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ABSTRACT

A wide array of image recovery problems can be abstracted into the

problem of minimizing a sum of composite convex functions in a

Hilbert space. To solve such problems, primal-dual proximal ap-

proaches have been developed which provide efficient solutions to

large-scale optimization problems. The objective of this paper is to

show that a number of existing algorithms can be derived from a

general form of the forward-backward algorithm applied in a suit-

able product space. Our approach also allows us to develop useful

extensions of existing algorithms by introducing a variable metric.

An illustration to image restoration is provided.

Index Terms— convex optimization, duality, parallel comput-

ing, proximal algorithm, variational methods, image recovery.

1. INTRODUCTION

Many image recovery problems can be formulated in Hilbert spaces

H and (Gi)16i6m as structured optimization problems of the form

minimize
x∈H

m∑

i=1

gi(Lix), (1)

where, for every i ∈ {1, . . . ,m}, gi is a proper lower semi-

continuous convex function from Gi to ]−∞,+∞] and Li is a

bounded linear operator from H to Gi. For example, the functions

(gi ◦ Li)16i6m may model data fidelity terms, smooth or nons-

mooth measures of regularity, or hard constraints on the solution. In

recent years, many algorithms have been developed to solve such a

problem by taking advantage of recent advances in convex optimiza-

tion, especially in the development of proximal tools (see [12, 29]

and the references therein). In image processing, however, solving

such a problem still poses a number of conceptual and numerical

challenges. First of all, one often looks for methods which have

the ability to split the problem by activating each of the functions

through elementary processing steps which can be computed in

parallel. This makes it possible to reduce the complexity of the

original problem and to benefit from existing parallel computing

architectures. Secondly, it is often useful to design algorithms which

can exploit, in a flexible manner, the structure of the problem. In

particular, some of the functions may be Lipschitz differentiable in

which case they should be exploited through their gradient rather

than through their proximity operator, which is usually harder to
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implement (examples of proximity operators with closed-form ex-

pression can be found in [6, 12]). In some problems, the functions

(gi)16i6m can be expressed as the infimal convolution of simpler

functions (see [9] and the references therein). Last but not least, in

image recovery, the operators (Li)16i6m may be of very large size

so that their inversions are costly (e.g., in reconstruction problems).

Finding algorithms which do not require to perform inversions of

these operators is thus of paramount importance.

Note that all the existing convex optimization algorithms do not

have these desirable properties. For example, the Alternating Direc-

tion Method of Multipliers (ADMM) [18, 17, 20] requires a strin-

gent assumption of invertibility of the involved linear operator. Par-

allel versions of ADMM [28] and related Parallel Proximal Algo-

rithm (PPXA) [11, 25] usually necessitate a linear inversion to be

performed at each iteration. Also, early primal-dual algorithms [4,

5, 7, 10, 16, 21] did not make it possible to handle smooth func-

tions through their gradients. Only recently, have primal-dual meth-

ods been proposed with this feature. Such work was initiated in

[13] in the line of [4] and subsequent developments can be found

in [2, 3, 8, 9, 15, 27, 30]. As will be seen in the present paper, an-

other advantage of these approaches is that they can be coupled with

variable metric strategies which can potentially accelerate their con-

vergence.

In Section 2, we provide some background on convex analysis

and monotone operator theory. In Section 3, we introduce a gen-

eral form of the forward-backward algorithm which uses a variable

metric. This algorithm is employed in Section 4 to develop a ver-

satile family of primal-dual proximal methods. Several particular

instances of this framework are discussed. Finally, we provide illus-

trating numerical results in Section 5.

2. NOTATION AND BACKGROUND

Monotone operator theory [1] provides a both insightful and ele-

gant framework for dealing with convex optimization problems and

developing new solution algorithms that could not be devised using

purely variational tools. We summarize a number of related concepts

that will be needed.

Throughout, H, G, and (Gi)16i6m are real Hilbert spaces. We

denote the scalar product of a Hilbert space by 〈· | ·〉 and the asso-

ciated norm by ‖ · ‖. The symbol ⇀ denotes weak convergence,1

and Id denotes the identity operator. We denote by B (H,G) the

space of bounded linear operators from H to G, we set S (H) =

1In a finite-dimensional space, weak convergence is equivalent to strong
convergence.



{
L ∈ B (H,H) | L = L∗

}
, where L∗ denotes the adjoint of L.

The Loewner partial ordering on S (H) is denoted by <. For every

α ∈ [0,+∞[, we set Pα(H) =
{
U ∈ S (H) | U < α Id

}
, and we

denote by
√
U the square root of U ∈ Pα(H). Moreover, for every

U ∈ Pα(H) and α > 0, we define the norm ‖x‖U =
√

〈Ux | x〉.
We denote by G = G1 ⊕ · · · ⊕ Gm the Hilbert direct sum of the

Hilbert spaces (Gi)16i6m, i.e., their product space equipped with the

scalar product : (x,y) 7→ ∑m
i=1 〈xi | yi〉 where x = (xi)16i6m

and y = (yi)16i6m denote generic elements in G.

Let A : H → 2H be a set-valued operator. We denote by

graA =
{
(x, u) ∈ H ×H | u ∈ Ax

}
the graph of A, by

zerA =
{
x ∈ H | 0 ∈ Ax

}
the set of zeros of A, and by

ranA =
{
u ∈ H | (∃ x ∈ H) u ∈ Ax

}
its range. The inverse

of A is A−1 : H 7→ 2H : u 7→
{
x ∈ H | u ∈ Ax

}
, and the

resolvent of A is JA = (Id+A)−1. Moreover, A is monotone if

(∀(x, y) ∈ H×H)(∀(u, v) ∈ Ax× Ay) 〈x− y | u− v〉 > 0,
(2)

and maximally monotone if it is monotone and there exists no mono-

tone operator B : H → 2H such that graA ⊂ graB and A 6= B.

An operator B : H → H is β-cocoercive for some β ∈ ]0,+∞[ if

(∀x ∈ H)(∀y ∈ H) 〈x− y | Bx−By〉 > β‖Bx−By‖2. (3)

The conjugate of a function f : H → ]−∞,+∞] is

f∗ : H → [−∞,+∞] : u 7→ sup
x∈H

(
〈x | u〉 − f(x)

)
, (4)

and the infimal convolution of f with g : H → ]−∞,+∞] is

f � g : H → [−∞,+∞] : x 7→ inf
y∈H

(
f(y) + g(x− y)

)
. (5)

The class of lower semicontinuous convex functions f : H →
]−∞,+∞] such that dom f =

{
x ∈ H | f(x) < +∞

}
6= ∅

is denoted by Γ0(H). If f ∈ Γ0(H), then f∗ ∈ Γ0(H) and the

subdifferential of f is the maximally monotone operator

∂f : H → 2H

x 7→
{
u ∈ H | (∀y ∈ H) 〈y − x | u〉+ f(x) 6 f(y)

}
. (6)

Let U ∈ Pα(H) for some α ∈ ]0,+∞[. The proximity operator of

f ∈ Γ0(H) relative to the metric induced by U is [22, Section XV.4]

proxU
f : H → H : x 7→ argmin

y∈H
f(y) +

1

2
‖x− y‖2U . (7)

When U = Id, we retrieve the standard definition of the proximity

operator [1, 24]. Let C be a nonempty subset of H. The indicator

function of C is defined on H as

ιC : x 7→
{
0, if x ∈ C;

+∞, if x /∈ C.
(8)

Finally, ℓ1+(N) denotes the set of summable sequences in [0,+∞[.

3. A GENERAL FORM OF FORWARD-BACKWARD

ALGORITHM

Optimization problems can often be reduced to finding a zero of a

sum of two maximally monotone operators A and B acting on H.

When B is cocoercive (see (3)), a useful algorithm to solve this

problem is the forward-backward algorithm, which can be formu-

lated in a general form involving a variable metric as shown in the

next result.

Theorem 3.1 Let α ∈ ]0,+∞[, let β ∈ ]0,+∞[, let A : H → 2H

be maximally monotone, and let B : H → H be cocoercive. Let

(ηn)n∈N ∈ ℓ1+(N), and let (Vn)n∈N be a sequence in Pα(H) such

that {
supn∈N

‖Vn‖ < +∞
(∀n ∈ N) (1 + ηn)Vn+1 < Vn

(9)

and V
1/2
n BV

1/2
n is β-cocoercive. Let (λn)n∈N be a sequence in

]0, 1] such that infn∈N λn > 0 and let (γn)n∈N be a sequence in

]0, 2β[ such that infn∈N γn > 0 and supn∈N
γn < 2β. Let x0 ∈ H,

and let (an)n∈N and (bn)n∈N be absolutely summable sequences in

H. Suppose that Z = zer(A+B) 6= ∅, and set

(∀n ∈ N)

⌊
yn = xn − γnVn(Bxn + bn)

xn+1 = xn + λn

(
JγnVnA (yn) + an − xn

)
.

(10)

Then xn ⇀ x for some x ∈ Z.

At iteration n, variables an and bn model numerical errors pos-

sibly arising when applying JγnVnA or B. Note also that, if

B is µ-cocoercive with µ ∈ ]0,+∞[, one can choose β =
µ(supn∈N

‖Vn‖)−1, which allows us to retrieve [14, Theorem 4.1].

In the next section, we shall see how a judicious use of this re-

sult allows us to derive a variety of flexible convex optimization

algorithms.

4. A VARIABLE METRIC PRIMAL-DUAL METHOD

4.1. Formulation

A wide array of optimization problems encountered in image pro-

cessing are instances of the following one, which was first investi-

gated in [13] and can be viewed as a more structured version of the

minimization problem in (1):

Problem 4.1 Let z ∈ H, let m be a strictly positive integer, let

f ∈ Γ0(H), and let h : H → R be convex and differentiable with

a Lipschitzian gradient. For every i ∈ {1, . . . ,m}, let ri ∈ Gi, let

gi ∈ Γ0(Gi), let ℓi ∈ Γ0(Gi) be strongly convex,2 and suppose that

0 6= Li ∈ B (H,Gi). Suppose that

z ∈ ran

(
∂f +

m∑

i=1

L∗
i (∂gi � ∂ℓi)(Li · −ri) +∇h

)
. (11)

Consider the problem

minimize
x∈H

f(x)+

m∑

i=1

(gi � ℓi)(Lix− ri)+h(x)−〈x | z〉 , (12)

and the dual problem

minimize
v1∈G1,...,vm∈Gm

(
f∗

�h∗)
(
z −

m∑

i=1

L∗
i vi

)

+
m∑

i=1

(
g∗i (vi) + ℓ∗i (vi) + 〈vi | ri〉

)
. (13)

2For every i ∈ {1, . . . ,m}, ℓi is ν
−1
i -strongly convex with νi ∈

]0,+∞[ if and only if ℓ∗i is νi-Lipschitz differentiable [1, Theorem 18.15].



Note that in the special case when ℓi = ι{0}, gi � ℓi reduces to

gi in (12).

Let us now examine how Problem 4.1 can be reformulated from

the standpoint of monotone operators. To this end, let us define g ∈
Γ0(G), ℓ ∈ Γ0(G) and L ∈ B (H,G) by

g : v 7→
m∑

i=1

gi(vi), ℓ : v 7→
m∑

i=1

ℓi(vi)

and L : x 7→ (L1x, . . . , Lmx). (14)

Let us now introduce the product space K = H⊕G and the operators

A : K → 2K

(x,v) 7→ (∂f(x)− z +L
∗
v)× (−Lx+ ∂g∗(v) + r) (15)

and

B : K → K

(x,v) 7→
(
∇h(x),∇ℓ

∗(v)
)
. (16)

The operator A can be shown to be maximally monotone,whereas

B is cocoercive. A key observation in this context is that, if there

exists (x,v) ∈ K such that (x,v) ∈ zer(A + B), then (x,v) is a

pair of primal-dual solutions to Problem 4.1 [13]. This connection

with the construction for a zero of A+B makes it possible to apply

a forward-backward algorithm as discussed in Section 3, by using a

linear operator V n ∈ B (K,K) to change the metric at each itera-

tion n. Depending on the form of this operator various algorithms

can be obtained.

4.2. A first class of primal-dual algorithms

Let α ∈ ]0,+∞[, let (Un)n∈N be a sequence in Pα(H) such that

(∀n ∈ N) Un+1 < Un. For every i ∈ {1, . . . ,m}, let (Ui,n)n∈N

be a sequence in Pα(Gi) such that (∀n ∈ N) Ui,n+1 < Ui,n. A first

possible choice for (V n)n∈N is given by

(∀n ∈ N) V
−1
n : (x,v) 7→ (U−1

n x−L
∗
v,−Lx+ Ũ

−1

n v)
(17)

where

Ũn : G → G : (v1, . . . , vm) 7→ (U1,nv1, . . . , Um,nvm). (18)

The following result constitutes a direct extension of [14, Exam-

ple 6.4]:

Proposition 4.2 Let x0 ∈ H, and let (an)n∈N and (cn)n∈N be ab-

solutely summable sequences in H. For every i ∈ {1, . . . ,m}, let

vi,0 ∈ Gi, let (bi,n)n∈N and (di,n)n∈N be absolutely summable se-

quences in Gi. For every n ∈ N, let µn ∈ ]0,+∞[ be a Lipschitz

constant of U
1/2
n ◦ ∇h ◦ U

1/2
n and, for every i ∈ {1, . . . ,m}, let

νi,n ∈ ]0,+∞[ be a Lipschitz constant of U
1/2
i,n ◦ ∇ℓ∗i ◦ U1/2

i,n . Let

(λn)n∈N be a sequence in ]0, 1] such that infn∈N λn > 0. For every

n ∈ N, set

δn =

(
m∑

i=1

‖
√

Ui,nLi

√
Un‖2

)−1/2

− 1, (19)

and suppose that

inf
n∈N

δn
(1 + δn)max{µn, ν1,n, . . . , νm,n}

>
1

2
. (20)

Set

For n = 0, 1, . . .


pn = prox
U−1

n

f

(
xn − Un

(∑m
i=1 L

∗
i vi,n +∇h(xn)

+cn − z
))

+ an

yn = 2pn − xn

xn+1 = xn + λn(pn − xn)
For i = 1, . . . ,m

qi,n = prox
U−1

i,n

g∗
i

(
vi,n + Ui,n

(
Liyn −∇ℓ∗i (vi,n)

−di,n − ri
))

+ bi,n

vi,n+1 = vi,n + λn(qi,n − vi,n).

(21)

Then (xn)n∈N converges weakly to a solution to (12), for every

i ∈ {1, . . . ,m} (vi,n)n∈N converges weakly to some vi ∈ Gi, and

(v1, . . . , vm) is a solution to (13).

In the special case when Un ≡ τ Id with τ ∈ ]0,+∞[ and,

for every i ∈ {1, . . . ,m}, Ui,n ≡ σi Id with σi ∈ ]0,+∞[, we

recover the parallel algorithm proposed in [30]. Variants of this al-

gorithm where, for every i ∈ {1, . . . ,m}, ℓi = ι{0} are also investi-

gated in [15]. In this case, less restrictive assumptions on the choice

of (τ, σ1, . . . , σm) can be made. Note that this algorithm itself can

be viewed as a generalization of the algorithm which constitutes the

main topic of [5, 16, 21] (designated by some authors as PDHG). A

preconditioned version of this algorithm was proposed in [26] cor-

responding to the case when m = 1, (∀n ∈ N) Un and U1,n are

constant matrices, and no error term is taken into account. Algo-

rithm (21) when, for every n ∈ N, λn ≡ 1, Un and (Ui,n)16i6m

are diagonal matrices, h = 0, and (∀i ∈ {1, . . . ,m}) ℓi = ι{0}
appears also to be closely related to the adaptive method in [19].

4.3. A second class of primal-dual algorithms

Let α ∈ ]0,+∞[, let (Un)n∈N be a sequence in Pα(H) such that

(∀n ∈ N) Un+1 < Un. For every i ∈ {1, . . . ,m}, let (Ui,n)n∈N be

a sequence in Pα(Gi) such that (∀n ∈ N) Ui,n+1 < Ui,n. A sec-

ond possible choice for (V n)n∈N is given by the following diagonal

form:

(∀n ∈ N) V
−1
n : (x,v) 7→

(
U−1

n x, (Ũ
−1

n −LUnL
∗)v
)

(22)

where Ũn is given by (18).

The following result can then be deduced from Theorem 3.1. Its

proof is skipped due to the lack of space.

Proposition 4.3 Let x0 ∈ H, and let (cn)n∈N be an absolutely

summable sequence in H. For every i ∈ {1, . . . ,m}, let vi,0 ∈ Gi,

let (bi,n)n∈N and (di,n)n∈N be absolutely summable sequences in

Gi. For every n ∈ N, let µn ∈ ]0,+∞[ be a Lipschitz constant of

U
1/2
n ◦∇h◦U1/2

n and, for every i ∈ {1, . . . ,m}, let νi,n ∈ ]0,+∞[

be a Lipschitz constant of U
1/2
i,n ◦∇ℓ∗i ◦U1/2

i,n . Let (λn)n∈N be a se-

quence in ]0, 1] such that infn∈N λn > 0. For every n ∈ N, set

ζn = 1−
m∑

i=1

‖
√

Ui,nLi

√
Un‖2 (23)

and suppose that

inf
n∈N

ζn
max{ζnµn, ν1,n, . . . , νm,n}

>
1

2
. (24)



(a) (b)

(c) (d)

Fig. 1. Original image x (a), noisy image w1 (SNR = 5.87 dB) (b),

blurred image w2 (SNR = 16.63 dB) (c), and restored image x̃ (SNR

= 21.61 dB) (d).

Set

For n = 0, 1, . . .


sn = xn − Un(∇h(xn) + cn − z)
yn = sn − Un

∑m
i=1 L

∗
i vi,n

For i = 1, . . . ,m
qi,n = prox

U−1

i,n

g∗
i

(
vi,n + Ui,n

(
Liyn −∇ℓ∗i (vi,n)

−di,n − ri
))

+ bi,n

vi,n+1 = vi,n + λn(qi,n − vi,n).
pn = sn − Un

∑m
i=1 L

∗
i qi,n

xn+1 = xn + λn(pn − xn).

(25)

Assume that f = 0. Then (xn)n∈N converges weakly to a solution to

(12), for every i ∈ {1, . . . ,m} (vi,n)n∈N converges weakly to some

vi ∈ Gi, and (v1, . . . , vm) is a solution to (13).

The algorithm proposed in [23, 8] is a special case of the previous

one, in the absence of errors, when m = 1, H and G1 are finite

dimensional spaces, ℓ1 = ι{0}, Un ≡ τ Id with τ ∈ ]0,+∞[,
U1,n ≡ σ Id with σ ∈ ]0,+∞[, and no relaxation (λn ≡ 1) or a

constant one (λn ≡ κ < 1) is performed.

5. APPLICATION TO IMAGE RESTORATION

We illustrate the flexibility of the proposed primal-dual algorithms

on an image recovery example. Two observed images w1 and w2 of

the same scene x ∈ R
N (N = 2562) are available (see Fig. 1(a)-

(c)). The first one is corrupted with a noise with a variance θ21 = 576,
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Fig. 2. Normalized norm of the error on the iterate vs computation

time (in seconds) for Experiment 1 (blue, dash dot line) and Experi-

ment 2 (red, continuous line).

while the second one has been degraded by a linear operator H ∈
R

N×N (7× 7 uniform blur) and a noise with variance θ22 = 25. The

noise components are mutually statistically independent, additive,

zero-mean, white, and Gaussian distributed. Note that this kind of

multivariate restoration problem is encountered in some push-broom

satellite imaging systems.

An estimate x̃ of x is computed as a solution to (12) where m =
2, z = 0, r1 = 0, r2 = 0,

h =
1

θ21
‖ · −w1‖2 + 1

θ22
‖H · −w2‖2, (26)

g1 = ι[0,255]N , g2 = κ‖ · ‖1,2, (27)

f = 0, ℓ1 = ℓ2 = ι{0} (28)

where the second function in (27) denotes the ℓ1,2-norm and κ ∈
]0,+∞[. In addition, L1 = Id and L2 = [G⊤

1 , G⊤
2 ]

⊤ where G1 ∈
R

N×N and GN×N
2 are horizontal and vertical discrete gradient op-

erators. Function g1 introduces some a priori constraint on the range

values in the target image, while function g2 ◦ L2 corresponds to

a classical total variation regularization. The minimization problem

is solved numerically by using Algorithm (25) with λn ≡ 1. In a

first experiment, standard choices of the algorithm parameters are

made by setting Un ≡ τ Id, U1,n ≡ σ1 Id, and U2,n = σ2 Id
with (τ, σ1, σ2) ∈ ]0,+∞[3. In a second experiment, a more so-

phisticated choice of the metric is made. The operators (Un)n∈N,

(U1,n)n∈N and (U2,n)n∈N are still chosen diagonal and constant in

order to facilitate the implementation of the algorithm, but the diag-

onal values are optimized in an empirical manner. A similar strategy

was applied in [26] in the case of Algorithm (21). The regulariza-

tion parameter κ has been set so as to get the highest value of the

resulting signal-to-noise ratio (SNR).

The restored image is displayed in Fig. 1(d). Fig. 2 shows the

convergence profile of the algorithm. We plot the evolution of the

normalized Euclidean distance (in log scale) between the iterates and

x̃ in terms of computational time (Matlab R2011b codes running

on a single-core Intel i7-2620M CPU@2.7 GHz with 8 GB of RAM).

An approximation of x̃ obtained after 5000 iterations is used. This

result illustrates the fact that an appropriate choice of the metric may

be beneficial in terms of speed of convergence.
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