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A detailed comparative analysis of µ lower bound algorithms

This paper presents a detailed comparison of the most significant methods developed to compute lower bounds on the structured singular value. The objective is to characterize the behavior of these robustness analysis tools on the basis of a common framework constituted by a wide set of various real-world applications.

I. INTRODUCTION

Since its introduction, µ-analysis [START_REF] Doyle | Analysis of feedback systems with structured uncertainties[END_REF] has been the object of extensive research and attention both in the academic and in the industrial worlds, resulting in useful tools in the field of robustness analysis of uncertain systems. Several different methods have been developed in the last 30 years in order to tackle the problem of computing the structured singular value µ. The main contribution of this paper is to evaluate the effectiveness of existing µ lower bound algorithms by means of a detailed comparative analysis on a large set of challenging benchmarks.

The paper is organized as follows. A brief introduction to µ-analysis is first presented in Section II and the various approaches to compute bounds on the structured singular value are surveyed in Section III. The testing framework is then described in Section IV. Detailed numerical results are finally presented in Section V and analyzed in Section VI.

II. PROBLEM STATEMENT

Let us consider the standard interconnection of Fig. 1. M (s) is a continuous-time stable and proper real-rational transfer function representing the nominal closed-loop system. ∆(s) is a continuous-time block-diagonal operator:

∆(s) = diag(∆ 1 (s), . . . , ∆ N (s)) (1) 
which gathers all model uncertainties. Each ∆ i (s) can be:

• either a time-invariant diagonal matrix ∆ i (s) = δ i I ni , where δ i is a real or a complex parametric uncertainty, • or a stable and proper real-rational unstructured transfer function usually representing neglected dynamics. The set of all matrices with the same block-diagonal structure and the same nature (real or complex) as ∆(jω) is denoted by ∆. The notation ∆(s) ∈ ∆ is then introduced to specify that ∆(jω) ∈ ∆ for all ω ∈ Ω, where Ω denotes the frequency range of interest (usually equal to R + ). Finally, let kB ∆ = {∆ ∈ ∆ : σ(∆) < k}, where σ (.) denotes the largest singular value.

µ-analysis [START_REF] Doyle | Analysis of feedback systems with structured uncertainties[END_REF] is probably the most efficient technique to analyze the stability of the interconnection of Fig. 1, especially when high-dimensional systems are considered. The underlying theory [START_REF] Ferreres | A practical approach to robustness analysis with aeronautical applications[END_REF][START_REF] Zhou | Robust and optimal control[END_REF] is not broached as such in this paper due to space limitations, but a few useful definitions are recalled below.

Definition 2.1: Let ω ∈ R + be a given frequency. If no matrix ∆ ∈ ∆ makes I -M (jω)∆ singular, then the structured singular value µ ∆ (M (jω)) is equal to zero. Otherwise:

µ ∆ (M (jω)) = min ∆∈∆ {σ(∆), det(I -M (jω)∆) = 0} -1
Lemma 2.1: The interconnection of Fig. 1 is stable ∀∆(s) ∈ k m B ∆ , where the robust stability margin k m is defined as the inverse of the largest value of µ ∆ (M (jω)) over the frequency range of interest:

k m = max ω∈Ω µ ∆ (M (jω)) -1
The exact computation of k m is known to be NP hard in the general case, so both lower and upper bounds are computed instead. But even computing these bounds is a challenging problem with an infinite number of frequencydomain constraints, since it requires to computes lower and upper bounds on µ ∆ (M (jω)) for each ω ∈ Ω.

While most of the computationally tractable methods to compute lower bounds on k m (i.e. µ upper bounds) rely on the so-called D and G scaling matrices [START_REF] Young | Computing bounds for the mixed µ problem[END_REF], a wide number of very different approaches have been developed to compute upper bounds on k m (i.e. µ lower bounds). In this context, the main contribution of this paper is to make a thorough comparison of the most significant µ lower bound algorithms on a wide set of real-world benchmarks.

III. SURVEY OF EXISTING METHODS

A. µ lower bound algorithms

This section is exhaustive in the sense that all methods that can reasonably be applied to real-world benchmarks are mentioned. Only a few exponential-time algorithms have been omitted, as well as techniques with a limited range of application. In all cases, both µ lower bounds and associated destabilizing values of the uncertainties can be obtained. [START_REF] Young | A lower bound for the mixed µ problem[END_REF]: This technique aims at solving the following non-concave optimization problem:

Power algorithm

µ ∆ (M ) = max Q∈Q ρ R (QM ) (2) 
where ρ R (M ) is the magnitude of the largest real eigenvalue of M , while Q is the set of all

∆ = diag(∆ 1 , . . . , ∆ N ) ∈ ∆ such that δ i ∈ [-1, 1] if ∆ i = δ i I ni is real and ∆ * i ∆ i = I ni if ∆ i is complex. A local
maximum, i.e. a µ lower bound, is computed using a fixed point iteration. [START_REF] Seiler | A gain-based lower bound algorithm for real and mixed µ problems[END_REF]: The µ problem is reformulated as a worst-case H ∞ performance problem, for which lower bounds and associated values of the real uncertainties can be computed using the algorithm of [START_REF] Packard | Results on worst-case performance assessment[END_REF]. In case of mixed uncertainties, the complex blocks of the destabilizing uncertainties are obtained using the aforementioned power algorithm. 3. Exponential-time methods: Several techniques have been proposed. Firstly, the one introduced in [START_REF] Gaston | Exact calculation of the multiloop stability margin[END_REF] for non-repeated (n i = 1) real uncertainties and later generalized in [START_REF] Sideris | Robustness margin calculation with dynamic and real parametric uncertainty[END_REF] uses the mapping theorem of [START_REF] Zadeh | Linear system theory[END_REF]: the image of kB ∆ by the operator ∆ → det(I -∆M ) is included into the convex hull of the images of the 2 N vertices of kB ∆ . A µ lower bound is obtained by considering the position of these images with respect to the origin. Then, the algebraic method proposed in [START_REF] Dailey | A new algorithm for the real structured singular value[END_REF] for non-repeated real uncertainties searches for a destabilizing uncertainty ∆ ∈ kB ∆ such that all the δ i except 2 attain the maximal magnitude k, which can be achieved by simple matrix algebra operations (see also [START_REF] Elgersma | Polynomial methods for the structured singular value with real parameters[END_REF] for a similar approach). A one-dimensional halving search on k is performed to compute a µ lower bound. There are N (N -1)/2 ways to choose 2 uncertainties among N and 2 N -2 ways to set each of the N -2 others to -k or k, so N (N -1)2 N -3 searches are performed for each value of k. Finally, the method introduced in [START_REF] Matsuda | Computation of real structured singular value by stability feeler[END_REF] for (possibly repeated) real uncertainties consists of introducing b = N i=1 (n i + 1) -1 fictitious uncertainties δ 1 , . . . , δ b and rewriting the numerator of det(I-M (s)∆) as f (s)= p(s)+ δ 1 . . . δ b [ p 1 (s). . . p b (s)]

Gain-based algorithm

T , where p(s), p 1 (s), . . . , p b (s) are fixed real polynomials. The stability of f (s) is evaluated using the stability feeler introduced in [START_REF] Matsuda | Stability feeler: a tool for parametric robust stability analysis and its applications[END_REF], which leads to µ upper and lower bounds.

Poles migration techniques:

These algorithms use a firstorder characterization of the variation in the poles of the uncertain system caused by a small variation d∆ of ∆. A series of such perturbations d∆ are computed, which progressively move the poles towards the imaginary axis. On the one hand, a series of quadratic programming problems are solved in [START_REF] Magni | Mixed µ-analysis for flexible systems. Part 1: theory[END_REF] for each pole λ of M (s). The perturbation with minimum Froebenius norm which brings λ on the imaginary axis is first determined, and then the one with minimum σ norm such that the uncertain system remains at the limit of stability. On the other hand, [START_REF] Ferreres | Reliable computation of the robustness margin for a flexible aircraft[END_REF] notes that the power algorithm of [START_REF] Young | A lower bound for the mixed µ problem[END_REF] is quite fast, but often suffers from convergence problems when real uncertainties are considered. In this context, a three-step procedure is proposed in case of purely real perturbations. The initial problem is first regularized by adding a small amount of complex uncertainty [START_REF] Packard | Continuity properties of the real/complex structured singular value[END_REF]. The power algorithm is then run at each point of a rough frequency grid, usually with good convergence properties. Using the resulting uncertainties as an initialization, a series or linear programming problems are finally solved until one of the poles of the initial uncertain system becomes unstable.

Optimization-based techniques:

Several strategies have been proposed. [START_REF] Dehaene | Calculation of the structured singular value with gradient-based optimization algorithms on a Lie group of structured unitary matrices[END_REF] solves the same problem as the power algorithm of [START_REF] Young | A lower bound for the mixed µ problem[END_REF] in the case of complex uncertainties (ρ R is simply replaced with the spectral radius ρ), but uses the steepest ascent and the conjugate gradient algorithms. Unlike the power algorithm, which only provides a µ lower bound in case of convergence, a nontrivial bound is obtained at each iteration. Another approach consists of directly solving the following non-convex optimization problem using standard nonlinear optimization tools such as the fmincon function of the Matlab Optimization Toolbox:

min ∆∈∆ σ(∆) such that det(I -M ∆) = 0 (3) 
In practice, a relaxed condition is considered to avoid convergence issues: the equality constraint is replaced with σ(I -M ∆) ≤ ǫ in [START_REF] Hayes | New tools for computing tight bounds on the real structured singular value[END_REF][START_REF] Bates | Improved computation of mixed µ bounds for flight control law robustness analysis[END_REF], and with |det(

I -M ∆)| ≤ ǫ in [21],
where ǫ is a user-defined threshold. Any kind of uncertainties can be considered, but this approach is especially relevant for purely real problems, since the number of decision variables significantly increases when complex uncertainties are considered. A formulation similar to (3) is considered in [START_REF] Yazıcı | A nonlinear programming technique to compute a tight lower bound for the real structured singular value[END_REF] in the case of (possibly repeated) real uncertainties:

min ∆∈∆ λ1,λ2 σ(∆)+(λ q 1 +λ q 2 )λ such that ℜ(det(I -∆M )) = λ p 1 ℑ(det(I -∆M )) = λ p 2
where p and q are odd and even positive integers respectively, and λ ≥ 10 5 is a penalty parameter. This optimization problem is solved using the modified subgradient algorithm based on feasible values (F-MGS) introduced in [START_REF] Kasimbeyli | The modified subgradient algorithm based on feasible values[END_REF]. A common feature of the aforementioned optimization-based algorithms is that they use standard nonlinear optimization tools, although the objective to be minimized is a non-smooth function. Breakdowns might thus be encountered at points that are not local optima, because the latter are typically non-smooth points in practice. In this context, [START_REF] Lemos | A non-smooth lower bound on ν[END_REF] proposes a nonsmooth optimization technique to solve problem (3), whose convergence to a local minimum is ensured. Note that problem (3) is usually solved at a fixed frequency unless the latter is considered as an additional uncertainty. An augmented interconnection M -∆ is then considered, where ∆ = diag(∆, δ ω I n ), n is the state dimension of M (s), and the considered frequency interval is covered when δ ω ∈ R varies between -1 and 1 (see e.g. [START_REF] Halton | State-space µ analysis for an experimental drive-by-wire vehicle[END_REF]). A skew-µ problem is now to be solved, since δ ω is bounded. 6. Geometrical approach [START_REF] Kim | A geometrical formulation of the µ-lower bound problem[END_REF]: This method dedicated to (possibly repeated) real uncertainties combines randomization and nonlinear optimization. The signs of the real and the imaginary parts of det(I -M ∆) are computed for randomly selected points on the surface of a given hyperbox in the uncertainty space R N . This hyperbox is enlarged until the four possible sign combinations are found, which means that it might contain values of δ 1 , . . . , δ N such that det(I -M ∆) = 0. A series of contractions and expansions are then performed to approach the singular region until the size of the box becomes smaller than some tolerance value.

B. µ upper bound algorithms

Most of the algorithms which can reasonably be applied to real-world benchmarks are based on the following result: Theorem 3.1 [START_REF] Young | Computing bounds for the mixed µ problem[END_REF]: Let β > 0. If there exist matrices D ∈ D and G ∈ G which satisfy one of the following relations:

M * DM + j(GM -M * G) ≤ β 2 D (4) σ (I + G 2 ) -1 4 DM D -1 β -jG (I + G 2 ) -1 4 ≤ 1 (5)
where

D = {D = D * > 0 : ∀∆ ∈ ∆, D∆ = ∆D} and G = {G = G * : ∀∆ ∈ ∆, G∆ = ∆ * G}, then µ ∆ (M ) ≤ β.
The problem of minimizing β can be solved either optimally using an LMI solver or faster but suboptimally using a gradient descent algorithm.

Computing an upper bound on µ ∆ (M (jω)) on the whole frequency range of interest Ω is thus a challenging problem with an infinite number of frequency-domain constraints and optimization variables, since Theorem 3.1 must be applied for each ω ∈ Ω. The problem is usually solved on a finite frequency grid (see e.g. the function mussv of the Matlab Robust Control Toolbox). However, a crucial problem appears in this procedure: the grid must contain the most critical frequency point for which the maximal value of µ ∆ (M (jω)) is reached. If not, the resulting lower bound on k m can be over-evaluated, i.e. be larger than the real value of k m . Unfortunately, the aforementioned critical frequency is usually unknown! To overcome this issue, several approaches based on the characterizations of Theorem 3.1 have been proposed to compute µ upper bounds which are guaranteed on a whole frequency interval (see e.g. [START_REF] Ferreres | Robustness analysis of flexible structures: practical algorithms[END_REF][START_REF] Roos | Efficient computation of a guaranteed stability domain for a high-order parameter dependent plant[END_REF][START_REF] Lawrence | A fast algorithm for the computation of an upper bound on the µ-norm[END_REF]).

Several other techniques exist to compute µ upper bounds (see e.g. [START_REF] Gaston | Exact calculation of the multiloop stability margin[END_REF][START_REF] Fu | Improved upper bounds for the mixed structured singular value[END_REF][START_REF] Ly | LMI multiplier Km/µ analysis of the Cassini spacecraft[END_REF][START_REF] Lee | Upper bounds of structured singular values for mixed uncertainties[END_REF]) Nevertheless, they usually require a very high computational time when realistic applications are considered, so they are not detailed here. Note also that the above enumeration is not exhaustive, since this paper mainly focuses on µ lower bound algorithms.

IV. TESTING FRAMEWORK

A. Considered algorithms

The most relevant µ lower bound algorithms are summarized in Table I and compared in this paper. The first two are implemented in the routine mussv of the standard Matlab Robust Control Toolbox, which is called with the optional argument 'f' and 'fg' respectively. The third one is implemented in the Skew Mu Toolbox for Matlab [START_REF] Ferreres | A skew mu toolbox (SMT) for robustness analysis[END_REF] and does not require any tuning parameter. The fifth one is implemented in the SMAC Toolbox for Matlab [START_REF] Roos | Systems Modeling, Analysis and Control (SMAC) Toolbox: an insight into the robustness analysis library[END_REF] and is used with default values of the optional parameters. For the other four ones, Matlab functions provided by the respective authors are used, with default values of the optional parameters in most cases (some slight modifications have been performed to handle the trade-off between accuracy and computational time). It is worth being emphasized that each of the eight considered algorithms is called in a similar fashion for all benchmarks. Geometrical approach [START_REF] Kim | A geometrical formulation of the µ-lower bound problem[END_REF] real

Grid-based methods (1-2-3-8) are applied at each point of a 100-point frequency grid generated with the function gen_grid of the SMAC Toolbox [START_REF] Roos | Systems Modeling, Analysis and Control (SMAC) Toolbox: an insight into the robustness analysis library[END_REF]. This grid is composed of 50 logarithmically-spaced points within the system bandwidth, and 50 additional points used to refine the grid in some frequency regions corresponding to weakly damped modes. A coarse 20-point frequency grid generated using the same function is used for method 5. Two implementations are available for methods 6 and 7, but the ones working on frequency intervals (see Section III-A-5) are preferred to the grid-based ones, since results are usually better and computational time is much smaller. For these algorithms, the system bandwidth is divided into 4 intervals with the same length on a logarithmic scale. Finally, method 4 does not require any frequency grid.

The reasons why some µ lower bound algorithms mentioned in Section III-A are not considered in this paper are given hereafter. The exponential-time method of [START_REF] Gaston | Exact calculation of the multiloop stability margin[END_REF] can only be applied to small-size benchmarks and is tedious to implement. The one of [START_REF] Matsuda | Computation of real structured singular value by stability feeler[END_REF] suffers from numerical problems when realistic benchmarks are considered, since it requires to handle high-degree polynomials. The optimization-based technique of [START_REF] Dehaene | Calculation of the structured singular value with gradient-based optimization algorithms on a Lie group of structured unitary matrices[END_REF] can only be applied to complex uncertainties. Moreover, [START_REF] Newlin | Advances in the computation of the µ lower bound[END_REF] shows that the power algorithm is usually more efficient to solve (2) in terms of accuracy and computational time. Finally, the approach of [START_REF] Yazıcı | A nonlinear programming technique to compute a tight lower bound for the real structured singular value[END_REF] is very similar to the one of [START_REF] Hayes | New tools for computing tight bounds on the real structured singular value[END_REF][START_REF] Bates | Improved computation of mixed µ bounds for flight control law robustness analysis[END_REF][START_REF] Halton | State-space µ analysis for an experimental drive-by-wire vehicle[END_REF] which is already included in the comparison. Note also that some techniques could be used in addition to any of the lower bound algorithms mentioned in Section III-A: the µ-sensitivities introduced in [START_REF] Braatz | µ-sensitivities as an aid for robust identification[END_REF] allow to reduce the number of uncertainties and thus the computational time at the price of a slight loss of accuracy, while branch-and-bound schemes [START_REF] Newlin | Mixed µ problems and branch and bound techniques[END_REF] allow to tighten the gap between µ upper and lower bounds at the price of an increase in the computational time. These techniques are not considered here.

For each benchmark, a µ upper bound is computed using the algorithm originally proposed in [START_REF] Ferreres | Robustness analysis of flexible structures: practical algorithms[END_REF], described in [START_REF] Roos | Efficient computation of a guaranteed stability domain for a high-order parameter dependent plant[END_REF] and implemented in the SMAC Toolbox for Matlab [START_REF] Roos | Systems Modeling, Analysis and Control (SMAC) Toolbox: an insight into the robustness analysis library[END_REF]. It provides an upper bound on the gap between the true value of k m and the best k m upper bound obtained with the µ lower bound algorithms listed in Table I.

B. List of benchmarks

As shown in Table II, a total of 36 challenging benchmarks are considered in this work, corresponding to various fields of application, system dimensions and structures of the uncertainties. Some of them contain poorly damped modes, which usually produce extremely sharp peaks on the µ plot, while others are characterized by large state vectors as well as numerous and/or highly repeated uncertainties. Purely real uncertainties are majority (benchmarks 1-29), since they are more common in engineering problems than complex or mixed ones (benchmarks [START_REF] Ly | LMI multiplier Km/µ analysis of the Cassini spacecraft[END_REF][START_REF] Lee | Upper bounds of structured singular values for mixed uncertainties[END_REF][START_REF] Ferreres | A skew mu toolbox (SMT) for robustness analysis[END_REF][START_REF] Roos | Systems Modeling, Analysis and Control (SMAC) Toolbox: an insight into the robustness analysis library[END_REF][START_REF] Newlin | Advances in the computation of the µ lower bound[END_REF][START_REF] Braatz | µ-sensitivities as an aid for robust identification[END_REF][START_REF] Newlin | Mixed µ problems and branch and bound techniques[END_REF]. Moreover, the presence of complex uncertainties greatly simplifies the computation of µ upper and lower bounds, making them of less interest in the present study. 

V. DETAILED NUMERICAL RESULTS

All results are shown in Table V. Two lines are used for each benchmark to display first the lower bounds μ and then the corresponding computational times. A lower bound μ is considered to be valid if a frequency ω and a perturbation ∆ of norm μ-1 are found, which satisfy |det(I -M (j ω) ∆)| < 10 -8 . The highest lower bound μ out of all algorithms is displayed in red. Bounds which are less than 1% and 5% lower than μ are highlighted in green and yellow respectively. NA means that the considered algorithm is not applicable, while ∞ indicates that the computation was interrupted after a time limit of 72 hours was reached. Finally, the gap between μ and the upper bound μ is computed as (μ-μ)/μ. Computations are performed using Matlab R2010b on a Windows 7 Workstation with a CPU Intel Xenon W3530 running at 2.8 Ghz and 6 GB of RAM.

VI. ANALYSIS OF THE RESULTS

A. Purely real problems

All algorithms can be applied to benchmarks 1-29 except the algebraic approach of [START_REF] Dailey | A new algorithm for the real structured singular value[END_REF]. The latter is indeed only applicable to the 14 benchmarks with 14 or less non-repeated real uncertainties, and thus it is not considered in the sequel. In Table III, the mean computational time is computed for each algorithm over all benchmarks except the biochemical network (benchmark 29), which is significantly more complicated than the others and requires a high computational effort. Fig. 2 must be interpreted as follows. Let (x, y) be the coordinates of any star sign. Then y corresponds to the number of benchmarks for which the gap (μ -μ)/μ (upper plot) or the computational time (lower plot) is lower than x. The most relevant algorithm is the poles migration technique of [START_REF] Ferreres | Reliable computation of the robustness margin for a flexible aircraft[END_REF], with by far the highest accuracy (less than 1% on average for all 29 benchmarks) and almost the lowest computational time (only 1.7 seconds on average for benchmarks 1-28 and 160 seconds for the biochemical network). The gain-based algorithm of [START_REF] Seiler | A gain-based lower bound algorithm for real and mixed µ problems[END_REF], the nonlinear optimization technique of [START_REF] Halton | State-space µ analysis for an experimental drive-by-wire vehicle[END_REF] and the nonsmooth optimization technique of [START_REF] Lemos | A non-smooth lower bound on ν[END_REF] also give quite satisfactory results in most cases, since the accuracy is about 10% on average. Nevertheless, these algorithms are significantly slower (especially the last two). Note also that the nonsmooth technique gives the best results in most cases but sometimes proves very conservative, whereas the nonlinear one usually produces bounds which are not the best ones but yet good ones. Then, the pole migration technique of [START_REF] Magni | Mixed µ-analysis for flexible systems. Part 1: theory[END_REF] exhibits both a reasonable accuracy (less than 20% on average for all 29 benchmarks) and a very low computational time (about 1.0 seconds on average for benchmarks 1-28 and only 63 seconds for the biochemical network). Finally, the power algorithm of [START_REF] Young | A lower bound for the mixed µ problem[END_REF] often suffers from convergence problems, especially for frequencies corresponding to peak values of µ ∆ (M (jω)). This is in stark contrast to the complex and mixed cases for which the convergence properties are excellent (see Section VI-B).

Remark 6.1: The gain-based algorithm of [START_REF] Seiler | A gain-based lower bound algorithm for real and mixed µ problems[END_REF], the optimization-based techniques of [START_REF] Halton | State-space µ analysis for an experimental drive-by-wire vehicle[END_REF][START_REF] Lemos | A non-smooth lower bound on ν[END_REF] and the geometrical approach of [START_REF] Kim | A geometrical formulation of the µ-lower bound problem[END_REF] use randomization. Therefore, several runs of these algorithms might provide different µ lower bounds.

B. Purely complex and mixed real/complex problems

The algebraic approach of [START_REF] Dailey | A new algorithm for the real structured singular value[END_REF], the pole migration technique of [START_REF] Ferreres | Reliable computation of the robustness margin for a flexible aircraft[END_REF] and the geometrical approach of [START_REF] Kim | A geometrical formulation of the µ-lower bound problem[END_REF] cannot be applied in the presence of complex uncertainties. Moreover, the gain-based algorithm of [START_REF] Seiler | A gain-based lower bound algorithm for real and mixed µ problems[END_REF] is not relevant when purely complex uncertainties are considered, since it reduces to the power algorithm of [START_REF] Young | A lower bound for the mixed µ problem[END_REF], and no improvement over the power algorithm is observed for mixed real/complex problems. Therefore, it is not considered in Table IV and Fig. 3. The most relevant algorithm is the power algorithm of [START_REF] Young | A lower bound for the mixed µ problem[END_REF], with the highest accuracy and almost the lowest computational time. The nonlinear optimization technique of [START_REF] Halton | State-space µ analysis for an experimental drive-by-wire vehicle[END_REF] also gives very accurate results, but the mean computational time is 1250 times higher. Fig. 3. Performance of the µ lower bound algorithms for purely complex and mixed real/complex problems (benchmarks [START_REF] Roos | Efficient computation of a guaranteed stability domain for a high-order parameter dependent plant[END_REF][START_REF] Lawrence | A fast algorithm for the computation of an upper bound on the µ-norm[END_REF][START_REF] Fu | Improved upper bounds for the mixed structured singular value[END_REF][START_REF] Ly | LMI multiplier Km/µ analysis of the Cassini spacecraft[END_REF][START_REF] Lee | Upper bounds of structured singular values for mixed uncertainties[END_REF][START_REF] Ferreres | A skew mu toolbox (SMT) for robustness analysis[END_REF] VII. CONCLUSION The main contribution of this paper is to present a thorough comparative analysis of the most relevant methods to compute lower bounds on the structured singular value. In this perspective, 36 challenging benchmarks have been implemented, corresponding to various fields of application, system dimensions and structures of the uncertainties. Beyond µ-analysis, the present work thus proposes a common framework for developing, testing and evaluating various kinds of robustness analysis tools, which is another contribution of the paper. All numerical data can be downloaded at http://w3.onera.fr/smac. 

Fig. 1 .

 1 Fig. 1. Standard interconnection for robustness analysis
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 2 Fig. 2. Performance of the µ lower bound algorithms for purely real problems (benchmarks 1-29)

  The notation m×p in the last column means that ∆ contains m blocks of size p×p. All blocks are real unless (c) is specified. All real/complex blocks are diagonal/full.

			TABLE II		
		LIST OF BENCHMARKS	
		Description	Ref States	Uncertainty block ∆ Size Structure
	1	Academic example	[37]	5	1	1×1
	2	Academic example	[8]	4	3	3×1
	3	Academic example	[13]	4	4	2×2
	4	Inverted pendulum	[22]	4	3	3×1
	5	Anti-aliasing filter	[6]	2	5	3×1 + 1×2
	6	DC motor	[38]	4	5	3×1 + 1×2
	7	Bus steering system	[39]	9	5	1×2 + 1×3
	8	Satellite	[40]	9	4	2×1 + 1×2
	9	Bank-to-turn missile	[41]	6	4	4×1
	10	Aeronautical vehicle	[42]	8	4	4×1
	11	Four-tank system	[43]	10	4	4×1
	12	Re-entry vehicle	[44]	6	8	1×2 + 2×3
	13	Missile	[2]	14	4	4×1
	14	Cassini spacecraft	[30]	17	4	4×1
	15	Mass-spring-damper	[45]	7	6	6×1
	16 Spark ignition engine [46]	4	7	7×1
	17 Hydraulic servo system [47]	8	8	8×1
	18	Academic example	[48]	41	5	3×1 + 1×2
	19 Drive-by-wire vehicle [21]	4	16	2×1 + 7×2
	20	Re-entry vehicle	[40]	7	13 3×1 + 1×4 + 1×6
	21	Space shuttle	[49]	34	9	9×1
	22	Rigid aircraft	[2]	9	14	14×1
	23	Fighter aircraft	[40]	10	27	7×1 + 1×2 + 1×3 + 1×15
	24	Flexible aircraft	[2]	46	20	20×1
	25	Telescope mockup	[2]	70	20	20×1
	26	Hard disk drive	[50]	29	27	19×1 + 4×2
	27	Launcher	[40]	30	45	16×1 + 10×2 + 1×3 + 1×6
	28	Helicopter	[51]	12	120	4×30
	29 Biochemical network [25]	7	507	13×39
	30 Himat fighter aircraft [49]	16	4	2×2(c)
	31	F14 fighter aircraft	[49]	52	8	1×2(c) + 1×6(c)
	32	DC motor	[38]	4	6	3×1 + 1×2 + 1×1(c)
	33	Four-tank system	[43]	12	6	4×1 + 1×2(c)
	34	Missile	[2]	19	6	4×1 + 2×1(c)
	35 Hydraulic servo system [47]	9	9	8×1 + 1×1(c)
	36	Space shuttle	[49]	46	18	9×1 + 1×9(c)

TABLE IV SYNTHETIC

 IV RESULTS FOR MIXED PROBLEMS 

			Number of benchmarks	Mean value Mean
	Algo		for which (μ -μ)/μ is	of	CPU
		≤1% ≤5% ≤25% <100% (μ -μ)/μ	time
	1	7	7	7	7	0.00%	2.1 s
	4	2	4	6	7	16.58%	0.9 s
	6	6	7	7	7	0.32%	2648.8 s
	7	4	5	6	7	7.89%	249.5 s

TABLE V DETAILED

 V NUMERICAL RESULTS FOR ALL ALGORITHMS AND ALL BENCHMARKS

	Benchmark	1	Lower bound μ and CPU time in seconds for each µ lower bound algorithm 2 3 4 5 6 7	8	Upper bound μ (μ -μ)/μ Gap
	1	0.2500 1.9	0.2500 0.4	0.0000 NA	1.2517 0.0	1.2517 0.4	0.2500 17.6	1.2517 3.7	0.0000 211.8	1.2517	0.00%
	2	0.2224 0.8	0.2752 5.4	0.2754 0.7	0.2885 0.6	0.2926 0.6	0.2754 34.8	0.2926 16.6	0.2754 177.2	0.2926	0.00%
	3	1.5699 0.9	1.5652 19.8	0.0000 NA	0.0000 0.0	1.7111 0.5	1.6064 23.3	1.7111 19.6	1.6039 292.9	2.4131	41.03%
	4	0.4938 0.9	1.0785 8.4	1.0786 0.9	0.0000 0.0	1.1772 0.6	1.0783 30.8	1.1772 61.3	1.0617 193.4	1.1772	0.00%
	5	0.8372 0.8	1.1133 6.3	0.0000 NA	1.0698 0.1	1.1312 0.7	1.1143 51.8	1.1312 30.2	1.1021 153.9	1.1312	0.00%
	6	0.1429 0.9	0.7929 12.0	0.0000 NA	0.7740 0.1	0.7953 0.7	0.7946 46.0	0.7953 21.4	0.7946 248.5	0.7953	0.00%
	7	0.7391 1.0	0.7556 5.0	0.0000 NA	0.6731 0.1	0.7558 0.6	0.7556 26.7	0.7558 32.7	0.5185 966.4	0.7558	0.00%
	8	0.9881 0.9	0.9716 16.3	0.0000 NA	0.9881 0.6	0.9881 0.7	0.9881 33.6	0.9881 48.0	0.4051 566.9	0.9881	0.00%
	9	1.0000 0.9	1.6525 6.3	1.6533 3.6	0.9986 0.3	1.6544 0.7	1.6532 44.4	1.6544 25.2	1.6533 203.3	1.6544	0.00%
	10	0.0000 0.9	1.6024 10.2	1.6043 2.3	1.5974 1.3	1.6200 0.7	1.6043 43.8	1.6200 67.8	1.6042 389.0	1.9757	21.96%
	11	0.0000 0.9	0.1477 12.5	0.1499 2.4	0.1499 0.7	0.1499 0.7	0.1499 58.3	0.1499 85.1	0.1076 185.5	0.1499	0.00%
	12	0.1612 1.1	0.1590 39.3	0.0000 NA	0.1577 0.0	0.1612 0.6	0.0853 39.6	0.1612 50.1	0.0838 938.4	0.1612	0.00%
	13	0.1251 0.9	0.1232 9.1	0.1251 2.5	0.1030 0.3	0.1251 0.8	0.1251 78.5	0.1251 57.3	0.1020 163.7	0.1251	0.00%
	14	0.0000 0.9	2.7246 6.2	15.0292 2.6	2.7842 1.2	15.4597 0.9	15.0293 54.7	15.4597 33.3	14.9091 316.0	15.4597	0.00%
	15	0.1650 0.9	0.8415 4.7	0.8466 19.6	0.8248 0.2	0.8526 0.9	0.8452 81.0	0.8526 63.0	0.7653 190.0	0.8526	0.00%
	16	0.8182 0.9	0.8182 14.4	0.8182 66.3	0.8182 1.3	0.8182 0.9	0.8182 117.7	0.8182 43.5	0.4445 467.9	0.8187	0.06%
	17	0.6667 1.0	0.6653 10.2	0.6667 186.8	0.5082 1.4	0.6667 1.1	0.6667 157.5	0.6667 66.3	0.6654 1027.4	0.6875	3.12%
	18	0.8468 1.0	0.8417 10.6	0.0000 NA	0.5507 0.3	0.8468 2.1	0.8444 48.8	0.8468 140.2	0.3053 405.8	0.8468	0.00%
	19	0.8346 1.5	0.9736 102.5	0.0000 NA	0.9640 0.4	0.9966 1.3	0.9964 336.3	0.9966 68.5	0.9822 425.1	1.0875	9.12%
	20	0.4887 1.6	0.9252 55.4	0.0000 NA	0.8447 0.2	0.9380 0.9	0.9255 92.1	0.9947 41.6	0.9252 381.9	1.0073	1.27%
	21	0.6075 1.0	1.2253 7.0	1.2574 368.6	1.2527 0.6	1.2574 1.9	1.2534 116.4	1.2574 175.4	0.6077 243.7	1.2574	0.00%
	22	0.1405 1.1	0.1818 19.1	0.1839 43624.9	0.1770 1.1	0.1842 1.8	0.1642 650.1	0.1842 147.7	0.1610 288.5	0.2283	23.94%
	23	1.5975 2.6	1.6514 58.8	0.0000 NA	1.1882 0.2	1.6668 1.6	1.6300 647.2	1.6663 73.7	1.6231 334.9	2.2237	33.41%
	24	1.6804 1.2	3.1060 33.4	0.0000 ∞	4.3790 2.6	4.4739 4.5	3.1027 2178.1	3.1150 310.9	2.9877 581.2	4.4739	0.00%
	25	6.4016 1.3	26.1375 50.5	0.0000 ∞	45.6985 5.6	46.3722 6.0	18.5382 1042.4	19.5402 732.8	26.2830 1022.8	46.3722	0.00%
	26	0.1500 1.8	1.1942 45.9	0.0000 NA	0.5826 0.8	0.9881 4.4	1.1928 1857.4	1.2134 184.9	0.7683 1196.7	1.2144	0.08%
	27	0.0000 3.0	0.6970 53.7	0.0000 NA	0.7885 6.9	0.8619 5.9	0.8420 3517.0	0.0930 582.9	0.6865 1869.1	2.7235	215.99%
	28	0.7212 17.1	7.1615 134.4	0.0000 NA	11.6858 0.4	11.6858 5.3	8.2964 1140.8	11.6858 297.8	6.8205 7540.4	11.6858	0.00%
	29	722.8721 733.8645 527.7 2864.8	0.0000 NA	699.8339 724.1509 561.5871 44.9060 570.6622 894.3586 63.1 160.7 240210.6 60572.1 50381.8	21.87%
	30	1.6828 0.7	0.0000 NA	0.0000 NA	1.6725 0.3	0.0000 NA	1.6828 244.0	1.6828 96.7	0.0000 NA	1.6828	0.00%
	31	3.7245 0.6	0.0000 NA	0.0000 NA	3.6988 2.8	0.0000 NA	3.7236 2801.2	3.4791 373.9	0.0000 NA	3.7245	0.00%
	32	0.8908 2.9	0.8908 8.3	0.0000 NA	0.8635 0.2	0.0000 NA	0.8902 76.6	0.8908 31.2	0.0000 NA	0.8908	0.00%
	33	0.4362 2.2	0.4362 4.4	0.0000 NA	0.3997 0.4	0.0000 NA	0.4346 287.1	0.4361 108.1	0.00000 NA	0.4479	2.68%
	34	0.9604 1.8	0.9604 2.1	0.0000 NA	0.9357 0.6	0.0000 NA	0.9585 119.8	0.9599 100.9	0.0000 NA	0.9606	0.02%
	35	0.9913 3.2	0.9913 5.7	0.0000 NA	0.8803 0.4	0.0000 NA	0.9873 336.5	0.9630 75.1	0.0000 NA	0.9927	0.14%
	36	15.0296 3.5	15.0296 6.2	0.0000 NA	1.5721 1.7	0.0000 NA	14.8575 14676.1	8.1644 960.4	0.0000 NA	15.0296	0.00%