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ABSTRACT

Understanding how wood develops has become an important problematic of plant sciences. However,

studying wood formation requires the acquisition of count data difficult to interpret. Here, the annual wood

formation dynamics of a conifer tree species were modeled using generalized linear and additive models

(GLM and GAM); GAM for location, scale and shape (GAMLSS); a discrete semiparametric kernel regres-

sion for count data. The performance of models is evaluated using bootstrap methods. GLM was useful

to describe the wood formation general pattern but had a lack of fitting, while GAM, GAMLSS and kernel

regression had a higher sensibility to short-term variations.

Key words: Bootstrap resampling methods ; Count regression function; Discrete kernel; Generalized linear

and additive models; Optimal bandwidth selections; Wood formation.

1. INTRODUCTION

Wood is the most abondant biological component of the biosphere and plays a key role in ecosystem

functioning, representing for example one of the strongest sink of CO2 (Tans and White, 1998), which is

a major contributor to climate change. Wood also plays a crucial economical role, being one of the most
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important product of the world trade (FAO, 2007). Understanding how wood develops therefore implies

crucial issues, and the study of wood formation has become an innovative and fast-growing field in plant

sciences over the last decade (Gricar et al., 2011).

Wood derives from the cambium, a thin layer of cells between the wood and the bark that divide to

produce the new wood cells inwards (Lachaud et al., 1999). Conifers represent the easiest case of wood

formation because one type of cells, called tracheids, composed 90 to 95% of their wood. A cell newly pro-

duced by division in the cambium and destined to become a functional tracheid undergoes a differentiation

program in order to acquire the particular morphological and physiological characteristics of this specialised

cell type (Figure 1) (Plomion et al., 2001): (1) firstly, its diameter enlarges mainly in the radial direction

under water turgor pressure; (2) secondly, its thick, rigid, and waterproof secondary wall mainly composed

of cellulose, hemicellulose and lignin is deposited. Under temperate climate, wood formation present an

alternation between active and inactive periods related to the alternation of the hot and cold seasons. All

the tracheids formed during the active period (growing season) are organized in juxtaposed radial files and

formed an annual tree-ring which adds to the tree-rings formed the previous years (Figure 2).

Figures 1 and 2 about here

Detailed analyses of wood formation need repeated sampling (generally at a weekly time step) of the

developing tree ring during the growing season (Rossi et al., 2006). One of the main problem of this method

is that growth is not homogeneous along and around tree stem, so that the number of wood cells produced at

a given time can considerably vary according to the position of the sampling (Wodzicki and Zajaczkowski,

1970). Therefore, it is difficult to know whether the wood cell number variations observed between the

successive samples are related to growth or within-tree growth variability, making the characterization of

the wood cell number variation in the successive phases of tracheid differentiation during the season difficult

from a simple description of the raw cell count dataset. Modeling these count data could be a good way to

highlight the growth signal by smoothing the variations resulting from within-tree variability.

In this work, we are concerned in finding a suitable methodology to model the number of cells weekly

counted in the enlargement and thickening phases of five silver fir (Abies alba Mill.) trees during the

season 2007. Thus, let Y be a response variable in R, X be a count explanatory variable in Nd and the

conditional mean m(∙) = E(Y |X = ∙) an unknown count regression function (c.r.f.) to estimate. A wide

range of structured models could be considered in modeling count data, for instance, generalized (linear
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additive) models or generalized (partial linear) models discussed in Pardinas and Sperlich (2010). First,

we propose to focus on Generalized Linear and Additive Models (GLMs and GAMs, respectively) for

parametric and semiparametric regressions, respectively, of function m, useful in the situation of a regression

model for which the error term is not normally distributed, as for binomial response variables or count data

(Hastie and Tibshirani, 1990; McCullagh and Nelder, 1989). More precisely, because the observations are

repeated on the same trees during the year, we are concerned with mixed effects versions of GLMs and

GAMs, denoted GLMM and GAMM respectively. Mixed models are recommended to reduce the bias

of the estimations in the case of repeated measurements since random effects allow to take into account

the correlation between observations (Zuur et al., 2009). Then, we investigate a discrete semiparametric

regression for count explanatory variables which requires to assume that c.r.f can be expressed as m = l ×ω

with l a parametric function and ω an unknown discrete nonparametric one. The semiparametric estimation

is realized in two steps: a first approximation l̂ of l followed by a discrete nonparametric kernel regression

of ω = m/̂l using a discrete version of Nadaraya-Watson estimator; in this way, the nonparametric estimate

plays the role of a correction coefficient of the parametric estimate (Abdous et al., 2012; Senga Kiessé and

Rivoire, 2011). The purpose of this semiparametric model is to improve the performance of parametric

model l; later, in the applications, we will illustrate this semiparametric approach using (parametric) model

l having the worst performance as departure. This approach focuses on the discrete character of variables,

and is thus appropriated for estimating count regression function by using some associated kernels which

are also discrete (Kokonendji and Senga Kiessé, 2011). Finally, for comparison with other competitive

generalized structured models, we apply GAMs for location, scale and shape (GAMLSS) proposed by Rigby

and Stasinopoulos (2005) as semiparametric regression type models. They were introduced as a way of

overcoming some of the limitations associated with GLMs and GAMs. Note that other works on basic

nonparametric or semiparametric regression models, one can refer to Dai and Sperlich (2010), Lombardia

and Sperlich (2008), or Alberts and Karunamuni (2003).

The remainder of this paper is organized as follows. The mathematical models applied are recalled in

Section 2. For semiparametric kernel estimator, some examples of discrete kernels are given. Moreover,

Some data driven bandwidth selection procedures well-known in continuous case but not available until

now for our discrete semiparametric regresion estimator are adapted. In particular, a new theoretical ex-

pression of optimal bandwidth parameter is given for a type of discrete associated kernels used. The model
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application on wood formation data and the results are provided in Section 3, bootstrap resampling methods

are used for a simulational assessment of the performance of models. Section 4 contains some concluding

remarks. Finally, all mathematical details which are related to data-driven bandwidth selection procedures

are postponed to Appendix.

2. MATHEMATICAL MODELS

In this section, we first present generalized linear and additive models used for a parametric and semi-

parametric regression, respectively, of function m; then we detail the semiparametric kernel regression

methodology which consists by an improvement of the parametric estimate by using a nonparametric cor-

rection factor.

2.1. Generalized models

An important statistical development over the last 30 years has been the advance in regression analysis

provided by GLMs and GAMs. GAMs are semi-parametric extensions of GLMs, which are themselves

mathematical extensions of classical linear models (Hastie and Tibshirani, 1990). By applying a mathemat-

ical transformation to the response variable according to the real distribution of the errors, GLMs generalize

the linear model to non-linear responses and variables that can have other than a normal distribution, in-

cluding the binomial, Poisson, or gamma probability distributions. GAMs are GLMs in which the linear

predictor depends, in part, on a sum of smooth functions of predictors. The strength of GAMs is their ability

to deal with highly non-linear and non-monotonic relationships between the response and the set of explana-

tory variables. At last, in GAMLSS the exponential family distribution assumption for the response variable

is relaxed and replaced by a general distribution family, including highly skew and/or kurtotic continuous

and discrete distributions (Rigby and Stasinopoulos, 2005). The ability of this tool to handle non-linear data

structures can aid in the development of ecological models that better represent the underlying data, and

hence increase our understanding of ecological systems (Guisan et al., 2002).

Concerning GLM with the standard Poisson model as an appropriate choice, it consists here by a lin-

ear predictor l(∙;Θ) with parameter Θ = (θ0, θ1, θ2), based on a combination of realization x ∈ N of the

explanatory variable X with a logarithmic link such that we have

yi = l(xi;Θ) + ei = θ0 + θ1xi + θ2 log xi + ei,

where ei represents the residuals. The linear and logarithm parts in l(∙; θ) allow to describe the tendency of
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data. About GAM, we have

yi = θ0 + s(xi) + ei, xi ∈ N,

with s(∙) a nonparametric function which can be modeled by splines. Furthermore, the mixed effects versions

of GLM and GAM (GLMM and GAMM, respectively) are available for describing relationship between a

response variable and covariates in the repeated measurements data that are grouped according to a cluster

factor. At last, we consider GAMLSS models defined as follows (Rigby and Stasinopoulos, 2005). Assume

θ = (θ1, θ2, θ3, θ4) be a vector of four distribution parameters where each of which can be a function to

explanatory variables. For k = 1, 2, 3, 4, let gk be known monotonic link functions relating the distribution

parameters to explanatory variables. The semi-parametric additive formulation of GAMLSS can be given

by

gk(θk) = Xkβk +

Jk∑

j=1

d jk(x jk), (1)

where d jk is an unknown function of the explanatory variable. Under some conditions, GAMLSS in (1) can

be extended to parametric linear, non-linear parametric or non-linear semiparametric additive model.

2.2. Semiparametric kernel regression

2.2.1. Estimator

Let us consider the sequence of independent and identically distributed (i.i.d.) random variables (X1, Y1), (X2, Y2),. . .,

(Xn,Yn) defined on N × R such that Yi = m(Xi) + ǫi, with ǫi the residuals assumed to have zero mean and

finite variance. In the semiparametric approach, the distribution of Yi is assumed to be a modified parametric

function given by

m(x) = l(x;Θ) × ω(x), x ∈ N, (2)

where l(x;Θ) is a function relative to the parameter Θ and ω(x) > 0 is a nonparametric function. The

discrete semiparametric regression estimator of m in (2) results from a parametric estimation l̂(x) = l(x; Θ̂)

of l followed by a nonparametric kernel estimation ω̂n(x) of ω(x) = m(x)/̂l(x) such that we have

m̂n(x) = l̂(x) × ω̂n(x) = l̂(x)

n∑

i=1

{Yi/̂l(Xi)}Kx,h(Xi)∑n
j=1 Kx,h(X j)

, x ∈ N; (3)

see Abdous et al. (2012). The bandwidth h = h(n) > 0 is an arbitrary sequence of smoothing parameters

that fulfills lim
n→∞

h(n) = 0; and, the discrete associated kernel Kx,h(∙) of random variable Kx,h is a probability
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mass function (p.m.f.) with support Sx (containing x) included in N satisfying the following hypotheses:

(H1): lim
h→0

E(Kx,h) = x and (H2): lim
h→0

Var(Kx,h) = 0.

2.2.2. Examples of discrete kernel

We present two examples of discrete kernels for which more details are available in Kokonendji and

Senga Kiessé (2011) and references therein. The first discrete kernel satisfies only the assumption (H1) and

have its variance such that limh→0 Var(Kx,h) ∈ V(0) instead of (H2), where V(0) is a neighborhood of 0.

This kernel might be particularly useful for smoothing small or moderate samples sizes (refer to Kokonendji

and Senga Kiessé, 2011; Zougab et al., 2012, 2013). The second kernel fulfills (H1)-(H2).

Example 1. For x ∈ N and h ∈ (0, 1], the first kernel is the binomial one B(x; h) which follows the

binomial distribution B{x + 1, (x + h)/(x + 1)} on support Sx = {0, 1, ∙ ∙ ∙ , x + 1}.

Example 2. For (x, a) ∈ N × N and h > 0, the second kernel is a discrete symmetric triangular one with

random variable Ka;x,h defined on support Sa,x = {x, x ± 1, ∙ ∙ ∙ , x ± a} and whose p.m.f. is given by

Pr(Ka;x,h = z) =
(a + 1)h − |z − x|h

P(a, h)
, ∀z ∈ Sa;x,

with P(a, h) = (2a + 1)(a + 1)h − 2
∑a

k=1 kh the normalizing constant. In addition, we propose the following

expansions of modal probability and variance of this kernel such that

Pr(Ka;x,h = x) = 1 − 2hA(a) + O(h2) and Var(Ka;x,h) = 2hV(a) + O(h2),

with A(a) = a log(a + 1) −
∑a

k=1 log(k) and V(a) = {a(2a2 + 3a + 1)/6} log(a + 1) −
∑a

k=1 k2 log(k). Thee

expansions are useful for establishing an expression of optimal bandwidth (see Appendix).

2.2.3. Bandwidth choices

We adapt two data-driven bandwidth selection methods from continuous regression but not developed

until now for discrete regression estimator m̂n. The first consists by finding an optimal value hcv by mini-

mizing the score function

CV(h) =
1

n

n∑

i=1

{Yi − m̂n,−i(Xi; h)}2 = CV1(h) − 2CV2(h) + (1/n)

n∑

i=1

Y2
i .

The second consists by finding a theoretical expression of optimal bandwidth parameter ĥopt obtained by
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minimizing the asymptotic part of mean integrated squared error (MISE) of m̂n such that

MISE{m̂n(x)} =
∑

x∈N

Var{m̂n(x)} +
∑

x∈N

Bias2{m̂n(x)}. (4)

Indeed, the problem with using MISE to bandwidth selection is that we are not able to provide a theoretical

expression of optimal bandwidth hopt minimizing MISE in discrete associated kernel estimation. Thus, ĥopt

is an approximate of the true hopt. However, this optimal bandwidth is available only for estimator using

discrete associated kernels satisfying (H1)-(H2). Thus, a theoretical expression ĥopt is not available for

binomial kernel that does not fulfill (H2) but only for discrete triangular kernels. Moreover, we will see that

ĥopt cannot be directly used since it requires to know the true function f . Therefore, in the following section,

the estimator m̂n in (3) is just applied with binomial kernel using the optimal h-value hcv. The mathematical

details of these two methods are postponed to Appendix.

A Bayesian approach is proposed in Zougab et al. (2014) as an alternative approach to bandwidth selec-

tion in the context of nonparametric count regression using binomial kernel; this approach permits also the

variance estimation of the model error. An extension of this approach in the context of semiparametric count

regression using binomial kernel would provide an improvement of the smoothing quality; this requires a

thorough job in a separate paper.

Remark .

(i) First, it would be of some interest to compare, for example, MISE(m̂n,hcv
) and MISE(m̂

n,̂hopt
). To derive

such a result, some information about supHn
|CV1 − 2CV2 + (1/n)

∑n
i=1 Y2

i
− MISE|, for some sufficiently

large region Hn, would be necessary. That will be the subject of a forthcoming paper.

(ii) Secondly, a common problem with cross-validation methodology is that the criteria CV is not always

consistent depending on discrete kernel Kx,h and sample (Xi)i=1,2,...,n. In this situation, for example, the

function h 7→ CV(h) is only increasing and does not alternate the phases of decreasing and increasing that

allow to find a minimum h-value. It would be interesting to adapt a generalized cross-validation procedure

in forthcoming works for our discrete semi-parametric regression; for example, see the works of Tong and

Yao (1998) for regression estimation based on dependent data.

3. APPLICATIONS

In this section, we consider the data of the number of cells weekly counted in the diameter enlargement

and wall thickening phases of 5 silver fir trees in 2007 presented in Figure 3.

7
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3.1. Data

Small samples of wood called microcores (2 mm diameter, 15-20 mm length) were collected weekly

from April to November 2007 at breast height on the stems of 5 silver fir trees using a specifically designed

puncher, the Trephor tool (Vitzani, Belluno, Italy) (Rossi et al. 2006), and following an ascending spiral

pattern. For each sample, the number of cells in the enlargement and thickening phases was counted along

three radial files (Cuny et al., 2012, 2013). The number of cells weekly counted in the wood formation

phases of diametercell enlargement and wall thickening of one silver fir tree are presented in Figure 3 (a)

and (b). The observations in the two same phases of the 5 silver fir trees are plotted in Figure 3 (c) and (d).

Figure 3 about here

3.2. Mixed effect models

For wood cell count data in Figure 3 (c) and (d) which present 5 trees i observed on 31 weeks j, we

apply the mixed model such that m(∙) = E(Yi j|Xi j = ∙), i = 1, 2, . . . , 5, j = 1, 2, . . . , 31, where the response

variable Yi, j is the number of cells measured at time j, the function m relates the response variable to other

covariates Xi, j varying with each tree and time. Thus, for GLMM as example, the parameter Θ of GLM is

replaced by Θi = (θ0 + a0i, θ1 + a1i, θ2 + a2i) where θk, k = 1, 2, 3, are the fixed effects and aki are random

effects related to each individual i. The different types of generalized models mentioned are implemented

on the R packages “lme4” (Bates et al., 2011) and “gamm4” (Wood, 2011). We first apply the mixed effects

models GLMM and GAMM on data of 5 trees presented in the graphs (c) and (d) in comparison with discrete

semiparametric binomial kernel regression estimator using h = hcv. The parametric estimates provided by

GLMM are used as departure for the semiparametric procedure, since we will see that GLMM has the worst

performance.

In order to evaluate the performance of the models, we just apply the root mean square error (RMSE)

which is a descriptive measure of degree-of-fit defined as RMSEi =

√
{
∑n

j=1(yi j − ŷi j)2}/n, i = 1, 2, . . . , 5,

where ŷi j is the adjustment of the j-th measurement yi j of a tree i and n = 31 the total number of observations.

The average RMSE is also presented in Table 1 such that RMSE = (1/5)
∑5

i=1 RMSEi.

For the diameter enlargement phase, the GLMM and GAMM as well as the semiparametric kernel

estimator were suitable to exhibit the unimodal tendency of the seasonal dynamics for all trees except the

tree i = 5 (Figure 4). For this last tree, GLMM and GAMM described a unimodal curve while semipara-

metric regression provided a bimodal curve. In general, the estimated curves provided by GLMM were
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over-smoothed, while those provided by GAMM and semiparametric binomial regression reflected more

data variations. Moreover, the modal value was globally under-estimated and moved from a few days by

GLMM; and, this parametric model over-estimated the null values observed at left boundary points. Finally,

concerning GAMM and semiparametric regression, they allowed to highlight similar tendencies, except for

tree i = 5.

Table 1 and Figure 4 about here

For thickening phase, the conclusions are similar as previously. In particular, let us present the following

remarks. In Figure 5, for individual tree i = 2, the semiparametric binomial regression clearly pointed out

some estimations with a bimodal tendency in contrast to GLMM and GAMM. Moreover, GLMM largely

over-estimated the values observed at right boundary points. The corresponding results are given in Table 1.

Finally, it appeared that the nonparametric correction provided by estimator using binomial kernel allowed

to clearly improve the parametric estimates resulting from GLMM and was better than GAMM in term of

performance (Table 1).

Figure 5 about here

In the following in order to deepen our study by using bootstrap methods, a comparison is realized with

GAMLSS which is an other competitive generalized structured models. We apply GLM, GAM, GAMLSS

and m̃n on re-sampled data of one tree presented in the graphs (a) and (b). Note that for GAMLSS we

proceed by fitting smoothing cubic splines to the data; and, for semiparametric kernel model we omit to

present hcv-values.

3.3. Bootstrap methods

These methods are applied for a robust evaluation which consists by re-sampling the number of wood

cells weekly counted in the diameter enlargement or wall thickening phase of one silver fir tree during

2007 presented in Figure 3 (a) and (b). In addition, compared to the previous section, we deepen our study

by comparing to GAMLSS. Thus, from the data of this tree we draw N = {25, 50, 150, 200, 250} bootstrap

samples on whom we apply the different models studied. In addition with RMSE applied in previous section,

the performance of models is also evaluated by using the Akaike information criterion (AIC). For the number

N of bootstrap samples, the average RMSE and AIC with degrees of freedom (df), rounded to integers, are

presented in Table 2.
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Table 2

Looking first at the descriptive measure of degree-of-fit, GAMLSS and semiparametric binomial kernel

regression have closed performance; they are both better than GLM and GAM. Then, by taking also into

account the number of parameters via the Akaike information criterion, the smallest values of this measure

are provided by GAMLSS (df = 10), followed by GAM (df = 10), GLM (df = 28) and at last semiparametric

kernel regression (df = 27). From here, GAMLSS is the most interesting model.

4. DISCUSSION

Detailed analyses of wood formation need repeated sampling (generally at a weekly time step) of the

developing tree-ring during the growing season (Rossi et al., 2006). One of the main problem encountered

when studying wood formation is that the wood cell number variations related to growth, which interest the

biologists, are confused with the wood cell number variations related to the heterogeneous growth along

and around the stem. So, the objective is to find a model which smooths the data while maintaining a

suitable fit. In this study, the application of GL(M)M, GA(M)M, GAMLSS and semiparametric binomial

kernel regression on the data of five trees offered different solutions to cope with this trade-off between

degree of smoothing and goodness of fit, so that these different methods should be intended to different

purposes. The GL(M)M method, which allows for a high degree of smoothing, may be sufficient when

the will is to describe the wood formation general pattern, because it highlights the general shape of cell

number variations during the season. But its lack of fitting makes it unsuitable when the will is to assess in

detail the dynamics of the wood formation process. For example, one of the central aim of wood formation

studies is to understand how climate influences wood formation, and this needs to relate climatic and wood

formation data at a fine temporal resolution (Gricar et al., 2011). In this case, the GA(M)M, GAMLSS

and semiparametric kernel procedures could offer great perspectives because of their higher sensibility to

the high frequency variations in the dataset. The incorporation of mixed effects in GA(M)M is also a

good point because it allows to accurately account for the non-independence of weekly cell count data

(Zuur et al., 2009), providing a more robust description of wood formation dynamics. Finally, the discrete

semiparametric kernel regression and GAMLSS offer interesting alternative to GL(M)M and GA(M)M.

Indeed, GAMLSS is known in literature to have a systematic part expanded to allow modelling not only

of the mean but other parameters of the distribution of Y as, linear and/or non-linear, parametric and/or

additive non-parametric functions of explanatory variables and/or random effects (Rigby and Stasinopoulos,

10

ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

2005). Concerning semiparametric kernel regression, the balance wished between degree of smoothing and

goodness of fit can be obtained by playing on the value of the bandwidth parameter h > 0 according to the

purpose of the study.

A. APPENDIX

A.1. Cross-validation procedure

An h-value denoted hcv can be selected by the well-known cross-validation procedure adapted to the

estimator m̂n in (3). For this, we express the discrete semiparametric estimator m̂n of the c.r.f. m as

m̂n(x) =

n∑

i=1

Ux,h(Xi)Yi ×
l̂(x)

l̂(Xi)

with Ux,h(Xi) = Kx,h(Xi)/
∑n

j=1 Kx,h(X j).The optimal bandwidth selection by the cross-validation method

consists by the minimization of the terms depending on h in the criterion

1

n

n∑

i=1

{Yi − m̂n,−i(Xi; h)}2 =
1

n

n∑

i=1

m̂2
n,−i(Xi; h) −

2

n

n∑

i=1

m̂n,−i(Xi; h)Yi +
1

n

n∑

i=1

Y2
i (5)

≡ CV1 − 2CV2 +
1

n

n∑

i=1

Y2
i ,

where

m̂n,−i(Xi; h) =

n∑

j,i

Y jKXi,h(X j)∑n
j,i KXi,h(X j)

×
l̂(Xi)

l̂(X j)

is the leave-one-out kernel estimator of m̂n(Xi; h); thus, we have hcv = arg min CV(h) with CV(h) = CV1 −

2CV2. By calculating the expectation of (5), we show that it is an unbiased estimator of the following version

of mean integrated squared error (MISE) weighted by p.m.f f given by E
[∑

x∈N{m̂n(x) − m(x)}2 f (x)
]
.

Indeed, we directly see that the terms

CV1 =
1

n

n∑

i=1

{ n∑

j,i

l(Xi; Θ̂−i)

l(X j; Θ̂−i)
UXi,h(X j)Y j

}2

and (1/n)
∑n

i=1 Y2
i

are, respectively, unbiased asymptotic estimates of E{
∑

x∈N m̂2
n(x) f (x)} and E{

∑
x∈Nm2(x) f (x)}.

Then, we show that E{
∑

x∈N m̂n(x)m(x) f (x)} is asymptotically approximated by

CV2 =
1

n

n∑

i=1

∑

j,i

UXi,h(X j)YiY j

l(Xi; Θ̂−i)

l(X j; Θ̂−i)

11
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since we firstly have

E(CV2) = E

{
1

n

n∑

i=1

∑

j,i

l(Xi; Θ̂−i)

l(X j; Θ̂−i)
UXi,h(X j)YiY j

}
= E

{ n∑

j,1

l(X1; Θ̂−1)

l(X j; Θ̂−1)
UX1,h(X j)Y1Y j

}

and, secondly,

E

{∑

x∈N

m̂n(x)m(x) f (x)

}
= E

{ n∑

i=1

l̂(x)

l̂(Xi)
Ux,h(Xi)YiE(Yi|Xi = x) f (x)

}

= E

[
E

{ n∑

i=1

l̂(x)

l̂(Xi)
Ux,h(Xi)Y

2
i f (x)

}∣∣∣∣∣Xi = x

]

= E

{ n∑

i=1

l̂(X1)

l̂(Xi)
UX1,h(Xi)Y

2
i

}
.

Note that the estimate Θ̂−i is calculated as Θ̂ by excluding Xi. One can refer to Hardle and Marron (1985)

for bandwidth selection in nonparametric continuous regression.

In the next part we establish a new theoretical expression of optimal parameter ĥopt for estimator m̂n

with discrete associated kernels satisfying (H1′)-(H2′).

A.2. Minimization of asymptotic part of mean integrated squared error

This approach required to calculate bias and variance of estimator m̂n since MISE in (4). Let us assume

l0(x) = l(x;Θ0) be a fixed parametric start in (2), i.e. m = l0ω, such that Θ̂ converges toΘ0 in probability. For

x ∈ N, the discrete semiparametric estimator m̂n in (3) using discrete triangular kernels admits the following

bias:

Bias{m̂n(x)} =
h

2
V(Ka;x,h)W(x) + O

(
1

n
+ h2

)
+ o(h),

with
∑

x∈N

{W(x)V(Ka;x,h)}2 =
∑

x∈N

[
V(Ka;x,h)

{
l0(x)ω(2)(x) + 2l0(x)ω(1)(x)

(
f (1)/ f

)
(x)

}]2
< ∞;

then, for its variance, we have

Var
{
m̂n(x)

}
=

Var(Y |X = x)

n f (x)
{1 − hA(Ka;x,h)}2 + o

(
1

n

)
+ O(h2).

The conditional variance Var(Y |X = x) is finite, the function f > 0 is the p.m.f. of the regressor X; ω(1), f (1)

and ω(2) are respectively finite differences of first and second order (Abdous et al., 2012). Hence, we give
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the following expression of MISE :

MISE{m̂n(x)} =
∑

x∈N

E{m̂n(x) − m(x)}2 = AMISE(h) + o

(
1

n
+ h2

)
+O(h2)

≡ MISE(h),

where AMISE(h) is the main term in the sum of integrated variance and squared bias of m̂n. The bandwidth

ĥopt = arg minh>0 AMISE{m̂n(x)} comes by solving the following equation d{AMIS E(h)}/dh = 0 which is

equal to

hV2(a)
∑

x∈N

{
W(x)

}2
−

∑

x∈N

A(a){1 − hA(a)}
Var(Y |X = x)

n f (x)
= 0.

That leads to expression

ĥopt(a; n, f ) =
A(a)

∑
x∈NVar(Y |X = x)/ f (x)

A2(a)
∑

x∈NVar(Y |X = x)/ f (x) + nV2(a)
∑

x∈NW2(x)
(6)

such that ĥopt → 0 when n → ∞. The following asymptotic relationship can be pointed out: ĥopt ∼ k0n−1

with

k0 =
A(a)

∑
x∈NVar(Y |X = x)/ f (x)

V2(a)
∑

x∈NW2(x)
.
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FIGURES AND TABLES

Table 1: RMSE resulting from estimations of the number of wood cells weekly counted in the

diameter enlargement and wall thickening phases of 5 silver fir trees during 2007, by applying

GLMM, GAMM and semiparametric regression estimator with binomial kernel

Phase Model Tree RMSE

1 2 3 4 5

Diam. enlarg.

GLMM 6.421 8.942 12.434 11.045 17.824 11.333

GAMM 5.632 11.580 8.132 9.179 15.181 9.941

Semip. regr. 4.584 4.653 6.603 5.559 7.705 5.821

Wall thick.

GLMM 22.582 40.584 24.664 49.383 34.041 34.251

GAMM 18.897 29.495 18.601 33.210 29.296 25.900

Semip. regr. 9.014 11.897 7.943 12.654 16.630 11.628

16

ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

Table 2: RMSE and AIC resulting from estimations of the number of wood cells weekly counted in

the diameter enlargement and wall thickening phases of 5 silver fir trees during 2007, by applying

GLM, GAM, GAMLSS and semiparametric regression estimator with binomial kernel

Model Criterion Number of bootstrap samples N

25 50 150 200 250

Diameter enlargment phase

GLM RMSE 29.750 29.771 29.610 29.996 29.883

with df = 28 AIC 230.279 230.353 229.990 230.830 230.580

GAM RMSE 24.071 25.169 25.104 24.493 25.073

with df = 10 AIC 216.758 219.506 219.283 217.676 219.286

GAMLSS RMSE 22.263 22.363 23.113 23.147 23.215

with df = 10 AIC 211.913 212.004 214.334 214.439 214.569

Semip. regr. RMSE 23.644 22.542 22.836 23.558 23.150

with df = 27 AIC 249.835 246.737 247.526 247.892 248.505

Wall thickening phase

GLM RMSE 77.939 77.823 77.806 77.777 77.736

with df = 28 AIC 290.034 289.949 289.928 289.904 289.875

GAM RMSE 67.676 66.178 67.546 66.746 67.202

with df = 10 AIC 281.179 279.561 281.008 280.210 280.630

GAMLSS RMSE 61.661 63.869 63.188 63.827 63.611

with df= 10 AIC 275.351 277.436 276.856 277.487 277.279

Semip. regr. RMSE 58.435 59.813 58.538 59.443 58.779

with df = 27 AIC 305.868 307.267 305.933 306.935 306.201
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Figure 1: Diagram showing the development of a tracheid, from its production by division of a

cambial cell to its mature and functional state
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Figure 2: Anatomical transverse section of wood cut from a sample collected in October 2008 on

the stem of a silver fir tree. The section is 6 μm in thick, stained with cresyl violet acetate and

observed under light microscope (×100)
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Figure 3: Number of wood cells (×10) weekly counted in the diameter enlargement and wall

thickening phases of five silver fir trees during 2007
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Figure 4: Individual estimations of the number of wood cells (×10, circles) weekly counted in the

diameter enlargement phase of 5 silver fir trees during 2007 by applying GAMM (black dotted

lines), GLMM (grey lines) and semiparametric binomial kernel regression (black lines)
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Figure 5: Individual estimations of the number of wood cells (×10, circles) weekly counted in the

thickening phase of 5 silver fir trees during 2007 by applying GAMM (black dotted lines), GLMM

(grey lines) and semiparametric binomial kernel regression (black lines)
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