Proximity for sums of composite functions

Patrick Louis Combettes, Đinh Dung, Bang Cong Vu

To cite this version:

Patrick Louis Combettes, Đinh Dung, Bang Cong Vu. Proximity for sums of composite functions. Journal of Mathematical Analysis and Applications, 2011, 380, pp. 680 - 688. 10.1016/j.jmaa.2011.02.079 . hal-01098030

HAL Id: hal-01098030

https://hal.science/hal-01098030

Submitted on 12 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Proximity for sums of composite functions ${ }^{*}$

Patrick L. Combettes ${ }^{\mathrm{a}, *}$, Đinh Dũng ${ }^{\mathrm{b}}$, Bằng Công Vũ ${ }^{\mathrm{a}}$
${ }^{\text {a }}$ Université Pierre et Marie Curie - Paris 06, Laboratoire Jacques-Louis Lions, UMR 7598, 75005 Paris, France
${ }^{\text {b }}$ Vietnam National University, Information Technology Institute, Hanoi, Viet Nam

A R T I C L E I N F O

Article history:

Received 20 July 2010
Available online 4 March 2011
Submitted by Goong Chen

Keywords:

Best approximation
Convex optimization
Duality
Image recovery
Proximity operator
Proximal splitting algorithm
Elastic net

Abstract

We propose an algorithm for computing the proximity operator of a sum of composite convex functions in Hilbert spaces and investigate its asymptotic behavior. Applications to best approximation and image recovery are described.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H} be a real Hilbert space with scalar product $\langle\cdot \mid \cdot\rangle$ and associated norm $\|\cdot\|$. The best approximation to a point $z \in \mathcal{H}$ from a nonempty closed convex set $C \subset \mathcal{H}$ is the point $P_{C} z \in C$ that satisfies $\left\|P_{C} z-z\right\|=\min _{x \in C}\|x-z\|$. The induced best approximation operator $P_{C}: \mathcal{H} \rightarrow C$, also called the projector onto C, plays a central role in several branches of applied mathematics [13]. If we designate by ι_{C} the indicator function of C, i.e.,

$$
\iota_{C}: x \mapsto \begin{cases}0, & \text { if } x \in C \tag{1.1}\\ +\infty, & \text { if } x \notin C\end{cases}
$$

then $P_{C} z$ is the solution to the minimization problem

$$
\begin{equation*}
\underset{x \in \mathcal{H}}{\operatorname{minimize}} \iota_{C}(x)+\frac{1}{2}\|x-z\|^{2} . \tag{1.2}
\end{equation*}
$$

Now let $\Gamma_{0}(\mathcal{H})$ be the class of lower semicontinuous convex functions $\left.\left.f: \mathcal{H} \rightarrow\right]-\infty,+\infty\right]$ such that dom $f=\{x \in \mathcal{H} \mid$ $f(x)<+\infty\} \neq \emptyset$. In [16] Moreau observed that, for every function $f \in \Gamma_{0}(\mathcal{H})$, the proximal minimization problem

$$
\begin{equation*}
\underset{x \in \mathcal{H}}{\operatorname{minimize}} f(x)+\frac{1}{2}\|x-z\|^{2} \tag{1.3}
\end{equation*}
$$

[^0]possesses a unique solution, which he denoted by $\operatorname{prox}_{f} z$. The resulting proximity operator prox ${ }_{f}: \mathcal{H} \rightarrow \mathcal{H}$ therefore extends the notion of a best approximation operator for a convex set. This fruitful concept has become a central tool in mechanics, variational analysis, optimization, and signal processing, e.g., [1,10,19].

Though in certain simple cases closed-form expressions are available [10,11,17], computing prox ${ }_{f} z$ in numerical applications is a challenging task. The objective of this paper is to propose a splitting algorithm to compute proximity operators in the case when f can be decomposed as a sum of composite functions.

Problem 1.1. Let $z \in \mathcal{H}$ and let $\left(\omega_{i}\right)_{1 \leqslant i \leqslant m}$ be reals in $\left.] 0,1\right]$ such that $\sum_{i=1}^{m} \omega_{i}=1$. For every $i \in\{1, \ldots, m\}$, let $\left(\mathcal{G}_{i},\|\cdot\| \mathcal{G}_{i}\right)$ be a real Hilbert space, let $r_{i} \in \mathcal{G}_{i}$, let $g_{i} \in \Gamma_{0}\left(\mathcal{G}_{i}\right)$, and let $L_{i}: \mathcal{H} \rightarrow \mathcal{G}_{i}$ be a nonzero bounded linear operator. The problem is to

$$
\begin{equation*}
\underset{x \in \mathcal{H}}{\operatorname{minimize}} \sum_{i=1}^{m} \omega_{i} g_{i}\left(L_{i} x-r_{i}\right)+\frac{1}{2}\|x-z\|^{2} \tag{1.4}
\end{equation*}
$$

The underlying practical assumption we make is that the proximity operators (prox $_{g_{i}}$) $1 \leqslant i \leqslant m$ are implementable (to within some quantifiable error). We are therefore aiming at devising an algorithm that uses these operators separately. Let us note that such splitting algorithms are already available to solve Problem 1.1 under certain restrictions.
A) Suppose that $\mathcal{G}_{1}=\mathcal{H}$, that $L_{1}=\mathrm{Id}$, that the functions $\left(g_{i}\right)_{2 \leqslant i \leqslant m}$ are differentiable everywhere with a Lipschitz continuous gradient, and that $r_{i} \equiv 0$. Then (1.4) reduces to the minimization of the sum of $f_{1}=g_{1} \in \Gamma_{0}(\mathcal{H})$ and of the smooth function $f_{2}=\sum_{i=2}^{m} \omega_{i} g_{i} \circ L_{i}+\|\cdot-z\|^{2} / 2$, and it can be solved by the forward-backward algorithm [11,21].
B) The methods proposed in [7] address the case when, for every $i \in\{1, \ldots, m\}, \mathcal{G}_{i}=\mathcal{H}, L_{i}=\mathrm{Id}$, and $r_{i}=0$.
C) The method proposed in [8] addresses the case when $m=2, \mathcal{G}_{1}=\mathcal{H}$, and $L_{1}=\mathrm{Id}$, and $r_{1}=0$.

The restrictions imposed in A) are quite stringent since many problems involve at least two nondifferentiable potentials. Let us also observe that since, in general, there is no explicit expression for prox $g_{i} L_{i}$ in terms of prox g_{i} and L_{i}, Problem 1.1 cannot be reduced to the setting described in B). On the other hand, using a product space reformulation, we shall show that the setting described in C) can be exploited to solve Problem 1.1 using only approximate implementations of the operators $\left(\operatorname{prox}_{g_{i}}\right)_{1 \leqslant i \leqslant m}$. Our algorithm is introduced in Section 2, where we also establish its convergence properties. In Section 3, our results are applied to best approximation and image recovery problems.

Our notation is standard. $\mathcal{B}(\mathcal{H}, \mathcal{G})$ is the space of bounded linear operators from \mathcal{H} to a real Hilbert space \mathcal{G}. The adjoint of $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$ is denoted by L^{*}. The conjugate of $f \in \Gamma_{0}(\mathcal{H})$ is the function $f^{*} \in \Gamma_{0}(\mathcal{H})$ defined by $f^{*}: u \mapsto$ $\sup _{x \in \mathcal{H}}(\langle x \mid u\rangle-f(x))$. The projector onto a nonempty closed convex set $C \subset \mathcal{H}$ is denoted by P_{C}. The strong relative interior of a convex set $C \subset \mathcal{H}$ is

$$
\begin{equation*}
\text { sri } C=\{x \in C \mid \operatorname{cone}(C-x)=\overline{\operatorname{span}}(C-x)\}, \quad \text { where cone } C=\bigcup_{\lambda>0}\{\lambda x \mid x \in C\}, \tag{1.5}
\end{equation*}
$$

and the relative interior of C is ri $C=\{x \in C \mid \operatorname{cone}(C-x)=\operatorname{span}(C-x)\}$. We have int $C \subset \operatorname{sri} C \subset$ ri $C \subset C$ and, if \mathcal{H} is finite-dimensional, ri $C=$ sri C. For background on convex analysis, see $[4,22]$.

2. Main result

To solve Problem 1.1, we propose the following algorithm. Its main features are that each function g_{i} is activated individually by means of its proximity operator, and that the proximity operators can be evaluated simultaneously. It is important to stress that the functions $\left(g_{i}\right)_{1 \leqslant i \leqslant m}$ and the operators $\left(L_{i}\right)_{1 \leqslant i \leqslant m}$ are used at separate steps in the algorithm, which is thus fully decomposed. In addition, an error $a_{i, n}$ is tolerated in the evaluation of the i th proximity operator at iteration n.

Algorithm 2.1. For every $i \in\{1, \ldots, m\}$, let $\left(a_{i, n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathcal{G}_{i}.

Initialization

$$
\begin{aligned}
& \rho=\left(\max _{1 \leqslant i \leqslant m}\left\|L_{i}\right\|\right)^{-2} \\
& \varepsilon \in] 0, \min \{1, \rho\}[\\
& \text { For } i=1, \ldots, m \\
& \left\lfloor v_{i, 0} \in \mathcal{G}_{i}\right.
\end{aligned}
$$

For $n=0,1, \ldots$

$$
\left[\begin{array}{l}
x_{n}=z-\sum_{i=1}^{m} \omega_{i} L_{i}^{*} v_{i, n} \\
\gamma_{n} \in[\varepsilon, 2 \rho-\varepsilon] \\
\lambda_{n} \in[\varepsilon, 1] \\
\text { For } i=1, \ldots, m \\
\left\lfloor v_{i, n+1}=v_{i, n}+\lambda_{n}\left(\operatorname{prox}_{\gamma_{n} g_{i}^{*}}\left(v_{i, n}+\gamma_{n}\left(L_{i} x_{n}-r_{i}\right)\right)+a_{i, n}-v_{i, n}\right)\right. \tag{2.1}
\end{array}\right.
$$

Note that an alternative implementation of (2.1) can be obtained via Moreau's decomposition formula in a real Hilbert space \mathcal{G} [11, Lemma 2.10]

$$
\begin{equation*}
\left(\forall g \in \Gamma_{0}(\mathcal{G})\right)(\forall \gamma \in] 0,+\infty[)(\forall v \in \mathcal{G}) \quad \operatorname{prox}_{\gamma g^{*}} v=v-\gamma \operatorname{prox}_{\gamma^{-1} g}\left(\gamma^{-1} v\right) \tag{2.2}
\end{equation*}
$$

We now describe the asymptotic behavior of Algorithm 2.1.
Theorem 2.2. Suppose that

$$
\begin{equation*}
\left(r_{i}\right)_{1 \leqslant i \leqslant m} \in \operatorname{sri}\left\{\left(L_{i} x-y_{i}\right)_{1 \leqslant i \leqslant m} \mid x \in \mathcal{H},\left(y_{i}\right)_{1 \leqslant i \leqslant m} \in \underset{i=1}{m} \operatorname{dom} g_{i}\right\} \tag{2.3}
\end{equation*}
$$

and that

$$
\begin{equation*}
(\forall i \in\{1, \ldots, m\}) \quad \sum_{n \in \mathbb{N}}\left\|a_{i, n}\right\|_{\mathcal{G}_{i}}<+\infty . \tag{2.4}
\end{equation*}
$$

Furthermore, let $\left(x_{n}\right)_{n \in \mathbb{N}},\left(v_{1, n}\right)_{n \in \mathbb{N}}, \ldots,\left(v_{m, n}\right)_{n \in \mathbb{N}}$ be sequences generated by Algorithm 2.1. Then Problem 1.1 possesses a unique solution x and the following hold.
(i) For every $i \in\{1, \ldots, m\},\left(v_{i, n}\right)_{n \in \mathbb{N}}$ converges weakly to a point $v_{i} \in \mathcal{G}_{i}$. Moreover, $\left(v_{i}\right)_{1 \leqslant i \leqslant m}$ is a solution to the minimization problem

$$
\begin{equation*}
\underset{v_{1} \in \mathcal{G}_{1}, \ldots, v_{m} \in \mathcal{G}_{m}}{\operatorname{minimize}} \frac{1}{2}\left\|z-\sum_{i=1}^{m} \omega_{i} L_{i}^{*} v_{i}\right\|^{2}+\sum_{i=1}^{m} \omega_{i}\left(g_{i}^{*}\left(v_{i}\right)+\left\langle v_{i} \mid r_{i}\right\rangle\right) \tag{2.5}
\end{equation*}
$$

and $x=z-\sum_{i=1}^{m} \omega_{i} L_{i}^{*} v_{i}$.
(ii) $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges strongly to x.

Proof. Set $f: \mathcal{H} \rightarrow]-\infty,+\infty]: x \mapsto \sum_{i=1}^{m} \omega_{i} g_{i}\left(L_{i} x-r_{i}\right)$. The assumptions imply that, for every $i \in\{1, \ldots, m\}$, the function $x \mapsto g_{i}\left(L_{i} x-r_{i}\right)$ is convex and lower semicontinuous. Hence, f is likewise. On the other hand, it follows from (2.3) that

$$
\begin{equation*}
\left(r_{i}\right)_{1 \leqslant i \leqslant m} \in\left\{\left(L_{i} x-y_{i}\right)_{1 \leqslant i \leqslant m} \mid x \in \mathcal{H},\left(y_{i}\right)_{1 \leqslant i \leqslant m} \in \underset{i=1}{m} \operatorname{dom} g_{i}\right\} \tag{2.6}
\end{equation*}
$$

and, therefore, that $\operatorname{dom} f \neq \emptyset$. Thus, $f \in \Gamma_{0}(\mathcal{H})$ and, as seen in (1.3), Problem 1.1 possesses a unique solution, namely $x=\operatorname{prox}_{f} z$.

Now let \mathcal{H} be the real Hilbert space obtained by endowing the Cartesian product \mathcal{H}^{m} with the scalar product $\langle\cdot \mid \cdot\rangle_{\mathcal{H}}:(\boldsymbol{x}, \boldsymbol{y}) \mapsto \sum_{i=1}^{m} \omega_{i}\left\langle x_{i} \mid y_{i}\right\rangle$, where $\boldsymbol{x}=\left(x_{i}\right)_{1 \leqslant i \leqslant m}$ and $\boldsymbol{y}=\left(y_{i}\right)_{1 \leqslant i \leqslant m}$ denote generic elements in \mathcal{H}. The associated norm is

$$
\begin{equation*}
\|\cdot\| \mathcal{H}: \boldsymbol{x} \mapsto \sqrt{\sum_{i=1}^{m} \omega_{i}\left\|x_{i}\right\|^{2}} \tag{2.7}
\end{equation*}
$$

Likewise, let \mathcal{G} denote the real Hilbert space obtained by endowing the Cartesian product $\mathcal{G}_{1} \times \cdots \times \mathcal{G}_{m}$ with the scalar product and the associated norm respectively defined by

$$
\begin{equation*}
\langle\cdot \mid \cdot\rangle_{\mathcal{G}}:(\boldsymbol{y}, \boldsymbol{z}) \mapsto \sum_{i=1}^{m} \omega_{i}\left\langle y_{i} \mid z_{i}\right\rangle_{\mathcal{G}_{i}} \quad \text { and } \quad\|\cdot\|_{\mathcal{G}}: \boldsymbol{y} \mapsto \sqrt{\sum_{i=1}^{m} \omega_{i}\left\|y_{i}\right\|_{\mathcal{G}_{i}}^{2}} \tag{2.8}
\end{equation*}
$$

Define

$$
\left\{\begin{array}{l}
\boldsymbol{f}=\iota_{\boldsymbol{D}}, \quad \text { where } \boldsymbol{D}=\{(x, \ldots, x) \in \mathcal{H} \mid x \in \mathcal{H}\} \tag{2.9}\\
\boldsymbol{g}: \mathcal{G} \rightarrow]-\infty,+\infty]: \boldsymbol{y} \mapsto \sum_{i=1}^{m} \omega_{i} g_{i}\left(y_{i}\right) \\
\boldsymbol{L}: \mathcal{H} \rightarrow \mathcal{G}: \boldsymbol{x} \mapsto\left(L_{i} x_{i}\right)_{1 \leqslant i \leqslant m} \\
\boldsymbol{r}=\left(r_{1}, \ldots, r_{m}\right) \\
\boldsymbol{z}=(z, \ldots, z)
\end{array}\right.
$$

Then $\boldsymbol{f} \in \Gamma_{0}(\mathcal{H}), \boldsymbol{g} \in \Gamma_{0}(\mathcal{G})$, and $\boldsymbol{L} \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Moreover, \boldsymbol{D} is a closed vector subspace of \mathcal{H} with projector

$$
\begin{equation*}
\operatorname{prox}_{\boldsymbol{f}}=P_{\boldsymbol{D}}: \boldsymbol{x} \mapsto\left(\sum_{i=1}^{m} \omega_{i} x_{i}, \ldots, \sum_{i=1}^{m} \omega_{i} x_{i}\right) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{L}^{*}: \mathcal{G} \rightarrow \mathcal{H}: \boldsymbol{v} \mapsto\left(L_{i}^{*} v_{i}\right)_{1 \leqslant i \leqslant m} \tag{2.11}
\end{equation*}
$$

Note that (2.8) and (2.7) yield

$$
\begin{align*}
(\forall \boldsymbol{x} \in \mathcal{H}) \quad\|\boldsymbol{L} \boldsymbol{x}\|_{\mathcal{G}}^{2} & =\sum_{i=1}^{m} \omega_{i}\left\|L_{i} x_{i}\right\|_{\mathcal{G}_{i}}^{2} \\
& \leqslant \sum_{i=1}^{m} \omega_{i}\left\|L_{i}\right\|^{2}\left\|x_{i}\right\|^{2} \\
& \leqslant\left(\max _{1 \leqslant i \leqslant m}\left\|L_{i}\right\|^{2}\right) \sum_{i=1}^{m} \omega_{i}\left\|x_{i}\right\|^{2} \\
& =\left(\max _{1 \leqslant i \leqslant m}\left\|L_{i}\right\|^{2}\right)\|\boldsymbol{x}\|_{\mathcal{H}}^{2} \tag{2.12}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\|\boldsymbol{L}\| \leqslant \max _{1 \leqslant i \leqslant m}\left\|L_{i}\right\| \tag{2.13}
\end{equation*}
$$

We also deduce from (2.3) that

$$
\begin{equation*}
\boldsymbol{r} \in \operatorname{sri}(\boldsymbol{L}(\operatorname{dom} \boldsymbol{f})-\operatorname{dom} \boldsymbol{g}) \tag{2.14}
\end{equation*}
$$

Furthermore, in view of (2.7) and (2.9), in the space \mathcal{H}, (1.4) is equivalent to

$$
\begin{equation*}
\underset{\boldsymbol{x} \in \mathcal{H}}{\operatorname{minimize}} \boldsymbol{f}(\boldsymbol{x})+\boldsymbol{g}(\boldsymbol{L} \boldsymbol{x}-\boldsymbol{r})+\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{z}\|_{\mathcal{H}}^{2} \tag{2.15}
\end{equation*}
$$

Next, we derive from [8, Proposition 3.3] that the dual problem of (2.15) is to

$$
\begin{equation*}
\underset{\boldsymbol{v} \in \mathcal{G}}{\operatorname{minimize}} \widetilde{\boldsymbol{f}}^{*}\left(\boldsymbol{z}-\boldsymbol{L}^{*} \boldsymbol{v}\right)+\boldsymbol{g}^{*}(\boldsymbol{v})+\langle\boldsymbol{v} \mid \boldsymbol{r}\rangle_{\mathcal{G}} \tag{2.16}
\end{equation*}
$$

where $\widetilde{\boldsymbol{f}} \widetilde{v}^{*}: \boldsymbol{u} \mapsto \inf _{\boldsymbol{w} \in \mathcal{H}}\left(\boldsymbol{f}^{*}(\boldsymbol{w})+(1 / 2)\|\boldsymbol{u}-\boldsymbol{w}\|_{\mathcal{H}}^{2}\right)$ is the Moreau envelope of \boldsymbol{f}^{*}. Since $\boldsymbol{f}=\iota_{\boldsymbol{D}}$, we have $\boldsymbol{f}^{*}=\iota_{\boldsymbol{D}^{\perp}}$. Hence, (2.7) and (2.10) yield

$$
\begin{equation*}
(\forall \boldsymbol{u} \in \mathcal{H}) \quad \widetilde{\boldsymbol{f}^{*}}(\boldsymbol{u})=\frac{1}{2}\left\|\boldsymbol{u}-P_{\boldsymbol{D}^{\perp}} \boldsymbol{u}\right\|_{\mathcal{H}}^{2}=\frac{1}{2}\left\|P_{\boldsymbol{D}} \boldsymbol{u}\right\|_{\mathcal{H}}^{2}=\frac{1}{2}\left\|\sum_{i=1}^{m} \omega_{i} u_{i}\right\|^{2} \tag{2.17}
\end{equation*}
$$

On the other hand, (2.8) and (2.9) yield

$$
\begin{equation*}
(\forall \boldsymbol{v} \in \mathcal{G}) \quad \mathbf{g}^{*}(\boldsymbol{v})=\sum_{i=1}^{m} \omega_{i} g_{i}^{*}\left(v_{i}\right) \quad \text { and } \quad \operatorname{prox}_{\boldsymbol{g}^{*}} \boldsymbol{v}=\left(\operatorname{prox}_{g_{i}^{*}} v_{i}\right)_{1 \leqslant i \leqslant m} \tag{2.18}
\end{equation*}
$$

Altogether, it follows from (2.11), (2.17), (2.18), and (2.8), that
(2.16) is equivalent to (2.5).

Now define

$$
(\forall n \in \mathbb{N}) \quad\left\{\begin{array}{l}
\boldsymbol{x}_{n}=\left(x_{n}, \ldots, x_{n}\right) \tag{2.20}\\
\boldsymbol{v}_{n}=\left(v_{1, n}, \ldots, v_{m, n}\right) \\
\boldsymbol{a}_{n}=\left(a_{1, n}, \ldots, a_{m, n}\right)
\end{array}\right.
$$

Then, in view of (2.9), (2.10), (2.11), (2.13), and (2.18), (2.1) is a special case of the following routine.

$$
\begin{aligned}
& \text { Initialization } \\
& \qquad \begin{array}{l}
\rho=\|\boldsymbol{L}\|^{-2} \\
\varepsilon \in] 0, \min \{1, \rho\}[\\
\boldsymbol{v}_{0} \in \mathcal{G}
\end{array}
\end{aligned}
$$

For $n=0,1, \ldots$

$$
\begin{align*}
& \boldsymbol{x}_{n}=\operatorname{prox}_{\boldsymbol{f}}\left(\boldsymbol{z}-\boldsymbol{L}^{*} \boldsymbol{v}_{n}\right) \\
& \gamma_{n} \in[\varepsilon, 2 \rho-\varepsilon] \\
& \lambda_{n} \in[\varepsilon, 1] \\
& \boldsymbol{v}_{n+1}=\boldsymbol{v}_{n}+\lambda_{n}\left(\operatorname{prox}_{\gamma_{n} \boldsymbol{g}^{*}}\left(\boldsymbol{v}_{n}+\gamma_{n}\left(\boldsymbol{L} \boldsymbol{x}_{n}-\boldsymbol{r}\right)\right)+\boldsymbol{a}_{n}-\boldsymbol{v}_{n}\right) . \tag{2.21}
\end{align*}
$$

Moreover, (2.4) implies that $\sum_{n \in \mathbb{N}}\left\|\boldsymbol{a}_{n}\right\|_{\mathcal{G}}<+\infty$. Hence, it follows from (2.14) and [8, Theorem 3.7] that the following hold, where \boldsymbol{x} is the solution to (2.15).
(a) $\left(\boldsymbol{v}_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a solution \boldsymbol{v} to (2.16) and $\boldsymbol{x}=\operatorname{prox}_{\boldsymbol{f}}\left(\boldsymbol{z}-\boldsymbol{L}^{*} \boldsymbol{v}\right)$.
(b) $\left(\boldsymbol{x}_{n}\right)_{n \in \mathbb{N}}$ converges strongly to \boldsymbol{x}.

In view of (2.7), (2.8), (2.9), (2.10), (2.11), (2.19), and (2.20), items (a) and (b) provide respectively items (i) and (ii).
Remark 2.3. Let us consider Problem 1.1 in the special case when

$$
\begin{equation*}
(\forall i \in\{1, \ldots, m\}) \quad \mathcal{G}_{i}=\mathcal{H}, \quad L_{i}=\mathrm{Id}, \quad \text { and } \quad r_{i}=0 \tag{2.22}
\end{equation*}
$$

Then (1.4) reduces to

$$
\begin{equation*}
\underset{x \in \mathcal{H}}{\operatorname{minimize}} \sum_{i=1}^{m} \omega_{i} g_{i}(x)+\frac{1}{2}\|x-z\|^{2} . \tag{2.23}
\end{equation*}
$$

Now let us implement Algorithm 2.1 with $\gamma_{n} \equiv 1, \lambda_{n} \equiv 1, a_{i, n} \equiv 0$, and $v_{i, 0} \equiv 0$. The iteration process resulting from (2.1) can be written as

Initialization

$$
\left\lfloor\begin{array}{l}
x_{0}=z \\
\text { For } i=1, \ldots, m \\
\left\lfloor v_{i, 0}=0\right.
\end{array}\right.
$$

For $n=0,1, \ldots$
For $i=1, \ldots, m$
$\left\lfloor v_{i, n+1}=\operatorname{prox}_{g_{i}^{*}}\left(x_{n}+v_{i, n}\right)\right.$
$x_{n+1}=z-\sum_{i=1}^{m} \omega_{i} v_{i, n+1}$.
For every $i \in\{1, \ldots, m\}$ and $n \in \mathbb{N}$, set $z_{i, n}=x_{n}+v_{i, n}$. Then (2.24) yields
Initialization

$$
\begin{aligned}
& x_{0}=z \\
& \text { For } i=1, \ldots, m \\
& \left\lfloor z_{i, 0}=z\right.
\end{aligned}
$$

For $n=0,1, \ldots$.

$$
\left[\begin{array}{l}
x_{n+1}=z-\sum_{i=1}^{m} \omega_{i} \operatorname{prox}_{g_{i}^{*}} z_{i, n} \\
\text { For } i=1, \ldots, m \\
\left\lfloor z_{i, n+1}=x_{n+1}+\operatorname{prox}_{g_{i}^{*}} z_{i, n}\right. \tag{2.25}
\end{array}\right.
$$

Next we observe that $(\forall n \in \mathbb{N}) \sum_{i=1}^{m} \omega_{i} z_{i, n}=z$. Indeed, the identity is clearly satisfied for $n=0$ and, for every $n \in \mathbb{N}$, (2.25) yields $\sum_{i=1}^{m} \omega_{i} z_{i, n+1}=x_{n+1}+\sum_{i=1}^{m} \omega_{i} \operatorname{prox}_{g_{i}^{*}} z_{i, n}=\left(z-\sum_{i=1}^{m} \omega_{i} \operatorname{prox}_{g_{i}^{*}} z_{i, n}\right)+\sum_{i=1}^{m} \omega_{i} \operatorname{prox}_{g_{i}^{*}} z_{i, n}=z$. Thus, invoking (2.2) with $\gamma=1$, we can rewrite (2.25) as

Initialization

$$
\begin{align*}
& \left\lfloor\begin{array}{l}
x_{0}=z \\
\text { For } i=1, \ldots, m \\
\left\lfloor z_{i, 0}=z\right.
\end{array}\right. \\
& \text { For } n=0,1, \ldots \\
& x_{n+1}=\sum_{i=1}^{m} \omega_{i} \operatorname{prox}_{g_{i}} z_{i, n} \\
& \text { For } i=1, \ldots, m \tag{2.26}\\
& \left\lfloor z_{i, n+1}=x_{n+1}+z_{i, n}-\operatorname{prox}_{g_{i}} z_{i, n}\right.
\end{aligned} . \begin{aligned}
&
\end{align*}
$$

This is precisely the Dykstra-like algorithm proposed in [7, Theorem 4.2] for computing prox $\sum_{i=1}^{m} \omega_{i} g_{i} z$ (which itself extends the classical parallel Dykstra algorithm for projecting z onto an intersection of closed convex sets [2,14]; for sequential algorithms operating under assumption (2.22), see [3] for the case when $m=2$, and [5] for the case of best approximation). Hence, Algorithm 2.1 can be viewed as an extension of this algorithm, which was derived and analyzed with different techniques in [7].

3. Applications

As noted in the Introduction, special cases of Problem 1.1 have already been considered in the literature under certain restrictions on the number m of composite functions, the complexity of the linear operators $\left(L_{i}\right)_{1 \leqslant i \leqslant m}$, and/or the smoothness of the potentials $\left(g_{i}\right)_{1 \leqslant i \leqslant m}$ (one will find specific applications in $[6,8,10-12,18]$ and the references therein). The proposed framework makes it possible to remove these restrictions simultaneously. In this section, we provide two illustrations.

3.1. Best approximation from an intersection of composite convex sets

In this subsection, we consider the problem of finding the best approximation $P_{D} z$ to a point $z \in \mathcal{H}$ from a closed convex subset D of \mathcal{H} defined as an intersection of affine inverse images of closed convex sets.

Problem 3.1. Let $z \in \mathcal{H}$ and, for every $i \in\{1, \ldots, m\}$, let $\left(\mathcal{G}_{i},\|\cdot\| \mathcal{G}_{i}\right)$ be a real Hilbert space, let $r_{i} \in \mathcal{G}_{i}$, let C_{i} be a nonempty closed convex subset of \mathcal{G}_{i}, and let $0 \neq L_{i} \in \mathcal{B}\left(\mathcal{H}, \mathcal{G}_{i}\right)$. The problem is to

$$
\begin{equation*}
\underset{x \in D}{\operatorname{minimize}}\|x-z\|, \quad \text { where } D=\bigcap_{i=1}^{m}\left\{x \in \mathcal{H} \mid L_{i} x \in r_{i}+C_{i}\right\} \tag{3.1}
\end{equation*}
$$

In view of (1.1), Problem 3.1 is a special case of Problem 1.1, where $(\forall i \in\{1, \ldots, m\}) g_{i}=\iota c_{i}$ and $\omega_{i}=1 / m$. It follows that, for every $i \in\{1, \ldots, m\}$ and every $\gamma \in] 0,+\infty\left[\right.$, prox ${ }_{\gamma g_{i}}$ reduces to the projector $P_{C_{i}}$ onto C_{i}. Hence, using (2.2), we can rewrite Algorithm 2.1 in the following form, where we have set $c_{i, n}=-\gamma_{n}^{-1} a_{i, n}$ for simplicity.

Algorithm 3.2. For every $i \in\{1, \ldots, m\}$, let $\left(c_{i, n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathcal{G}_{i}.
Initialization

$$
\left\lfloor\begin{array}{l}
\rho=\left(\max _{1 \leqslant i \leqslant m}\left\|L_{i}\right\|\right)^{-2} \\
\varepsilon \in] 0, \min \{1, \rho\}[\\
\text { For } i=1, \ldots, m \\
\left\lfloor v_{i, 0} \in \mathcal{G}_{i}\right.
\end{array}\right.
$$

For $n=0,1, \ldots$

$$
\left[\begin{array}{l}
x_{n}=z-\sum_{i=1}^{m} \omega_{i} L_{i}^{*} v_{i, n} \\
\gamma_{n} \in[\varepsilon, 2 \rho-\varepsilon] \\
\lambda_{n} \in[\varepsilon, 1] \\
\text { For } i=1, \ldots, m \\
\left\lfloor v_{i, n+1}=v_{i, n}+\gamma_{n} \lambda_{n}\left(L_{i} x_{n}-r_{i}-P_{C_{i}}\left(\gamma_{n}^{-1} v_{i, n}+L_{i} x_{n}-r_{i}\right)-c_{i, n}\right)\right. \tag{3.2}
\end{array}\right.
$$

In the light of the above, we obtain the following application of Theorem 2.2(ii).

Corollary 3.3. Suppose that

$$
\begin{equation*}
\left(r_{i}\right)_{1 \leqslant i \leqslant m} \in \operatorname{sri}\left\{\left(L_{i} x-y_{i}\right)_{1 \leqslant i \leqslant m} \mid x \in \mathcal{H},\left(y_{i}\right)_{1 \leqslant i \leqslant m} \in \underset{i=1}{m} C_{i}\right\} \tag{3.3}
\end{equation*}
$$

and that $(\forall i \in\{1, \ldots, m\}) \sum_{n \in \mathbb{N}}\left\|c_{i, n}\right\|_{\mathcal{G}_{i}}<+\infty$. Then every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ generated by Algorithm 3.2 converges strongly to the solution $P_{D} z$ to Problem 3.1.

3.2. Nonsmooth image recovery

A wide range of signal and image recovery problems can be modeled as instances of Problem 1.1. In this subsection, we focus on the problem of recovering an image $\bar{\chi} \in \mathcal{H}$ from p noisy measurements

$$
\begin{equation*}
r_{i}=T_{i} \bar{x}+s_{i}, \quad 1 \leqslant i \leqslant p \tag{3.4}
\end{equation*}
$$

In this model, the i th measurement r_{i} lies in a Hilbert space $\mathcal{G}_{i}, T_{i} \in \mathcal{B}\left(\mathcal{H}, \mathcal{G}_{i}\right)$ is the data formation operator, and $s_{i} \in \mathcal{G}_{i}$ is the realization of a noise process. A typical data fitting potential in such models is the function

$$
\begin{equation*}
x \mapsto \sum_{i=1}^{p} \omega_{i} g_{i}\left(T_{i} x-r_{i}\right), \quad \text { where } 0 \leqslant g_{i} \in \Gamma_{0}\left(\mathcal{G}_{i}\right) \text { and } g_{i} \text { vanishes only at } 0 . \tag{3.5}
\end{equation*}
$$

The proposed framework can handle $p \geqslant 1$ nondifferentiable functions $\left(g_{i}\right)_{1 \leqslant i \leqslant p}$ as well as the incorporation of additional potential functions to model prior knowledge on the original image \bar{x}. In the illustration we provide below, the following is assumed.

- The image space is $\mathcal{H}=\mathrm{H}_{0}^{1}(\Omega)$, where Ω is a nonempty bounded open domain in \mathbb{R}^{2}.
- \bar{x} admits a sparse decomposition in an orthonormal basis $\left(e_{k}\right)_{k \in \mathbb{N}}$ of \mathcal{H}. As discussed in [12,23] this property can be promoted by the "elastic net" potential $x \mapsto \sum_{k \in \mathbb{N}} \phi_{k}\left(\left\langle x \mid e_{k}\right\rangle\right)$, where $(\forall k \in \mathbb{N}) \phi_{k}: \xi \mapsto \alpha|\xi|+\beta|\xi|^{2}$, with $\alpha>0$ and $\beta>0$. More general choices of suitable functions $\left(\phi_{k}\right)_{k \in \mathbb{N}}$ are available in [9].
- \bar{x} is piecewise smooth. This property is promoted by the total variation potential $\operatorname{tv}(x)=\int_{\Omega}|\nabla x(\omega)|_{2} d \omega$, where $|\cdot|_{2}$ denotes the Euclidean norm on \mathbb{R}^{2} [20].

Upon setting $g_{i} \equiv\|\cdot\|_{\mathcal{G}_{i}}$ in (3.5), these considerations lead us to the following formulation (see [8, Example 2.10] for more general nonsmooth potentials).

Problem 3.4. Let $\mathcal{H}=\mathrm{H}_{0}^{1}(\Omega)$, where $\Omega \subset \mathbb{R}^{2}$ is nonempty, bounded, and open, let $\left(\omega_{i}\right)_{1 \leqslant i \leqslant p+2}$ be reals in $\left.] 0,1\right]$ such that $\sum_{i=1}^{p+2} \omega_{i}=1$, and let $\left(e_{k}\right)_{k \in \mathbb{N}}$ be an orthonormal basis of \mathcal{H}. For every $i \in\{1, \ldots, p\}$, let $0 \neq T_{i} \in \mathcal{B}\left(\mathcal{H}, \mathcal{G}_{i}\right)$, where $\left(\mathcal{G}_{i},\|\cdot\|_{\mathcal{G}_{i}}\right)$ is a real Hilbert space, and let $r_{i} \in \mathcal{G}_{i}$. The problem is to

$$
\begin{equation*}
\underset{x \in \mathcal{H}}{\operatorname{minimize}} \sum_{i=1}^{p} \omega_{i}\left\|T_{i} x-r_{i}\right\|_{\mathcal{G}_{i}}+\sum_{k \in \mathbb{N}}\left(\omega_{p+1}\left|\left\langle x \mid e_{k}\right\rangle\right|+\frac{1}{2}\left|\left\langle x \mid e_{k}\right\rangle\right|^{2}\right)+\omega_{p+2} \operatorname{tv}(x) \tag{3.6}
\end{equation*}
$$

It follows from Parseval's identity that Problem 3.4 is a special case of Problem 1.1 in $\mathcal{H}=\mathrm{H}_{0}^{1}(\Omega)$ with $m=p+2, z=0$, and

$$
\left\{\begin{array}{l}
g_{i}=\|\cdot\|_{\mathcal{G}_{i}} \text { and } \quad L_{i}=T_{i}, \quad \text { if } 1 \leqslant i \leqslant p ; \tag{3.7}\\
\mathcal{G}_{p+1}=\ell^{2}(\mathbb{N}), \quad g_{p+1}=\|\cdot\|_{\ell^{1}}, \quad r_{p+1}=0, \quad \text { and } \quad L_{p+1}: x \mapsto\left(\left\langle x \mid e_{k}\right\rangle\right)_{k \in \mathbb{N}} ; \\
\mathcal{G}_{p+2}=\mathrm{L}^{2}(\Omega) \oplus \mathrm{L}^{2}(\Omega), \quad g_{p+2}: y \mapsto \int_{\Omega}|y(\omega)|_{2} d \omega, \quad r_{p+2}=0, \quad \text { and } \quad L_{p+2}=\nabla
\end{array}\right.
$$

To implement Algorithm 2.1, it suffices to note that $L_{p+1}^{*}:\left(v_{k}\right)_{k \in \mathbb{N}} \mapsto \sum_{k \in \mathbb{N}} v_{k} e_{k}$ and $L_{p+2}^{*}=-$ div, and to specify the proximity operators of the functions $\left(\gamma g_{i}^{*}\right)_{1 \leqslant i \leqslant m}$, where $\left.\gamma \in\right] 0,+\infty\left[\right.$. First, let $i \in\{1, \ldots, p\}$. Then $g_{i}=\|\cdot\|_{\mathcal{G}_{i}}$ and therefore $g_{i}^{*}=\iota_{B_{i}}$, where B_{i} is the closed unit ball of \mathcal{G}_{i}. Hence $\operatorname{prox}_{\gamma g_{i}^{*}}=P_{B_{i}}$. Next, it follows from (2.2) and [11, Example 2.20] that $\operatorname{prox}_{\gamma g_{p+1}^{*}}:\left(\xi_{k}\right)_{k \in \mathbb{N}} \mapsto\left(P_{[-1,1]} \xi_{k}\right)_{k \in \mathbb{N}}$. Finally, since g_{p+2} is the support function of the set [15]

$$
\begin{equation*}
K=\left\{\left.y \in \mathcal{G}_{p+2}| | y\right|_{2} \leqslant 1 \text { a.e. }\right\}, \tag{3.8}
\end{equation*}
$$

$g_{p+2}^{*}=\iota_{K}$ and therefore $\operatorname{prox}_{\gamma g_{p+2}^{*}}=P_{K}$, which is straightforward to compute. Altogether, as $\left\|L_{p+1}\right\|=1$ and $\left\|L_{p+2}\right\| \leqslant 1$, Algorithm 2.1 assumes the following form (since all the proximity operators can be implemented with simple projections, we dispense with the errors terms).

Algorithm 3.5.

Initialization

$$
\begin{aligned}
& \rho=\left(\max \left\{1,\left\|T_{1}\right\|, \ldots,\left\|T_{p}\right\|\right\}\right)^{-2} \\
& \varepsilon \in] 0, \min \{1, \rho\}[\\
& \text { For } i=1, \ldots, p \\
& \left\lfloor v_{i, 0} \in \mathcal{G}_{i}\right. \\
& v_{p+1,0}=\left(v_{k, 0}\right)_{k \in \mathbb{N}} \in \ell^{2}(\mathbb{N}) \\
& v_{p+2,0} \in \mathrm{~L}^{2}(\Omega) \oplus \mathrm{L}^{2}(\Omega)
\end{aligned}
$$

For $n=0,1, \ldots$

$$
\begin{aligned}
& x_{n}=z-\sum_{i=1}^{p} \omega_{i} T_{i}^{*} v_{i, n}-\omega_{p+1} \sum_{k \in \mathbb{N}} v_{k, n} e_{k}+\omega_{p+2} \operatorname{div} v_{p+2, n} \\
& \gamma_{n} \in[\varepsilon, 2 \rho-\varepsilon] \\
& \lambda_{n} \in[\varepsilon, 1] \\
& \text { For } i=1, \ldots, p \\
& \quad v_{i, n+1}=v_{i, n}+\lambda_{n}\left(\frac{v_{i, n}+\gamma_{n}\left(T_{i} x_{n}-r_{i}\right)}{\max \left\{1,\left\|v_{i, n}+\gamma_{n}\left(T_{i} x_{n}-r_{i}\right)\right\|_{\left.\mathcal{G}_{i}\right\}}\right\}}-v_{i, n}\right) \\
& \text { For every } k \in \mathbb{N}, \quad v_{k, n+1}=v_{k, n}+\lambda_{n}\left(\frac{v_{k, n}+\gamma_{n}\left\langle x_{n} \mid e_{k}\right\rangle}{\max \left\{1,\left|v_{k, n}+\gamma_{n}\left\langle x_{n} \mid e_{k}\right\rangle\right|\right\}}-v_{k, n}\right)
\end{aligned}
$$

For almost every $\omega \in \Omega$,

$$
\begin{equation*}
v_{p+2, n+1}(\omega)=v_{p+2, n}(\omega)+\lambda_{n}\left(\frac{v_{p+2, n}(\omega)+\gamma_{n} \nabla x_{n}(\omega)}{\max \left\{1,\left|v_{p+2, n}(\omega)+\gamma_{n} \nabla x_{n}(\omega)\right|_{2}\right\}}-v_{p+2, n}(\omega)\right) \tag{3.9}
\end{equation*}
$$

Let us establish the main convergence property of this algorithm.
Corollary 3.6. Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ generated by Algorithm 3.5 converges strongly to the solution to Problem 3.4.
Proof. In view of the above discussion and of Theorem 2.2 (ii), it remains to check that (2.3) is satisfied. Set $S=$ $\left\{\left(L_{i} x-y_{i}\right)_{1 \leqslant i \leqslant m} \mid x \in \mathcal{H},\left(y_{i}\right)_{1 \leqslant i \leqslant m} \in X_{i=1}^{m} \operatorname{dom} g_{i}\right\}$. We have dom $g_{i}=\mathcal{G}_{i}$ for every $i \in\{1, \ldots, p\}$, dom $g_{p+1}=\ell^{1}(\mathbb{N})$, and dom $g_{p+2}=\mathrm{L}^{2}(\Omega) \oplus \mathrm{L}^{2}(\Omega)$. Consequently,

$$
\begin{aligned}
S= & \left\{\left(T_{1} x-y_{1}, \ldots, T_{p} x-y_{p},\left(\left\langle x \mid e_{k}\right\rangle-\eta_{k}\right)_{k \in \mathbb{N}}, \nabla x-y_{p+2}\right) \mid\right. \\
& \left.x \in \mathcal{H},\left(y_{i}\right)_{1 \leqslant i \leqslant p} \in \underset{i=1}{\underset{X}{\mathcal{G}}} \mathcal{G}_{i},\left(\eta_{k}\right)_{k \in \mathbb{N}} \in \ell^{1}(\mathbb{N}), y_{p+2} \in \mathrm{~L}^{2}(\Omega) \oplus \mathrm{L}^{2}(\Omega)\right\}
\end{aligned}
$$

$$
\begin{align*}
& =\left(\underset{i=1}{\underset{X}{X}} \mathcal{G}_{i}\right) \times \ell^{2}(\mathbb{N}) \times\left(\mathrm{L}^{2}(\Omega) \oplus \mathrm{L}^{2}(\Omega)\right) \\
& =\underset{i=1}{\times} \mathcal{G}_{i}
\end{align*}
$$

Hence, we trivially have $\left(r_{1}, \ldots, r_{p}, 0,0\right) \in$ sri S.
Let us emphasize that a novelty of the above variational framework is to perform total variation image recovery in the presence of several nondifferentiable composite terms, with guaranteed strong convergence to the solution to the problem, and with elementary steps in the form of simple projections. The finite-dimensional version of the algorithm can easily be obtained by discretizing the operators ∇ and div as in [6] (see also [8, Section 4.4] for variants of the total variation potential).

References

[1] P. Alart, O. Maisonneuve, R.T. Rockafellar (Eds.), Nonsmooth Mechanics and Analysis - Theoretical and Numerical Advances, Springer-Verlag, New York, 2006.
[2] H.H. Bauschke, J.M. Borwein, Dykstra's alternating projection algorithm for two sets, J. Approx. Theory 79 (1994) 418-443.
[3] H.H. Bauschke, P.L. Combettes, A Dykstra-like algorithm for two monotone operators, Pac. J. Optim. 4 (2008) 383-391.
[4] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer-Verlag, New York, 2011.
[5] J.P. Boyle, R.L. Dykstra, A method for finding projections onto the intersection of convex sets in Hilbert spaces, in: Lecture Notes in Statist., vol. 37, 1986, pp. 28-47.
[6] A. Chambolle, Total variation minimization and a class of binary MRF model, in: Lecture Notes in Comput. Sci., vol. 3757, 2005 , pp. 136-152.
[7] P.L. Combettes, Iterative construction of the resolvent of a sum of maximal monotone operators, J. Convex Anal. 16 (2009) $727-748$.
[8] P.L. Combettes, Đinh Dũng, B.C. Vũ, Dualization of signal recovery problems, Set-Valued Anal. 18 (2010) 373-404.
[9] P.L. Combettes, J.-C. Pesquet, Proximal thresholding algorithm for minimization over orthonormal bases, SIAM J. Optim. 18 (2007) $1351-1376$.
[10] P.L. Combettes, J.-C. Pesquet, Proximal splitting methods in signal processing, in: H.H. Bauschke, R. Burachik, P.L. Combettes, V. Elser, D.R. Luke, H. Wolkowicz (Eds.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer-Verlag, New York, 2011, http:// www.ann.jussieu.fr/~plc/prox.pdf.
[11] P.L. Combettes, V.R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul. 4 (2005) 1168-1200.
[12] C. De Mol, E. De Vito, L. Rosasco, Elastic-net regularization in learning theory, J. Complexity 25 (2009) 201-230.
[13] F. Deutsch, Best Approximation in Inner Product Spaces, Springer-Verlag, New York, 2001.
[14] N. Gaffke, R. Mathar, A cyclic projection algorithm via duality, Metrika 36 (1989) 29-54.
[15] B. Mercier, Inéquations Variationnelles de la Mécanique, Publ. Math. Orsay, vol. 80.01, Université de Paris-XI, Orsay, France, 1980.
[16] J.-J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci. Paris Sér. A Math. 255 (1962) $2897-2899$.
[17] J.-J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France 93 (1965) 273-299.
[18] L.C. Potter, K.S. Arun, A dual approach to linear inverse problems with convex constraints, SIAM J. Control Optim. 31 (1993) $1080-1092$.
[19] R.T. Rockafellar, R.J.B. Wets, Variational Analysis, 3rd edition, Springer-Verlag, New York, 2009.
[20] L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D 60 (1992) 259-268.
[21] P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM J. Control Optim. 29 (1991) 119-138.
[22] C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific, River Edge, NJ, 2002.
[23] H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2005) 301-320.

[^0]: 㽣 The work of P.L. Combettes was supported by the Agence Nationale de la Recherche under grant ANR-08-BLAN-0294-02. The work of Đinh Dũng and Bằng Công Vũ was supported by the Vietnam National Foundation for Science and Technology Development.

 * Corresponding author. Fax: +33 144277200.

 E-mail addresses: plc@math.jussieu.fr (P.L. Combettes), dinhdung@vnu.edu.vn (Đ. Dũng), vu@ann.jussieu.fr (B.C. Vũ).

