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A wide array of image recovery problems can be abstracted into the problem of minimizing a sum of composite convex functions in a Hilbert space. To solve such problems, primal-dual proximal approaches have been developed which provide efficient solutions to large-scale optimization problems. The objective of this paper is to show that a number of existing algorithms can be derived from a general form of the forward-backward algorithm applied in a suitable product space. Our approach also allows us to develop useful extensions of existing algorithms by introducing a variable metric. An illustration to image restoration is provided.

INTRODUCTION

Many image recovery problems can be formulated in Hilbert spaces H and (Gi) 1 i m as structured optimization problems of the form

minimize x∈H m i=1 gi(Lix), (1) 
where, for every i ∈ {1, . . . , m}, gi is a proper lower semicontinuous convex function from Gi to ]-∞, +∞] and Li is a bounded linear operator from H to Gi. For example, the functions (gi • Li) 1 i m may model data fidelity terms, smooth or nonsmooth measures of regularity, or hard constraints on the solution. In recent years, many algorithms have been developed to solve such a problem by taking advantage of recent advances in convex optimization, especially in the development of proximal tools (see [START_REF]Proximal splitting methods in signal processing[END_REF][START_REF] Sra | Optimization for Machine Learning[END_REF] and the references therein). In image processing, however, solving such a problem still poses a number of conceptual and numerical challenges. First of all, one often looks for methods which have the ability to split the problem by activating each of the functions through elementary processing steps which can be computed in parallel. This makes it possible to reduce the complexity of the original problem and to benefit from existing parallel computing architectures. Secondly, it is often useful to design algorithms which can exploit, in a flexible manner, the structure of the problem. In particular, some of the functions may be Lipschitz differentiable in which case they should be exploited through their gradient rather than through their proximity operator, which is usually harder to implement (examples of proximity operators with closed-form expression can be found in [START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF][START_REF]Proximal splitting methods in signal processing[END_REF]). In some problems, the functions (gi) 1 i m can be expressed as the infimal convolution of simpler functions (see [START_REF] Combettes | Systems of structured monotone inclusions: duality, algorithms, and applications[END_REF] and the references therein). Last but not least, in image recovery, the operators (Li) 1 i m may be of very large size so that their inversions are costly (e.g., in reconstruction problems). Finding algorithms which do not require to perform inversions of these operators is thus of paramount importance. Note that all the existing convex optimization algorithms do not have these desirable properties. For example, the Alternating Direction Method of Multipliers (ADMM) [START_REF] Fortin | Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems[END_REF][START_REF] Figueiredo | Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization[END_REF][START_REF] Goldstein | The split Bregman method for ℓ1regularized problems[END_REF] requires a stringent assumption of invertibility of the involved linear operator. Parallel versions of ADMM [START_REF] Setzer | Deblurring Poissonian images by split Bregman techniques[END_REF] and related Parallel Proximal Algorithm (PPXA) [START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF][START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF] usually necessitate a linear inversion to be performed at each iteration. Also, early primal-dual algorithms [START_REF] Briceño-Arias | A monotone + skew splitting model for composite monotone inclusions in duality[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Chen | A proximal-based decomposition method for convex minimization problems[END_REF][START_REF] Combettes | Dualization of signal recovery problems[END_REF][START_REF] Esser | A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science[END_REF][START_REF] He | Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective[END_REF] did not make it possible to handle smooth functions through their gradients. Only recently, have primal-dual methods been proposed with this feature. Such work was initiated in [START_REF]Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF] in the line of [START_REF] Briceño-Arias | A monotone + skew splitting model for composite monotone inclusions in duality[END_REF] and subsequent developments can be found in [START_REF] Becker | An algorithm for splitting parallel sums of linearly composed monotone operators, with applications to signal recovery[END_REF][START_REF] Bot | Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization[END_REF][START_REF] Chen | A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration[END_REF][START_REF] Combettes | Systems of structured monotone inclusions: duality, algorithms, and applications[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF][START_REF] Repetti | A penalized weighted least squares approach for restoring data corrupted with signal-dependent noise[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF]. As will be seen in the present paper, another advantage of these approaches is that they can be coupled with variable metric strategies which can potentially accelerate their convergence.

In Section 2, we provide some background on convex analysis and monotone operator theory. In Section 3, we introduce a general form of the forward-backward algorithm which uses a variable metric. This algorithm is employed in Section 4 to develop a versatile family of primal-dual proximal methods. Several particular instances of this framework are discussed. Finally, we provide illustrating numerical results in Section 5.

NOTATION AND BACKGROUND

Monotone operator theory [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] provides a both insightful and elegant framework for dealing with convex optimization problems and developing new solution algorithms that could not be devised using purely variational tools. We summarize a number of related concepts that will be needed.

Throughout, H, G, and (Gi) 1 i m are real Hilbert spaces. We denote the scalar product of a Hilbert space by • | • and the associated norm by • . The symbol ⇀ denotes weak convergence, 1and Id denotes the identity operator. We denote by B (H, G) the space of bounded linear operators from H to G, we set S (H) = L ∈ B (H, H) | L = L * , where L * denotes the adjoint of L. The Loewner partial ordering on S (H) is denoted by . For every α ∈ [0, +∞[, we set Pα(H) = U ∈ S (H) | U α Id , and we denote by √ U the square root of U ∈ Pα(H). Moreover, for every U ∈ Pα(H) and α > 0, we define the norm x U = U x | x . We denote by G = G1 ⊕ • • • ⊕ Gm the Hilbert direct sum of the Hilbert spaces (Gi) 1 i m , i.e., their product space equipped with the scalar product : (x, y) → m i=1 xi | yi where x = (xi) 1 i m and y = (yi) 1 i m denote generic elements in G.

Let A : H → 2 H be a set-valued operator. We denote by gra

A = (x, u) ∈ H × H | u ∈ Ax the graph of A, by zer A = x ∈ H | 0 ∈ Ax the set of zeros of A, and by ran A = u ∈ H | (∃ x ∈ H) u ∈ Ax its range. The inverse of A is A -1 : H → 2 H : u → x ∈ H | u ∈ Ax , and the resolvent of A is JA = (Id +A) -1 . Moreover, A is monotone if (∀(x, y) ∈ H × H)(∀(u, v) ∈ Ax × Ay) x -y | u -v 0, (2) 
and maximally monotone if it is monotone and there exists no monotone operator B :

H → 2 H such that gra A ⊂ gra B and A = B. An operator B : H → H is β-cocoercive for some β ∈ ]0, +∞[ if (∀x ∈ H)(∀y ∈ H) x -y | Bx -By β Bx -By 2 . ( 3 
)
The conjugate of a function f :

H → ]-∞, +∞] is f * : H → [-∞, +∞] : u → sup x∈H x | u -f (x) , (4) 
and the infimal convolution of f with g :

H → ]-∞, +∞] is f g : H → [-∞, +∞] : x → inf y∈H f (y) + g(x -y) . (5) 
The class of lower semicontinuous convex functions

f : H → ]-∞, +∞] such that dom f = x ∈ H | f (x) < +∞ = ∅ is denoted by Γ0(H). If f ∈ Γ0(H), then f * ∈ Γ0(H)
and the subdifferential of f is the maximally monotone operator

∂f : H → 2 H x → u ∈ H | (∀y ∈ H) y -x | u + f (x) f (y) . ( 6 
)
Let U ∈ Pα(H) for some α ∈ ]0, +∞[. The proximity operator of f ∈ Γ0(H) relative to the metric induced by U is [22, Section XV.4]

prox U f : H → H : x → argmin y∈H f (y) + 1 2 x -y 2 U . (7) 
When U = Id, we retrieve the standard definition of the proximity operator [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF]. Let C be a nonempty subset of H. The indicator function of C is defined on H as

ιC : x → 0, if x ∈ C; +∞, if x / ∈ C. (8) 
Finally, ℓ 1 + (N) denotes the set of summable sequences in [0, +∞[.

A GENERAL FORM OF FORWARD-BACKWARD ALGORITHM

Optimization problems can often be reduced to finding a zero of a sum of two maximally monotone operators A and B acting on H. When B is cocoercive (see (3)), a useful algorithm to solve this problem is the forward-backward algorithm, which can be formulated in a general form involving a variable metric as shown in the next result. In the next section, we shall see how a judicious use of this result allows us to derive a variety of flexible convex optimization algorithms.

A VARIABLE METRIC PRIMAL-DUAL METHOD

Formulation

A wide array of optimization problems encountered in image processing are instances of the following one, which was first investigated in [START_REF]Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF] and can be viewed as a more structured version of the minimization problem in (1): Problem 4.1 Let z ∈ H, let m be a strictly positive integer, let f ∈ Γ0(H), and let h : H → R be convex and differentiable with a Lipschitzian gradient. For every i ∈ {1, . . . , m}, let ri ∈ Gi, let gi ∈ Γ0(Gi), let ℓi ∈ Γ0(Gi) be strongly convex, 2 and suppose that 0 = Li ∈ B (H, Gi). Suppose that

z ∈ ran ∂f + m i=1 L * i (∂gi ∂ℓi)(Li • -ri) + ∇h . (11) 
Consider the problem

minimize x∈H f (x) + m i=1 (gi ℓi)(Lix -ri) + h(x) -x | z , (12) 
and the dual problem

minimize v 1 ∈G 1 ,...,vm∈Gm f * h * z - m i=1 L * i vi + m i=1 g * i (vi) + ℓ * i (vi) + vi | ri . ( 13 
)
Note that in the special case when ℓi = ι {0} , gi ℓi reduces to gi in [START_REF]Proximal splitting methods in signal processing[END_REF].

Let us now examine how Problem 4.1 can be reformulated from the standpoint of monotone operators. To this end, let us define g ∈ Γ0(G), ℓ ∈ Γ0(G) and L ∈ B (H, G) by

g : v → m i=1 gi(vi), ℓ : v → m i=1 ℓi(vi)
and L : x → (L1x, . . . , Lmx).

Let us now introduce the product space K = H⊕G and the operators

A : K → 2 K (x, v) → (∂f (x) -z + L * v) × (-Lx + ∂g * (v) + r) (15)
and

B : K → K (x, v) → ∇h(x), ∇ℓ * (v) . (16) 
The operator A can be shown to be maximally monotone,whereas B is cocoercive. A key observation in this context is that, if there exists (x, v) ∈ K such that (x, v) ∈ zer(A + B), then (x, v) is a pair of primal-dual solutions to Problem 4.1 [START_REF]Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF]. This connection with the construction for a zero of A + B makes it possible to apply a forward-backward algorithm as discussed in Section 3, by using a linear operator V n ∈ B (K, K) to change the metric at each iteration n. Depending on the form of this operator various algorithms can be obtained.

A first class of primal-dual algorithms

Let α ∈ ]0, +∞[, let (Un) n∈N be a sequence in Pα(H) such that (∀n ∈ N) Un+1 Un. For every i ∈ {1, . . . , m}, let (Ui,n) n∈N be a sequence in Pα(Gi) such that (∀n ∈ N) Ui,n+1 Ui,n. A first possible choice for (V n)n∈N is given by

(∀n ∈ N) V -1 n : (x, v) → (U -1 n x -L * v, -Lx + U -1 n v) (17) 
where

U n : G → G : (v1, . . . , vm) → (U1,nv1, . . . , Um,nvm). ( 18 
)
The following result constitutes a direct extension of [14, Example 6.4]: Proposition 4.2 Let x0 ∈ H, and let (an) n∈N and (cn) n∈N be absolutely summable sequences in H. For every i ∈ {1, . . . , m}, let vi,0 ∈ Gi, let (bi,n) n∈N and (di,n) n∈N be absolutely summable sequences in Gi. For every n ∈ N,

let µn ∈ ]0, +∞[ be a Lipschitz constant of U 1/2 n • ∇h • U 1/2 n and, for every i ∈ {1, . . . , m}, let νi,n ∈ ]0, +∞[ be a Lipschitz constant of U 1/2 i,n • ∇ℓ * i • U 1/2 i,n . Let (λn) n∈N be a sequence in ]0, 1] such that inf n∈N λn > 0. For every n ∈ N, set δn = m i=1 Ui,nLi √ Un 2 -1/2 -1, ( 19 
)
and suppose that

inf n∈N δn (1 + δn) max{µn, ν1,n, . . . , νm,n} > 1 2 . ( 20 
)

Set

For n = 0, 1, . . .

                  pn = prox U -1 n f xn -Un m i=1 L * i vi,n + ∇h(xn) +cn -z + an yn = 2pn -xn xn+1 = xn + λn(pn -xn) For i = 1, . . . , m       qi,n = prox U -1 i,n g * i vi,n + Ui,n Liyn -∇ℓ * i (vi,n) -di,n -ri + bi,n vi,n+1 = vi,n + λn(qi,n -vi,n). ( 21 
)
Then (xn) n∈N converges weakly to a solution to [START_REF]Proximal splitting methods in signal processing[END_REF], for every i ∈ {1, . . . , m} (vi,n) n∈N converges weakly to some vi ∈ Gi, and (v1, . . . , vm) is a solution to [START_REF]Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF].

In the special case when Un ≡ τ Id with τ ∈ ]0, +∞[ and, for every i ∈ {1, . . . , m}, Ui,n ≡ σi Id with σi ∈ ]0, +∞[, we recover the parallel algorithm proposed in [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF]. Variants of this algorithm where, for every i ∈ {1, . . . , m}, ℓi = ι {0} are also investigated in [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF]. In this case, less restrictive assumptions on the choice of (τ, σ1, . . . , σm) can be made. Note that this algorithm itself can be viewed as a generalization of the algorithm which constitutes the main topic of [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Esser | A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science[END_REF][START_REF] He | Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective[END_REF] (designated by some authors as PDHG). A preconditioned version of this algorithm was proposed in [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF] corresponding to the case when m = 1, (∀n ∈ N) Un and U1,n are constant matrices, and no error term is taken into account. Algorithm (21) when, for every n ∈ N, λn ≡ 1, Un and (Ui,n) 1 i m are diagonal matrices, h = 0, and (∀i ∈ {1, . . . , m}) ℓi = ι {0} appears also to be closely related to the adaptive method in [START_REF] Goldstein | Adaptive primal-dual hybrid gradient methods for saddle-point problems[END_REF].

A second class of primal-dual algorithms

Let α ∈ ]0, +∞[, let (Un) n∈N be a sequence in Pα(H) such that (∀n ∈ N) Un+1 Un. For every i ∈ {1, . . . , m}, let (Ui,n) n∈N be a sequence in Pα(Gi) such that (∀n ∈ N) Ui,n+1 Ui,n. A second possible choice for (V n)n∈N is given by the following diagonal form:

(∀n ∈ N) V -1 n : (x, v) → U -1 n x, ( U -1 n -LUnL * )v (22)
where U n is given by [START_REF] Fortin | Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems[END_REF]. The following result can then be deduced from Theorem 3.1. Its proof is skipped due to the lack of space. Proposition 4.3 Let x0 ∈ H, and let (cn) n∈N be an absolutely summable sequence in H. For every i ∈ {1, . . . , m}, let vi,0 ∈ Gi, let (bi,n) n∈N and (di,n) n∈N be absolutely summable sequences in Gi. For every n ∈ N, let µn ∈ ]0, +∞[ be a Lipschitz constant of U

1/2 n •∇h•U 1/2 n
and, for every i ∈ {1, . . . , m}, let νi,n ∈ ]0, +∞[ be a Lipschitz constant of U 

1/2 i,n • ∇ℓ * i • U 1/2 i,n . Let (λn) n∈N be a se- quence in ]0, 1] such that inf n∈N λn > 0. For every n ∈ N, set ζn = 1 - m i=1 Ui,nLi √ Un 2 (23 

Set

For n = 0, 1, . . .

                sn = xn -Un(∇h(xn) + cn -z) yn = sn -Un m i=1 L * i vi,n For i = 1, . . . , m       qi,n = prox U -1 i,n g * i vi,n + Ui,n Liyn -∇ℓ * i (vi,n) -di,n -ri + bi,n vi,n+1 = vi,n + λn(qi,n -vi,n). pn = sn -Un m i=1 L * i qi,n xn+1 = xn + λn(pn -xn). ( 25 
)
Assume that f = 0. Then (xn) n∈N converges weakly to a solution to [START_REF]Proximal splitting methods in signal processing[END_REF], for every i ∈ {1, . . . , m} (vi,n) n∈N converges weakly to some vi ∈ Gi, and (v1, . . . , vm) is a solution to [START_REF]Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF].

The algorithm proposed in [START_REF] Loris | On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty[END_REF][START_REF] Chen | A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration[END_REF] is a special case of the previous one, in the absence of errors, when m = 1, H and G1 are finite dimensional spaces, ℓ1 = ι {0} , Un ≡ τ Id with τ ∈ ]0, +∞[, U1,n ≡ σ Id with σ ∈ ]0, +∞[, and no relaxation (λn ≡ 1) or a constant one (λn ≡ κ < 1) is performed.

APPLICATION TO IMAGE RESTORATION

We illustrate the flexibility of the proposed primal-dual algorithms on an image recovery example. Two observed images w1 and w2 of the same scene x ∈ R N (N = 256 2 ) are available (see Fig. 1(a)-(c)). The first one is corrupted with a noise with a variance θ 2 1 = 576, while the second one has been degraded by a linear operator H ∈ R N×N (7 × 7 uniform blur) and a noise with variance θ 2 2 = 25. The noise components are mutually statistically independent, additive, zero-mean, white, and Gaussian distributed. Note that this kind of multivariate restoration problem is encountered in some push-broom satellite imaging systems.

An estimate x of x is computed as a solution to [START_REF]Proximal splitting methods in signal processing[END_REF] where m = 2, z = 0, r1 = 0, r2 = 0,

h = 1 θ 2 1 • -w1 2 + 1 θ 2 2 H • -w2 2 , (26) 
g1 = ι [0,255] N , g2 = κ • 1,2, (27) 
f = 0, ℓ1 = ℓ2 = ι {0} (28) 
where the second function in [START_REF] Repetti | A penalized weighted least squares approach for restoring data corrupted with signal-dependent noise[END_REF] denotes the ℓ1,2-norm and κ ∈ ]0, +∞[. In addition, L1 = Id and L2 = [G ⊤ 1 , G ⊤ 2 ] ⊤ where G1 ∈ R N×N and G N×N 2 are horizontal and vertical discrete gradient operators. Function g1 introduces some a priori constraint on the range values in the target image, while function g2 • L2 corresponds to a classical total variation regularization. The minimization problem is solved numerically by using Algorithm [START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF] with λn ≡ 1. In a first experiment, standard choices of the algorithm parameters are made by setting Un ≡ τ Id, U1,n ≡ σ1 Id, and U2,n = σ2 Id with (τ, σ1, σ2) ∈ ]0, +∞[ 3 . In a second experiment, a more sophisticated choice of the metric is made. The operators (Un) n∈N , (U1,n) n∈N and (U2,n) n∈N are still chosen diagonal and constant in order to facilitate the implementation of the algorithm, but the diagonal values are optimized in an empirical manner. A similar strategy was applied in [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF] in the case of Algorithm [START_REF] He | Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective[END_REF]. The regularization parameter κ has been set so as to get the highest value of the resulting signal-to-noise ratio (SNR).

The restored image is displayed in Fig. 1(d). Fig. 2 shows the convergence profile of the algorithm. We plot the evolution of the normalized Euclidean distance (in log scale) between the iterates and x in terms of computational time (Matlab R2011b codes running on a single-core Intel i7-2620M CPU@2.7 GHz with 8 GB of RAM). An approximation of x obtained after 5000 iterations is used. This result illustrates the fact that an appropriate choice of the metric may be beneficial in terms of speed of convergence.

(

  ∀n ∈ N) yn = xn -γnVn(Bxn + bn) xn+1 = xn + λn Jγ n VnA (yn) + an -xn . (10) Then xn ⇀ x for some x ∈ Z. At iteration n, variables an and bn model numerical errors possibly arising when applying Jγ n VnA or B. Note also that, if B is µ-cocoercive with µ ∈ ]0, +∞[, one can choose β = µ(sup n∈N Vn ) -1 , which allows us to retrieve [14, Theorem 4.1].

) 2 .Fig. 1 .

 21 Fig. 1. Original image x (a), noisy image w1 (SNR = 5.87 dB) (b), blurred image w2 (SNR = 16.63 dB) (c), and restored image x (SNR = 21.61 dB) (d).

Fig. 2 .

 2 Fig. 2. Normalized norm of the error on the iterate vs computation time (in seconds) for Experiment 1 (blue, dash dot line) and Experiment 2 (red, continuous line).

  Theorem 3.1 Let α ∈ ]0, +∞[, let β ∈ ]0, +∞[, let A : H → 2 H be maximally monotone, and let B : H → H be cocoercive. Let (ηn) n∈N ∈ ℓ 1 + (N), and let (Vn) n∈N be a sequence in Pα(H) such Let (λn) n∈N be a sequence in ]0, 1] such that inf n∈N λn > 0 and let (γn) n∈N be a sequence in ]0, 2β[ such that inf n∈N γn > 0 and sup n∈N γn < 2β. Let x0 ∈ H, and let (an) n∈N and (bn) n∈N be absolutely summable sequences in H. Suppose that Z = zer(A + B) = ∅, and set

	that				
				sup n∈N Vn < +∞ (∀n ∈ N) (1 + ηn)Vn+1 Vn	(9)
	and V	1/2 n	BV	1/2 n	is β-cocoercive.

In a finite-dimensional space, weak convergence is equivalent to strong convergence.

For every i ∈ {1, . . . , m}, ℓ i is ν -1 i -strongly convex with ν i ∈ ]0, +∞[ if and only if ℓ * i is ν i -Lipschitz differentiable[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Theorem 18.15].
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