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IWAHORI-HECKE ALGEBRAS FOR KAC-MOODY GROUPS

OVER LOCAL FIELDS

NICOLE BARDY-PANSE, STÉPHANE GAUSSENT AND GUY ROUSSEAU

Abstract. We define the Iwahori-Hecke algebra I
H for an almost split Kac-Moody group

G over a local non-archimedean field. We use the hovel I associated to this situation, which
is the analogue of the Bruhat-Tits building for a reductive group. The fixer KI of some
chamber in the standard apartment plays the role of the Iwahori subgroup. We can define
I
H as the algebra of some KI−bi-invariant functions on G with support consisting of a finite

union of double classes. As two chambers in the hovel are not always in a same apartment,
this support has to be in some large subsemigroup G+ of G. In the split case, we prove
that the structure constants of I

H are polynomials in the cardinality of the residue field,
with integer coefficients depending on the geometry of the standard apartment. We give a
presentation of this algebra I

H, similar to the Bernstein-Lusztig presentation in the reductive
case, and embed it in a greater algebra BL

H, algebraically defined by the Bernstein-Lusztig
presentation. In the affine case, this algebra contains the Cherednik’s double affine Hecke
algebra. Actually, our results apply to abstract “locally finite” hovels, so that we can define
the Iwahori-Hecke algebra with unequal parameters.
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Introduction

A bit of history. Iwahori-Hecke algebras were first introduced in arithmetics by Erich Hecke
in the ’30s [He37]. He defined an algebra, now called the Hecke algebra, generated by some
operators on modular forms. Then in the late ’50s, based on an idea of André Weil, Goro
Shimura [Shi59] defined an algebra attached to a group containing a subgroup (under some
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hypotheses) as the algebra spanned by some double cosets and recovered Hecke’s algebra. In
1964, Nagayoshi Iwahori [Iwa64] showed that, in the case of a Chevalley group over a finite
field containing a Borel subgroup, Shimura’s algebra can be defined in terms of bi-invariant
functions on the group. He further gave a presentation by generators and relations of this
algebra. Examples of such groups containing a suitable subgroup are given by BN-pairs and
the theory of buildings. Nagayoshi Iwahori and Hideya Matsumoto [IM65] found a famous
instance in a Chevalley group over a p-adic field corresponding to the Bruhat-Tits building
associated to the situation. In fact, it is possible to define these algebras only in terms of
building theory, see e.g. [P06], for a contemporary treatment.

In a previous article [GR08], the last two authors introduced the analogue of the Bruhat-
Tits building in Kac-Moody theory, and called it, a hovel. Guy Rousseau developed the notion
further and gave in [Ro11] an axiomatic definition allowing to deal with a broader context.

In this paper, we first define, in terms of the hovel, the Iwahori-Hecke algebra associated
to a Kac-Moody group over a local field containing the equivalent of the Iwahori subgroup.
Then, we study the properties of this algebra, like the structure constants of the product,
some presentations by generators and relations, and an interesting example where we recover
the Double Affine Hecke Algebras.

In the remaining of the introduction, we give a more detailed account of our work.

The case of simple algebraic groups. To begin, we recall the situation in the finite
dimensional case. Let K be a local non-archimedean field, with residue field Fq. Suppose G is a
split, simple and simply connected algebraic group over K and K an open compact subgroup.
The space HK of complex functions on G, bi-invariant by K and with compact support, is
an algebra for the natural convolution product. Ichiro Satake [Sa63] studied such algebras to
define the spherical functions and proved, in particular, that HK is commutative for a good
choice Ks of K, maximal compact. The corresponding convolution algebra HKs = sH(G)
is now called the spherical Hecke algebra. From the work of Nagayoshi Iwahori and Hideya
Matsumoto [IM65], we know that there exists an interesting open subgroup KI , so called
the Iwahori subgroup, of Ks with a Bruhat decomposition G = KI .W.KI , where W is an
infinite Coxeter group. The corresponding convolution algebra HKI

= IH(G), called the
Iwahori-Hecke algebra, may be described as the abstract Hecke algebra associated to this
Coxeter group and the parameter q. There is another presentation of this Hecke algebra,
stated by Joseph Bernstein and proved in the most general case by George Lusztig [Lu89].
This presentation emphasizes the role of the translations in W and uses new relations, now
often called the Bernstein-Lusztig relations. In the building-like definition of these algebras,
the group Ks (resp. KI) is the fixer of a special vertex (resp. a chamber) for the action of G
on the Bruhat-Tits building I , [BrT72].

The Kac-Moody setting. Kac-Moody groups are interesting generalizations of semisimple
groups, hence it is natural to define the Iwahori-Hecke algebras also in the Kac-Moody setting.

So, from now on, let G be a Kac-Moody group over K, assumed minimal or “algebraic”,
i.e. as studied by Jacques Tits [T87] in the split case and by Bertrand Rémy [Re02] in the
almost split case. Unfortunately there is, up to now, no good topology on G and no good
compact subgroup, so the “convolution product” has to be defined by other means. Alexander
Braverman and David Kazhdan [BrK11] succeeded in defining geometrically such a spherical
Hecke algebra, when G is split and untwisted affine, see also the survey [BrK14] by the same
authors. We were able, in [GR14], to generalize their construction to any Kac-Moody group
over K. In [BrKP14], using results of [Ga95] and [BrGKP14], Alexander Braverman, David
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Kazhdan and Manish Patnaik construct the spherical Hecke algebra and the Iwahori-Hecke
algebra by algebraic computations in the Kac-Moody group, still assumed split and untwisted
affine (and even simply laced for some statements). Those algebras are convolution algebras
of functions on G bi-invariant under some analogue group Ks or KI (⊂ Ks), but there are
two new features: the support has to be in a subsemigroup G+ of G and the description of
the Iwahori-Hecke algebra has to use Bernstein-Lusztig type relations since W is no longer a
Coxeter group.

Iwahori-Hecke algebras in the Kac-Moody setting. As in [GR14], our idea is to define
the Iwahori-Hecke algebra using the hovel associated to the almost split Kac-Moody group
G that we built in [GR08], [Ro11] and [Ro12]. This hovel I is a set with an action of G
and a covering by subsets called apartments. They are in one-to-one correspondence with
the maximal split subtori, hence permuted transitively by G. Each apartment A is a finite
dimensional real affine space. Its stabilizer N in G acts on A via a generalized affine Weyl
group W = W v ⋉ Y , where Y ⊂ −→

A is a discrete subgroup of translations. The group W
stabilizes a set M of affine hyperplanes called walls. So, I looks much like the Bruhat-Tits
building of a reductive group. But as the root system Φ is infinite, the set of walls M is not
locally finite. Further, two points in I are not always in a same apartment. This is why I is
called a hovel. However, there exists on I a G−invariant preorder ≤ which induces on each
apartment A the preorder given by the Tits cone T ⊂ −→

A .
Now, we consider the fixer KI in G of some (local) chamber C+

0 in a chosen standard
apartment A; it is our Iwahori subgroup. Fix a ring R. The Iwahori-Hecke algebra IHR will
be defined as the space of some KI -bi-invariant functions on G with values in R. In other
words, it will be the space IHI

R of some G-invariant functions on C+
0 ×C+

0 , where C+
0 = G/KI

is the orbit of C+
0 in the set C of chambers of I . The convolution product is easy to guess

from this point of view:

(ϕ ∗ ψ)(Cx, Cy) =
∑

Cz∈C
+
0

ϕ(Cx, Cz)ψ(Cz , Cy)

(if this sum means something). As for points two chambers in I are not always in a same
apartment, i.e. the Bruhat-Iwahori decomposition fails: G 6= KI .N.KI . So, we have to
consider pairs of chambers (Cx, Cy) ∈ C+

0 ×≤ C+
0 , i.e. Cx (resp. Cy) ∈ C+

0 has x (resp. y) for
vertex and x ≤ y. This implies that Cx, Cy are in a same apartment. For IHR, this means
that the support of ϕ ∈ HR has to be in KI\G+/KI where G+ = {g ∈ G | 0 ≤ g.0} is
a semigroup. We suppose moreover this support to be finite. In addition, KI\G+/KI is in
bijective correspondence with the subsemigroup W+ =W v ⋉ Y + of W , where Y + = Y ∩ T .

With this definition we are able to prove that IHR is really an algebra, which generalizes
the known Iwahori-Hecke algebras in the semi-simple case (see §2).

The structure constants. The structure constants of IHR are the non-negative integers
auw,v, for w,v,u ∈W+, such that

Tw ∗ Tv =
∑

u∈W+

auw,vTu,

where Tw is the characteristic function of KI .w.KI and the sum is finite. Each chamber in I

has only a finite number of adjacent chambers along a given panel. These numbers are called
the parameters of I and form a finite set Q. In the split case, there is only one parameter q:
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the number of elements of the residue field of K. We conjecture that each auw,v is a polynomial
in these parameters with integral coefficients depending only on the geometry of the model
apartment A and on W . We prove this only partially: this is true if G is split or if we replace
“polynomial” by “Laurent polynomial” (cf. 6.7); this is also true for w,v “generic” (cf. 3.8).
Actually in the generic case, we give, in section 3, an explicit formula for auw,v.

Generators and relations. If the parameters in Q are invertible in the ring R, we are able,
in section 4, to deduce from the geometry of I a set of generators and some relations in IHR.
The family (Tλ ∗ Tw)λ∈Y +,w∈W v is an R-basis of IHR. And the subalgebra

∑
w∈W v R.Tw is

the abstract Hecke algebra HR(W
v) associated to the Coxeter group W v, generated by the

Ti = Tri , where the ri are the fundamental reflections in W v. So, IHR is a free right HR(W
v)-

module. We get also some commuting relations between the Tλ and the Tw, including some
relations of Bernstein-Lusztig type (see Theorem 4.8).

From all these relations, we deduce algebraically in section 5 that there exists a new basis
(Xλ ∗ Tw)λ∈Y +,w∈W v of IHR, associated to some new elements Xλ ∈ IHR. These elements
satisfy Xλ = Tλ for λ ∈ Y ++ = Y ∩ Cv

f , where Cv
f is the fundamental Weyl chamber, and

Xλ ∗ Xµ = Xλ+µ = Xµ ∗ Xλ for λ, µ ∈ Y +. As, for any λ ∈ Y +, there is µ ∈ Y ++ with
λ+ µ ∈ Y ++, these Xλ are some quotients of some elements Tµ. The Bernstein-Lusztig type
relations may be translated to this new basis. When R contains sufficiently high roots of the
parameters in Q (e.g. if R ⊃ R), we may replace the Tw and Xλ by some R×-multiples Hw

and Zλ. We get a new basis (Zλ ∗Hw)λ∈Y +,w∈W v of IHR, satisfying a set of relations very
close to the Bernstein-Lusztig presentation in the semi-simple case (cf. 5.7).

In section 6, we define algebraically the Bernstein-Lusztig-Hecke algebra BLHR1 : it is the
free module with basis written (ZλHw)λ∈Y +,w∈W v over the algebra R1 = Z[(σi

±1, σ′i
±1)i∈I ],

where σi, σ′i are indeterminates (with some identifications). The product ∗ is given by the
same relations as above for the Zλ ∗ Hw, one just extends λ ∈ Y + to λ ∈ Y and replace√
qi,
√
q′i by σi, σ′i. We prove then that, up to a change of scalars, IHR may be identified to a

subalgebra of BLHR1 . This Bernstein-Lusztig algebra may be considered as a ring of quotients
of the Iwahori-Hecke algebra.

Ordered affine hovel. Actually, this article is written in a more general framework (ex-
plained in §1): we work with I an abstract ordered affine hovel (as defined in [Ro11]), and we
take G to be a strongly transitive group of (positive, “vectorially Weyl”) automorphisms. In
section 7, we drop the assumption that G is vectorially Weyl to define extended versions IH̃
and BLH̃ of IH and BLH. In the affine case, we prove that they are graded algebras and that
the summand of degree 0 of BLH̃ is very close to Cherednik’s double affine Hecke algebra.

1. General framework

1.1. Vectorial data. We consider a quadruple (V,W v , (αi)i∈I , (α
∨
i )i∈I) where V is a finite

dimensional real vector space, W v a subgroup of GL(V ) (the vectorial Weyl group), I a finite
set, (α∨

i )i∈I a family in V and (αi)i∈I a free family in the dual V ∗. We ask these data to
satisfy the conditions of [Ro11, 1.1]. In particular, the formula ri(v) = v − αi(v)α

∨
i defines a

linear involution in V which is an element in W v and (W v, {ri | i ∈ I}) is a Coxeter system.
To be more concrete, we consider the Kac-Moody case of [l.c. ; 1.2]: the matrix M =

(αj(α
∨
i ))i,j∈I is a generalized Cartan matrix. Then W v is the Weyl group of the corresponding
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Kac-Moody Lie algebra gM and the associated real root system is

Φ = {w(αi) | w ∈W v, i ∈ I} ⊂ Q =
⊕

i∈I

Z.αi.

We set Φ± = Φ ∩ Q± where Q± = ±(
⊕

i∈I (Z≥0).αi) and Q∨ = (
⊕

i∈I Z.α∨
i ), Q

∨
± =

±(
⊕

i∈I (Z≥0).α
∨
i ). We have Φ = Φ+ ∪ Φ− and, for α = w(αi) ∈ Φ, rα = w.ri.w

−1 and
rα(v) = v − α(v)α∨, where the coroot α∨ = w(α∨

i ) depends only on α.
The set Φ is an (abstract, reduced) real root system in the sense of [MoP89], [MoP95]

or [Ba96]. We shall sometimes also use the set ∆ = Φ ∪ ∆+
im ∪ ∆−

im of all roots (with
−∆−

im = ∆+
im ⊂ Q+, W v−stable) defined in [Ka90]. It is an (abstract, reduced) root system

in the sense of [Ba96].
The fundamental positive chamber is Cv

f = {v ∈ V | αi(v) > 0,∀i ∈ I}. Its closure Cv
f is the

disjoint union of the vectorial faces F v(J) = {v ∈ V | αi(v) = 0,∀i ∈ J, αi(v) > 0,∀i ∈ I \ J}
for J ⊂ I. We set V0 = F v(I). The positive (resp. negative) vectorial faces are the sets
w.F v(J) (resp. −w.F v(J)) for w ∈ W v and J ⊂ I. The support of such a face is the vector
space it generates. The set J or the face w.F v(J) or an element of this face is called spherical
if the group W v(J) generated by {ri | i ∈ J} is finite. An element of a vectorial chamber
±w.Cv

f is called regular.
The Tits cone T (resp. its interior T ◦) is the (disjoint) union of the positive (resp. and

spherical) vectorial faces. It is a W v−stable convex cone in V .
We say that Av = (V,W v) is a vectorial apartment. A positive automorphism of Av is

a linear bijection ϕ : Av → Av stabilizing T and permuting the roots and corresponding
coroots; so it normalizes W v and permutes the vectorial walls Mv(α) = Ker(α). As W v

acts simply transitively on the positive (resp. negative) vectorial chambers, any subgroup
W̃ v of the group Aut+(Av) (of positive automorphisms of Av) containing W v may be written
W̃ v = Ω ⋉W v, where Ω is the stabilizer in W̃ v of Cv

f (and −Cv
f ). This group Ω induces a

group of permutations of I (by ω(αi) = αω(i), ω(α
∨
i ) = α∨

ω(i)); but it may be greater than the
whole group of permutations in general (even infinite if (∩Kerαi) 6= {0}).
1.2. The model apartment. As in [Ro11, 1.4] the model apartment A is V considered as
an affine space and endowed with a family M of walls. These walls are affine hyperplanes
directed by Ker(α) for α ∈ Φ.

We ask this apartment to be semi-discrete and the origin 0 to be special. This means
that these walls are the hyperplanes defined as follows:

M(α, k) = {v ∈ V | α(v) + k = 0} for α ∈ Φ and k ∈ Λα,

with Λα = kα.Z a non trivial discrete subgroup of R. Using Lemma 1.3 in [GR14] (i.e.
replacing Φ by another system Φ1) we may (and shall) assume that Λα = Z,∀α ∈ Φ.

For α = w(αi) ∈ Φ, k ∈ Z and M = M(α, k), the reflection rα,k = rM with respect to
M is the affine involution of A with fixed points the wall M and associated linear involution
rα. The affine Weyl group W a is the group generated by the reflections rM for M ∈ M; we
assume that W a stabilizes M. We know that W a = W v ⋉Q∨ and we write W a

R = W v ⋉ V ;
here Q∨ and V have to be understood as groups of translations.

An automorphism of A is an affine bijection ϕ : A → A stabilizing the set of pairs (M,α∨)
of a wall M and the coroot associated with α ∈ Φ such that M =M(α, k), k ∈ Z. The group
Aut(A) of these automorphisms contains W a and normalizes it. We consider also the group
AutWR (A) = {ϕ ∈ Aut(A) | −→ϕ ∈W v} = Aut(A) ∩W a

R.
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For α ∈ Φ and k ∈ R, D(α, k) = {v ∈ V | α(v) + k ≥ 0} is an half-space, it is called an
half-apartment if k ∈ Z. We write D(α,∞) = A.

The Tits cone T and its interior T o are convex and W v−stable cones, therefore, we can
define two W v−invariant preorder relations on A:

x ≤ y ⇔ y − x ∈ T ; x
o
< y ⇔ y − x ∈ T o.

If W v has no fixed point in V \ {0} and no finite factor, then they are orders; but, in general,
they are not.

1.3. Faces, sectors, chimneys... The faces in A are associated to the above systems of walls
and half-apartments. As in [BrT72], they are no longer subsets of A, but filters of subsets of
A. For the definition of that notion and its properties, we refer to [BrT72] or [GR08].

If F is a subset of A containing an element x in its closure, the germ of F in x is the filter
germx(F ) consisting of all subsets of A which contain intersections of F and neighbourhoods
of x. In particular, if x 6= y ∈ A, we denote the germ in x of the segment [x, y] (resp. of the
interval ]x, y]) by [x, y) (resp. ]x, y)).

Given F a filter of subsets of A, its enclosure clA(F ) (resp. closure F ) is the filter made of
the subsets of A containing an element of F of the shape ∩α∈∆D(α, kα), where kα ∈ Z∪ {∞}
(resp. containing the closure S of some S ∈ F ).

A local face F in the apartment A is associated to a point x ∈ A, its vertex, and a
vectorial face F v in V , its direction. It is defined as F = germx(x + F v) and we denote
it by F = F ℓ(x, F v). Its closure is F ℓ(x, F v) = germx(x+ F v)

There is an order on the local faces: the assertions “F is a face of F ′ ”, “F ′ covers F ”
and “F ≤ F ′ ” are by definition equivalent to F ⊂ F ′. The dimension of a local face F is
the smallest dimension of an affine space generated by some S ∈ F . The (unique) such affine
space E of minimal dimension is the support of F ; if F = F ℓ(x, F v), supp(F ) = x+supp(F v).
A local face F = F ℓ(x, F v) is spherical if the direction of its support meets the open Tits cone
(i.e. when F v is spherical), then its pointwise stabilizer WF in W a is finite.

We shall actually here speak only of local faces, and sometimes forget the word local.

Any point x ∈ A is contained in a unique face F (x, V0) ⊂ clA({x}) which is minimal of
positive and negative direction (but seldom spherical). For any local face F ℓ = F ℓ(x, F v),
there is a unique face F (as defined in [Ro11]) containing F ℓ. Then F ℓ ⊂ F = clA(F

ℓ) = clA(F )
is also the enclosure of any interval-germ ]x, y) = germx(]x, y]) included in F ℓ.

A local chamber is a maximal local face, i.e. a local face F ℓ(x,±w.Cv
f ) for x ∈ A and

w ∈W v. The fundamental local chamber is C+
0 = germ0(C

v
f ).

A (local) panel is a spherical local face maximal among local faces which are not chambers,
or, equivalently, a spherical face of dimension n− 1. Its support is a wall.

A sector in A is a V−translate s = x + Cv of a vectorial chamber Cv = ±w.Cv
f , w ∈ W v.

The point x is its base point and Cv its direction. Two sectors have the same direction if, and
only if, they are conjugate by V−translation, and if, and only if, their intersection contains
another sector.

The sector-germ of a sector s = x + Cv in A is the filter S of subsets of A consisting of
the sets containing a V−translate of s, it is well determined by the direction Cv. So, the
set of translation classes of sectors in A, the set of vectorial chambers in V and the set of
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sector-germs in A are in canonical bijection. We denote the sector-germ associated to the
negative fundamental vectorial chamber −Cv

f by S−∞.
A sector-face in A is a V−translate f = x + F v of a vectorial face F v = ±w.F v(J). The

sector-face-germ of f is the filter F of subsets containing a translate f′ of f by an element of F v

(i.e. f′ ⊂ f). If F v is spherical, then f and F are also called spherical. The sign of f and F is
the sign of F v.

A chimney in A is associated to a face F = F (x, F v
0 ), called its basis, and to a vectorial

face F v, its direction, it is the filter

r(F,F v) = clA(F + F v).

A chimney r = r(F,F v) is splayed if F v is spherical, it is solid if its support (as a filter, i.e.
the smallest affine subspace containing r) has a finite pointwise stabilizer in W v. A splayed
chimney is therefore solid. The enclosure of a sector-face f = x+ F v is a chimney.

A ray δ with origin in x and containing y 6= x (or the interval ]x, y], the segment [x, y]) is

called preordered if x ≤ y or y ≤ x and generic if x
o
< y or y

o
< x. With these new notions, a

chimney can be defined as the enclosure of a preordered ray and a preordered segment-germ
sharing the same origin. The chimney is splayed if, and only if, the ray is generic.

1.4. The hovel. In this section, we recall the definition and some properties of an ordered
affine hovel given by Guy Rousseau in [Ro11].
1) An apartment of type A is a set A endowed with a set IsomW(A, A) of bijections (called
Weyl-isomorphisms) such that, if f0 ∈ IsomW(A, A), then f ∈ IsomW(A, A) if, and only if,
there exists w ∈ W a satisfying f = f0 ◦ w. An isomorphism (resp. a Weyl-isomorphism,
a vectorially-Weyl isomorphism) between two apartments ϕ : A → A′ is a bijection such
that , for any f ∈ IsomW(A, A), f ′ ∈ IsomW(A, A′), f ′−1 ◦ ϕ ◦ f ∈ Aut(A) (resp. ∈ W a,
∈ AutWR (A)); the group of these isomorphisms is written Isom(A,A′) (resp. IsomW (A,A′),
IsomW

R (A,A′)). As the filters in A defined in 1.3 above (e.g. local faces, sectors, walls,..) are
permuted by Aut(A), they are well defined in any apartment of type A and exchanged by any
isomorphism.

Definition. An ordered affine hovel of type A is a set I endowed with a covering A of subsets
called apartments such that:

(MA1) any A ∈ A admits a structure of an apartment of type A;
(MA2) if F is a point, a germ of a preordered interval, a generic ray or a solid chimney in

an apartment A and if A′ is another apartment containing F , then A ∩ A′ contains
the enclosure clA(F ) of F and there exists a Weyl-isomorphism from A onto A′ fixing
clA(F );

(MA3) if R is the germ of a splayed chimney and if F is a face or a germ of a solid chimney,
then there exists an apartment that contains R and F ;

(MA4) if two apartments A,A′ contain R and F as in (MA3), then their intersection contains
clA(R ∪ F ) and there exists a Weyl-isomorphism from A onto A′ fixing clA(R ∪ F );

(MAO) if x, y are two points contained in two apartments A and A′, and if x ≤A y then the
two line segments [x, y]A and [x, y]A′ are equal.

We ask here I to be thick of finite thickness: the number of local chambers containing
a given (local) panel has to be finite ≥ 3. This number is the same for any panel in a given
wall M [Ro11, 2.9]; we denote it by 1 + qM .
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An automorphism (resp. a Weyl-automorphism, a vectorially-Weyl automorphism) of I is
a bijection ϕ : I → I such that A ∈ A ⇐⇒ ϕ(A) ∈ A and then ϕ|A : A → ϕ(A) is an
isomorphism (resp. a Weyl-isomorphism, a vectorially-Weyl isomorphism).

2) For x ∈ I , the set T +
x I (resp. T −

x I ) of segment germs [x, y) for y > x (resp.
y < x) may be considered as a building, the positive (resp. negative) tangent building.
The corresponding faces are the local faces of positive (resp. negative) direction and vertex
x. The associated Weyl group is W v. If the W−distance (calculated in T ±

x I ) of two local
chambers is dW (Cx, C

′
x) = w ∈W v, to any reduced decomposition w = ri1 · · · rin corresponds

a unique minimal gallery from Cx to C ′
x of type (i1, · · · , in). We shall say, abusively, that this

gallery is of type w.
The buildings T +

x I and T −
x I are actually twinned. The codistance d∗W (Cx,Dx) of two

opposite sign chambers Cx and Dx is the W−distance dW (Cx, opDx), where opDx denotes
the opposite chamber to Dx in an apartment containing Cx and Dx.

Lemma. [Ro11, 2.9] Let D be an half-apartment in I and M = ∂D its wall (i.e. its boundary).
One considers a panel F in M and a local chamber C in I covering F . Then there is an
apartment containing D and C.

3) We assume that I has a strongly transitive group of automorphisms G, i.e. all isomor-
phisms involved in the above axioms are induced by elements ofG, cf. [Ro13, 4.10] and [CiR15].
We choose in I a fundamental apartment which we identify with A. As G is strongly tran-
sitive, the apartments of I are the sets g.A for g ∈ G. The stabilizer N of A in G induces
a group W = ν(N) ⊂ Aut(A) of affine automorphisms of A which permutes the walls, local
faces, sectors, sector-faces... and contains the affine Weyl group W a =W v⋉Q∨ [Ro13, 4.13.1].

We denote the stabilizer of 0 ∈ A in G by K and the pointwise stabilizer (or fixer) of C+
0

by KI ; this group KI is called the Iwahori subgroup.

4) We ask W = ν(N) to be positive and vectorially-Weyl for its action on the vectorial
faces. This means that the associated linear map −→w of any w ∈ ν(N) is in W v. As ν(N)
contains W a and stabilizes M, we have W = ν(N) =W v ⋉ Y , where W v fixes the origin 0 of
A and Y is a group of translations such that: Q∨ ⊂ Y ⊂ P∨ = {v ∈ V | α(v) ∈ Z,∀α ∈ Φ}.
An element w ∈W will often be written w = λ.w, with λ ∈ Y and w ∈W v.

We ask Y to be discrete in V . This is clearly satisfied if Φ generates V ∗ i.e. (αi)i∈I is a
basis of V ∗.

5) Note that there is only a finite number of constants qM as in the definition of thickness.
Indeed, we must have qwM = qM , ∀w ∈ ν(N) and w.M(α, k) = M(w(α), k),∀w ∈ W v. So
now, fix i ∈ I, as αi(α

∨
i ) = 2 the translation by α∨

i permutes the walls M = M(αi, k) (for
k ∈ Z) with two orbits. So, Q∨ ⊂ W a has at most two orbits in the set of the constants
qM(αi,k) : one containing the qi = qM(αi,0) and the other containing the q′i = qM(αi,±1). Hence,
the number of (possibly) different qM is at most 2.|I|. We denote this set of parameters by
Q = {qi, q′i | i ∈ I}.

If αi(α
∨
j ) is odd for some j ∈ I, the translation by α∨

j exchanges the two walls M(αi, 0)

and M(αi,−αi(α
∨
j )); so qi = q′i. More generally, we see that qi = q′i when αi(Y ) = Z, i.e.

αi(Y ) contains an odd integer. If αi(α
∨
j ) = αj(α

∨
i ) = −1, one knows that the element rirjri

of W v({i, j}) exchanges αi and −αj, so qi = q′i = qj = q′j.
Actually many of the following results (in sections 2, 3) are true without assuming the

existence of G: we have only to assume that the parameters qM satisfy the above conditions.
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6) Examples. The main examples of all the above situation are provided by the hovels of
almost split Kac-Moody groups over fields complete for a discrete valuation and with a finite
residue field, see 7.2 below.

7) Remarks. a) In the following, we sometimes use results of [GR08] even though, in this
paper we deal with split Kac-Moody groups and residue fields containing C. But the cited
results are easily generalizable to our present framework, using the above references.

b) All isomorphisms in [Ro11] are Weyl-isomorphisms, and, when G is strongly transitive,
all isomorphisms constructed in l.c. are induced by an element of G.

1.5. Type 0 vertices. The elements of Y , through the identification Y = N.0, are called
vertices of type 0 in A; they are special vertices. We note Y + = Y ∩ T and Y ++ = Y ∩ Cv

f .
The type 0 vertices in I are the points on the orbit I0 of 0 by G. This set I0 is often called
the affine Grassmannian as it is equal to G/K, where K = StabG({0}). But in general, G is
not equal to KYK = KNK [GR08, 6.10] i.e. I0 6= K.Y .

We know that I is endowed with aG−invariant preorder ≤ which induces the known one on
A and satisfies x ≤ y =⇒ ∃A ∈ A with x, y ∈ A [Ro11, 5.9]. We set I + = {x ∈ I | 0 ≤ x} ,
I

+
0 = I0∩I + and G+ = {g ∈ G | 0 ≤ g.0}; so I

+
0 = G+.0 = G+/K. As ≤ is a G−invariant

preorder, G+ is a semigroup.
If x ∈ I

+
0 there is an apartment A containing 0 and x (by definition of ≤) and all apartments

containing 0 are conjugated to A by K (axiom (MA2)); so x ∈ K.Y + as I
+
0 ∩ A = Y +.

But ν(N ∩ K) = W v and Y + = W v.Y ++, with uniqueness of the element in Y ++. So
I

+
0 = K.Y ++, more precisely I

+
0 = G+/K is the union of the KyK/K for y ∈ Y ++. This

union is disjoint, for the above construction does not depend on the choice of A (cf. 1.9.a).
Hence, we have proved that the map Y ++ → K\G+/K is one-to-one and onto.

1.6. Vectorial distance and Q∨−order. For x in the Tits cone T , we denote by x++ the
unique element in Cv

f conjugated by W v to x.
Let I ×≤ I = {(x, y) ∈ I × I | x ≤ y} be the set of increasing pairs in I . Such a pair

(x, y) is always in a same apartment g.A; so (g−1).y− (g−1).x ∈ T and we define the vectorial
distance dv(x, y) ∈ Cv

f by dv(x, y) = ((g−1).y− (g−1).x)++. It does not depend on the choices
we made (by 1.9.a below).

For (x, y) ∈ I0 ×≤ I0 = {(x, y) ∈ I0 × I0 | x ≤ y}, the vectorial distance dv(x, y)
takes values in Y ++. Actually, as I0 = G.0, K is the stabilizer of 0 and I

+
0 = K.Y ++

(with uniqueness of the element in Y ++), the map dv induces a bijection between the set
I0 ×≤ I0/G of G−orbits in I0 ×≤ I0 and Y ++.

Further, dv gives the inverse of the map Y ++ → K\G+/K, as any g ∈ G+ is in
K.dv(0, g.0).K.

For x, y ∈ A, we say that x ≤Q∨ y (resp. x ≤Q∨

R

y) when y − x ∈ Q∨
+ (resp. y − x ∈

Q∨
R+ =

∑
i∈I R≥0.α

∨
i ). We get thus a preorder which is an order at least when (α∨

i )i∈I is free
or R+−free (i.e.

∑
aiα

∨
i = 0, ai ≥ 0 ⇒ ai = 0,∀i).

1.7. Paths. We consider piecewise linear continuous paths π : [0, 1] → A such that each
(existing) tangent vector π′(t) belongs to an orbit W v.λ for some λ ∈ Cv

f . Such a path is
called a λ−path; it is increasing with respect to the preorder relation ≤ on A.

For any t 6= 0 (resp. t 6= 1), we let π′−(t) (resp. π′+(t)) denote the derivative of π at t from
the left (resp. from the right). Further, we define w±(t) ∈ W v to be the smallest element in
its (W v)λ−class such that π′±(t) = w±(t).λ (where (W v)λ is the stabilizer in W v of λ).
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Hecke paths of shape λ (with respect to the sector germ S−∞ = germ∞(−Cv
f )) are λ−paths

satisfying some further precise conditions, see [KM08, 3.27] or [GR14, 1.8]. For us their interest
will appear just below in 1.8.

But to give a formula for the structure constants of the forthcoming Iwahori-Hecke algebra,
we will need slight different Hecke paths whose definition is detailed in Section 3.3.

1.8. Retractions onto Y +. For all x ∈ I + there is an apartment containing x and C−
0 =

germ0(−Cv
f ) [Ro11, 5.1] and this apartment is conjugated to A by an element of K fixing C−

0

(axiom (MA2) ). So, by the usual arguments and [l.c. , 5.5], see below 1.10.a), we can define
the retraction ρC−

0
of I + into A with center C−

0 ; its image is ρC−

0
(I +) = T = I + ∩ A and

ρC−

0
(I +

0 ) = Y +.

Using axioms (MA3), (MA4), cf. [GR08, 4.4], we may also define the retraction ρ−∞ of I

onto A with center the sector-germ S−∞.
More generally, we may define the retraction ρ of I (resp. of the subset I≥z = {y ∈ I |

y ≥ z}, for a fixed z) onto an apartment A with center any sector germ (resp. any local
chamber of negative direction with vertex z). For any such retraction ρ, the image of any
segment [x, y] with (x, y) ∈ I ×≤ I and dv(x, y) = λ ∈ Cv

f (resp. and moreover x, y ∈ I≥z)
is a λ−path [GR08, 4.4]. In particular, ρ(x) ≤ ρ(y).

Actually, the image by ρ−∞ of any segment [x, y] with (x, y) ∈ I ×≤ I and dv(x, y) =
λ ∈ Y ++ is a Hecke path of shape λ with respect to S−∞ [GR08, th. 6.2], and we have the
following.

Lemma. a) For λ ∈ Y ++ and w ∈W v, w.λ ∈ λ−Q∨
+, i.e. w.λ ≤Q∨ λ.

b) Let π be a Hecke path of shape λ ∈ Y ++ with respect to S−∞, from y0 ∈ Y to y1 ∈ Y .
Then, for 0 ≤ t < t′ < 1,

λ = π′+(t)
++ = π′−(t

′)++;
π′+(t) ≤Q∨ π′−(t

′) ≤Q∨ π′+(t
′) ≤Q∨ π′−(1);

π′+(0) ≤Q∨ λ;
π′+(0) ≤Q∨

R
(y1 − y0) ≤Q∨

R
π′−(1) ≤Q∨ λ;

y1 − y0 ≤Q∨ λ.

Moreover y1−y0 is in the convex hull conv(W v.λ) of all w.λ for w ∈W v, more precisely in
the convex hull conv(W v.λ,≥ π′+(0)) of all w′.λ for w′ ∈W v, w′ ≤ w, where w is the element
with minimal length such that π′+(0) = w.λ.

c) If moreover (α∨
i )i∈I is free, we may replace above ≤Q∨

R

by ≤Q∨.

d) If x ≤ z ≤ y in I0, then dv(x, y) ≤Q∨ dv(x, z) + dv(z, y).

N.B. In the following, we always assume (α∨
i )i∈I free.

Proof. Everything is proved in [GR14, 2.4], except the second paragraph of b). Actually we see
in l.c. that y1−y0 is the integral of the locally constant vector-valued function π′+(t) = w+(t).λ,
where w+(t) is decreasing for the Bruhat order [GR14, 5.4], hence the result.

1.9. Chambers of type 0. Let C
±
0 be the set of all local chambers with vertices of type 0

and positive or negative direction. An element of vertex x ∈ I0 in this set (resp. its direction)
will often be written Cx (resp. Cv

x). We consider C
+
0 ×≤C

+
0 = {(Cx, Cy) ∈ C

+
0 ×C

+
0 | x ≤ y}.

We sometimes write Cx ≤ Cy when x ≤ y.
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Proposition. [Ro11, 5.4 and 5.1] Let x, y ∈ I with x ≤ y. We consider two local faces Fx, Fy

with respective vertices x, y.
a) {x, y} is included in an apartment and two such apartments A,A′ are isomorphic by a

Weyl-isomorphism in G, fixing clA({x, y}) = clA′({x, y}) ⊃ [x, y].

b) There is an apartment containing Fx and Fy, if we assume moreover x
o
< y or x = y

when Fx and Fy are respectively of positive and negative direction.

Consequences. 1) We define W+ =W v ⋉ Y + which is a subsemigroup of W .
If Cx ∈ C

+
0 , we know by b) above, that there is an apartment A containing C+

0 and Cx.
But all apartments containing C+

0 are conjugated to A by KI (Axiom (MA2)), so there is
k ∈ KI with k−1.Cx ⊂ A. Now the vertex k−1.x of k−1.Cx satisfies k−1.x ≥ 0, so there is
w ∈W+ such that k−1.Cx = w.C+

0 .
When g ∈ G+, g.C+

0 is in C
+
0 and there are k ∈ KI , w ∈ W+ with g.C+

0 = k.w.C+
0 , i.e.

g ∈ KI .W
+.KI . We have proved the Bruhat decomposition G+ = KI .W

+.KI .

2) Let x ∈ I0, Cy ∈ C
+
0 with x ≤ y, x 6= y. We consider an apartment A containing x

and Cy (by b) above) and write Cy = F (y,Cv
y ) in A. For y′ ∈ y + Cv

y sufficiently near to
y, α(y′ − x) 6= 0 for any root α. So ]x, y′) is in a unique local chamber prx(Cy) of vertex x;
this chamber satisfies [x, y) ⊂ prx(Cy) ⊂ clA({x, y′}) and does not depend of the choice of y′.
Moreover, if A′ is another apartment containing x and Cy, we may suppose y′ ∈ A ∩ A′ and
]x, y′), clA({x, y′}), prx(Cy) are the same in A′. The local chamber prx(Cy) is well determined
by x and Cy, it is the projection of Cy in T +

x I .
The same things may be done changing accordingly + to − and ≤ to ≥. But, in the above

situation, if Cx ∈ C
+
0 , we have to assume x

o
< y to define the analogous pry(Cx) ∈ C

+
0 .

Proposition 1.10. In the situation of Proposition 1.9,

a) If x
o
< y or Fx and Fy are respectively of negative and positive direction, any two

apartments A,A′ containing Fx and Fy are isomorphic by a Weyl-isomorphism in G fixing
the convex hull of Fx and Fy (in A or A′).

b) If x = y and the directions of Fx, Fy have the same sign, any two apartments A,A′

containing Fx and Fy are isomorphic by a Weyl-isomorphism in G, ϕ : A→ A′, fixing Fx and
Fy. If moreover Fx is a local chamber, any minimal gallery from Fx to Fy is fixed by ϕ (and
in A ∩A′).

c) If Fx and Fy are of positive directions and Fy is spherical, any two apartments A,A′

containing Fx and Fy are isomorphic by a Weyl-isomorphism in G fixing Fx and Fy.

Remark. The conclusion in c) above is less precise than in a) or in 1.9.a. We may actually
improve it when the hovel is associated to a very good family of parahorics, as defined in
[Ro13] and already used in [GR08]. Then, using the notion of half good fixers, we may assume
that the isomorphism in c) above fixes some kind of enclosure of Fx and Fy (containing the
convex hull). This particular case includes the case of an almost split Kac-Moody group over
a local field.

Proof. The assertion a) (resp. b)) is Proposition 5.5 (resp. 5.2) of [Ro11]. To prove c) we
improve a little the proof of 5.5 in l.c. and use the classical trick that says that it is enough
to assume that, either Fx or Fy is a local chamber. We assume now that Fx = Cx is a local
chamber; the other case is analogous.

We consider an element Ωx (resp. Ωy) of the filter Cx (resp. Fy) contained in A ∩A′. We
have x ∈ Ωx, y ∈ Ωy and one may suppose Ωx open and Ωy open in the support of Fy. There
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is an isomorphism ϕ : A → A′ fixing Ωx. Let y′ ∈ Ωy, we want to prove that ϕ(y′) = y′. As

Fy is spherical, x ≤ y
o
< y′, hence x

o
< y′. So x′ ≤ y′ for any x′ ∈ Ωx (Ωx sufficiently small).

Moreover [x′, y′] ∩ Ωx is an open neighbourhood of x′ in [x′, y′]. By the following lemma, we
get ϕ(y′) = y′.

Lemma. Let us consider two apartments A,A′ in I , a subset Ω ⊂ A∩A′, a point z ∈ A∩A′

and an isomorphism ϕ : A → A′ fixing (pointwise) Ω. We assume that there is z′ ∈ Ω with
z′ ≤ z or z′ ≥ z and [z′, z] ∩ Ω open in [z′, z]; then ϕ(z) = z.

N.B. This lemma tells, in particular, that any isomorphism ϕ : A → A′ fixing a local facet
F ⊂ A ∩A′ fixes F .

Proof. ϕ|[z′,z] is an affine bijection of [z′, z] onto its image in A′, which is the identity in a
neighbourhood of z′. But 1.9.a) tells that [z′, z] ⊂ A∩A′ and the identity of [z′, z] is an affine
bijection (for the affine structures induced by A and A′). Hence ϕ|[z′,z] coincides with this
affine bijection; in particular ϕ(z) = z.

1.11. W−distance. Let (Cx, Cy) ∈ C
+
0 ×≤ C

+
0 , there is an apartment A containing Cx and

Cy. We identify (A, C+
0 ) with (A,Cx) i.e. we consider the unique f ∈ IsomW

R (A, A) such that
f(C+

0 ) = Cx. Then f−1(y) ≥ 0 and there is w ∈ W+ such that f−1(Cy) = w.C+
0 . By 1.10.c,

w does not depend on the choice of A.
We define the W−distance between the two local chambers Cx and Cy to be this unique

element: dW (Cx, Cy) = w ∈ W+ = Y + ⋊W v. If w = λ.w, with λ ∈ Y + and w ∈ W v, we
write also dW (Cx, y) = λ. As ≤ is G−invariant, the W−distance is also G−invariant. When
x = y, this definition coincides with the one in 1.4.2.

If Cx, Cy, Cz ∈ C
+
0 , with x ≤ y ≤ z, are in a same apartment, we have the Chasles relation:

dW (Cx, Cz) = dW (Cx, Cy).d
W (Cy, Cz).

When Cx = C+
0 and Cy = g.C+

0 (with g ∈ G+), dW (Cx, Cy) is the only w ∈ W+

such that g ∈ KI .w.KI . We have thus proved the uniqueness in Bruhat decomposition:
G+ =

∐
w∈W+ KI .w.KI .

The W−distance classifies the orbits of KI on {Cy ∈ C
+
0 | y ≥ 0}, hence also the orbits of

G on C
+
0 ×≤ C

+
0 .

2. Iwahori-Hecke Algebras

Throughout this Section, we assume that (α∨
i )i∈I is free and we consider any ring R. To

each w ∈W+, we associate a function Tw from C
+
0 ×≤ C

+
0 to R defined by

Tw(C,C
′) =

{
1 if dW (C,C ′) = w,
0 otherwise.

Now we consider the following free R−module

IHI
R = {ϕ =

∑

w∈W+

awTw | aw ∈ R, aw = 0 except for a finite number of w},

We endow this R−module with the convolution product:

(ϕ ∗ ψ)(Cx, Cy) =
∑

Cz

ϕ(Cx, Cz)ψ(Cz , Cy).
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where Cz ∈ C
+
0 is such that x ≤ z ≤ y. It is clear that this product is associative and

R−bilinear. We prove below that this product is well defined.
As in [GR14, 2.1], we see easily that IHI

R can be identified with the natural convolution
algebra of the functions G+ → R, bi-invariant under KI and with finite support.

Lemma 2.1. Let S− ⊂ A be a sector-germ with negative direction in an apartment A,
ρ− : I → A the corresponding retraction, and w ∈W+. Then the set

P = {dW (ρ−(Cx), ρ−(Cy)) ∈W+ | ∀(Cx, Cy) ∈ C
+
0 ×≤ C

+
0 , d

W (Cx, Cy) = w}
is finite and included in a finite subset P ′ of W+ depending only on w and on the position of
Cx with respect to S− (i.e. on the codistance wx ∈W v from Cx to the local chamber C−

x in x
of direction S−).

Let us write w = λ.w for λ ∈ Y + and w ∈ W v. If we assume Cx and S− opposite (i.e.
wx = 1), then any v = µ.v ∈ P ′ satisfies λ ≤Q∨ µ ≤Q∨ λ++ and µ is in conv(W v.λ++). More
precisely µ is in the convex hull conv(W v.λ++,≥ λ) of all w′.λ++ for w′ ∈ W v, w′ ≤ wλ,
where wλ is the element with minimal length such that λ = wλ.λ

++.
If moreover λ ∈ Y ++, then µ = λ and v ≤ w. In particular, for w = λ ∈ Y ++,

P = {w} = {λ}.

Proof. We consider an apartment A1 containing Cx and Cy. We set C ′
y = Cx + (y− x) in A1.

Identifying (A, C+
0 ) with (A1, Cx) (resp. (A1, C

′
y)), we have y = x+ λ (resp. Cy = wC ′

y).
We have to prove that the possibilities for ρ−(Cy) vary in a finite set determined by ρ−(Cx),

w, and wx. We shall prove this by successively showing the same kind of result for ρ−([x, y)),
ρ−(y) and ρ−(C ′

y). Up to isomorphism, one may suppose Cx ⊂ A.
a) Fixing a reduced decomposition for wλ gives a minimal gallery between Cx and [x, y).

By retraction, we get a gallery with the same type from ρ−(Cx) to ρ−([x, y)). The possible
foldings of this gallery determine the possibilities for ρ−([x, y)). More precisely, ρ−([x, y)) =
x+w′(λ++

A )[0, 1) for w′ ≤ wλ and λ++
A the image in A of λ++ by the identification of (A, C+

0 )
with (A,Cx).

b) We fix now ρ−([x, y)). By Lemma 1.8 b), ρ−([x, y]) is a Hecke path π of shape λ++ (with
respect to S−). Its derivative π′+(0) is well determined by ρ−([x, y)). We identify A with A

in such a way that S− has direction −Cv
f . Then λ++

A = wx(λ
++) and π′+(0) = w′wx(λ

++),
with w′ as above. By Lemma 1.8 b), π′+(0) ≤Q∨ ρ−(y)− ρ−(x) ≤Q∨ λ++. So there is a finite
number of possibilities for ρ−(y).

c) Now we fix ρ−([x, y)), ρ−(y) and investigate the possibilities for ρ−(C ′
y). Let ξ ∈ Y ++

and in the interior of the fundamental chamber Cv
f . In the apartment A1, with (A1, Cx)

identified with (A, C+
0 ), we consider x′ = x+ ξ and y′ = y + ξ (hence y′ = x′ + λ).

As in a) and b) above, we get that there is a finite number of possibilities for ρ−(x′).
c1) On one side, we may also enlarge the segment [x, x′] with [x′, x′′), where x′′ = x′ + εξ.

On the other side, [x, x′] can be described as a path π1 : [0, 1] → A1, π1(t) = x + tξ. The
retracted path π = ρ−(π1) satisfies ρ−(x′) − ρ−(x) ≤Q∨ π′+(1) ≤Q∨ λ++, again by Lemma
1.8. So there is a finite number of possibilities for π′+(1), i.e. for [x′, x′′). But there exists
(in A1) a minimal gallery of the type of a reduced decomposition of wλ from the unique local
chamber (Cx + ξ) containing [x′, x′′) to [x′, y′). Hence, there exists a gallery of the same type
between (a local chamber containing) ρ−([x′, x′′)) and ρ−([x′, y′)). Therefore, there is a finite
number of possibilities for ρ−([x′, y′)).

As in b) above, we deduce that there is a finite number of possibilities for ρ−(y′).
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c2) The path ρ−([y, y
′]) is a Hecke path of shape ξ from ρ−(y) to ρ−(y

′). By [GR08]
Corollary 5.9, there exists a finite number of such paths. In particular, there is a finite
number of possibilities for the segment-germ ρ−([y, y

′)) and for ρ−(C ′
y).

d) Next, we fix ρ−(C
′
y). Fixing a reduced decomposition for w gives a minimal gallery

between C ′
y and Cy, hence a gallery of the same type between ρ−(C

′
y) and ρ−(Cy). So, the

number of possible ρ−(Cy) is finite and dW (ρ−(C
′
y), ρ−(Cy)) ≤ w.

e) Finally, let us consider the case wx = 1, then λ++
A = λ++. So, in b), we get π′+(0) =

w′(λ++) with w′ ≤ wλ, hence π′+(0) ≥Q∨ wλ(λ
++) = λ and λ ≤Q∨ π′+(0) ≤Q∨ ρ−(y)−ρ−(x) =

µ ≤Q∨ λ++. If moreover λ is in Y ++, then λ = λ++ and µ = λ. The Hecke path of shape
λ ρ−([x, y]) is the segment [ρ−(x), ρ−(x) + λ]. Its dual dimension is 0 (see [GR08] 5.7). By
[GR08] 6.3, there is one and only one segment in I with end y that retracts onto this Hecke
path: any apartment containing y and S− contains [x, y]. But Cx is the enclosure of x
and C ′

y = Cy (computation in A1). So, any apartment containing S− and C ′
y contains Cx.

Therefore, we have λ = dW (Cx, C
′
y) = dW (ρ−(Cx), ρ−(C

′
y)).

The end of the proof of the lemma follows then from d) above.

Proposition 2.2. Let Cx, Cy, Cz ∈ C
+
0 be such that x ≤ z ≤ y and dW (Cx, Cz) = w ∈ W+,

dW (Cz, Cy) = v ∈ W+. Then dW (Cx, Cy) varies in a finite subset Pw,v of W+, depending
only on w and v.

Let us write w = λ.w and v = µ.v for λ, µ ∈ Y + and w, v ∈ W v. If we assume
λ = λ++ and w = 1, then any w

′ = ν.u ∈ Pw,v satisfies λ + µ ≤Q∨ ν ≤Q∨ λ + µ++

and ν − λ ∈ conv(W v.µ++,≥ µ) ⊂ conv(W v.µ++).
If, moreover, µ = µ++ ∈ Y ++, then ν = λ+µ and u ≤ v. In particular, for w = λ, w′ = µ

in Y ++, Pw,v = {λ+ µ}.

Proof. Now we consider any apartment A containing Cx, the sector-germ S− opposite Cx

and the retraction ρ− as in Lemma 2.1. Then ρ−(Cx) = Cx and dW (Cx, ρ−(Cz)) varies
in a finite subset Px of W+ depending on w, by Lemma 2.1. If dW (Cx, ρ−(Cz)) = λ′.w′,
then the relative position wz ∈ W v of Cz and S− is equal to w′. Applying once more
Lemma 2.1 to Cz and Cy, we get that dW (ρ−(Cz), ρ−(Cy)) varies in a finite subset Pw′

of W+ depending only on v and w′. Finally, dW (Cx, ρ−(Cy)) varies in the finite subset
Pw,v = {w′.v′ ∈ W+ | w′ = λ′.w′ ∈ Px, v

′ ∈ Pw′}. Taking now A containing Cx and Cy, we
get dW (Cx, Cy) = dW (Cx, ρ−(Cy)) ∈ Pw,v.

To finish, suppose that λ = λ++ and w = 1. By Lemma 2.1, P1 = {λ}, hence w′ = wz = 1.
Applying again Lemma 2.1, any v

′ = µ′.v′ ∈ Pw′ satisfies µ ≤Q∨ µ′ ≤Q∨ µ++. So any w
′′ = ν.u

in Pw,v is equal to (λ+µ′).v′ for µ′.v′ ∈ Pw′ = P1, hence λ+µ ≤Q∨ ν = λ+µ′ ≤Q∨ λ+µ++.
If moreover µ ∈ Y ++, then ν = λ+ µ and u ≤ v. The last particular case is now clear.

Proposition 2.3. Let us fix two local chambers Cx and Cy in C
+
0 with x ≤ y and dW (Cx, Cy) =

u ∈ W+. We consider w and v in W+. Then the number auw,v of Cz ∈ C
+
0 with x ≤ z ≤ y,

dW (Cx, Cz) = w and dW (Cz, Cy) = v is finite (i.e. in N).
If we assume w = λ, v = µ and u = ν, then auw,v = aνλ,µ ≥ 1 (resp. = 1) when λ ∈ Y ++,

µ ∈ Y + (resp. λ, µ ∈ Y ++) and ν = λ+ µ.

Proof. We have dv(x, z) = λ++ and dv(z, y) = µ++. So, by [GR14], 2.5, the number of possible
z is finite. Hence, we fix z and count the possible Cz.
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Let C ′
z be the local chamber in z containing [z, y) and [z, y′) for y′ in a sufficiently small

element of the filter Cy. By convexity, C ′
z is well determined by z and Cy. But in an apartment

containing Cy, Cz (hence also C ′
z), we see that dW (C ′

z, Cz) is well determined by v. So there
is a gallery (of a fixed type) from C ′

z to Cz, thus the number of possible Cz is finite.
Assume now that w = λ ∈ Y ++, v = µ ∈ Y + and u = λ + µ. Taking an apartment A1

containing Cx and Cy, it is clear that the local chamber Cz in A1 such that dW (Cx, Cz) = λ

satisfies also dW (Cz, Cy) = µ (as dW (Cx, Cy) = λ + µ). So aλ+µ
λ,µ > 1. We consider now any

Cz satisfying the conditions, with moreover µ ∈ Y ++.
As in Proposition 2.2, we choose A containing Cx and S− opposite Cx. We saw in Lemma

2.1 e) that any apartment containing Cz and S− contains Cx and dW (Cx, ρ−(Cz)) = λ.
With the same Lemma applied to Cz and Cy, we see that any apartment containing Cz

and S− contains Cy. In particular, there is an apartment A1 containing Cx, Cz, Cy and
dW (Cx, Cz) = λ, dW (Cz, Cy) = µ, dW (Cx, Cy) = λ + µ. But λ, µ ∈ Y ++, so Cz is in the
enclosure of Cx and Cy. Therefore, Cz is unique: any other apartment A2 containing Cx and
Cy contains x, y (with x ≤ y) and x′ = x+ ξ, y′ = y+ ξ (with x′ ≤ y′), for ξ ∈ Cv

x = Cv
y small;

by 1.9.a, A2 contains z ∈ clA1({x, y}), z′ = z+ξ ∈ clA1({x′, y′}), hence also Cz ⊂ clA1(]z, z
′)).

Theorem 2.4. For any ring R, IHI
R is an algebra with identity element Id = T1 such that

Tw ∗ Tv =
∑

u∈Pw,v

auw,vTu

and Tλ ∗ Tµ = Tλ+µ, for λ, µ ∈ Y ++.

Proof. It derives from Propositions 2.2 and 2.3, as the function Tw ∗ Tv : C
+
0 ×≤ C

+
0 → R is

clearly G−invariant.

Definition 2.5. The algebra IHI
R is the Iwahori-Hecke algebra associated to I with coeffi-

cients in R.

The structure constants auw,v are non-negative integers. We conjecture that they are
polynomials in the parameters qi, q′i with coefficients in Z and that these polynomials depend
only on A and W . We prove this in the following section for w,v generic, see the precise
hypothesis just below. We get also this conjecture for some A,W when all qi, q′i are equal; in
the general case we get only that they are Laurent polynomials, see 6.7.

Geometrically, it is possible to get more informations about Tλ ∗Tµ when λ ∈ Y ++, µ ∈ Y +,
but we shall obtain them algebraically (Corollary 5.3).

3. Structure constants

In this section, we compute the structure constants auw,v of the Iwahori-Hecke algebra IHI
R ,

assuming that v = µ.v is regular and w = λ.w is spherical, i.e. µ is regular and λ spherical
(see 1.1 for the definitions). We will adapt some results obtained in the spherical case in
[GR14] to our situation.

These structure constants depend on the shape of the standard apartment A and on the
numbers qM of 1.4. Recall that the number of (possibly) different parameters is at most 2.|I|.
We denote by Q = {q1, · · · , ql, q′1 = ql+1, · · · , q′l = q2l} this set of parameters.
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3.1. Centrifugally folded galleries of chambers. Let z be a point in the standard apart-
ment A. We have twinned buildings T +

z I (resp. T −
z I ). We consider their unrestricted

structure, so the associated Weyl group is W v and the chambers (resp. closed chambers) are
the local chambers C = germz(z + Cv) (resp. local closed chambers C = germz(z + Cv)),
where Cv is a vectorial chamber, cf. [GR08, 4.5] or [Ro11, § 5]. The distances (resp. codis-
tances) between these chambers are written dW (resp. d∗W ). To A is associated a twin system
of apartments Az = (A−

z ,A
+
z ).

We choose in A−
z a negative (local) chamber C−

z and denote by C+
z its opposite in A+

z .
We consider the system of positive roots Φ+ associated to C+

z . Actually, Φ+ = w.Φ+
f , if

Φ+
f is the system Φ+ defined in 1.1 and C+

z = germz(z + w.Cv
f ). We denote by (αi)i∈I the

corresponding basis of Φ and by (ri)i∈I the corresponding generators of W v. Note that this
change of notation is limited to Section 3.

Fix a reduced decomposition of an element w ∈ W v, w = ri1 · · · rir and let i = (i1, ..., ir)
be the type of the decomposition. We consider now galleries of (local) chambers c =
(C−

z , C1, ..., Cr) in the apartment A−
z starting at C−

z and of type i.
The set of all these galleries is in bijection with the set Γ(i) = {1, ri1} × · · · × {1, rir}

via the map (c1, ..., cr) 7→ (C−
z , c1C

−
z , ..., c1 · · · crC−

z ). Let βj = −c1 · · · cj(αij ), then βj is
the root corresponding to the common limit hyperplane Mj = M(βj ,−βj(z)) of type ij of
Cj−1 = c1 · · · cj−1C

−
z and Cj = c1 · · · cjC−

z and satisfying βj(Cj) ≥ βj(z).

Definition. Let Q be a chamber in A+
z . A gallery c = (C−

z , C1, ..., Cr) ∈ Γ(i) is said to be
centrifugally folded with respect to Q if Cj = Cj−1 implies that Mj is a wall and separates Q

from Cj = Cj−1. We denote this set of centrifugally folded galleries by Γ+
Q(i).

3.2. Liftings of galleries. Next, let ρQ : Iz → Az be the retraction centered at Q. To a
gallery of chambers c = (C−

z , C1, ..., Cr) in Γ(i), one can associate the set of all galleries of
type i starting at C−

z in I −
z that retract onto c, we denote this set by CQ(c). We denote the

set of minimal galleries (i.e. Cj−1 6= Cj) in CQ(c) by Cm
Q (c). Recall from [GR14], Proposition

4.4, that the set Cm
Q (c) is nonempty if, and only if, the gallery c is centrifugally folded with

respect to Q. Recall also from loc. cit., Corollary 4.5, that if c ∈ Γ+
Q(i), then the number of

elements in Cm
Q (c) is:

♯Cm
Q (c) =

∏

j∈J1

(qj − 1)×
∏

j∈J2

qj

where qj = qMj
∈ Q, J1 = {j ∈ {1, · · · , r} | cj = 1} and J2 = {j ∈ {1, · · · , r} | cj =

rij and Mj is a wall separating Q from Cj}.

3.3. Liftings of Hecke paths. The Hecke paths we consider here are slight modifications
of those used in [GR14]. Let us fix a local positive chamber Cx ∈ C

+
0 ∩ A. Namely, a Hecke

path of shape µ++ with respect to Cx in A is a µ++−path in A that we denote by π = [z′ =
z0, z1, ..., zℓπ , y] and that satisfies the following assumptions. For all z = π(t), z 6= z0 = π(0),

we ask x
o
< z and then we choose the local negative chamber C−

z as C−
z = prz(Cx) such that

C−
z contains [z, x) and [z, x′) for x′ in a sufficiently small element of the filter Cx. Then we

assume moreover that for all k ∈ {1, ..., ℓπ}, there exists a (W v
zk
, C−

zk
)−chain from π′−(tk) to

π′+(tk), where zk = π(tk). More precisely, this means that, for all k ∈ {1, ..., ℓπ}, there exist
finite sequences (ξ0 = π′−(t), ξ1, . . . , ξs = π′+(t)) of vectors in V and (β1, . . . , βs) of real roots
such that, for all j = 1, . . . , s:
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i) rβj
(ξj−1) = ξj,

ii) βj(ξj−1) < 0,
iii) rβj

∈W v
π(tk)

i.e. βj(π(tk)) ∈ Z,
iv) each βj is positive with respect to Cx i.e. βj(zk − Cx) > 0.

The centrifugally folded galleries are related to the lifting of Hecke paths by the following
lemma that we proved in [GR14] Lemma 4.6.

Suppose z ∈ A, x
o
< z. Let ξ and η be two segment germs in A+

z . Let −η and −ξ opposite
respectively η and ξ in A−

z . Let i be the type of a minimal gallery between C−
z and C−ξ, where

C−ξ is the negative (local) chamber containing −ξ such that dW (C−
z , C−ξ) is of minimal length.

Let Q be a chamber of A+
z containing η. We suppose ξ and η conjugated by W v

z .

Lemma. The following conditions are equivalent:
(i) There exists an opposite ζ to η in I −

z such that ρ
Az ,C

−

z
(ζ) = −ξ.

(ii) There exists a gallery c ∈ Γ+
Q(i) ending in −η.

(iii) There exists a (W v
z , C

−
z )−chain from ξ to η.

Moreover the possible ζ are in one-to-one correspondence with the disjoint union of the sets
Cm
Q (c) for c in the set Γ+

Q(i,−η) of galleries in Γ+
Q(i) ending in −η.

For an Hecke path as above and for k ∈ {1, ..., ℓπ}, we define the segment germs ηk =
π+(tk) = π(tk) + π′+(tk).[0, 1) and −ξk = π−(tk) = π(tk) − π′−(tk).[0, 1). As above ik is the
type of a minimal gallery between C−

zk
and C−ξk , where C−ξk is the negative (local) chamber

such that −ξk ⊂ C−ξk and dW (C−
zk
, C−ξk) is of minimal length. Let Qk be a fixed chamber in

A+
zk

containing ηk and Γ+
Qk

(ik,−ηk) be the set of all the galleries (C−
zk
, C1, ..., Cr) of type ik in

A−
zk

, centrifugally folded with respect to Qk and with −ηk ∈ Cr.

Let us denote the retraction ρA,Cx : I≥x → A simply by ρ and recall that y = π(1). Let
SCx(π, y) be the set of all segments [z, y] such that ρ([z, y]) = π, in particular, ρ(z) = z′.
The following two theorems are proved in the same way as Theorem 4.8 and Theorem 4.12 of
[GR14], in particular, we lift the path π step by step starting from the end of π.

Theorem 3.4. The set SCx(π, y) is non empty if, and only if, π is a Hecke path with respect
to Cx. Then, we have a bijection

SCx(π, y) ≃
ℓπ∏

k=1

∐

c∈Γ+
Qk

(ik,−ηk)

Cm
Qk

(c).

In particular, the number of elements in this set is a polynomial in the numbers q ∈ Q with
coefficients in Z depending only on A.

Theorem 3.5. Let λ, µ, ν ∈ Y ++ with λ spherical. Then, the number mλ,µ(ν) of triangles
[0, z, ν] in I with dv(0, z) = λ and dv(z, ν) = µ is equal to:

(1) mλ,µ(ν) =
∑

w∈W v/(W v)λ

∑

π

ℓπ∏

k=1

∑

c∈Γ+
Qk

(ik,−ηk)

♯Cm
Qk

(c)

where π runs over the set of Hecke paths of shape µ with respect to Cx from w.λ to ν and ℓπ,
Γ+
Qk

(ik,−ηk) and Cm
Qk

(c) are defined as above for each such π.
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Remark. In theorems 3.4, 3.5 above and in [GR14], it is interesting to precise that, if tℓπ = 1,
i.e. zℓπ = y, then, in the above formulas, −ηℓπ and Qℓπ are not well defined: π+(1) does not
exist. We have to understand that

∐
c∈Γ+

Qℓπ
(iℓπ ,−ηℓπ )

Cm
Qℓπ

(c) is the set of all minimal galleries

of type iℓπ starting from C−
y (whose cardinality is

∏r
j=1 qij , if iℓπ = (i1, · · · , ir)).

3.6. The formula. Let us fix two local chambers Cx and Cy in C
+
0 with x ≤ y and

dW (Cx, Cy) = u ∈ W+. We consider w and v in W+. Then we know that the number
auw,v of Cz ∈ C

+
0 with x ≤ z ≤ y, dW (Cx, Cz) = w and dW (Cz, Cy) = v is finite, see Proposi-

tion 2.3. In order to obtain a formula for that number, we first use equivalent conditions on
the W−distance between the chambers.

Lemma. 1) Assume λ spherical. Let C−
z = prz(Cx) and let w+

λ be the longest element such

that w+
λ .λ ∈ Cv

f . Then

dW (Cx, Cz) = λ.w ⇐⇒
{
dW (Cx, z) = λ
d∗W (C−

z , Cz) = w+
λ w.

2) Let C+
z = prz(Cy) and let wµ be the smallest element such that µ++ = wµ.µ ∈ Cv

f . Then

dW (Cz, Cy) = µ.v ⇐⇒
{
dW (Cz, C

+
z ) = w−1

µ

dW (C+
z , Cy) = µ++wµv.

If we assume moreover µ regular, then C ′
y = pry(Cz) (resp. C+

z = prz(Cy)) is the unique
local chamber in y (resp. z) containing [y, z) (resp. [z, y)) and we have :

dW (C+
z , Cy) = µ++wµv ⇐⇒ dv(z, y) = µ++ and d∗W (C ′

y, Cy) = wµv.

Proof. 1) By convexity, C−
z is in any apartment containing Cx and Cz. Let us fix such an

apartment A and identify (A,Cx) with (A, germ0(C
v
f )). By definition, we have dW (Cx, z) =

dW (Cx, z + Cx). Then, of course, dW (Cx, z) = λ. Next as λ is supposed spherical, the

stabilizer (W v)λ is finite, so w+
λ is well defined and x

o
< z, so C−

z is well defined. More-
over, dW (opAC

−
z , z + Cx) = w+

λ and dW (z + Cx, Cz) = w. Therefore, by Chasles, we get
dW (opAC

−
z , Cz) = w+

λ w, but, by definition, d∗W (C−
z , Cz) = dW (opAC

−
z , z + Cz).

2) The first assertion is the Chasles’ relation, as Cz, Cy, C
+
z (and C ′

y) are in a same apartment
A′. The second comes from the fact that, if µ is regular, then dW (C+

z , C
+
zy) = dv(z, y) ∈ Y ++,

where C+
zy opposites C ′

y at y in A′. Moreover, d∗W (C ′
y, Cy) = dW (C+

zy, Cy) ∈W v by definition,
so we conclude by Chasles.

Theorem 3.7. Assume µ is regular and λ is spherical. We choose the standard apartment A
containing Cx and Cy. Then

auw,v =
∑

π,tℓπ=1

[(
ℓπ−1∏

k=1

∑

c∈Γ+
Qk

(ik,−ηk)

♯Cm
Qk

(c)

)(
∑

d∈Γ+
Cy

(iℓ,C̃y)

♯Cm
Cy

(d)

)(
∑

e∈Γ+

C
−
z0

(i,C′
z0

)

♯Cm
C−

z0

(e)

)]
+

+
∑

π,tℓπ<1

[(
ℓπ∏

k=1

∑

c∈Γ+
Qk

(ik,−ηk)

♯Cm
Qk

(c)

)(
∑

e∈Γ+

C
−
z0

(i,C′
z0

)

♯Cm
C−

z0

(e)

)]
,
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where the π, in the first sum, runs over the set of all Hecke paths in A with respect to Cx

of shape µ++ from x + λ = z0 to x + ν = y such that tℓπ = 1, whereas in the second sum,
the paths have to satisfy tℓπ < 1 and d∗W (C ′

y, Cy) = wµv, where C−
y = pry(Cx) is the local

chamber in y containing [y, x) and [y, x′) for x′ in a sufficiently small element of the filter Cx.
Moreover i is a reduced decomposition of wµ, C

′
z0 is the local chamber at z0 in A defined by

d∗W (C−
z0 , C

′
z0) = w+

λ w, iℓ is the type of a minimal gallery from C−
y to the local chamber C∗

y

at y in A containing the segment germ π−(y) = y − π′−(1).[0, 1) and C̃y is the unique local

chamber at y in A such that d∗W (C̃y, Cy) = wµv. The rest of the notation is as defined above.

Proof. Recall that, to compute the structure constants, we use the retraction ρ = ρA,Cx :
I → A, where Cx and Cy are fixed and in A. We have y = ρ(y) = x + ν and the condition
dW (Cx, z) = λ is equivalent to ρ(z) = x+ λ = z0. We want to prove a formula of the form

auw,v =
∑

π

(
number of liftings of π

)
×
(

number of Cz

)
,

where π runs over some set of Hecke paths with respect to Cx of shape µ++ from x + λ to
x + ν. It is possible to calculate like that for, in the case of a regular µ++, ρ(C+

z ) is well
determined by π. Hence, the number of Cz only depends on π and not on the lifting of π.

The local chambers Cz satisfying d∗W (C−
z , Cz) = w+

λ w and dW (Cz, C
+
z ) = w−1

µ are at the
end of a minimal gallery starting at C+

z of type i and retracting by ρA′,C−

z
onto the local

chamber C ′
z at z defined by d∗W (C−

z , C
′
z) = w+

λ w in a fixed apartment A′ containing Cx and
C+
z . So their number is given by the number of minimal galleries starting at C+

z of type
i and retracting on a centrifugally folded gallery e of type i ending in C ′

z. In other words,
their number is given by the cardinality of the set Cm

C−

z
(e), for each e ∈ Γ+

C−

z
(i, C ′

z). Using

an isomorphism fixing Cx and sending A′ to A, we may replace in this formula z, C−
z , C

′
z

and C+
z by z0, C−

z0 , C
′
z0 and the unique local chamber C+

z0 in A containing the segment germ
π+(0) = z0 + π′+(0).[0, 1). Hence:

number of Cz =
∑

e∈Γ+

C
−
z0

(i,C′
z0

)

♯Cm
C−

z0

(e).

Now, we compute the number of liftings of a Hecke path π starting from the formula in
Theorem 3.5 and according to the two conditions dW (Cx, z) = λ and dW (C+

z , Cy) = µ++wµv.
The first one fixes one element in the set W v/(W v)λ, namely the coset of w+

λ , i.e. π(0) =
x + λ. The second one is equivalent to the fact that the segment [z, y] is of type µ++ and
d∗W (C ′

y, Cy) = wµv, as we have seen in the Lemma above.
Further, we have that tℓπ < 1 ⇐⇒ π−(y) ∈ C−

y . If π−(y) ∈ C−
y then ρ(C ′

y) = C ′
y = C−

y ,
whence, d∗W (C−

y , Cy) = wµv. Since we lift the Hecke path into a segment backwards starting
with its behaviour at y = π(1), there is nothing more to count.

If tℓπ = 1, then π−(y) ∈ C∗
y = ρ(C ′

y) 6= C−
y . We want to lift the path but with the condition

that d∗W (C ′
y, Cy) = wµv, which may be translated in ρ′(C ′

y) = C̃y, for ρ′ = ρA,Cy . Since µ++

is regular, to find [y, z) it is enough to find C ′
y i.e. to lift C̃y with respect to ρ′. The liftings

of C̃y are then given by the liftings of all the centrifugally folded galleries in A with respect
to Cy of type iℓ from C−

y to C̃y to minimal galleries. Therefore, their number is given by the
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cardinality of the set Cm
Cy

(d), for each d ∈ Γ+
Cy

(iℓ, C̃y). The rest of the lifting procedure is the
same as in the proof of Theorem 4.12 in [GR14].

3.8. Consequence. The above explicit formula, together with the formula for ♯Cm
Q (c) in 3.2,

tell us that the structure constant auw,v is a polynomial in the parameters qi, q′i ∈ Q with
coefficients in Z and that this polynomial depends only on A, W , w, v and u. So we have
proved the conjecture following Definition 2.5 in this generic case: when λ is spherical and µ
regular.

4. Relations

Here we study the Iwahori-Hecke algebra IHI
R as a module over HR(W

v) and we prove the
first instance of the Bernstein-Lusztig relation. For short, we write IHR = IHI

R and Ti = Tri
(when i ∈ I).

Proposition 4.1. Let λ ∈ Y +, w ∈W v and i ∈ I, then,
1) Tλ.w ∗ Ti = Tλ.wri if, and only if, either (w(αi))(λ) < 0 or (w(αi))(λ) = 0 and

ℓ(wri) > ℓ(w). Otherwise Tλ.w ∗ Ti = (qi − 1)Tλ.w + qiTλ.wri.
2) Ti ∗ Tλ.w = Tri(λ).riw if, and only if, either αi(λ) > 0 or αi(λ) = 0 and ℓ(riw) > ℓ(w).

Otherwise Ti ∗ Tλ.w = (qi − 1)Tλ.w + qiTri(λ).riw.

Proof. We consider local chambers Cx, Cz, Cy with x ≤ z ≤ y and dW (Cx, Cz) = λ.w,
dW (Cz, Cy) = ri. So there is an apartment A containing Cx, Cz and, if we identify (A,Cx) to
(A, C+

0 ), we have Cz = (λ.w)(Cx). Moreover y = z, Cz 6= Cy and Cz, Cy share a panel Fi of
type i. We write D the half apartment of A containing Cx and with wall ∂D containing Fi.

We first note that

Cz ⊂ D ⇐⇒
(
(w(αi))(λ) < 0

)
or

(
(w(αi))(λ) = 0 and ℓ(wri) > ℓ(w)

)
.

Then, by Lemma 1.4.2, there exists an apartment A′ containing Cy and D, hence also
Cx, Cz, Cy. So dW (Cx, Cy) = λ.wri. The panel Fi = F ℓ(z, F v

i ) ⊂ A is a spherical local

face, so, for any p ∈ z + F v
i ⊂ A, we have z

o
< p, hence x

o
< p. By 1.10.a, any apartment A′′

containing Cx and Fi contains Cz; moreover Cz is well determined by Fi and Cx. The number
aλ.wri
λ.w,ri

of 2.3 is equal to 1 and we have proved that Tλ.w ∗ Ti = Tλ.wri .
If Cz is not in D, we denote by C ′

z the local chamber in D with panel Fi. By the above
argument, C ′

z is well determined by Fi and Cx, moreover dW (Cx, C
′
z) = λ.wri. There are two

cases for Cy: either Cy = C ′
z or not. If Cy = C ′

z, then dW (Cx, Cy) = λ.wri and, if Cx, Cy are
given, there are qi possibilities for Cz (all local chambers covering Fi and different from C ′

z):
aλ.wri
λ.w,ri

= qi. If Cy 6= C ′
z, then dW (Cx, Cy) = λ.w and, if Cx, Cy are given, there are qi − 1

possibilities for Cz (all local chambers covering Fi and different from C ′
z, Cy): aλ.wλ.w,ri

= qi− 1.
We have proved 1) and we leave to the reader the similar proof of 2).

4.2. The subalgebra HR(W
v). We consider the R−submodule HR(W

v) of IHR with basis
(Tw)w∈W v . As dW (Cx, Cy) ∈ W v if and only if x = y, it is clearly a subalgebra of IHR.
Actually HR(W

v) is the Iwahori-Hecke algebra of the tangent building T +
x I for any x ∈ I .

By Proposition 4.1, we have:
- Tw ∗ Ti = Twri if ℓ(wri) > ℓ(w) and Tw ∗ Ti = (qi − 1)Tw + qiTwri otherwise.
- Ti ∗ Tw = Triw if ℓ(riw) > ℓ(w) and Ti ∗ Tw = (qi − 1)Tw + qiTriw otherwise.
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In particular T 2
i = (qi − 1)Ti + qiId and, for any reduced decomposition w = ri1 · · · rin ,

Tw = Ti1 · · ·Tin .
Therefore, the algebra HR(W

v) is the well known Hecke algebra associated to the Coxeter
system (W v, {ri | i ∈ I}) with (in general unequal) parameters (qi)i∈I and coefficients in the
ring R. It is generated, as an R−algebra, by the Ti, for i ∈ I.

Suppose each qi invertible in R, then, as well known, T−1
i = q−1

i (Ti− (qi−1)Id) ∈ HR(W
v)

is the inverse of Ti. In particular any Tw is invertible: for any reduced decomposition
w = ri1 · · · rin , T−1

w = T−1
in

· · · T−1
i1

.

Remark. If qi is invertible, it is easy to see from Proposition 4.1 that, either Tλ.wri = Tλ.w ∗Ti
or Tλ.wri = Tλ.w ∗ T−1

i and, either Tri(λ).riw = Ti ∗ Tλ.w or Tri(λ).riw = T−1
i ∗ Tλ.w.

Corollary 4.3. Suppose each qi invertible in R and consider λ ∈ Y +. We may write
λ = w.λ++, with w ∈W v. Then Tλ = Tw ∗ Tλ++ ∗ T−1

w .

Proof. We consider a reduced decomposition w = rin · · · ri1 and argue by induction on n.
So, for w′ = rin−1 · · · ri1 and λ′ = w′.λ++, we have Tλ′ = Tw′ ∗ Tλ++ ∗ T−1

w′ . We consider
Tw ∗ Tλ++ ∗ T−1

w = Tin ∗ Tλ′ ∗ T−1
in

. But ℓ(rinw
′) > ℓ(w′) and λ++ ∈ Y ++ ⊂ Cv

f , so
αin(w

′.λ++) ≥ 0, i.e. αin(λ
′) ≥ 0. We get Tin ∗ Tλ′ = Trin (λ′).rin

by 4.1.2 and then
Tin ∗ Tλ′ ∗ T−1

in
= Trin(λ′) = Tλ by 4.1.1 (and the above remark).

Corollary 4.4. Let λ ∈ Y + and w,w′ ∈W v, then we may write

Tλ.w′ ∗ Tw =
∑

w′′≤w

aλ.w
′w′′

λ.w′,w Tλ.w′w′′

where each aλ.w
′w′′

λ.w′,w is a polynomial in the qi with coefficients in Z and, when w′ = 1, aλ.wλ,w > 0

is a primitive monomial. This polynomial aλ.w
′w′′

λ.w′,w depends only on A and on W .

Proof. We write w = ri1 · · · rin and argue by induction on n. The result is then clear from
Proposition 4.1.1. We get actually that aλ.wλ,w is the product of some of the qij (1 ≤ j ≤ n).

4.5. The Iwahori-Hecke algebra as a right HR(W
v)−module. We assume here that

each qi is invertible in R.
Given λ ∈ Y +, we see from Corollary 4.4 that {Tλ ∗Tw | w ∈W v} and {Tλ.w | w ∈W v} are

two bases of the same R−module. The base-change matrix is triangular with respect to the
Bruhat order on W v and the coefficients are Laurent polynomials in the qi, with coefficients
in Z (primitive Laurent monomials on the diagonal). These polynomials depend only on A

and W .
As {Tλ.w | λ ∈ Y +, w ∈W v} (resp. {Tw | w ∈W v}) is a R−basis of IHR (resp. HR(W

v)),
this means in particular that IHR is a free right HR(W

v)−module with basis {Tλ | λ ∈ Y +}.
In particular the R−algebra IHR is generated by the Ti (for i ∈ I) and the Tλ (for λ ∈ Y +)

and even by the Ti (for i ∈ I) and the Tλ (for λ ∈ Y ++), as we see from Corollary 4.3.

Lemma 4.6. Let C1, C2 ∈ C+
0 , with vertices x1, x2 be such that dW (C1, C2) = λ ∈ Y ++. We

consider i ∈ I, F i
1 (resp. F i

2) the panel of type i of C1 (resp. C2). In an apartment A1 (resp.
A2) containing C1 (resp. C2), we consider the sector panel f−1 (resp. f+2 ) with base point x1
(resp. x2) and direction opposite the direction of F i

1 (resp. equal to the direction of F i
2).

Then there is an apartment A containing f−1 , f+2 , C1, C2 and, in this apartment A, the
directions of f−1 and f+2 , F i

2 and f−1 (resp. F i
1 and f+2 ) are opposite (resp. equal).
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Proof. We choose λi ∈ F v({i}) ∩ Y ⊂ Y ++. We write F±
j the germ of f±j and F±v

j its
direction in Aj . In A1 (resp. A2) we consider the splayed chimney r−1 = r(C1, F

−v
1 ) (resp.

r+2 = r(C2, F
+v
2 )) containing f−1 (resp. f+2 ) and, for n ∈ N, the chamber of type 0 C1(−n) =

C1 − nλi ⊂ r−1 (resp. C2(+n) = C2 + nλi ⊂ r+2 ); actually we identify (A, C+
0 ) with (A1, C1)

(resp. (A2, C2)) to consider λi in
−→
A 1 (resp.

−→
A 2).

Then dW (C1(−n), C1) = dW (C2, C2(+n)) = nλi ∈ Y ++ and dW (C1, C2) = λ ∈ Y ++.
By (MA3) there is an apartment A containing the germs R−

1 and R+
2 of r−1 and r+2 , hence

C1(−n) and C2(+n) for n great. By Proposition 2.2 and the last paragraph of the proof of
2.3, dW (C1(−n), C2(+n)) = λ + 2nλi ∈ Y ++ and A contains C1, C2. By (MA4) A contains
also f−1 ⊂ r−1 ⊂ clA1(C1,R

−
1 ) and f+2 ⊂ r+2 ⊂ clA2(C2,R

+
2 ). So all assertions of the Lemma are

satisfied.

Proposition 4.7. Let C1, C2, C3, C4 ∈ C+
0 be such that dW (C1, C2) = λ ∈ Y ++, dW (C2, C3) =

ri and dW (C3, C4) = µ ∈ Y ++. Then there is a direction of wall M∞
i (cf. [Ro11, § 4] or [GR14,

5.5]), chosen accordingly to C1, C2 (but independently from C3, C4), such that C1, C2, C3, C4

are in the extended tree I (M∞
i ).

Proof. We denote by x1, x2 = x3, x4 the three vertices of C1, C2, C3, C4 and by F i
1, F

i
2 = F i

3, F
i
4

their panels of type i. We choose f−1 associated to C1 and F i
1 in an apartment A1 (resp. f+4

associated to C4 and F i
4 in an apartment A4), as in Lemma 4.6. By this Lemma, using C1

and C2, the direction of f−1 opposites that of F i
2 = F i

3 in some apartment A2 and, using C3

and C4, the direction of f+4 is the same as that of F i
2 = F i

3 in some apartment A3. In A3 (resp.
A2) we consider the sector face f+3 (resp. f−2 ) with base point x2 = x3 and same direction as
f+4 or F i

2 = F i
3 (resp. same direction as f−1 and opposite F i

2 = F i
3).

We may use the Lemma for C1, C2, f
−
1 , f

+
3 ; so the directions of f−1 (or f−2 ) and f+3 (or f+4 ) are

opposite and C1, C2 are in a same apartment A5 of I (M∞
i ), if we consider the direction of

wall M∞
i associated to the directions of f−1 and f+4 . Using now the Lemma for C3, C4, f

−
2 , f

+
4 ,

we see that these filters are in a same apartment A6 of I (M∞
i ).

Theorem 4.8. Let λ, µ ∈ Y ++ and i ∈ I. We write N = inf(αi(λ), αi(µ)) ∈ N and, for
n ∈ N, q∗ni = qiq

′
iqiq

′
i · · · , with n terms in this product.

a) If N = αi(µ) ≤ αi(λ), then Tλ ∗ Ti ∗ Tµ = Tλ+µ ∗ Ti for N = 0 and, for N > 0,

Tλ ∗ Ti ∗ Tµ = q∗Ni Tλ+µ−Nα∨

i
∗ Ti + (q∗Ni − q∗N−1

i )Tλ+µ−(N−1)α∨

i
+ · · ·

· · ·+ (q∗2i − qi)Tλ+µ−α∨

i
+ (qi − 1)Tλ+µ

b) If N = αi(λ) ≤ αi(µ), then Tλ ∗ Ti ∗ Tµ = Ti ∗ Tλ+µ for N = 0 and, for N > 0,

Tλ ∗ Ti ∗ Tµ = q∗Ni Ti ∗ Tλ+µ−Nα∨

i
+ (q∗Ni − q∗N−1

i )Tλ+µ−(N−1)α∨

i
+ · · ·

· · ·+ (q∗2i − qi)Tλ+µ−α∨

i
+ (qi − 1)Tλ+µ

Remarks. 1) The case b) is less interesting for us, as we try to express any element in the
basis of 4.5 for IHR considered as a right HR(W

v)−module.
2) In the case a) we have µ−Nα∨

i = ri(µ) and λ+µ−Nα∨
i ∈ Y ++, as αi(λ+µ−Nα∨

i ) =
αi(λ)−N and αj(λ+ µ−Nα∨

i ) ≥ αj(λ) + αj(µ) for j 6= i. So all ν such that Tν appears on
the right of the formula are in the α∨

i −chain between λ+ µ and λ+ ri(µ); in particular they
are all in Y ++.

3) We call relation a) or relation b) the Bernstein-Lusztig relation for the Tλ, (BLT) for
short. We shall use it essentially when λ = µ.
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4) When αi(λ) or αi(µ) is odd, we know that q′i = qi, cf. 1.4.5.

Proof. We consider C1, C2, C3, C4 and M∞
i as in Proposition 4.7. When N = 0 the results

come from 4.1. We concentrate on the case 0 < N = αi(µ) ≤ αi(λ); the other case is left
to the reader. We have to evaluate dW (C1, C4) and, given C1, C4 satisfying dW (C1, C4) = u,
to count the number of possible C2, C3. By Proposition 4.7 everything is in the extended
tree I (M∞

i ), which is semi-homogeneous with thicknesses 1 + qi, 1 + q′i. By Proposition
4.1.2, C3 is well determined by C2, C4 and lies in any apartment containing C2, C4; moreover
dW (C2, C4) = ri(µ).ri.

We consider an apartment A1 (resp. A2) of I (M∞
i ) containing C1 and C2 (resp. C2 and

C4, hence also C3). We identify (A1, C1) and (A2, C2) with (A, C+
0 ); we consider the retraction

ρ1 (resp. ρ2) of I (M∞
i ) onto A1 (resp. A2) with center C1 (resp. C2). The closed chambers in

an apartment of I (M∞
i ) are stripes limited by walls of direction M∞

i . In A1 = A, these walls
are M(αi, n), n ∈ Z and we write Sk

1 the stripe Sk
1 = {x | k ≤ αi(x) ≤ k + 1}, in particular

C1 ⊂ S0
1 and C2 ⊂ S

αi(λ)
1 . In A2 = A, we get also stripes Sk

2 = {x | k ≤ αi(x) ≤ k + 1} such

that C2 ⊂ S0
2 = S

αi(λ)
1 , C3 ⊂ S−1

2 and C4 ⊂ S−N−1
2 .

We have C2 = C1 + λ in A1 and ρ2(C4) = C3 + ri(µ) in A2. To find dW (C1, C4) we have
to determine the image of C4 under ρ1. It depends actually on the highest number j such
that S−j

2 (hence also S0
2 , · · · , S

−j+1
2 ) is in A1. A classical result for affine buildings (clear for

extended trees and generalized to hovels in [Ro11, 2.9.2]) tells, then, that there is an apartment
containing the stripes S−j−1

2 , · · · , S−N−1
2 and the half apartment

⋃
k≤αi(λ)−j−1 S

k
1 .

If j = 0, S−1
2 or C3 is not in A1, so ρ1(C3) = C2 and, more generally, ρ1(S

−k
2 ) = S

αi(λ)+k−1
1 ,

for k ≥ 1 (see the picture below). We get ρ1(C4) = C2 + µ and dW (C1, C4) = λ + µ. When
C1 and C4 are fixed with this W−distance, we have to count the number of possible C2. But
C3 ⊂ S−1

2 is in the enclosure of C1 ⊂ S0
1 and C4 ⊂ S−N−1

2 : it is well determined by C1 and

C4. Now C2 has to share its panel of type i with C3 and to be neither in S−1
2 nor in Sαi(λ)−1

1 ;
so there are qi − 1 possibilities.

0 C1

C3⊂S−1
2

C2⊂S0
2

A1

A2

C4
rr

r r r r r r r

r

r

r

@
@

@
@

@
@

@
@

- @
@I

@
@I

-

If 1 ≤ j ≤ N−1, then A1 contains S0
2 = S

αi(λ)
1 , S−1

2 = S
αi(λ)−1
1 , · · · , S−j

2 = S
αi(λ)−j
1 but not

S−j−1
2 , · · · , S−N−1

2 (see the picture below). So ρ1(S
−k
2 ) = S

αi(λ)−2j+k
1 , for k ≥ j. The image

of the line segment [x2, x4] = [x2, x2 + µ] under ρ1 is ρ1([x2, x4]) = [x2, x2 + (j/N)ri(µ)] ∪
[x2 + (j/N)ri(µ), x2 + (j/N)ri(µ) + ((N − j)/N)µ]. As N = αi(µ) and ri(µ) = µ − Nα∨

i ,
this means that ρ1(C4) = C2 + µ − jα∨

i . When C1 and C4 are fixed with this W−distance,

we have to count the number of possible C2. As S0
1 , · · · , S

αi(λ)−j−1
1 , S−j−1

2 , · · · , S−N−1
2 are
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well determined by C1, C4, we have to count the possibilities for (S
αi(λ)−j
1 , · · · , Sαi(λ)

1 ). As

above there are qi − 1 possibilities for Sαi(λ)−j
1 (or q′i − 1 if j is odd) and then q′i (or qi)

possibilities for Sαi(λ)−j+1
1 , etc. . Finally the total number of possibilities is (qi − 1)q′iqiq

′
i · · ·

or (q′i − 1)qiq
′
iqi · · · (according to j being even or odd) with j + 1 terms in the product. The

last factor is necessarily qi, so this total number is (q∗j+1
i − q∗ji ).

0 C1 C3⊂S−1
2 C2⊂S0

2=S
αi(λ)
1

A1

A2
C4

S−j−1
2

r r r r r r r

r

r

@
@

@
@

- �

@
@I

-

It is convenient to look at the cases j = N or j = N + 1 simultaneously. This means that
S−N
2 = S

αi(λ)−N
1 is in A1; in particular the panel F i

4 of type i of C4 is in A1, in the wall
{x | αi(x) = αi(λ)−N}. More precisely F i

4 is the panel of type i of C ′
4 = C1+λ+ ri(µ) ⊂ A1.

This means that (Tλ+ri(µ) ∗ Ti)(C1, C4) ≥ 1. Conversely if C1, C4 are fixed satisfying this
condition, we can find C2, C3 with the required W−distances. We have now to count the
number of possibilities for C2, C3 i.e. for C2 or for (S

αi(λ)−N
1 , · · · , Sαi(λ)

1 ). The number of

possibilities for Sαi(λ)−N
1 is exactly (Tλ+ri(µ) ∗ Ti)(C1, C4). Then the number of possibilities

for Sαi(λ)−N+1
1 , · · · , Sαi(λ)

1 is alternatively qi or q′i. Finally the total number of possibilities for
C2 is q∗Ni (Tλ+ri(µ) ∗ Ti)(C1, C4) (as, when N is odd, qi = q′i).

5. New basis

In this section, we prove that left multiplication by Tµ, for µ ∈ Y ++, is injective. That
allows us to introduce a new basis of the Iwahori-Hecke algebra IHR in terms of (Tw)w∈W v

and (Xλ)λ∈Y + .

We suppose Z ⊂ R and each qi, q′i in R×, the invertibles in R. As we saw in 4.5, IHR is a
free right HR(W

v)−module with basis {Tλ | λ ∈ Y +}. For λ ∈ Y ++ and H ∈ HR(W
v), we

say that Tλ ∗H is of degree λ.
For i ∈ I and Ω a subset of the model apartment A, we write c(i)(Ω) the convex hull of Ω∪

ri(Ω). For (i1, i2, . . . , ih) ∈ Ih and (λ0, λ1, . . . , λh) ∈ (Y ++)h+1, we define : D(ih)(λh−1, λh) =
λh−1 + c(ih)(λh) and, by induction for k from h − 1 to 1, D(ik, . . . , ih)(λk−1, λk, . . . , λh) =
λk−1 + c(ik)(D(ik+1, . . . , ih)(λk, λk+1, . . . , λh)) (of course c(ih)(λh) = c(ih)({λh}).
Lemma 5.1. With notation as above,

a) if λ′h−1 ∈ D(ih)(λh−1, λh), then
D(ik, . . . , ih−2, ih−1)(λk−1, λk, . . . , λh−2, λ

′
h−1) ⊂ D(ik, . . . , ih−1, ih)(λk−1, λk, . . . , λh−1, λh);

b) if ri1ri2 · · · rih is a reduced word in W v and λ ∈ D(i1, . . . , ih)(λ0, λ1, . . . , λh), then
λ0 + ri1(λ1) + ri1ri2(λ2) + · · · + ri1ri2 · · · rih(λh) ≤Q∨

R

λ.
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Remark. If the expression ri1ri2 · · · rih is reduced, we get D(i1, . . . , ih)(0, 0, . . . , 0, λh) =
conv({w(λh) | w ≤

B
ri1ri2 · · · rih}) where ≤

B
denotes the Bruhat order.

Proof. The proof of a) is easy.
b) We haveD(i1, . . . , ih)(λ0, λ1, . . . , λh) ⊂ λ0+c(i1)(λ1)+c(i1, i2)(λ2)+· · ·+c(i1, i2, . . . , ih)(λh),

with c(i1, i2, . . . , ik)(λk) = c(i1)(c(i2)(. . . (c(ik)(λk)). . .)) = conv({w(λk) | w ≤
B
ri1ri2 · · · rik})

where 0 ≤ k ≤ h and ≤
B

denotes the Bruhat order. For w ≤
B
ri1ri2 · · · rik , there is a

sequence w = w0, w1, . . . , wr = ri1ri2 · · · rik such that, for each 1 ≤ i < r, there is a re-
duced decomposition wi+1 = rj1rj2 · · · rjp−1rjprjp+1 · · · rjq with wi = rj1rj2 · · · rjp−1rjp+1 · · · rjq .
Then wi(λk) = wi+1(λk) +αjp

(
rjp+1 · · · rjq(λk)

)
rj1rj2 · · · rjp−1(α

∨
jp
) and Q∨

+ contains the term(
rjq · · · rjp+1(αjp)

)
(λk)rj1rj2 · · · rjp−1(α

∨
jp) by minimality of the expressions rj1rj2 · · · rjp−1rjp

and rjq · · · rjp+1rjp . So we get by induction that w(λk) ≥Q∨ ri1ri2 · · · rik(λk) and w(µ) ≥Q∨

R

ri1ri2 · · · rik(λk) for any µ ∈ c(i1, . . . , ik)(λk). The expected result is now clear.

Proposition 5.2. For any expression Hk = Tλ0 ∗ Ti1 ∗ Tλ1 ∗ Ti2 ∗ · · · ∗ Tλk−1
∗ Tik ∗ Tλk

∗H
with λi ∈ Y ++, H ∈ HZ(W

v) and any µ ∈ Y ++ sufficiently great, the product Tµ ∗Hk may be
written as a R-linear combination of elements Tν ∗Hν with ν ∈ µ+D(i1, . . . , ik)(λ0, λ1, . . . , λk)
and Hν ∈ HR(W

v).
Moreover, if ri1ri2 · · · rik is a reduced word and ν0 = µ + λ0 + ri1(λ1) + ri1ri2(λ2) + · · · +

ri1ri2 · · · rik(λk), then Hν0 ∈ R×Ti1 ∗ Ti2 ∗ · · · ∗ Tik ∗H and more precisely the constant in R×

is a primitive monomial in the qi, q
′
i. Further, Hν0 is the only Hν in RTi1 ∗ Ti2 ∗ · · · ∗ Tik ∗H.

N.B. So one may write Tµ ∗ Hk =
∑

ν,w aν,wTν ∗ Tw, with aν,w ∈ R, ν running in µ +

D(i1, . . . , ik)(λ0, λ1, . . . , λk) and w in W . Moreover we get from the following proof, that each
aν,w is a Laurent polynomial in the parameters qi, q′i, with coefficients in Z; these polynomials
depend only on the expression Hk, on A and on W .

Proof. The proof is easy in the following special case (I).
(I). We say that the expression of Hk is normalizable of length k when it satisfies the

following properties:
(i) λk−1 − λk ∈ Y ++,
(ii) For all h from k to 2, λh−2 −D(ih, . . . , ik)(λh−1, λh, . . . , λk) ⊂ Cv

f .
For such an expression, we write D(Hk) = D(i1, . . . , ik)(λ0, λ1, . . . , λk).

We will then prove that Tλ0 ∗ Ti1 ∗ Tλ1 ∗ Ti2 ∗ · · · ∗ Tλk−1
∗ Tik ∗ Tλk

∗H is a Z[qi, q
′
i]−linear

combination of normalizable elements H ′
k−1 of length k − 1 such that D(H ′

k−1) ⊂ D(Hk).
Using the fact λk−1 −λk ∈ Y ++ and Theorem 4.8, or (BLT), for Tλk−1

∗Tik ∗Tλk
, we have:

(E) Hk = q
∗(αik

(λk))

ik
Tλ0 ∗ Ti1 ∗ Tλ1 ∗ · · · ∗ Tik−1

∗ T
λ
(αik

(λk))

k−1

∗ (Tik ∗H)

+

αik
(λk)−1∑

h=0

(q
∗(h+1)
i − q

∗(h)
i )Tλ0 ∗ Ti1 ∗ Tλ1 ∗ · · · ∗ Tik−1

∗ T
λ
(h)
k−1

∗H

with λ
(h)
k−1 = λk−1 + λk − hα∨

ik
, in particular λ

(αik
(λk))

k−1 = λk−1 + rik(λk). Let us consider, for

each 0 ≤ h ≤ αik(λk), λ
′
i = λi for i ≤ k − 2 and λ′k−1 = λ

(h)
k−1, then (λ′0, . . . , λ

′
k−1) satisfies

λ′k−2 − λ′k−1 ∈ Y ++, by (ii) for h = k and λ′k−1 ∈ D(ik)(λk−1, λk), and, for all h from k − 1

to 2, λ′h−2 − D(ih, . . . , ik−1)(λ
′
h−1, . . . , λ

′
k−1) ⊂ Cv

f . This last result comes from (ii) λ′h−2 −
D(ih, . . . , ik)(λh−1, λh, . . . , λk) ⊂ Cv

f and the inclusion D(ih, . . . , ik−1)(λ
′
h−1, λ

′
h, . . . , λ

′
k−1) ⊂

D(ih, . . . , ik)(λh−1, λh, . . . , λk), coming from Lemma 5.1 a). We have Tik ∗H ∈ HR(W
v), so
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every term of the right hand side of (E) is a normalizable element H ′
k−1 of length k − 1 with

D(H ′
k−1) ⊂ D(Hk).

By induction on each term, after k steps, we obtain Hk as a Z[qi, q
′
i]−linear combination of

Tν ∗Hν with ν ∈ D(Hk) and Hν ∈ HR(W
v).

Moreover, if the decomposition ri1ri2 · · · rik is reduced, we take ν0 = λ0 + ri1(λ1) +
ri1ri2(λ2) + · · · + ri1ri2 · · · rik(λk) and look more carefully at the decomposition (E). For
0 ≤ h < αik(λk), we have ν0 /∈ D(Tλ0 ∗ Ti1 ∗ Tλ1 ∗ · · · ∗ T

λ
(h)
k−1

∗ H) ⊂ D(Hk) by Lemma

5.1b). Indeed, if λ ∈ D(Tλ0 ∗ Ti1 ∗ Tλ1 ∗ · · · ∗ Tλ(h)
k−1

∗H), then, by minimality of ri1ri2 · · · rik ,

ν0 ≤Q∨ ν
(h)
0 ≤Q∨ λ with ν

(h)
0 = λ0 + ri1(λ1) + ri1ri2(λ2) + · · · + ri1ri2 · · · rk−1(λ

(h)
ik−1

) 6= ν0.
So the unique term of degree ν0 of the final decomposition comes from the term of first kind
(i.e. obtained like the first term of the right hand side of (E)) in every step of the reduction
and is also the only term containing all the Tij . And so, we prove that, in front of the term
Tν0 ∗ Ti1 ∗ Ti2 ∗ · · · ∗ Tik ∗H obtained for ν0, the constant is equal to the primitive monomial

C = q
∗(αik

(λk))

ik
q
∗(αik−1

(λk−1+rik (λk)))

ik−1
· · · q∗(αi1

(λ1+ri2 (λ2)+···+ri2 ···rik (λk)))

i1
.

Let us consider now the general case and first prove the following result (II).

(II) IfHk = Tλ0∗Ti1∗Tλ1∗Ti2∗· · ·∗Tλk−1
∗Tik ∗Tλk

∗H with λi ∈ Y ++, H ∈ HR(W
v), we can

choose µ0 ∈ Y ++ such that Tµ0 ∗Hk can be written as a R-linear combination of normalizable
expressions H ′

k of length ≤ k and with D(H ′
k) ⊂ µ0 +D(i1, . . . , ik)(λ0, λ1, . . . , λk).

We prove this result for Hk−h = Tλh
∗Tih+1

∗Tλh+1
∗ · · · ∗Tλk−1

∗Tik ∗Tλk
∗H by decreasing

induction on 0 ≤ h ≤ k−1. For h = k−1, we haveH1 = Tλk−1
∗Tik∗Tλk

∗H. Choose µk−1 = λk,
then Tµk−1

∗H1 is normalizable of length 1 and D(Tµk−1
∗H1) ⊂ µk−1 +D(ik)(λk−1, λk).

Let 0 ≤ h ≤ k−2 and suppose that we can choose µh+1 ∈ Y ++ such that Tµh+1
∗Hk−(h+1) =

Tµh+1
∗ Tλh+1

∗ Tih+2
∗ · · · ∗ Tik ∗ Tλk

∗ H can be written as a R−linear combination of
normalizable expressions H ′

k−(h+1) of length ≤ k − (h+ 1) and with D(H ′
k−(h+1)) ⊂ µh+1 +

D(ih+2, . . . , ik)(λh+1, . . . , λk). Let us write these normalizable expressions H ′
k−(h+1) = Tλ′

0
∗

Ti′1 ∗ Tλ′

1
∗ Ti′2 ∗ · · · ∗ Ti′

k′
∗ Tλ′

k′
∗ H ′, where k′ ≤ k − (h+ 1) and (λ′0, . . . , λ

′
k′) satisfies

(i) and (ii). Consider µmin
h ∈ Y ++ such that µmin

h − D(i′1, . . . , i
′
k′)(λ

′
0, λ

′
1, . . . , λ

′
k′) ⊂ Cv

f

for all these expressions. We take µh = µmin
h + 2µh+1 + rih+1

(µh+1), then Tµh
∗ Hk−h =

Tµh
∗ Tλh

∗ Tih+1
∗Hk−(h+1) = Tµmin

h
+λh+µh+1

∗ Tµh+1+rih+1
(µh+1) ∗ Tih+1

∗Hk−(h+1).

By (BLT), we have:

(E′) q
∗(αih+1

(µh+1))

ih+1
Tµh

∗Hk−h = Tµmin
h

+λh+2µh+1
∗ Tih+1

∗ Tµh+1
∗Hk−(h+1)

−
αih+1

(µh+1)−1∑

j=0

(q
∗(j+1)
ih+1

− q
∗(j)
ih+1

)Tλh+µmin
h

+2µh+1−jα∨

ih+1

∗ Tµh+1
∗Hk−(h+1)

.

The choice of µmin
h and the hypothesis on Tµh+1

∗Hk−(h+1) allow us to say that we have written
Tµh

∗ Hk−h as a R−linear combination of normalizable expressions H ′
k−h of length ≤ k − h

with D(H ′
k−h) ⊂ µmin

h +2µh+1+D(ih+1, . . . , ik)(λh, λh+1+µh+1, . . . , λk) for the first term and
D(H ′

k−h) ⊂ µmin
h + 2µh+1 − jα∨

ih+1
+D(ih+1, . . . , ik)(λh, λh+1 + µh+1, . . . , λk) for the others.

We need to be more precise to prove D(H ′
k−h) ⊂ µh +D(ih+1, . . . , ik)(λh, . . . , λk).
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By the part I) of this proof and the hypothesis on Tµh+1
∗Hk−(h+1) we know that this element

can be written
∑

Λ

cΛTΛ ∗ HΛ with Λ = µh+1 + Λ′ where Λ′ ∈ D(ih+2, . . . , ik)(λh+1, . . . , λk)

cΛ ∈ R, HΛ ∈ HR(W
v). The first term of the right hand side of (E′) becomes:

Tµmin
h

+λh+2µh+1
∗ Tih+1

∗ (
∑

Λ

cΛTΛ ∗HΛ) = Tλh+2µh+1
∗ (
∑

Λ

cΛTµmin
h

∗ Tih+1
∗ TΛ ∗HΛ).

By the condition on µmin
h and (BLT), we write it

Tλh+2µh+1
∗
(∑

Λ

cΛ

(
q
∗(αih+1

(Λ))

ih+1
Tµmin

h
+rih+1(Λ)

∗ Tih+1
∗HΛ

))

+Tλh+2µh+1
∗
(∑

Λ

cΛ

( αih+1
(Λ)−1∑

j=0

(q
∗(j+1)
ih+1

− q
∗(j)
ih+1

)Tµmin
h

+Λ−jα∨

ih+1

∗HΛ

))
.

The first term of this sum will be
∑

Λ

cΛq
∗(αih+1

(Λ))

ih+1
Tλh+2µh+1+µmin

h
+rih+1(Λ)

∗ Tih+1
∗ HΛ and

λh + 2µh+1 + µmin
h + rih+1

(Λ) = λh + 2µh+1 + µmin
h + rih+1

(µh+1) + rih+1
(Λ′) = λh + µh +

rih+1
(Λ′) is an element of λh + µh + rih+1

(D(ih+2, . . . , ik)(λh+1, . . . , λk)) which is included, as
expected, in µh +D(ih+1, ih+2, . . . , ik)(λh, λh+1, . . . , λk).

The second term is
∑

Λ

cΛ

(αih+1
(Λ)−1∑

j=0

(q
∗(j+1)
ih+1

− q∗(j)ih+1
)Tλh+2µh+1+µmin

h
+Λ−jα∨

ih+1

∗HΛ

)
. And we

see that in fact (E’) becomes (E”):

q
∗(αih+1

(µh+1))

ih+1
Tµh

∗Hk−h =
∑

Λ

cΛq
∗(αih+1

(Λ))

ih+1
Tλh+µh+rih+1

(Λ′) ∗ Tih+1
∗HΛ

+
∑

Λ

cΛ

αih+1
(Λ)−1∑

j=0

(q
∗(j+1)
ih+1

− q
∗(j)
ih+1

)Tλh+2µh+1+µmin
h

+Λ−jα∨

ih+1

∗HΛ

−
∑

Λ

cΛ

αih+1
(µh+1)−1∑

j=0

(q
∗(j+1)
ih+1

− q
∗(j)
ih+1

)Tλh+µmin
h

+2µh+1−jαi∨
h+1

∗ TΛ ∗HΛ

=
∑

Λ

cΛq
∗(αih+1

(Λ))

ih+1
Tλh+µh+rih+1

(Λ′) ∗ Tih+1
∗HΛ

+
∑

Λ

cΛεΛ
∑

j

(q
∗(j+1)
ih+1

− q
∗(j)
ih+1

)Tλh+2µh+1+µmin
h

+Λ−jα∨

ih+1

∗HΛ,

where αih+1
(µh+1) ≤ j ≤ αih+1

(Λ)− 1 and εΛ = 1 if αih+1
(µh+1) ≤ αih+1

(Λ) (i.e. αih+1
(Λ′) ≥

0) and αih+1
(Λ) ≤ j ≤ αih+1

(µh+1) − 1 and εΛ = −1 if αih+1
(µh+1) ≥ αih+1

(Λ) (i.e.
αih+1

(Λ′) ≤ 0). For these values of j, by using Λ − jα∨
ih+1

= rih+1
(µh+1) + j′α∨

ih+1
+ Λ′

with j′ = αih+1
(µh+1)− j, we have λh+2µh+1+µ

min
h +Λ− jα∨

ih+1
= λh+µh+ j

′α∨
ih+1

+Λ′. If
αih+1

(µh+1) ≤ αih+1
(Λ), αih+1

(µh+1)− αih+1
(Λ) + 1 ≤ j′ ≤ 0 that is −αih+1

(Λ′) + 1 ≤ j′ ≤ 0.
If αih+1

(µh+1) ≥ αih+1
(Λ), then αih+1

(µh+1)− αih+1
(Λ) ≥ j′ ≥ 1 that is −αih+1

(Λ′) ≥ j′ ≥ 1.
In all cases, j′α∨

ih+1
+Λ′ is between Λ′ and rih+1

(Λ′) and so, as expected, λh+2µh+1+µ
min
h +

Λ− jα∨
ih+1

∈ µh +D(ih+1, ih+2, . . . , ik)(λh, λh+1, . . . , λk).
So we have proved that Tµ0 ∗Hk can be written as a R-linear combination of normalizable

expressions H ′
k of length ≤ k and with D(H ′

k) ⊂ µ0 + D(i1, . . . , ik)(λ0, λ1, . . . , λk). By
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the I) of the proof we can write it as a R-linear combination of elements Tν ∗ Hν with
ν ∈ µ0 +D(i1, . . . , ik)(λ0, λ1, . . . , λk) and Hν ∈ HR(W

v).
Like in I) we can say, if moreover the decomposition ri1ri2 · · · rik is reduced, that only the

term
∑

Λ

cΛq
∗(αih+1

(Λ))

ih+1
Tλh+2µh+1+µmin

h
+rih+1(Λ)

∗ Tih+1
∗HΛ (which contains Tih+1

) in (E′′) can

give us a term of lowest degree µh + λh + rih+1
(λh+1) + · · ·+ rih+1

· · · rik(λk). More precisely,
the term of lowest degree comes from the term with Λ0 = µh+1 + λh+1 + rih+2

(λh+2) + · · ·+
rih+2

· · · rik(λk) for which we have αik+1
(Λ0) ≥ αik+1

(µh+1). So, it’s easy to see by induction
that the coefficient of that term is a primitive monomial in the qi, q′i.

Corollary 5.3. a) For λ ∈ Y + and µ ∈ Y ++ sufficiently great, we have
Tµ ∗ Tλ =

∑
λ≤Q∨ν≤Q∨λ++ Tµ+ν ∗Hν with Hν ∈ HR(W

v).

b) More precisely, if Hν 6= 0 then µ+ ν ∈ Y ++ and ν is in the convex hull conv(W v.λ++)
of W v.λ++ or better in the convex hull conv(W v.λ++,≥ λ) of all w′.λ++ for w′ ≤

B
wλ, with

wλ the smallest element of W v such that λ = wλ.λ
++.

c) For ν = λ, Hλ is a strictly positive integer aλ which may be written as a primitive
monomial in qi, q

′
i, i ∈ I (depending only on A).

d) In a) above, we may write Hν =
∑

w∈W v a
ν,w
µ,λTw and, then each aν,wµ,λ is a Laurent

polynomial in the parameters qi, q
′
i with coefficients in Z, depending only on A and W .

Proof. Only the result c) is new (cf. Propositions 2.2 and 2.3), and we already saw that
the constant term in Hλ is in Z>0. We have to prove that Hλ ∈ HR(W

v) is actually a
constant (for µ sufficiently great). Write λ = wλ(λ

++) (with wλ minimal in W v for this
property), choose a minimal decomposition wλ = ri1ri2 · · · rik , by corollary 4.3 we have
Tλ = Ti1 ∗ Ti2 ∗ · · · ∗ Tik ∗ Tλ++ ∗ T−1

ik
∗ · · · ∗ T−1

i1
. Then, by Proposition 5.2, for µ great,

Tµ ∗ Tλ may be written as a R-linear combination of elements Tµ+ν ∗ (Hν
1 ∗ T−1

ik
∗ · · · ∗ T−1

i1
)

with ν ∈ D(i1, . . . , ik)(0, . . . , 0, λ
++) and Hν

1 ∈ HR(W
v) with term of lowest degree ν0 = λ.

Moreover Hλ = Hλ
1 ∗ T−1

ik
∗ · · · ∗ T−1

i1
is a primitive monomial in the qi, q′i.

To prove d), we remark that T−1
ik

∗ · · · ∗ T−1
i1

may be written
∑

w∈W v awTw with aw ∈
Z[(q±1

i )i∈I ] and we apply 5.2 with H = Tw.

Corollary 5.4. In IHR, for µ ∈ Y ++ the left multiplication by Tµ is injective.

Proof. As Tµ1+µ2 = Tµ1 ∗ Tµ2 for µ1, µ2 ∈ Y ++, we may assume µ sufficiently great. Let
H ∈ IHR \{0}. We may write H =

∑
j∈J Tλj

∗Hj with λj ∈ Y + and 0 6= Hj ∈ HR(W
v). We

choose λj0 minimal among the λj for ≤Q∨. Then Tµ ∗H =
∑

j∈J

∑
µ+λj≤Q∨νj

Tνj ∗Hνj ,j ∗Hj .

Hence νj0 = µ+λj0 is minimal for ≤Q∨ and Hνj0 ,j0 is a monomial in qi, q′i; so Hνj0 ,j0 ∗Hj0 6= 0
and Tµ ∗H 6= 0.

Theorem 5.5. 1) For any λ ∈ Y +, there is a unique Xλ ∈ IHR such that: for all µ ∈ Y ++

with λ+ µ ∈ Y ++, we have Tµ ∗Xλ = Tλ+µ.
2) More precisely,

Xλ = bλTλ +
∑

ν

Tν ∗H ′ν ,

where H ′ν ∈ HR(W
v), ν ∈ conv(W v.λ++,≥ λ) \ {λ} and bλ is a primitive monomial in

q−1
i , q′i

−1.

3) For λ ∈ Y ++, we have Xλ = Tλ. For λ, λ′ ∈ Y +, Xλ ∗Xλ′

= Xλ+λ′

= Xλ′ ∗Xλ.
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Remarks. :
a) We have two bases for the free right HR(W

v)−module IHR, {Tλ | λ ∈ Y +} and
{Xλ | λ ∈ Y +}. The change of bases matrix is triangular (for the order ≥Q∨) with diagonal
coefficients primitive monomials in q−1

i , q′i
−1. From 5.3.d we get that all coefficients of this

matrix are Laurent polynomials in the parameters qi, q′i, with coefficients in Z, depending only
on A and on W .

b) By 1) above and Corollary 5.4, it is clear that the left multiplication by Xλ is injective,
for any λ ∈ Y +.

Proof. By Corollary 5.4, the uniqueness is clear and 3) follows from the relation Tλ∗Tµ = Tλ+µ

of the Theorem 2.4. We have just to prove 1) and 2) for a µ ∈ Y ++ (chosen sufficiently great).
We argue by induction on the height ht(λ++−λ) of λ++−λ with respect to the free family

(α∨
i ) in Q∨. When the height is 0, λ = λ++ and Xλ = Tλ. By Corollary 5.3, we write

Tµ ∗ Tλ = aλTµ+λ +
∑

λ≤Q∨ν≤Q∨λ++;λ6=ν

Tµ+ν ∗Hν

with Hν ∈ HR(W
v) and ν ∈ conv(W v.λ++) hence ν++ ∈ conv(W v.λ++) (in particular

ν++ ≤Q∨ λ++ ). cf. Lemma 1.8.a).
So ht(ν++ − ν) < ht(λ++ − λ). By induction and for µ sufficiently great, we can consider

the element Xν such that Tµ+ν = Tµ ∗ Xν ; we can write it Xν =
∑

ν≤Q∨ν′≤Q∨ν++

Tν′ ∗Hν′,ν

and we may take Xλ = aλ
−1Tλ −

( ∑

λ≤Q∨ν≤Q∨λ++;λ6=ν

Xν ∗Hν

)

= aλ
−1Tλ −

( ∑

λ≤Q∨ν≤Q∨λ++;λ6=ν

( ∑

ν≤Q∨ν′≤Q∨ν++

Tν′ ∗Hν′,ν

)
∗Hν

)
.

Proposition 5.6. For λ ∈ Y + and i ∈ I we have the following relations :

a) If αi(λ) ≥ 0, then Ti ∗Xλ = q
∗(αi(λ))
i Xri(λ) ∗ Ti +

αi(λ)−1∑

h=0

(q
∗(h+1)
i − q

∗(h)
i )Xλ−hα∨

i .

b) If αi(λ) < 0, then

Ti ∗Xλ = 1

q
∗(−αi(λ))
i

Xri(λ) ∗ Ti − 1

q
∗(−αi(λ))
i

−1∑

h=αi(λ)

(
qi

∗(−αi(λ)+h+1) − qi
∗(−αi(λ)+h)

)
Xλ−hα∨

i .

N.B. These relations are the Bernstein-Lusztig relations for the Xλ, (BLX) for short.

Proof. If λ ∈ Y ++, by Proposition 4.8 a), we know that Xλ ∗ Ti ∗ Xλ = Xλ+λ ∗ Ti
when αi(λ) = 0 and, when αi(λ) > 0, Xλ ∗ Ti ∗ Xλ = q

∗αi(λ)
i Xλ+ri(λ) ∗ Ti + (q

∗(αi(λ))
i −

q
∗(αi(λ)−1)
i )Xλ+λ−(αi(λ)−1)α∨

i + · · ·+(q∗2i − qi)Xλ+λ−α∨

i +(qi−1)Xλ+λ, so we have the result.

In the general case, λ ∈ Y +, we write λ = µ− ν with µ, ν chosen in Y ++. By Theorem 5.5,
Xν ∗Xλ = Xµ. From (BLX) for Xµ and Xν , we have :

Ti ∗Xµ = q
∗(αi(λ+ν))
i Xri(λ+ν) ∗ Ti +

αi(λ+ν)−1∑

h=0

(q
∗(h+1)
i − q

∗(h)
i )Xν+λ−hα∨

i
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which can also be written

Ti ∗Xν+λ = (Ti ∗Xν) ∗Xλ =

(
q
∗(αi(ν))
i Xri(ν) ∗ Ti +

αi(ν)−1∑

h=0

(q
∗(h+1)
i − q

∗(h)
i )Xν−hα∨

i

)
∗Xλ

= q
∗(αi(ν))
i Xri(ν) ∗ Ti ∗Xλ +

αi(ν)−1∑

h=0

(q
∗(h+1)
i − q

∗(h)
i )Xν+λ−hα∨

i .

If αi(λ) ≥ 0, we obtain

q
∗(αi(ν))
i Xri(ν) ∗ Ti ∗Xλ = q

∗(αi(λ+ν))
i Xri(µ) ∗ Ti +

αi(λ+ν)−1∑

h=αi(ν)

(q
∗(h+1)
i − q

∗(h)
i )Xν+λ−hα∨

i .

We take h′ = h − αi(ν), then Xν+λ−hα∨

i = Xν−αi(ν)α∨

i +λ−h′α∨

i = Xri(ν)+λ−h′α∨

i and

q
∗(αi(ν)+h′)
i = q

∗αi(ν)
i q∗h

′

i (by qi = q′i if αi(ν) is odd, and an easy calculation if αi(ν) is even). So,

q
∗(αi(ν))
i Xri(ν)∗Ti∗Xλ = q

∗(αi(ν))
i Xri(ν)∗

(
q
∗(αi(λ))
i Xri(λ)∗Ti+

αi(λ)−1∑

h′=0

(q
∗(h′+1)
i − q

∗(h′)
i )Xλ−h′α∨

i

)
.

And we are done thanks to the injectivity of left multiplication by Xri(ν).
If αi(λ) < 0, we obtain

q
∗(αi(ν))
i Xri(ν) ∗ Ti ∗Xλ = q

∗(αi(λ+ν))
i Xri(λ+ν) ∗ Ti −

αi(ν)−1∑

h=αi(λ+ν)

(q
∗(h+1)
i − q

∗(h)
i )Xν+λ−hα∨

i .

We have q∗(αi(ν))
i = q

∗(−αi(λ))
i q

∗(αi(λ+ν))
i by an easy calculus if αi(ν) and αi(λ) are even and

because qi = q′i whenever αi(ν) or αi(λ) is odd. So,

Xri(ν) ∗ Ti ∗Xλ = 1

q
∗(−αi(λ))
i

Xri(λ+ν) ∗ Ti − 1

q
∗(αi(ν))
i

αi(ν)−1∑

h=αi(λ+ν)

(q
∗(h+1)
i − q

∗(h)
i )Xν+λ−hα∨

i and we

have (because of the injectivity of the left multiplication by Xri(ν)):

Ti ∗Xλ = 1

q
∗(−αi(λ))
i

Xri(λ) ∗ Ti − 1

q
∗(αi(ν))
i

αi(ν)−1∑

h=αi(λ+ν)

(q
∗(h+1)
i − q

∗(h)
i )Xλ+(αi(ν)−h)α∨

i

=
1

q
∗(−αi(λ))
i

Xri(λ)∗Ti−
1

q
∗(αi(ν))
i q

∗(−αi(λ))
i

−1∑

h=αi(λ)

(q
∗(αi(ν)−αi(λ)+h+1)
i − q

∗(αi(ν)−αi(λ)+h)
i )Xλ−hα∨

i

=
1

q
∗(−αi(λ))
i

Xri(λ) ∗ Ti −
1

q
∗(−αi(λ))
i

−1∑

h=αi(λ)

(q
∗(−αi(λ)+h+1)
i − q

∗(−αi(λ)+h)
i )Xλ−hα∨

i

5.7. The classical Bernstein-Lusztig relation. The module δ : Q∨ → R is defined by
δ(
∑

i∈I aiα
∨
i ) =

∏
i∈I(qiq

′
i)
ai [GR14, 5.3.2]. After replacing eventually R by a bigger ring

R′ containing some square roots
√
qi,
√
q′i of qi, q′i (with

√
qi =

√
q′i, if qi = q′i), we assume

moreover that there exists an homomorphism δ1/2 : Y → R×, such that δ(λ) = (δ1/2(λ))2 for

any λ ∈ Q∨ and δ1/2(α∨
i ) =

√
qi.
√
q′i. In particular

√
qi

±1 and
√
q′i

±1
are well defined in R×.
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In the common example where R = R or C, these expressions are chosen to be the classical
ones: δ1/2(Y ) ⊂ R∗

+.
We define Hi = (

√
qi)

−1Ti and Zλ = δ−1/2(λ)Xλ for λ ∈ Y +. When w = ri1 · · · rin is
a reduced decomposition, we set Hw = Hi1 ∗ · · · ∗ Hin ; this does not depend of the chosen
decomposition of w.

We may translate the relations (BLX) for these elements.

Proposition. For λ ∈ Y ++, we have the following relation:

Hi∗Zλ = Zri(λ)∗Hi+

⌊
αi(λ)−1

2
⌋∑

k=0

(
√
qi −

√
qi

−1)Zλ−(2k)α∨

i +

⌊
αi(λ)

2
⌋−1∑

k=0

(
√
q′i −

√
q′i

−1)Zλ−(2k+1)α∨

i .

Remarks. 1) This is the Bernstein-Lusztig relation for the Zλ, (BLZ) for short.
2) In the following section, we shall consider an algebra containing IHR and, for any i ∈ I,

an element Z−αi
∨

satisfying Zλ−hαi
∨

= Zλ ∗ (Z−αi
∨

)h for h ∈ N, λ, λ − hα∨
i ∈ Y +. In such

an algebra the relation (BLZ) may be rewritten (using that
√
qi =

√
q′i if αi(λ) is odd) as the

classical Bernstein-Lusztig relation (BL):

Hi ∗ Zλ = Zri(λ) ∗Hi + (
√
qi −

√
qi

−1)
Zλ − Zri(λ)

1− Z−2α∨

i

+ (
√
q′i −

√
q′i

−1)
Zλ−α∨

i − Zri(λ)−α∨

i

1− Z−2α∨

i

i.e.Hi∗Zλ−Zri(λ)∗Hi = b(
√
qi,
√
q′i;Z

−αi
∨

)(Zλ−Zri(λ)) where b(t, u; z) =
t− t−1 + (u− u−1)z

1− z2
.

This is the same relation as in [Ma03, 4.2], up to the order; see below in 3).
3) Actually this relation (BLZ) is still true when λ ∈ Y + and αi(λ) ≥ 0 (same proof as

below). If αi(λ) < 0, we leave to the reader the proof of the following relation:

Ti ∗ Zλ = Zri(λ) ∗ Ti −
( −αi(λ)∑

h even,h=2

(
qi − 1

)
Zλ+hα∨

i +

−αi(λ)∑

h odd,h=1

(√
qi.q′i −

√
qi.q′i
q′i

)
Zλ+hα∨

i

)

In the situation of 2) above, it may be rewritten:

Hi ∗ Zλ − Zri(λ) ∗Hi = (
√
qi −

√
qi

−1)
Zλ − Zri(λ)

1− Z−2α∨

i

+ (
√
q′i −

√
q′i

−1)
Zλ−α∨

i − Zri(λ)−α∨

i

1− Z−2α∨

i

= b(
√
qi,
√
q′i;Z

−αi
∨

)(Zλ − Zri(λ))
It is the same relation (BLZ) as above. Moreover, it’s easy to see in the first equality that

Hi ∗Zλ−Zri(λ) ∗Hi = Zλ ∗Hi−Hi ∗Zri(λ). Actually we shall see in section 6 that this same
relation is true for any λ ∈ Y in a greater algebra containing elements Zλ for λ ∈ Y .

Proof. From Zλ = δ−1/2(λ)Xλ and δ1/2(α∨
i ) =

√
qi.q′i , we get

Zλ−hα∨

i = δ−1/2(λ− hα∨
i )X

λ−hα∨

i

= δ−1/2(λ)(δ1/2(α∨
i ))

hXλ−hα∨

i

= δ−1/2(λ)(
√
qi.q

′
i)
hXλ−hα∨

i

By αi(λ) ≥ 0 and (BLX) we have

Ti ∗ Zλ = q
∗(αi(λ))
i

(√
qi.q′i

)−αi(λ)Zri(λ) ∗ Ti +
αi(λ)−1∑

h=0

(q
∗(h+1)
i − q∗hi )

(√
qi.q′i

)(−h)
Zλ−hα∨

i .
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Moreover q∗hi = qiq
′
iqi · · · with h terms in the product so q∗hi =

(√
qi.q

′
i

)h
if h is even and

q∗hi = qi
(√

qi.q
′
i

)(h−1)
if h is odd. So, if αi(λ) is even, we have

Ti ∗ Zλ = Zri(λ) ∗ Ti +
αi(λ)−2

2∑

k=0

(qi − 1)Zλ−(2k)α∨

i +

αi(λ)−2

2∑

k=0

(qiq
′
i − qi)

(√
qiq

′
i

)−1
Zλ−(2k+1)α∨

i .

If αi(λ) is odd, we have qi = q′i, and we obtain Ti ∗ Zλ = Zri(λ) ∗ Ti +
αi(λ)−1∑

h=0

(qi − 1)Zλ−hα∨

i .

In both cases, by Hi = (
√
qi)

−1Ti, we get:

Hi∗Zλ = Zri(λ)∗Hi+

⌊
αi(λ)−1

2
⌋∑

k=0

(
√
qi −

√
qi

−1)Zλ−(2k)α∨

i +

⌊
αi(λ)

2
⌋−1∑

k=0

(
√
q′i −

√
q′i

−1)Zλ−(2k+1)α∨

i .

6. Bernstein-Lusztig-Hecke Algebras

The aim of this section is to define, in a formal way, an associative algebra BLHR, called the
Bernstein-Lusztig-Hecke algebra. This construction by generators and relations is motivated
by the results obtained in the previous section (in particular 5.6) and we will be able next to
identify IHR and a subalgebra of BLHR (up to some hypotheses on R).

We use the same notations as before, even if the objects are somewhat different. This choice
will be justified by the identification obtained at the end of this section.

We consider A as in 1.2 and Aut(A) ⊃ W = W v ⋉ Y ⊃ W a, with Y a discrete group of
translations.

6.1. The module BLHR1. We consider now the ring R1 = Z[(σi
±1, σ′i

±1)i∈I ] where the
indeterminates σi, σ′i satisfy the following relations (as qi and q′i in 1.4.5 because in the further
identification, σi, σ′i will play the role of

√
qi and

√
q′i).

If αi(Y ) = Z, then σi = σ′i.
If ri and rj are conjugated (i.e. if αi(α

∨
j ) = αj(α

∨
i ) = −1), then σi = σj = σ′i = σ′j.

We denote by BLHR1 the free R1-module with basis (ZλHw)λ∈Y,w∈W v . For short, we write
Hi = Hri ,Hw = Z0Hw and Zλ = ZλH1.

Theorem 6.2. There exists a unique multiplication ∗ on BLHR1 which makes it an associative
unitary R1-algebra with unity H1 and satisfies the following conditions:

(1) ∀λ ∈ Y ∀w ∈W v Zλ ∗Hw = ZλHw,

(2) ∀i ∈ I ∀w ∈W v Hi ∗Hw = Hriw if ℓ(riw) > ℓ(w)
= (σi − σi

−1)Hw +Hriw if ℓ(riw) < ℓ(w),

(3) ∀λ ∈ Y ∀µ ∈ Y Zλ ∗ Zµ = Zλ+µ,

(4) ∀λ ∈ Y ∀i ∈ I Hi ∗ Zλ − Zri(λ) ∗ Hi = b(σi, σ
′
i;Z

−α∨

i )(Zλ − Zri(λ)); where

b(t, u; z) = (t−t−1)+(u−u−1)z
1−z2

.

Remarks 6.3. 1) It is already known (see e.g. [Hu90, Th. 7.1] or [Bo68, IV § 2 exer. 23])
that the free submodule with basis (Hw)w∈W v can be equipped, in a unique way, with a
multiplication ∗ that satisfies (2) and gives it a structure of an associative unitary algebra
called the "Hecke algebra of the group W v over R1" and denoted by HR1(W

v).
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2) The submodule HR1(Y ) with basis (Zλ)λ∈Y will be a commutative subalgebra.
3) When all σi, σ′i are equal, the existence of this algebra BLH is stated in [GaG95] and

justified by an action on some Grothendieck group.
4) This R1−algebra depends only on A and Y (i.e. A and W ). We call it the Bernstein-

Lusztig-Hecke algebra over R1 (associated to A and W ).

6.4. Proof of Theorem 6.2. 1) The uniqueness of the multiplication ∗ is clear: by associa-
tivity and distributivity, we have only to identify Hw ∗ Zµ. If w = ri1ri2 · · · rin is a reduced
decomposition, then, by (2), (4) and remark 1), Hw ∗Zµ = Hi1 ∗ (Hi2 ∗ (· · · ∗ (Hin ∗Zµ) · · · ))
has to be a well defined linear combination of terms ZνHu : Hw ∗ Zµ =

∑
k akZ

νkHuk
with

ak ∈ R1, νk ∈ Y, uk ∈W v.
2) Construction of ∗. We define Hw ∗ Zµ as above and we have to prove that it does not

depend on the reduced decomposition w = ri1ri2 · · · rin .
a) We define Li ∈ EndR1(

BLHR1) by :
Li(Z

µHw) = Hi ∗ (ZµHw) = Zri(µ)(Hi ∗Hw) + b(σi, σ
′
i;Z

−α∨

i )(Zµ − Zri(µ)) ∗Hw

where Hi ∗Hw = Hriw if ℓ(riw) > ℓ(w) and Hi ∗Hw = (σi−σi−1)Hw+Hriw if ℓ(riw) < ℓ(w).
By Matsumoto’s theorem [Bo68, IV 1.5 prop. 5], the expected independence will be a

consequence of the braid relations, i.e.:
(∗) Li(Lj(Li(. . . (Z

λHw) . . .))) = Lj(Li(Lj(. . . (Z
λHw) . . .))) (with mi,j factors L on

each side), whenever the order mi,j of rirj is finite.
As HR1(W

v) is known to be an algebra, it is enough to prove (∗) for w = 1. We may also
suppose αj(α

∨
i ) 6= 0 as otherwise Li and Lj commute clearly.

We choose i, j ∈ I with mi,j finite, then ±αi,±αj generate a finite root system Φi,j of rank
2 (or 1 if i = j). Moreover, Y ′ = ker(αi) ∩ ker(αj) ∩ Y is cotorsion free in Y; let Y ′′ be a
supplementary module containing α∨

i and α∨
j . Y ′′ is a lattice (of rank 2 or 1) between the

lattices Q∨
i,j of coroots and P∨

i,j of coweights, associated to Φi,j.

Any λ ∈ Y may be written λ = λ′+λ′′ with λ′ ∈ Y ′ and λ′′ ∈ Y ′′. By (4), Li(Z
λ′

) = Zλ′

Hi

and Lj(Z
λ′

) = Zλ′

Hj . So we have to prove (∗) for λ = λ′′ ∈ Y ′′. We shall do it by comparing
with some Macdonald’s results.

b) In [Ma03] Macdonald builds affine Hecke algebras H(W (R,L′)) over R, associated
to any finite irreducible root system R and any lattice L′ between the lattices of coroots
and coweights; more precisely this algebra is associated to the extended affine Weyl group
W (R,L′) = W (R) ⋉ L′. It is defined by generators and relations, but it is proven that it
is endowed with a basis (Y λT (w))λ∈L′,w∈W (R) [l.c. ; 4.2.7] and satisfies relations analogous
to (1), (2), (3), (4) as above. There are parameters (τi)i∈I and τ0 which are reals (but may
be algebraically independent over Q, so may be considered as indeterminates) and satisfy
τi = τj if αi(α

∨
j ) = αj(α

∨
i ) = −1. The relation (4) is satisfied with σi = τi and σ′i = τi when

αi(L
′) = Z, σ′i = τ0 when αi(L

′) = 2Z.
c) In the case R = Φi,j, irreducible, L′ = Y ′′, we may choose τi, τj and τ0 such that the

relations (4) are the same, for us and Macdonald: either αi(α
∨
j ) = −1 or αj(α

∨
i ) = −1, so

τ0 = σ′i or τ0 = σ′j. In particular R1 may be identified to a subring of R. The operators Li and
Lj of both theories coincide on the elements ZλHv (identified with Y λT (v) in Macdonald’s
work) for λ ∈ L′ = Y ′′ and v ∈ 〈ri, rj〉. So (∗) is satisfied as H(W (R,L′)) is an associative
algebra.
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d) So, if Hw ∗ Zµ =
∑

k akZ
νkHuk

, with ak ∈ R1, νk ∈ Y, uk ∈ W v, we define the product
of ZλHw and ZµHv by: (ZλHw) ∗ (ZµHv) =

∑
k akZ

λ+νk ∗ (Huk
∗Hv). We get a distributive

multiplication on BLHR1 with unit H1.
3) Associativity.
a) Using the associativity in HR1(Y ) and HR1(W

v) and the formula 2.d above, it is clear
that, for any λ ∈ Y,w ∈W v, E1, E2 ∈ BLHR1 , we have:

(R1) Zλ ∗ (E1 ∗ E2) = (Zλ ∗ E1) ∗ E2,
(R2) E1 ∗ (E2 ∗Hw) = (E1 ∗ E2) ∗Hw.

We need also to prove (for λ1, λ2 ∈ Y,w,w1, w2 ∈W v, E ∈ BLHR1),
(A) Hw ∗ (Zλ1 ∗ Zλ2) = (Hw ∗ Zλ1) ∗ Zλ2 ,
(B) Hw1 ∗ (Hw2 ∗E) = (Hw1 ∗Hw2) ∗ E.

Then the general associativity will follow : using (R1), (R2), (A), (B) and the formula 2d for
the product, it is not too difficult (and left to the reader) to prove that :

(Zλ1Hw1) ∗
(
(Zλ2Hw2) ∗ (Zλ3Hw3)

)
= Zλ1 ∗ (Hw1 ∗

(
(Zλ2Hw2) ∗ Zλ3)

)
∗Hw3

= Zλ1 ∗
(
(Hw1 ∗ Zλ2) ∗ (Hw2 ∗ Zλ3)

)
∗Hw3

= Zλ1 ∗
(
(Hw1 ∗ (Zλ2Hw2)) ∗ Zλ3

)
∗Hw3

=
(
(Zλ1Hw1) ∗ (Zλ2Hw2)

)
∗ (Zλ3Hw3).

b) Proof of (B). This condition is equivalent to the fact that the left multiplication by
HR1(W

v) on BLHR1 is an action. But the associative algebra HR1(W
v) is generated by

the Hi with relations the braid relations and H2
i = (σi − σ−1

i )Hi + H1. As Li is the left
multiplication by Hi, we have (B) if, and only if, these Li satisfy the relation (∗) in 2.a and

(∗∗) Li(Li(Z
λHv)) = (σi − σ−1

i )Li(Z
λHv) + ZλHv.

As in 2b, we reduce the verification of (∗∗) to the case v = 1 and λ ∈ Y ′′ (associated to
i = j) i.e. λ ∈ Y ′′ = Qα∨

i ∩Y . Then we look at Macdonald’s construction of H(W ({±αi}, Y ′′))
with τi = σi, τ0 = σ′i. We conclude, as in 2.c that (∗∗) is satisfied.

c) The proof of (A) is by induction on ℓ(w).
If w = ri, we have:

(Hi ∗ Zλ1) ∗ Zλ2 = (Zri(λ1)Hi) ∗ Zλ2 + (b(σi, σ
′
i;Z

−α∨

i )(Zλ1 − Zri(λ1))) ∗ Zλ2

= Zri(λ1) ∗ (Zri(λ2)Hi +(b(σi, σ
′
i;Z

−α∨

i )(Zλ2 −Zri(λ2)))+ b(σi, σ
′
i;Z

−α∨

i )(Zλ1+λ2 −Zri(λ1)+λ2)

= Zri(λ1+λ2)Hi+b(σi, σ
′
i;Z

−α∨

i )(Zri(λ1)+λ2−Zri(λ1)+ri(λ2))+b(σi, σ
′
i;Z

−α∨

i )(Zλ1+λ2−Zri(λ1)+λ2)

= Zri(λ1+λ2)Hi + b(σi, σ
′
i;Z

−α∨

i )(Zλ1+λ2 − Zri(λ1+λ2))
= Hi ∗ (Zλ1 ∗ Zλ2)

If the result is known when ℓ(w) = n. Let us consider w = w′ri with ℓ(w) = n + 1 and
ℓ(w′) = n, then
Hw ∗ (Zλ1 ∗ Zλ2) = Hw′ ∗ (Hi ∗ Zλ1+λ2) (left multiplication by HR1(W

v) is an action)
= Hw′ ∗ ((Hi ∗ Zλ1) ∗ Zλ2) (case ℓ(w) = 1)
= Hw′ ∗

(
(Zri(λ1)Hi) ∗ Zλ2 + (b(σi, σ

′
i;Z

−α∨

i )(Zλ1 − Zri(λ1))) ∗ Zλ2
)
.

On the other hand, we have
(Hw ∗ Zλ1) ∗ Zλ2 = (Hw′ ∗ (Hi ∗ Zλ1)) ∗ Zλ2

=
(
Hw′ ∗ (Zri(λ1)Hi + b(σi, σ

′
i;Z

−α∨

i )(Zλ1 − Zri(λ1))
)
∗ Zλ2

=
(
Hw′ ∗ (Zri(λ1)Hi)

)
∗ Zλ2 +

(
Hw′ ∗ (b(σi, σ′i;Z−α∨

i )(Zλ1 − Zri(λ1)))
)
∗ Zλ2 .
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The second term of the right hand side is a R1-linear combination of (Hw′ ∗Zλ1+kα∨

i ) ∗Zλ2

and we see by induction that it is the same as Hw′ ∗ ((b(σi, σ′i;Z−α∨

i )(Zλ1 − Zri(λ1))) ∗ Zλ2)
in Hw ∗ (Zλ1 ∗ Zλ2).

In the first term, (Hw′ ∗ (Zri(λ1)Hi)) ∗ Zλ2 = ((Hw′ ∗ Zri(λ1)) ∗ Hi)) ∗ Zλ2 , we can write
Hw′ ∗Zri(λ1) =

∑
k ckZ

λkHwk
and we will use later in the same way Hi ∗Zλ2 =

∑
h ahZ

µhHvh
with ck, ah ∈ R1, λk, µh ∈ Y and wk, vh ∈W v. So, we have :

((
∑

k ckZ
λkHwk

) ∗Hi) ∗ Zλ2 = (
∑

k ck(Z
λk ∗ (Hwk

∗Hi))) ∗ Zλ2 (by (R2))
=
∑

k ckZ
λk ∗ ((Hwk

∗Hi) ∗ Zλ2) (by formula 2d)
=
∑

k ckZ
λk ∗ (Hwk

∗ (Hi ∗ Zλ2)) (by (B))
=
∑

k ck(Z
λk ∗Hwk

) ∗ (Hi ∗ Zλ2) (by (R1))
=
∑

k ck(Z
λk ∗Hwk

) ∗ (∑h ahZ
µhHvh)

=
∑

k,h ckah(Z
λk ∗Hwk

) ∗ (Zµh ∗Hvh)

=
∑

k,h ckah(((Z
λk ∗Hwk

) ∗ Zµh) ∗Hvh) (by (R2))

=
∑

h ah(((Hw′ ∗ Zri(λ1)) ∗ Zµh) ∗Hvh)

=
∑

h ah((Hw′ ∗ (Zri(λ1) ∗ Zµh)) ∗Hvh) (by induction)
=
∑

h ahHw′ ∗ ((Zri(λ1) ∗ Zµh) ∗Hvh) (by (R2))
= Hw′ ∗ (Zri(λ1) ∗ (Hi ∗ Zλ2)). (by (R1))

This corresponds to the term Hw′ ∗ ((Zri(λ1)Hi) ∗Zλ2) in Hw ∗ (Zλ1 ∗Zλ2) so we obtain the
equality when ℓ(w) = n+ 1.

6.5. Change of scalars. 1) Let us suppose that we are given a morphism ϕ from R1 to a
ring R, then we are able to consider, by extension of scalars, BLHR = R⊗R1

BLHR1 as an
R-associative algebra. The family (ZλHw)λ∈Y,w∈W v is still a basis of the R-module BLHR.
2) In order to consider elements similar to the Xλ of section 4, we are going to define a
ring R3 containing R1 such that there exists a group homomorphism δ1/2 : Y → R×

3 with
δ(λ) = δ1/2(λ)2 for any λ ∈ Q∨ and δ1/2(α∨

i ) = σi.σ
′
i.

Since Q∨ is a submodule of the free Z-module Y , by the elementary divisor theorem, if we
denote m the biggest elementary divisor, then for any µ ∈ Y ∩ (Q∨⊗ZR), we have mµ ∈ Q∨.
Let us consider the ring R3 = Z[(τi

±1, τ ′i
±1)i∈I ] (with τi, τ

′
i satisfying conditions similar to

those of 6.1) and the identification of R1 as a subring of R3 given by τmi = σi and τ ′i
m = σ′i.

Then, for λ ∈ Y we have mλ =
∑

i∈I aiα
∨
i + λ0 with the ai ∈ Z and λ0 /∈ Q∨⊗ZR and we

can define δ1/2(λ) = Πi∈I(τiτ
′
i)

ai and obtain a group homomorphism from Y to R3, with the
wanted properties.

In BLHR3 , let us consider Xλ = δ1/2(λ)Zλ for λ ∈ Y and Ti = σiHi = (τi)
mHi. It’s easy

to see that Tw = Ti1 ∗ Ti2 ∗ · · · ∗ Tin is independent of the choice of a reduced decomposition
ri1ri2 · · · rin of w. It is clear that the family (Xλ∗Tw)λ∈Y,w∈W v is a new basis of the R3-module
BLHR3 .
3) We can give new formulas to define ∗ in terms of these generators. The relation (4) of the
definition of BLHR3 can be written as previously :
If αi(λ) ≥ 0, then

(BLZ+) Hi ∗ Zλ = Zri(λ) ∗Hi +

αi(λ)−1∑

k even, k=0

(σi − σi
−1)Zλ−kα∨

i +

αi(λ)−1∑

k odd, k=0

(σ′i − σ′i
−1)Zλ−kα∨

i ,

If αi(λ) < 0, then
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(BLZ−) Hi ∗ Zλ = Zri(λ) ∗Hi −
−αi(λ)∑

k even, k=2

(σi − σi
−1)Zλ+kα∨

i −
−αi(λ)∑

k odd, k=1

(σ′i − σ′i
−1)Zλ+kα∨

i .

With the same arguments as in 5.7, these relations (after changing the variables and writing
(σ2i )

∗n = σ2i σ
′
i
2σ2i σ

′
i
2 · · · with n terms in this product) become :

(BLX+) If αi(λ) ≥ 0, then Ti∗Xλ = (σ2i )
∗(αi(λ))Xri(λ)∗Ti+

αi(λ)−1∑

h=0

((σ2i )
∗(h+1) − (σ2i )

∗(h))Xλ−hα∨

i ,

(BLX−) If αi(λ) < 0, then,

Ti∗Xλ = 1
(σ2

i )
∗(−αi(λ))

Xri(λ)∗Ti− 1
(σ2

i )
∗(−αi(λ))

−1∑

h=αi(λ)

(
(σ2i )

∗(−αi(λ)+h+1)−qi∗(−αi(λ)+h)
)
Xλ−hα∨

i .

The other formulas give easily:
(2’) ∀i ∈ I ∀w ∈W v Ti ∗ Tw = Triw if ℓ(riw) > ℓ(w)

= (σ2i − 1)Tw + σ2i Triw if ℓ(riw) < ℓ(w),

(3’) ∀λ ∈ Y ∀µ ∈ Y Xλ ∗Xµ = Xλ+µ.
In all these relations, we can see that the coefficients are in the subringR2 = Z[(σ±2

i , σ′±2
i )i∈I ]

of R1. So, if we consider BLXHR2 the R2−submodule with basis (Xλ ∗Tw)λ∈Y,w∈W v , the mul-
tiplication ∗ gives it a structure of associative unitary algebra over R2.

6.6. The positive Bernstein-Lusztig-Hecke algebra. If we consider in BLXHR2 , the
submodule with basis (Xλ ∗ Tw)λ∈Y +,w∈W v , it is stable by multiplication ∗ (in (BLX+) and
(BLX−) if λ ∈ Y + all the λ ± hα∨

i written are also in Y +). We denote by BLH+
R2

this
R2−subalgebra of BLXHR2 . Actually, we can define such positive Hecke subalgebras inside
all algebras in 6.5.

Like before, if we are given a morphism ϕ from R2 to a ring R, we are able to consider, by
extension of scalars, BLH+

R = R⊗R2
BLH+

R2
. Let us consider the ring R of the section 4 (such

that Z ⊂ R and all qi, q′i are invertible in R), we can construct a morphism φ from R2 to R by
φ(σ2i ) = qi and φ(σ′2i ) = q′i. So, we obtain an algebra BLH+

R with basis (Xλ ∗ Tw)λ∈Y +,w∈W v

and the same relations as in IHR. So :

Proposition. Over R, the Iwahori-Hecke algebra IHR and the positive Bernstein-Lusztig-
Hecke algebra BLH+

R are isomorphic.

Remark. BLXHR is a ring of quotients of BLH+
R ≃ IHR, as we added, in it, inverses of

the Xλ = Tλ for λ ∈ Y ++. Actually, from 5.2, 5.4 and similar results, one may prove that
S = {Tλ, λ ∈ Y ++} satisfies the right and left Ore condition and that the map from BLH+

R to
the corresponding quotient ring is injective (see e.g. [McCR01] 2.1.6 and 2.1.12).

6.7. Structure constants. From Proposition 6.6, we get that the structure constants of the
convolution product ∗ of IHR, in the basis (Xλ ∗ Tw)λ∈Y +,w∈W v , are Laurent polynomials in
the parameters qi, q′i, with coefficients in Z, depending only on A and W . By Remark 5.5.a,
we get the same result for the structure constants in the basis (Tλ ∗ Tw)λ∈Y +,w∈W v and then
still the same result for the structure constants auw,v in the basis (Tw)w∈W+ (by 4.5).

This last result is not as precise as the one expected in the conjecture of § 2. But there is
at least one case where we can prove it:

Remark. Suppose I is the hovel associated to a split Kac-Moody group G over a local field
K, cf. [GR14, § 3]. Then all parameters qi, q′i are equal to the cardinality q of the residue field;
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moreover we know that each auw,v is an integer and a Laurent polynomial in q, with coefficients
in Z, depending only on A and W . But, as G is split, the same thing is true (without changing
A and W ) for all unramified extensions of the field K, hence for infinitely many q. So the
Laurent polynomial auw,v is an integer for infinitely many integral values of the variable q: it
has to be a true polynomial.

7. Extended affine cases and DAHAs

In this section, we define the extended Iwahori-Hecke algebras and explore their relationship
with the Double Affine Hecke Algebras introduced by Cherednik.

7.1. Extended groups of automorphisms. We may consider a group G̃ containing the
group G of 1.4 and an extension to G̃ of the action of G on I . We assume that G̃ permutes
the apartments and induces isomorphisms between them, hence G̃ is equal to G.Ñ where
Ñ ⊃ N is the stabilizer of A in G̃. This group Ñ has almost the same properties as the group
N described in 1.4.4 above. But we assume now W̃ = ν(Ñ) ⊂ Aut(A) only positive for its
action on the vectorial faces; this means that the associated linear map −→w of any w ∈ W̃ is in
Aut+(Av). We assume moreover that W̃ may be written W̃ = W̃ v ⋉ Y , where W̃ v fixes the
origin 0 of A and Y is the same group of translations as for G (cf. 1.4.4 above). In particular,
W̃ v is isomorphic to the group {−→w | w ∈ W̃} and may be written W̃ v = Ω ⋉W v (cf. 1.1
above); moreover W̃ = Ω⋉W , where Ω is the stabilizer of Cv

f in W v. Finally, we assume that

G contains the fixer Kerν of A in G̃; so that G� G̃ is the subgroup of all “vectorially-Weyl”
automorphisms in G̃ and G̃/G ≃ Ω.

As W̃ is positive, G̃ preserves the preorder ≤ on I . So G̃+ = {g ∈ G̃ | 0≤g.0} is a semi-
group with G̃+ ∩ G = G+. And W̃+ = Ω ⋉W+ = W̃ v ⋉ Y + ⊂ W̃ is also a semigroup, with
W̃+ ∩W =W+.

7.2. Examples: Kac-Moody and loop groups. 1) One considers a field K complete for a
normalized, discrete valuation with a finite residue field (of cardinality q). If G is an almost
split Kac-Moody group-scheme over K, then the Kac-Moody group G = G(K) acts on an
affine ordered hovel I , with the properties described in 1.4. See [Ro12], [GR14, § 3] in the
split case (where all qi, q′i are equal to q) and [Cha10], [Cha11] or [Ro13] in general.

2) Let G0 be a simply connected, almost simple, split, semi-simple algebraic group of rank
r over K. Its fundamental maximal torus T0 is Q∨

0 ⊗ZMult, where Q∨
0 (resp. P∨

0 ) is the coroot
lattice (resp. coweight lattice) of the root system Φ0 ⊂ V ∗

0 with Weyl group W v
0 .

Then some central extension by K× of (a subgroup of) the loop group G0(K[t, t−1]) ⋊ K×

(where x ∈ K× acts on G0(K[t, t−1]) via t 7→ xt) is G = G(K) for the most popular example
G of an untwisted, affine, split, Kac-Moody group-scheme over K. Its fundamental, maximal
torus T is Mult×T0 ×Mult = Y ⊗Z Mult, with cocharacter group Y = Zc⊕Q∨

0 ⊕Zd, where
c is the canonical central element and d the scaling element.

The set Φ of real roots is {α0 + nδ | α0 ∈ Φ0, n ∈ Z} in the dual V ∗ of V = Y ⊗Z R =
Rc ⊕ V0 ⊕ Rd, where δ(ac + v0 + bd) = b and α0(ac + v0 + bd) = α0(v0). The corresponding
Weyl group W v is actually the affine Weyl group W a

0 = W v
0 ⋉ Q∨

0 acting linearly on V ; its
action on the hyperplane d + V0 of V/Rc is affine: W v

0 acts linearly on V0 and Q∨
0 acts by

translations. The group G is generated by T = T(K) and root groups Uα ≃ K = Add(K) for
α ∈ Φ; if α = α0 + nδ, then Uα = Uα0(t

n.K).
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The fundamental apartment A of the associated hovel is as described in 1.2 with W =
W v ⋉ Y containing the affine Weyl group W a =W v ⋉Q∨, with Q∨ = Zc⊕Q∨

0 .
This is the situation considered in [BrKP14]. We saw in [GR14, Rem. 3.4] that our

group K is the same as the K of [BrKP14]. It is clear that the Iwahori group I of l.c. is
included in our group KI . But from 1.4.2 and [l.c. 3.1.2], we get two Bruhat decompositions
K =

⊔
w∈W v KI .w.KI =

⊔
w∈W v I.w.I. So KI = I and, in this case, our results are the same

as those of l.c.
3) Let us consider a central schematical quotient G00 of G0. It is determined by the

cocharacter group Y00 of its fundamental torus T00: Q∨
0 ⊂ Y00 ⊂ P∨

0 and T00 = Y00 ⊗Z Mult.
The root system Φ0 ⊂ V ∗

0 and the Weyl group W v
0 ⊂ GL(V0) are the same.

We get a more general untwisted, affine, split Kac-Moody scheme G1 by "amalgamating"
G and the K−split torus T1 = Y1 ⊗Z Mult (with Y1 = Zc ⊕ Y00 ⊕ Zd) along T. A little
more precisely the Kac-Moody group G1 = G1(K) is a quotient of the free product of G and
T00 = T00(K) = Y00⊗ZK× by some relations; essentially T00 normalizes T and each Uα (hence
also G) and one identifies both copies of T0, cf. [Ro12, 1.8]. The new fundamental torus is T1.
We keep the same V,Φ,W v,A and I , but now W1 =W v ⋉ Y1 ⊃W ⊃W a.

4) We may consider a central extension by K× of (a subgroup of) the loop group G00(K[t, t−1])⋊

K×. We get thus an extended Kac-Moody group G̃2 (not among the Kac-Moody groups of
[T87] or [Ro12]) which may also be described by amalgamation: G̃ is a quotient of the free
product of G and Y00 ⊗Z K[t, t−1]∗ by relations similar to those above; in particular the con-
jugation by λ ⊗ xtn sends Uα0+pδ to Uα0+(p+nα(λ))δ . The group G̃2 contains G1 as a normal

subgroup, its fundamental torus is T1 = Y1 ⊗Z K×, with normalizer Ñ2 = N
G̃2

(T1) containing

Y00 ⊗Z K[t, t−1]∗ ⊃ Y00 ⊗Z t
Z =: tY00 .

The group G̃2 is generated by tY00 and G1 (which contains N1 = N2 ∩ G1 ⊃ tQ
∨

0 ); in
particular G̃2/G1 ≃ Y00/Q

∨
0 . We keep the same V and Φ, but now the corresponding vectorial

Weyl group is W̃ v
2 = N2/T1 =W v

0 ⋉ Y00. As in 1.1, we may also write W̃ v
2 = Ω2 ⋉W v, where

Ω2 is the stabilizer in W̃ v
2 of Cv

f . It is well known that Ω2 is a finite group isomorphic to
Y00/Q

∨
0 ; it is isomorphic to its image in the permutation group of the affine Dynkin diagram

of G00 or G0 (indexed by I) and acts simply transitively on the special vertices of this diagram.
It is not too difficult to extend to G̃2 the action of G1 on the hovel I . The group Ñ2 is the

stabilizer of A; it acts through W̃2 = W̃ v
2 ⋉ Y1 ⊃W ⊃W a. We are exactly in the situation of

7.1 with (G̃2, G1).
5) We may get new couples (G̃j , Gj) satisfying 7.1 for the same hovel I :
We may enlarge G̃2 and G1 by amalgamating them with T3 = Y3 ⊗Z K× along T1 (or with

T000 = Y000 ⊗Z K× along T00), where Y00 ⊂ Y000 ⊂ P∨
0 and Y3 = Z.(1/m).c ⊕ Y000 ⊕ Zd, with

m ∈ Z>0. Then W̃ v
3 = W̃ v

2 , Ω3 = Ω2, W̃3 = W̃ v
2 ⋉ Y3 and G3 is still a Kac-Moody group with

maximal torus T3.
We may keep G1 (or G3) and take a semi-direct product of G̃2 (or G̃3) by a group Γ

of automorphisms of the Dynkin diagram of G0, stabilizing Y00 (or Y00 and Y000). Then
W̃ v

4 = Γ⋉ W̃ v
2 , Ω4 = Γ⋉ Ω2 and W̃4 = W̃ v

4 ⋉ Y2 (or W̃4 = W̃ v
4 ⋉ Y3).

6) We may also add a split torus as direct factor to any of the preceding groups G̃i or Gi,
enlarge I by a trivial euclidean factor of the same dimension as the torus and add to W̃ v and
Ω, as a direct factor, any automorphism group (possibly infinite) of this torus.
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7.3. Marked chambers. We come back to the general situation of 7.1. We want a set of
"geometric objects" in I on which G̃ acts with the Iwahori subgroup KI as one of the isotropy
groups.

1) A marked chamber in the hovel I is the class of an isomorphism ϕ : A → A ∈ A
sending the fundamental chamber C+

0 to some local chamber Cx, modulo the equivalence
ϕ1 ≃ ϕ2 ⇐⇒ ∃S ∈ C+

0 , ϕ1|S = ϕ2|S . It is simply written ϕ : C+
0 → Cx; this does not depend

on A.
The group G̃ permutes the marked chambers; for g ∈ G̃ and ϕ as above, g.ϕ = ϕ if, and

only if, g fixes (pointwise) Cx. In particular the isotropy group in G̃ of C̃+
0 = Id : C+

0 →
C+
0 ⊂ A ⊂ I is KI ⊂ G.
A local chamber of type 0, Cx ∈ C

+
0 determines a unique marked chamber C̃0

x : C+
0 → Cx

(said normalized) which is the restriction of some ϕ ∈ IsomW
R (A, A) (cf. 1.11). These

normalized marked chambers are permuted transitively by G.
2) A marked chamber is said of type 0 if it is in the orbit under G̃ of any of those C̃0

x. So
the set C̃

+
0 of marked chambers of type 0 is G̃/KI .

By hypothesis G̃ may be written G.Ω̃, where Ω̃ = ν−1(Ω) ⊂ Ñ stabilizes C+
0 (considered

as in I ) and induces Ω on it. So C̃
+
0 = {C̃x = C̃0

x ◦ ω−1 | Cx ∈ C
+
0 , ω ∈ Ω}.

7.4. W̃−distance. 1) Let C̃x : C+
0 → Cx, C̃y : C+

0 → Cy be in C̃
+
0 with x≤y. There is an

apartment A containing Cx and Cy so C̃x, C̃y may be extended to ϕ,ψ ∈ Isom(A, A). We
"identify" (A, C+

0 ) with (A,Cx) via ϕ. Then ϕ−1(y)≥0 and, as C̃x, C̃y are in a same orbit of
G̃, there is w̃ ∈ W̃+ such that ψ = ϕ ◦ w̃. This w̃ does not depend on the choice of A by
1.10.c.

We define the W̃−distance between the marked chambers C̃x and C̃y as this unique element:
dW (C̃x, C̃y) = w̃ ∈ W̃+. So we get a G̃−invariant map

dW : C̃
+
0 ×≤ C̃

+
0 = {(C̃x, C̃y) ∈ C̃

+
0 × C̃

+
0 | x≤y} → W̃+.

2) For (Cx, Cy) ∈ C
+
0 ×≤ C

+
0 , we have dW (C̃0

x, C̃
0
y ) = dW (Cx, Cy) and, more generally, for

ωx, ωy ∈ Ω, we have (C̃0
x ◦ ω−1

x , C̃0
y ◦ ω−1

y ) ∈ C̃
+
0 ×≤ C̃

+
0 and dW (C̃0

x ◦ ω−1
x , C̃0

y ◦ ω−1
y ) =

ωx.d
W (Cx, Cy).ω

−1
y ∈ W̃+. For (C̃x, C̃y) ∈ C̃

+
0 ×≤ C̃

+
0 and ωx, ωy ∈ Ω, we have also

dW (C̃x ◦ ω−1
x , C̃y ◦ ω−1

y ) = ωx.d
W (C̃x, C̃y).ω

−1
y ∈ W̃+.

We deduce from this some interesting consequences:
3) If C̃x, C̃y, C̃z, with x≤y≤z, are in a same apartment, we have the Chasles relation:

dW (C̃x, C̃z) = dW (C̃x, C̃y).d
W (C̃y, C̃z).

4) For (C̃x, C̃y) ∈ C̃
+
0 ×≤ C̃

+
0 , if C̃x (resp. C̃y) is normalized, then dW (C̃x, C̃y) ∈ W+ if,

and only if, C̃y (resp. C̃x) is normalized.
5) For (C̃x, C̃y) ∈ C̃

+
0 ×≤ C̃

+
0 , then dW (C̃x, C̃y) = ω ∈ Ω ⇐⇒ C̃y = C̃x ◦ ω; in particular

C̃y is uniquely determined by C̃x and ω, moreover Cy = Cx.
6) If (Cx, Cy) ∈ C

+
0 ×≤ C

+
0 and dW (Cx, Cy) = ri ∈W v (resp. = λ ∈ Y +) and ω ∈ Ω, then

dW (C̃0
x ◦ω−1, C̃0

y ◦ω−1) = ω.ri.ω
−1 = rω(i) (resp. = ω(λ) ∈ Y +), where we consider the action

of Ω on I (resp. Y ).
7) When C̃x = C̃+

0 and C̃y = g.C̃+
0 (with g ∈ G̃+), then dW (C̃x, C̃y) is the only w̃ ∈ W̃+

such that g ∈ KI .w̃.KI . There is a Bruhat decomposition G̃+ =
⊔

w̃∈W̃+ KI .w̃.KI .
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The W̃−distance classifies the orbits of KI on {C̃y ∈ C̃
+
0 | y≥0}, hence also the orbits of

G̃ on C̃
+
0 ×≤ C̃

+
0 .

7.5. The extended Iwahori-Hecke algebra. 1) We define this extended algebra for G̃ as
we did in § 2 for G:

To each w̃ ∈ W̃+, we associate a function Tw̃ : C̃
+
0 ×≤ C̃

+
0 → R defined by

Tw̃(C̃, C̃
′) =

{
1 if dW (C̃, C̃ ′) = w̃,
0 otherwise.

And we consider the following free R−module of functions C̃
+
0 ×≤ C̃

+
0 → R:

IH̃I
R = {ϕ =

∑

w̃∈W̃+

aw̃Tw̃ | aw̃ ∈ R, aw̃ = 0 except for a finite number},

We endow this R−module with the convolution product:

(ϕ ∗ ψ)(C̃x, C̃y) =
∑

C̃z

ϕ(C̃x, C̃z)ψ(C̃z , C̃y).

where C̃z ∈ C̃
+
0 is such that x ≤ z ≤ y. This product is associative and R−bilinear. We prove

below that it is well defined.
As in § 2, we see easily that IH̃I

R is the natural convolution algebra of the functions G̃+ → R,
bi-invariant under KI and with finite support.

2) For ω ∈ Ω, w̃ ∈ W̃+, the products Tω ∗ Tw̃ and Tw̃ ∗ Tω are well defined: actually
Tω ∗ Tw̃ = Tω.w̃ and Tw̃ ∗ Tω = Tw̃.ω, see 7.4.3 and 7.4.5.

3) As the formula for ϕ ∗ ψ is clearly G̃−invariant, we may fix C̃x normalized to calculate
ϕ ∗ ψ. From 7.4.4, we deduce that, when w,v ∈ W+, Tw ∗ Tv may be computed using only
normalized marked chambers. So it is well defined and the same as in IHI

R .
From 2) we deduce now that the convolution product is well defined in IH̃I

R :

Proposition. For any ring R, IH̃I
R is an algebra; it contains IHI

R as a subalgebra.

Definition. The algebra IH̃I
R is the extended Iwahori-Hecke algebra associated to I and G̃

with coefficients in R.

7.6. Relations. 1) From 7.5 we see that IH̃I
R contains the algebra R[Ω] = ⊕ω∈ΩR.Tω of the

group Ω. Moreover, as an R−module, IH̃I
R is a tensor product, IH̃I

R = R[Ω] ⊗R
IHI

R : we
identify Tω.w = Tω ∗ Tw and Tω ⊗ Tw for ω ∈ Ω and w ∈W+.

The multiplication in this tensor product is semi-direct:
(Tω ⊗ Tw).(Tω′ ⊗ Tv) = Tω ∗ Tw ∗ Tω′ ∗ Tv = Tω.w.ω′ ∗ Tv
= Tω.ω′.w′ ∗ Tv = Tω.ω′ ∗ Tw′ ∗ Tv = Tω.ω′ ⊗ (Tw′ ∗ Tv)

where w
′ = ω′−1.w.ω′ =: ω′−1(w) ∈W+.

In particular, we get the following relations among some elements:
2) For ω ∈ Ω, w ∈W+, Tω ∗ Tw ∗ T−1

ω = Tω(w),
if moreover w = ri ∈W v, ω(ri) = rω(i) hence Tω ∗ Ti ∗ T−1

ω = Tω(i),
if now w = λ ∈ Y +, Tω ∗ Tλ ∗ T−1

ω = Tω(λ), with ω(λ) ∈ Y +.
3) From 5.5.1 and 2) above, it is clear that Tω ∗Xλ ∗ T−1

ω = Xω(λ) if ω ∈ Ω and λ ∈ Y +

(as Ω stabilizes Y ++ = Y ∩ Cv
f ).
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4) As the action of Ω on A is induced by automorphisms of I , we have qi = qω(i) and
q′i = q′ω(i) for ω ∈ Ω and i ∈ I. We may also choose the homomorphism δ1/2 : Y → R∗ of 5.7
invariant by Ω (for R great enough). So, for ω ∈ Ω, w, ri ∈W v and λ ∈ Y , we have:
Tω ∗Hw ∗ T−1

ω = Hω(w) , Tω ∗Hi ∗ T−1
ω = Hω(i) and Tω ∗ Zλ ∗ T−1

ω = Zω(λ).

7.7. The extended Bernstein-Lusztig-Hecke algebra. Notations of 7.1 are still in use.
But we no longer assume the existence of a group G̃ or G. The group W = W v ⋉ Y � W̃

satisfies W̃ = Ω⋉W and the conditions of § 6.
We consider the ring R̃ = Z[(σ̃i

±1, (σ̃′i)
±1)i∈I ], where the indeterminates σ̃i, σ̃′i satisfy the

same relations as σi, σ′i in 6.1 and the following additional relation (see 7.6.4 above):
If ω(i) = j for some ω ∈ Ω, then σ̃i = σ̃j and σ̃′i = σ̃′j .

We denote by BLH̃
R̃

the free R̃−module with basis (TωZ
λHw)ω∈Ω,λ∈Y,w∈W v and write

Hw = T1Z
0Hw, Hi = T1Z

0Hi, Zλ = T1Z
λH1 and Tω = TωZ

0H1.

Proposition. There exists a unique multiplication ∗ on BLH̃
R̃

which makes it an associative,

unitary R̃−algebra with unity H1 = T1 = Z0 and satisfies the conditions (1), (2), (3), (4) of
Theorem 6.2 plus the following:
(5) For ω, ω′ ∈ Ω, i ∈ I and λ ∈ Y , Tω∗Tω′ = Tω.ω′ , Tω∗Ti∗T−1

ω = Tω(i), Tω∗Tλ∗T−1
ω = Tω(λ).

Proof. As R̃−modules, BLH̃
R̃

= R̃[Ω] ⊗ BLH
R̃
, where the homomorphism R1 → R̃ is given

by σi 7→ σ̃i, σ
′
i 7→ σ̃′i. Now the multiplication is classical on R̃[Ω], given by 6.2 on BLHR̃ and

semi-direct for general elements.

Definition. This R̃−algebra BLH̃
R̃

depends only on A, Y and Ω (i.e. on A and W̃ ). We call

it the extended Bernstein-Lusztig-Hecke algebra associated to A and W̃ with coefficients in R̃.

As in 6.6, we may identify, up to an extension of scalars, a subalgebra BLH̃+

R̃
of BLH̃

R̃
with

the extended Iwahori-Hecke algebra IH̃I
R .

7.8. The affine case. 1) We suppose now (Av,W v) affine. So there is a smallest positive
imaginary root δ =

∑
aiαi ∈ ∆+

im ⊂ Q+ satisfying δ(α∨
i ) = 0,∀i ∈ I and a canonical central

element c =
∑
a∨i α

∨
i ∈ Q∨

+ satisfying αi(c) = 0,∀i ∈ I. In particular δ and c are fixed by W v

and W̃ v.
As δ ∈ Q+, it takes integral values on Y . For n ∈ Z, we define Y n = {λ ∈ Y | δ(λ) = n}

which is stable under W v and W̃ v. We have Y =
⊔

n∈Z Y
n and Y + = (

⊔
n>0 Y

n)
⊔
Y 0
c , with

Y 0
c = Y 0 ∩ Y + = Y ∩ Qc. We write λc = (1/m)c a generator of Y 0

c (with m ∈ Z>0). As
δ(Q∨) = 0, we have δ(λ) = δ(µ) whenever µ≤Q∨λ or µ≤Q∨

R
λ in Y .

2) Considering 2.2 and 5.5.2, we get the following gradations of algebras (for a suitable R):

IHI
R =

⊕

n≥0

IHIn
R ,

where IHIn
R has for R−basis the Tλ ∗Tw (resp. Xλ ∗Tw, Zλ ∗Hw) for λ ∈ Y n (in Y 0

c if n = 0)
and w ∈W v.

IH̃I
R =

⊕

n≥0

IH̃In
R ,
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where IH̃In
R has for R−basis the Tω ∗ Tλ ∗ Tw (resp. Tω ∗Xλ ∗ Tw, Tω ∗ Zλ ∗Hw) for ω ∈ Ω,

λ ∈ Y n (Y 0
c if n = 0) and w ∈W v.

BLHR1 =
⊕

n∈Z

BLHn
R1
,

where BLHn
R1

has for R1−basis the ZλHw for λ ∈ Y n and w ∈W v.

BLH̃R̃ =
⊕

n∈Z

BLH̃n

R̃,

where BLH̃n

R̃ has for R̃−basis the TωZλHw for ω ∈ Ω, λ ∈ Y n and w ∈W v.
These gradations are compatible with the identifications explained in 6.6 or 7.7.
3) For any C̃x ∈ C̃

+
0 and any λ ∈ Y 0

c = Zλc, there is a unique C̃y ∈ C̃
+
0 with dW (C̃x, C̃y) =

λ: the translation by λ in A stabilizes all enclosed sets and extends to I as a translation
in any apartment. From this we see that Tλ ∗ Tµ = Tλ+µ = Tµ ∗ Tλ (for µ ∈ Y +),
Tλ ∗ Xµ = Xλ+µ = Xµ ∗ Tλ (for µ ∈ Y ) and Tλ ∗ Tw = Tλ.w = Tw.λ = Tw ∗ Tλ (for
w ∈W v). Such a Tλ is central and invertible in IHI

R , IH̃I
R , BLHR1 or BLH̃

R̃
.

Actually IHI 0
R is the tensor product R[Y 0

c ]⊗RHR(W
v) with a direct multiplication (factor

by factor) and IH̃I 0
R = R[Y 0

c ]⊗R (R[Ω]⊗R HR(W
v)) with a semi-direct multiplication.

7.9. The double affine Hecke algebra. The subalgebra BLH̃0

R̃ is well known as the Chered-
nik’s double affine Hecke algebra (DAHA). More precisely in [Che92] and [Che95], Cherednik
considers an untwisted affine root system, as in [Ka90, Ch. 7]; but, as he works with roots
instead of coroots, we write Φ∨ this system. He considers the case where W̃ v is the full ex-
tended Weyl group (W̃ v = W v

0 ⋉ P∨
0 with the notations of 7.2) i.e. Ω ≃ P∨

0 /Q
∨
0 acts on the

extended Dynkin diagram, simply transitively on its “special” vertices. His choice for Y 0 is
Y 0 = Z.(1/m).c ⊕ P∨

0 ⊂ P∨ (and Y = Y 0 ⊕ Zd e.g.), where m ∈ Z≥1 is suitably chosen.
He then defines the DAHA as an algebra over a field of rational functions C(δ, (qν)ν∈νR) with
generators (Ti)i∈I , (Xβ)β∈P∨

0
and some relations. It is easy to see that this DAHA is, up

to scalar changes, a ring of quotients of our BLH̃0

R̃ (for A, W̃ as described above): actually
δ stands for our Zλc . Here is a partial dictionary to translate from [Che92] and [Che95] to
our article: roots ↔ coroots, Xβ 7→ Zβ, Ti 7→ Hi, qi 7→ σi, Π 7→ Ω, πr 7→ Tω, δ 7→ Tλc

and
∆ = δm 7→ Tc.

In [Che92] there is another presentation of the same DAHA using the Bernstein presentation
of HR(W

v). This is also the point of view of [Ma03], where the framework is more general.
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