γ − 2)− 1,

(observe that ãγ < 0 from the assumptions), we can choose R,M large enough in
the definition (3.17) of B such that the operator B − a is dissipative in (F∞)′.

Proof of Lemma 3.11. The proof is an adaptation of the proof of Lemma 3.10, and
we sketch it briefly, writing only the needed formal a priori estimates.

Step 1. For any ψ ∈ L∞
loc, we denote by ψt := SB∗(t)ψ the solution (when it

exists) to the dual evolution equation

(3.25) ∂tψt = B∗ψt, ψ0 = ψ,

with

B∗ψ := ∆vψ − F · ∇vψ −M χRψ + v · ∇xψ.

Introducing the new unknown φ := ψ〈v〉−1, we observe that when ψt is a solution
to (3.25), then the associated function φt is a solution to the rescaled equation

(3.26) ∂tφt = 〈v〉−1∂tψt = 〈v〉−1 B∗(〈v〉φt) =: B∗
〈·〉φt, ψ0 = ψ,

where B∗
〈·〉 is defined by (3.21).

Step 2. We calculate

∂t∂viψ = ∂viB∗ψ = ∆v∂viψ − (∂viFj) ∂vjψ − Fj ∂vi∂vjψ

−M χR ∂viψ +M (∂viχR) ψ + v · ∇x (∂viψ) + ∂xiψ,

with Fj ∼ vj〈v〉γ−2 and ∂viFj ∼ δij 〈v〉γ−2 + (γ − 2) vivj 〈v〉γ−4. We deduce

1

p

d

dt

∫

Td×Rd

(

d
∑

i=1

|∂viψ|p
)

dxdv

≤
∫

Td×Rd

[

−
(

δij 〈v〉γ−2 + (γ − 2) vivj 〈v〉γ−4
)

∂vjψ − vj〈v〉γ−2 ∂vj∂viψ

−M χR ∂viψ +M (∂viχR) ψ + ∂xiψ
]

∂viψ|∂viψ|p−2 dxdv =: T1 + · · ·+ T5,
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with the convention of summation of repeated indices. We compute

T1 = −
∫

Td×Rd

〈v〉γ−2

(

d
∑

i=1

|∂viψ|p
)

dxdv

T2 ≤ −
d
∑

i=1

(γ − 2)

∫

Td×Rd

〈v〉γ−4 |vi|2 |∂viψ|p dxdv

+
∑

i6=j

(γ − 2)

∫

Td×Rd

|v|2〈v〉γ−4

(

1

p
|∂vjψ|p +

1

p′
|∂viψ|p

)

dxdv

≤ (d− 1)(γ − 2)

∫

Td×Rd

|v|2〈v〉γ−4

(

d
∑

i=1

|∂viψ|p
)

dxdv

T3 = −1

p

d
∑

i,j=1

∫

Td×Rd

vj〈v〉γ−2 ∂vj |∂viψ|p dxdv

=
1

p

d
∑

i,j=1

∫

Td×Rd

(

〈v〉γ−2 + (γ − 2) v2i 〈v〉γ−4
)

|∂viψ|p dxdv

≤ d

p
(γ − 1)

∫

Td×Rd

〈v〉γ−2

(

d
∑

i=1

|∂viψ|p
)

dxdv

and

T4 =

∫

Td×Rd

[

−M χR ∂viψ +M [(∂viχ)(v/R)]
〈v〉
R

ψ

〈v〉

]

∂viψ|∂viψ|p−2 dxdv

≤ CM ‖ψ〈v〉−1‖Lp

(

d
∑

i=1

‖∂viψ‖p−1
Lp

)

and

T5 ≤ εp

p

∫

Td×Rd

(

d
∑

i=1

|∂viψ|p
)

dxdv +
1

p′εp′

∫

Td×Rd

(

d
∑

i=1

|∂xiψ|p
)

dxdv.

All in all, we have proved

1

p

d

dt

∫

Td×Rd

(

d
∑

i=1

|∂viψ|p
)

dxdv

≤
[

d(γ − 1)

p
+
εp

p
+ (d− 1)(γ − 2)− 1

]∫

Td×Rd

(

d
∑

i=1

|∂viψ|p
)

dxdv

+
1

p′εp′

∫

Td×Rd

(

d
∑

i=1

|∂xiψ|p
)

dxdv + CM
∥

∥ψ〈v〉−1
∥

∥

Lp

(

d
∑

i=1

‖∂viψ‖p−1
Lp

)

.

We recall that any solution φt of (3.26) satisfies (3.24). Fixing a > (d − 1)(γ −
2)− 1, next ζ0 > 0 so that a− ζ0 > (d − 1)(γ − 2)− 1, and then fixing M and R
so that (3.24) holds with the choice a− ζ0, M , R, we have for any ζ ∈ (0, ζ0) and
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K ≥ 1 the differential inequality

1

p

d

dt

[

‖φ‖pLp +

d
∑

i=1

‖∂xiφ‖pLp + ζ

d
∑

i=1

‖∂viψ‖pLp

]

≤ (a−ζ0)
(

‖φ‖pLp +

d
∑

i=1

‖∂xiφ‖pLp

)

+ ζ

[

(

d(γ − 1)

p
+ (d− 1)(γ − 2)− 1

)

(

d
∑

i=1

‖∂viψ‖pLp

)

+ CM
Kp

p
‖φ‖pLp

+
CM

K

(

d
∑

i=1

‖∂xiψ‖pLp

)]

.

Taking K, p large enough and then ζ small enough, we deduce

1

p

d

dt

[

‖φ‖pLp +

d
∑

i=1

‖∂xiφ‖pLp + ζ

d
∑

i=1

‖∂viψ‖pLp

]

≤ a

[

‖φ‖pLp +

d
∑

i=1

‖∂xiφ‖pLp + ζ

d
∑

i=1

‖∂viψ‖pLp

]

uniformly for p large. As a consequence, we get by Gronwall lemma and then
passing to the limit p→ ∞

‖SB∗(t)ψ‖F∞
= ‖ψt‖F∞

≤ eat ‖ψ‖F∞
.

We conclude the proof by duality. �

3.4. Regularisation in the spatially periodic case. We prove a regularization
property of the kinetic Fokker-Planck equation related to the theory of hypoellip-
ticity. It can be considered well-known and “folklore”, but we include a sketch of
proof for clarity and in order to make explicit the estimate. The argument follows
closely the methods and discussions in [15] and [24, Section A.21].

Lemma 3.12. The semigroup SB satisfies (with no claim of optimality on the
exponents) first (gain of derivative in L2 spaces)

(1) ∀ t ∈ [0, 1], ∀ k ∈ N
∗















‖SB(t)f‖Hk(µ−1/2) .
1

t3k/2
‖f‖L2(µ−1/2),

‖SB(t)f‖L2(µ−1/2) .
1

t3k/2
‖f‖H−k(µ−1/2).

second (gain of integrability at order zero)

(2) ∀ t ∈ [0, 1],















‖SB(t)f‖L2(µ−1/2) .
1

t(5d+1)/2
‖f‖L1(µ−1/2),

‖SB(t)f‖L∞(µ−1/2) .
1

t(5d+1)/2
‖f‖L2(µ−1/2)

third (gain of integrability at order one)

(3) ∀ t ∈ [0, 1],















‖∇SB(t)f‖L2(µ−1/2) .
1

t(5d+1)/2
‖∇f‖L1(µ−1/2),

‖∇SB(t)f‖L∞(µ−1/2) .
1

t(5d+1)/2
‖∇f‖L2(µ−1/2)
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fourth (gain of integrability at ordre minus one)

(4) ∀ t ∈ [0, 1],















‖SB(t)f‖W−1,∞(µ−1/2) .
1

t(5d+1)/2
‖f‖W−1,2(µ−1/2),

‖SB(t)f‖W−1,2(µ−1/2) .
1

t(5d+1)/2
‖f‖W−1,1(µ−1/2).

Remark 3.13. We have not been able to find the precise form of these regularisation
estimates in the literature, however regularisation estimates for kinetic Fokker-
Planck equations are well-known, see for instance [15], [24, Appendix A.21.2] on
the analysis side and [26, 11] on the probability side.

Proof of Lemma 3.12. We only sketch the proof which is similar to the arguments
developed in [15], see also [24, A.21.2 Variants], and in Lemma 3.7.

Step 1. Proof of inequality (1). We only prove the case k = 1, higher exponents k
are obtained by differentiating the equation and applying the same argument. We
write down the energy estimates for the solution f , its first derivatives, and the
product of the first derivatives

d

dt
‖f‖2L2(µ−1/2) ≤−

∫

Td×Rd

|∇v(f/µ)|2 µ dxdv

d

dt
‖∂xif‖2L2(µ−1/2) ≤−

∫

Td×Rd

|∇v(∂xif/µ)|2 µ dxdv

d

dt
‖∂vif‖2L2(µ−1/2) ≤−

∫

Td×Rd

|∇v(∂vif/µ)|2 µ dxdv

−
∫

Td×Rd

∂vif∂xifµ
−1 dxdv +

∫

Td×Rd

|∂vif |2 µ−1 dxdv

+
M

2

∫

Td×Rd

∣

∣∂2viχR
∣

∣ |f |2µ−1 dxdv

d

dt

∫

Td×Rd

∂xif∂vifµ
−1 dxdv ≤−

∫

Td×Rd

|∇xf |2 µ−1 dxdv

− 2

∫

Td×Rd

∇v (∂vif/µ) · ∇v (∂xif/µ)µ dxdv

+ 2M

∫

Td×Rd

χR∂xf∂vfµ
−1 dxdv

+M

∫

Td×Rd

|∂viχR| |f ||∂xf |µ−1 dxdv.

Observe also that
∫

Td×Rd

|∇v(g/µ)|2 µ dxdv =

∫

Td×Rd

|∇vg|2 µ−1 dxdv+

∫

Td×Rd

|g|2
( |v|2

2
− d

)

µ−1 dxdv.

Define the energy functional

F(t, ft) := A‖ft‖2L2(µ−1/2) + at‖∇vft‖2L2(µ−1/2)

+ 2ct2〈∇vft,∇xft〉L2(µ−1/2) + bt3‖∇xft‖2L2(µ−1/2)
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with a, b, c > 0, c <
√
ab (positive definite) and A large enough, and compute from

above

d

dt
F(t, ft) ≤ −A

∫

Td×Rd

|∇v(ft/µ)|2 µ dxdv + a‖∇vft‖2L2(µ−1/2)

+ 4ct〈∇vft,∇xft〉L2(µ−1/2) + 3bt2‖∇xft‖2L2(µ−1/2)

− bt3
d
∑

i=1

∫

Td×Rd

|∇v(∂xif/µ)|2 µ dxdv − at

d
∑

i=1

∫

Td×Rd

|∇v(∂vif/µ)|2 µ dxdv

− at
d
∑

i=1

∫

Td×Rd

∂vif∂xifµ
−1 dxdv + at

∫

Td×Rd

|∇vf |2 µ−1 dxdv

+
atM

2

d
∑

i=1

∫

Td×Rd

∣

∣∂2viχR
∣

∣ |f |2µ−1 dxdv − 2ct2
∫

Td×Rd

|∇xf |2 µ−1 dxdv

− 4ct2
d
∑

i=1

∫

Td×Rd

∇v (∂vif/µ) · ∇v (∂xif/µ)µ dxdv

+4cMt2
d
∑

i=1

∫

Td×Rd

χR∂xif∂vifµ
−1 dxdv+2cMt2

d
∑

i=1

∫

Td×Rd

|∂viχR| |f ||∂xf |µ−1 dxdv.

which implies when the compatible conditions c <
√
ab, 2c > 3b and A >> a, b, c,M

are satisfied:

d

dt
F(t, f) ≤ −K

(

‖∇vft‖2L2(µ−1/2) + t2‖∇xft‖2L2(µ−1/2)

)

+ C

∫

Td×Rd

f2µ−1 dxdv

for some constants K,C > 0. Since the L2(µ−1/2) norm is decreasing over t ∈ [0, 1]
we deduce that

∀ t ∈ [0, 1], F(t, ft) ≤ F(0, f0) + C‖f0‖L2(µ−1/2) . F(0, f0)

which yields the first part of (1) by simple iteration of this gain.
For the second part of (1) we first establish in a similar manner as above

‖SB∗(t)f‖Hk(µ−1/2) .
1

t3k/2
‖f‖L2(µ−1/2)

which means
∥

∥Sµ−1/2B∗(µ1/2·)(t)h
∥

∥

Hk
.

1

t3k/2
‖h‖L2

and by duality
∥

∥Sµ−1/2B(µ1/2·)(t)h
∥

∥

L2
.

1

t3k/2
‖h‖H−k

which means (according to our definition of weighted dual spaces)

‖SB(t)f‖L2(µ−1/2) .
1

t3k/2
‖f‖H−k(µ−1/2).

Proof of inequality (2). Since the norms we consider are propagated by the flow
it is no loss of generality to reduce to t ∈ [0, η], 0 < η << 1. We introduce the
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quantity

G(t, f) := B‖f‖2L1(µ−1/2) + tZF̄(t, ft)

F̄(t, ft) :=
(

A‖f‖2L2(µ−1/2) + at2‖∇vf‖2L2(µ−1/2)

+2ct4〈∇xf,∇vf〉L2(µ−1/2) + bt6‖∇xf‖2L2(µ−1/2)

)

with B >> A >> a, b, c and c <
√
ab and Z = (d+ 3)/2.

A similar calculation as above yields, for well-chosen A, a, b, c > 0:

d

dt
F̄(t, ft) ≤ −K

(

‖∇vft‖2L2(µ−1/2) + t4‖∇xft‖2L2(µ−1/2)

)

+ C

∫

Td×Rd

f2µ−1 dxdv

and we deduce

d

dt
G(t, f) ≤ dB

2
‖f‖2L1(µ−1/2) + ZtZ−1F̄(t, ft)

−KtZ
(

‖∇vft‖2L2(µ−1/2) + t4‖∇xft‖2L2(µ−1/2)

)

+ CtZ
∫

Td×Rd

f2µ−1 dxdv.

We choose η small enough so that ZtZ+1 << KtZ , and deduce

d

dt
G(t, f) ≤ dB

2
‖f‖2L1(µ−1/2) −

K

2
tZ
(

‖∇vft‖2L2(µ−1/2) + t4‖∇xft‖2L2(µ−1/2)

)

+ C′tZ−1

∫

Td×Rd

f2µ−1 dxdv.

for some other constant C′ > 0.
The Nash inequality implies

(3.27)
∫

Td×Rd

f2µ−1 dxdv .d

(

∫

Td×Rd

|f |µ−1/2 dxdv
)

4
2d+2

(

∫

Td×Rd

|∇x,v(fµ
−1/2)|2 dxdv

)
2d

2d+2

and using the Young inequality we have

‖f‖2L2(µ−1/2) ≤ Cε,dt
−5d ‖f‖2L1(µ−1/2) + εt5 ‖∇x,vf‖2L2(µ−1/2),

for ε small and Cε,d depending on ε and the dimension d. Taking ε small we deduce

d

dt
G(t, f) ≤ dB

2
‖f‖2L1(µ−1/2) + C′′tZ−1−5d‖f‖2L1(µ−1/2)

for some constant C′′ > 0. Finally choosing Z = 5d+ 1 we conclude that

∀ t ∈ [0, η], G(t, ft) ≤ G(0, f0) + C‖f0‖2L1(µ−1/2) . G(0, f0)
which yields the first part of (2). The second part can be proved either by duality,
or by using the inequality (1) with k = d and Sobolev embedding (the constant is
then slightly better: t−3d/2 which has no consequence for the rest of the paper).

Proof of inequality (3). The proof of the first part is similar to the proof of the
first part of inequality (2) after differentiating the equation to get

∂t∂xif + v · ∇x∂xif = ∇v · (∇v∂xif + v∂xif)

∂t∂vif + v · ∇x∂vif = ∇v · (∇v∂vif + v∂vif)− ∂xif + ∂vif

(observe that it involves no term of order zero derivative). The second part is
proved by applying inequality (1) to the differentiated equation for k = d together
with Sobolev embedding.
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Proof of inequality (4). It follows from (3) by duality. �

Corollary 3.14. For any a > a0, there exist n ≥ 1 and a constant such that for
any spaces E and E of the type W σ,p(m) as defined above, there holds

(3.28) ∀ t ≥ 0, ‖Tn(t)f‖E . eat ‖f‖E .

Proof of Corollary 3.14. The proof follows from the application of Lemma 2.4 and
Lemma 3.12 that implies that ASB(t)A maps any W σ,p(m) to Hd(µ−1/2) with
some constant Ct−Θ with some Θ > 0. �

3.5. End of the proof of Theorem 3.1. In the cases σ ≥ 0, 1 ≤ p <∞ and σ =
−1, 1 < p ≤ ∞ estimate (3.7) is an immediate consequence of Theorem 1.1 together
with Lemma 3.6, Lemma 3.4, Lemma 3.8, Lemma 3.9, Lemma 3.10, Lemma 3.7
and Lemma 2.4.

In the case σ = 0, p = ∞ so that L∞(m) is not dense in L2(µ−1/2) (for any
choice of the weight m), we remark that for any ε > 0 (small enough) there exists
pε and mε so that L∞(m) ⊂ Lp(mε) for any p ≥ pε, so that estimate (3.7) holds in
Lp(mε), then in L∞(mε) by passing to the limit p → ∞ and finally in L∞(m) by
passing to the limit ε→ 0. We handle the two last cases in (3.7) in a similar way.

In order to prove (3.9), we first observe that combining Theorem 1.1 together
with Lemma 3.6, Lemma 3.4, Lemma 3.11 and Lemma 2.4, we have established

‖SL(t)f0 − SL(t)g0‖(F∞)′ ≤ Ca e
at ‖f0 − g0‖(F∞)′ .

Next, for any two probability measures f, g with bounded first moment, we have

W1(f, g) = sup
‖∇φ‖L∞≤1

∫

Rd

(f − g)φdv

= sup
‖∇φ‖L∞≤1

∫

Rd

(f − g) (φ− φ(0)) dv

= sup
max{‖〈v〉−1 ψ‖L∞ ,‖∇ψ‖L∞}≤1

∫

Rd

(f − g)ψ dv,

where we have used the Kantorovich-Rubinstein theorem (see for instance [23, The-
orem 1.14]) in the first line, the mass condition in the second line and the change of
test functions ψ := φ−φ(0) on the last line. As a consequence the W1 distance and
the distance associated to the duality norm ‖ · ‖(F∞)′ are equivalent, which ends
the proof.

4. The kinetic Fokker-Planck equation with potential confinement

4.1. Main result. Consider the kinetic Fokker-Planck equation in the whole space
with a space confinement potential

(4.1)



















∂tf = Lf := Cf + T f,

Cf := ∇v · (∇vf + v f) ,

T f := −v · ∇xf +G · ∇vf,
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on the density f = f(t, x, v), t ≥ 0, x ∈ Rd, v ∈ Rd, where the (exterior) force field
G = G(x) ∈ Rd is given by

(4.2) G(x) = ∇xΨ(x) := x 〈x〉β−2 with ∀ |x| ≥ R1, Ψ(x) :=
1

β
〈x〉β +Ψ0

for some constants R1 > 0 and β ≥ 1.
The unique stationary state of the kinetic Fokker-Planck equation (4.1) is

µ(x, v) = exp(−Ψ(x)− |v|2/2),
with the choice of the constant Ψ0 ∈ R so that µ is a probability measure.

We define the Hamiltonian function

H(x, v) := 1 + Ψ(x) +
|v|2
2
,

and we consider the following assumptions:

Assumptions on the functional spaces

Polynomial weights: For β ≥ 2 and p ∈ [1,+∞], we introduce the weight functions

m := Hk with k > k(d, p) for some explicit k(d, p) > d/p′ from the proofs.

Stretched exponential weights: For any β ≥ 1 and p ∈ [1,+∞], we introduce the

weight functions m := eκH
s

with s ∈ (0, 1) and κ > 0.

Definition of the spaces: We then define onRd×Rd the associated weighted Lebesgue
spaces E := Lp(m), p ∈ [1,+∞].

For any f ∈ E , the terms 〈f〉, 〈〈f〉〉 and Π⊥
1 f are defined as before.

Theorem 4.1. Consider one of the spaces E defined above. Then there exists
a = a(E) < 0 such that for any f0, g0 ∈ E with same mass, the associated solutions
ft, gt of the kinetic Fokker-Planck equation (4.1) satisfy

‖ft − gt‖E ≤ Ca e
at ‖f0 − g0‖E ,

which implies the relaxation to equilibrium

‖ft − 〈〈f0〉〉µ‖E ≤ Ca e
at ‖f0 − 〈〈f0〉〉µ‖E ,

for some constructive constant Ca > 0.

Remarks 4.2. (1) Such a semigroup spectral gap result for the kinetic Fokker-
Planck equation in the whole space with a confining potential (and the
same harmonic potential for the friction force acting on velocities) has been
proved in the Sobolev spaces Hσ(µ−1/2), σ ∈ N

∗ in [14, 16, 24] and in
the Lebesgue space L2(µ−1/2) in [8, 9] (inspiring from [14]). These last
references provide also constructive estimates.

(2) We did not include it in the statement for the sake of clarity but our method
of proof can recover the semigroup decay estimate in L2(µ−1/2) as a con-
sequence of the known decay estimate in H1(µ−1/2) proved in [14, 16, 24],
which provides an alternative argument to those in [8, 9].

(3) In the case of a polynomial weight, the sufficient condition k > k(d, p) can
be more precise: in our calculation we find k(d, p) > d/p′ + 3/2.

(4) We believe that, by combining the new estimates in this section with the
strategy of the previous section, Theorem 4.1 can be extended to Sobolev
space W σ,p(m) for σ = ±1 and a polynomial weight with a condition k >
k(d, p) for some k(d, p) > d/p′ + 3/2 greater or equal to the one in (3).



34 S. MISCHLER, C. MOUHOT

(5) We are not able at now to prove the exponential decay in Wasserstein
distance, as for the torus case. The reason is that the minimal polynomial
confinement (the condition on k) we can afford in the theorem is too strong
for working in the space of probability measures with first moment bounded.
More precisely, the condition on k in the (L∞

k ∩ Ẇ 1,∞)′ decay estimate is
no better than the one discussed above for p = 1, i.e. k > 3/2, and k = 1
is required for this dual norm to be equivalent to the W1 distance.

The strategy of the proof follows the same structure as in the previous section,
and we start from the following H1 spectral gap estimate that has been established
in [24] for potentials Ψ under our assumptions, with constructive proof. See also
[7, 16, 13] for previous results in that direction.

Theorem 4.3. ([24, Theorem 35]) The result in Theorem 4.1 is true in the Hilbert
space H1(µ−1/2), and satisfy quantitative hypodissipativity estimate for the equiva-
lent norm
(

‖f‖2L2(µ−1/2) + a‖∇xf‖2L2(µ−1/2) + b‖∇vf‖2L2(µ−1/2) + 2c〈∇xf,∇vf〉L2(µ−1/2)

)1/2

for appropriate choice of a, b, c > 0 with c <
√
ab.

4.2. Dissipativity property of B. We define A and B as follows:

(4.3) Af :=MχRf, Bf := Cf + T f −MχRf

where M > 0, χR(x, v) = χ(H(x, v)/R), R > 1, and 0 ≤ χ ∈ C∞
c (Rd × Rd) is such

that χ(x, v) = 1 for any |x|2 + |v|2 ≤ 1.
We start with Lebesgue spaces:

Lemma 4.4. We have:

• (Polynomial weights) For any β ≥ 2, p ∈ [1,+∞] and k > k(d, p) for some
k(d, p) > d/p′ from the proof, there is a < 0 such that the operator B− a is
dissipative in the space Lp(Hk).

• (Exponential weights) For any β ≥ 1, p ∈ [1,∞] and s ∈ (0, 1] (with the
extra condition κ < 1 in the case s = 1), there is a < 0 such that the
operator B − a is dissipative in the space Lp(eκH

s

).

Proof of Lemma 4.4. The proofs in the two cases will be similar: we give full details
for the first case and less for the second case.

Step 1: Polynomial weight. Let us first consider β ≥ 2 and m(x, v) = Hk, and the
following weight multiplier:

W (x, v) := mw, w :=

(

1 +
1

2

x · v
Hα

)

, Hα := 1 + α
〈x〉β
β

+
1

α

|v|2
2
.

Observe that (x · v) ≤ Hα by Young’s inequality (for any α > 0 and β ≥ 2), which
proves that w ∈ [1/2, 3/2] and (1/2)m ≤W ≤ (3/2)m. We then consider a solution
to the equation ∂tf = Bf and compute

1

p

d

dt

∫

Rd×Rd

fpW p dxdv =

∫

Rd×Rd

fp−1CfW p dxdv

+

∫

Rd×Rd

fp−1T fW p dxdv −M

∫

Rd×Rd

fpW p χR dxdv.
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On the one hand, we recall the following computation picked up from the proof of
Lemma 3.8

∫

Rd×Rd

fp−1CfW p dxdv :=

∫

Rd×Rd

f |f |p−2 (Cf)W p dxdv

= −(p− 1)

∫

Rd×Rd

|∇v(Wf)|2 |Wf |p−2 dxdv

+

∫

Rd×Rd

|f |pW p

[

2

p′
|∇vW |2
W 2

+

(

2

p
− 1

)

∆vW

W
+
d

p′
− v · ∇vW

W

]

dxdv

where p′ = p/(p− 1), and we compute

∇vm

m
=
kv

H
,

∆vm

m
=
kd

H
+
k(k − 1)|v|2

H2
,

∇vW

W
=

∇vm

m
+

∇vw

w
,

v · ∇vW

W
=
v · ∇vm

m
+
v · ∇vw

w
,

|∇vW |2
W 2

≤ 2
|∇vm|2
m2

+ 2
|∇vw|2
w2

.

We deduce
[

2

p′
|∇vW |2
W 2

+

(

2

p
− 1

)

∆vW

W
+
d

p′
− v · ∇vW

W

]

≤
[

4

p′
|∇vm|2
m2

+

(

2

p
− 1

)

∆vm

m
+
d

p′
− v · ∇vm

m

]

+

[

4

p′
|∇vw|2
w2

+

(

2

p
− 1

)

∆vw

w
− v · ∇vw

w

]

+ 2

(

2

p
− 1

) ∇vm · ∇vw

mw

≤ d

p′
+

C1√
H

− 1

2

(x · v)
Hα

+
1

2α

(x · v)|v|2
H2
α

− k
|v|2
H

for some constant C1 > 0. The RHS is not negative at infinity, where infinity means
H >> 1. This explains the need for the additional correction term w in W . We
compute
∫

Rd×Rd

fp−1T fW p dxdv :=
1

p

∫

Rd×Rd

T (fp)W p dxdv

:= −
∫

Rd×Rd

fpW p−1TW dxdv := −
∫

Rd×Rd

fpW p T w
w

dxdv

where we have used T H = 0. We have then

−T w
w

≤ C2 +
C3

α2

|v|2
H

− 1

4

〈x〉β
Hα

by differentiating and using Young inequality and the form of the potential Ψ(x)
at infinity, for some constants C2, C3 > 0. We deduce by taking R,M large enough
that for any η > 0 as small as wanted

1

p

d

dt

∫

Rd×Rd

fpW p dxdv

≤
∫

Rd×Rd

fpW p

[

C(d, p) +

(

C3

α2
− k

) |v|2
H

− 1

4

〈x〉β
Hα

−MχR

]

dxdv
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where we have used w ≈ 1. Finally we restrict to H ≥ R with R large enough,
and observe that we have either |v|2/2 ≥ H/3 or |v|2/2 ≤ H/3, together with
|v|2/2 + 〈x〉β/β ≥ 2H/3. In the first case

C(d, p) +

(

C3

α2
− k

) |v|2
H

≤ C(d, p) +
2

3

(

C3

α2
− k

)

≤ −k
2

for k large enough. In the second case we only have (C3α
−2 − k)|v|2/H ≤ 0 but we

can use the second negative term since now 〈x〉β/β ≥ H/3 and H−1
α ≥ 1/(αH):

C(d, p) − 1

4

〈x〉β
Hα

≤ C(d, p) − β

12α
≤ − β

24α

for α small enough. All in all we deduce finally, for k large enough and α small
enough (depending on p and d) and M large enough:

1

p

d

dt

∫

Rd×Rd

fpW p dxdv ≤ −K
∫

Rd×Rd

fpW p dxdv

for some constant K > 0, which concludes the proof.

Step 2: (Stretched) exponential weight. Let us now consider β ≥ 1, s ∈ (0, 1], κ > 0
(with κ < 1 in the case s = 1) and m(x, v) = eκH

s

, and the corrected weight:

W (x, v) := mw, w :=

(

1 +
1

2

x · v
Hα

)

, Hα := 1 + α
〈x〉β
β

+
1

α

|v|2
2

which satisfies again W ≈ m. We compute as before
∫

Rd×Rd

fp−1CfW p dxdv = −(p− 1)

∫

Rd×Rd

|∇v(Wf)|2 |Wf |p−2 dxdv

+

∫

Rd×Rd

|f |pW p

[ |∇vW |2
W 2

+
d

p′
− v · ∇vW

m

]

dxdv

where p′ = p/(p− 1), and we compute again
[

2

p′
|∇vW |2
W 2

+

(

2

p
− 1

)

∆vW

W
+
d

p′
− v · ∇vW

W

]

≤
[

4

p′
|∇vm|2
m2

+

(

2

p
− 1

)

∆vm

m
+
d

p′
− v · ∇vm

m

]

+

[

4

p′
|∇vw|2
w2

+

(

2

p
− 1

)

∆vw

w
− v · ∇vw

w

]

+ 2

(

2

p
− 1

) ∇vm · ∇vw

mw

with
[

4

p′
|∇vm|2
m2

+

(

2

p
− 1

)

∆vm

m
+
d

p′
− v · ∇vm

m

]

≤ d

p′
+

1

H

[

−κs|v|2Hs + κ2s2|v|2H2s−1
]

[

4

p′
|∇vw|2
w2

+

(

2

p
− 1

)

∆vw

w
− v · ∇vw

w

]

+ 2

(

2

p
− 1

) ∇vm · ∇vw

mw

≤ C1√
H

− 1

2

(x · v)
Hα

+
1

2α

(x · v)|v|2
H2
α

for some constant C1 > 0. Since s ∈ (0, 1) we have 2s − 1 < s and the term
κ2s2|v|2H2s−1 is dominated by the previous negative term for M large enough.
Then we have

−T w
w

≤ C2 − C3
〈x〉β−2|x|2

Hα
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for two other constants C2, C3 > 0. We deduce that

1

p

d

dt

∫

Rd×Rd

fpW p dxdv

≤
∫

Rd×Rd

fpW p

[

C(d, p)− κs
|v|2Hs

H
− C3

〈x〉β−2|x|2
Hα

−MχR

]

dxdv

for some constant C(d, p) > 0. Finally we restrict to H ≥ R with R large enough,
and observe that we have either |v|2/2 ≥ H/3 or |v|2/2 ≤ H/3, together with
|v|2/2 + 〈x〉β/β ≥ 2H/3. In the first case

C(d, p)− κs
|v|2Hs

H
≤ C(d, p)− κsRs

|v|2
H

≤ C(d, p)− κsRs

3
≤ −κsR

s

6

for R large enough. In the second case we use the second negative term since now
〈x〉β/β ≥ H/3 and H−1

α ≥ 1/(αH) and |x| ≥ (H/3)1/β ≥ (R/3)1/β is non-zero:

C(d, p)− C3
〈x〉β−2|x|2

Hα
≤ C(d, p)− C3

2

〈x〉β
Hα

≤ C(d, p)− C3β

6α
≤ −C3β

12α

for α small enough. All in all we deduce finally, for R large enough and α small
enough (depending on p and d) and M large enough:

1

p

d

dt

∫

Rd×Rd

fpW p dxdv ≤ −K
∫

Rd×Rd

fpW p dxdv

for some constant K > 0, which concludes the proof. �

Then, by arguing exactly similarly as in Section 3 and using the previous cal-
culations for the differentiated equation and the adjoint operators, we obtain the
following lemma. We omit the proof in order not the repeat closely related technical
estimates.

Lemma 4.5. We have:

• (Polynomial weights) For any β ≥ 2, p ∈ [1,+∞] and k > k(d, p) for some
k(d, p) > d/p′ from the proof, there is a < 0 such that the operator B− a is
dissipative in the spaces W 1,p(Hk) and W−1,p(Hk).

• (Exponential weights) For any β ≥ 1, p ∈ [1,∞] and s ∈ (0, 1] (with the
extra condition κ < 1 in the case s = 1), there is a < 0 such that the
operator B − a is dissipative in the spaces W 1,p(eκH

s

) and W−1,p(eκH
s

).

Remark 4.6. Observe that the previous lemma implies the hypodissipativity of B
in H1(µ−1/2) (as needed in the application of our abstract theorem to this Fokker-
Planck equation with confinement). This result could also be obtained easily by
slightly modifying the proof of [24, Theorem 35]. It is also possible to deduce
this hypodissipativity from that of L together with estimates quantifying the gain
of decay at infinity in x and v. Since we could prove the latter estimates using
the ideas developed in this paper, and they seem of independent interest and not
available in the literature, we include them in a short appendix.

4.3. Regularisation estimates. We prove a regularization property of the kinetic
Fokker-Planck equation with a confining potential. It is again related to the theory
of hypoellipticity, but is slightly less well-known due to the use of weighted norms
defined in the whole space. The argument follows the same method as before.
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Lemma 4.7. The semigroup SB satisfies similar inequalities as in Lemma 3.12,
where now µ = e−H is the (x, v)-dependent equilibrium, and ℓ is a number large
enough (note the additional Hℓ weight in L2 and L1 norms)

(1) ∀ t ∈ [0, 1], ∀ k ∈ N
∗















‖SB(t)f‖Hk(µ−1/2) .
1

t3k/2
‖f‖L2(Hℓ/2µ−1/2),

‖SB(t)f‖L2(H−ℓ/2µ−1/2) .
1

t3k/2
‖f‖H−k(µ−1/2).

second (gain of integrability at order zero)

(2) ∀ t ∈ [0, 1],















‖SB(t)f‖L2(µ−1/2) .
1

t(5d+1)/2
‖f‖L1(Hℓµ−1/2),

‖SB(t)f‖L∞(H−ℓµ−1/2) .
1

t(5d+1)/2
‖f‖L2(µ−1/2)

third (gain of integrability at order one)

(3) ∀ t ∈ [0, 1],















‖∇SB(t)f‖L2(µ−1/2) .
1

t(5d+1)/2
‖∇f‖L1(Hℓµ−1/2),

‖∇SB(t)f‖L∞(H−ℓµ−1/2) .
1

t(5d+1)/2
‖∇f‖L2(µ−1/2)

fourth (gain of integrability at ordre minus one)

(4) ∀ t ∈ [0, 1],















‖SB(t)f‖W−1,∞(H−ℓµ−1/2) .
1

t(5d+1)/2
‖f‖W−1,2(µ−1/2),

‖SB(t)f‖W−1,2(µ−1/2) .
1

t(5d+1)/2
‖f‖W−1,1(Hℓµ−1/2).

Proof of Lemma 4.7. The proof is similar to that of Lemma 3.12. The only tech-
nical change is an additional weight in energy functional for proving the point (1);
it reads for instance in the case k = 1:

F(t, ft) := A‖ft‖2L2(Hℓ/2µ−1/2) + at‖∇vft‖2L2(µ−1/2)

+ 2ct2〈∇vft,∇xft〉L2(µ−1/2) + bt3‖∇xft‖2L2(µ−1/2)

with a, b, c > 0, c <
√
ab (positive definite) and A > 0 and ℓ ∈ N large enough

(observe the weight Hℓ on the L2 part of the norm). �

The proof of the decay estimate on Tn(t) and the completion of the proof of
Theorem 4.1 are then done as in Corollary 3.14 and Theorem 3.1.

Appendix A. Quantitative compactness estimates on the resolvent

In this appendix we amplify the ideas of this article in order to give quantitative
estimates of compactness on the resolvent of the kinetic Fokker-Planck considered.
More precisely: One way to understand the compactness of resolvent is to split it
into a local gain of regularity and a gain of decay at infinity, and we focus here on
the gain of decay at infinity. The gain of regularity can then be recovered by local
hypoelliptic estimates along the theory of Hörmander. Note that another route for
deriving estimates on the gain of decay at infinity is to use the global hypoellipticity
estimates as in [15] and [24, Section A.21] with Gaussian weight and deduce the gain
of decay at infinity by applying some forms of “strengthened” Poincaré inequality;
however the fractional derivatives involved would likely create technical difficulties,
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whereas our estimates based on weight multiplicators is elementary. Our estimates
also do not require regularity on the solution.

Let us first say a word on the case of the periodic confinement. In this case it is
enough to use the strengthened Poincaré inequality in velocity only:

d

dt

1

2

∫

Td×Rd

f2µ−1 dxdv ≤ −
∫

Td×Rd

∣

∣

∣

∣

∇v

(

f

µ

)∣

∣

∣

∣

µ dxdv

≤ −K
∫

Td×Rd

f2(1 + |v|2)µ−1 + C

∫

Td×Rd

f2µ−1 dxdv

for some constants C,K > 0, and therefore we deduce

−〈Lf, f〉L2(µ−1) ≥ K

∫

Td×Rd

f2(1 + |v|2)µ−1 dxdv − C

∫

Td×Rd

f2µ−1 dxdv

and finally
∫

Td×Rd

f2(1 + |v|2)µ−1 dxdv . ‖Lf‖2L2(µ−1) + ‖f‖2L2(µ−1)

which gives the gain of decay at infinity on the resolvent. Combined with hypoco-
ercivity estimates that provide bounds ‖f‖L2(µ−1) . ‖Lf − ξ‖L2(µ−1) for certain

ξ ∈ C, this allows to control
∫

f2(1 + |v|2)µ−1.
Let us now turn to the more interesting case of the potential confinement. We

now differentiate the following norm
∫

Rd×Rd

f2Wµ−1 dxdv, W (x, v) :=
[

a|x|β/3 + b|v|2 + 2c|x|β/6−1(x · v)
]

,

for some appropriate choice of a, b, c > 0 so that c <
√
ab. Then

d

dt

1

2

∫

Td×Rd

f2|x|β/3µ−1 dxdv

≤ −
∫

Td×Rd

∣

∣

∣

∣

∇v

(

f

µ

)∣

∣

∣

∣

|x|β/3µ dxdv + C0

∫

Td×Rd

f2|x|−β/3|v|µ−1 dxdv

d

dt

1

2

∫

Td×Rd

f2|v|2µ−1 dxdv

≤ −
∫

Td×Rd

∣

∣

∣

∣

∇v

(

f

µ

)∣

∣

∣

∣

|v|2µ dxdv + C0

∫

Td×Rd

f2(1 + |v|2)µ−1 dxdv

d

dt

1

2

∫

Td×Rd

f2|x|β/6−1(x · v)µ−1 dxdv

≤ −
∫

Td×Rd

f2|x|2β/3µ dxdv + C0

∫

Td×Rd

f2
(

1 + |x|−β/3|v|2
)

µ−1 dxdv

+ C0

∫

Td×Rd

∣

∣

∣

∣

∇v

(

f

µ

)∣

∣

∣

∣

|x|β/6|v|µ dxdv

for some constant C0 > 0, which implies by using Young’s inequality and adjusting
the constants a, b, c > 0 that

d

dt

∫

Rd×Rd

f2Wµ−1 dxdv =

∫

Rd×Rd

(Lf)fWµ−1 dxdv

≤ −K
∫

Rd×Rd

f2W 2µ−1 dxdv + C

∫

Rd×Rd

f2µ−1 dxdv
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for some constants C,K > 0, and finally
∫

Rd×Rd

f2W 2µ−1 dxdv . ‖Lf‖2L2(µ−1) + ‖f‖2L2(µ−1),

which is again a quantitative estimate of gain of decay at infinity for the resolvent.
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