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IWAHORI-HECKE ALGEBRAS FOR KAC-MOODY GROUPS
OVER LOCAL FIELDS

NICOLE BARDY-PANSE, STEPHANE GAUSSENT AND GUY ROUSSEAU

ABSTRACT. We define the Iwahori-Hecke algebra H for an almost split Kac-Moody group
G over a local non-archimedean field. We use the hovel .# associated to this situation, which
is the analogue of the Bruhat-Tits building for a reductive group. The fixer K; of some
chamber in the standard apartment plays the role of the Iwahori subgroup. We can define
T as the algebra of some K;—bi-invariant functions on G' with support consisting of a finite
union of double classes. As two chambers in the hovel are not always in a same apartment,
this support has to be in some large subsemigroup G* of G. In the split case, we prove
that the structure constants of 7# are polynomials in the cardinality of the residue field,
with integer coefficients depending on the geometry of the standard apartment. We give a
presentation of this algebra I #, similar to the Bernstein-Lusztig presentation in the reductive
case, and embed it in a greater algebra PF#, algebraically defined by the Bernstein-Lusztig
presentation. In the affine case, this algebra contains the Cherednik’s double affine Hecke
algebra. Actually, our results apply to abstract “locally finite” hovels, so that we can define
the Iwahori-Hecke algebra with unequal parameters.
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INTRODUCTION

A bit of history. Iwahori-Hecke algebras were first introduced in arithmetics by Erich Hecke
in the '30s [He37]. He defined an algebra, now called the Hecke algebra, generated by some
operators on modular forms. Then in the late ’50s, based on an idea of André Weil, Goro
Shimura [Shi59| defined an algebra attached to a group containing a subgroup (under some
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hypotheses) as the algebra spanned by some double cosets and recovered Hecke’s algebra. In
1964, Nagayoshi Iwahori [Iwa64| showed that, in the case of a Chevalley group over a finite
field containing a Borel subgroup, Shimura’s algebra can be defined in terms of bi-invariant
functions on the group. He further gave a presentation by generators and relations of this
algebra. Examples of such groups containing a suitable subgroup are given by BN-pairs and
the theory of buildings. Nagayoshi Iwahori and Hideya Matsumoto [IM65] found a famous
instance in a Chevalley group over a p-adic field corresponding to the Bruhat-Tits building
associated to the situation. In fact, it is possible to define these algebras only in terms of
building theory, see e.g. [P06], for a contemporary treatment.

In a previous article [GRO8|, the last two authors introduced the analogue of the Bruhat-
Tits building in Kac-Moody theory, and called it, a hovel. Guy Rousseau developed the notion
further and gave in [Roll| an axiomatic definition allowing to deal with a broader context.

In this paper, we first define, in terms of the hovel, the Iwahori-Hecke algebra associated
to a Kac-Moody group over a local field containing the equivalent of the Iwahori subgroup.
Then, we study the properties of this algebra, like the structure constants of the product,
some presentations by generators and relations, and an interesting example where we recover
the Double Affine Hecke Algebras.

In the remaining of the introduction, we give a more detailed account of our work.

The case of simple algebraic groups. To begin, we recall the situation in the finite
dimensional case. Let K be a local non-archimedean field, with residue field F,. Suppose G'is a
split, simple and simply connected algebraic group over K and K an open compact subgroup.
The space Hg of complex functions on G, bi-invariant by K and with compact support, is
an algebra for the natural convolution product. Ichiro Satake [Sa63| studied such algebras to
define the spherical functions and proved, in particular, that Hz is commutative for a good
choice K, of K, maximal compact. The corresponding convolution algebra Hy, = *H(G)
is now called the spherical Hecke algebra. From the work of Nagayoshi Iwahori and Hideya
Matsumoto [IM65]|, we know that there exists an interesting open subgroup K7, so called
the Iwahori subgroup, of Ky with a Bruhat decomposition G = K;.W.K7, where W is an
infinite Coxeter group. The corresponding convolution algebra Hy, = H(G), called the
Iwahori-Hecke algebra, may be described as the abstract Hecke algebra associated to this
Coxeter group and the parameter q. There is another presentation of this Hecke algebra,
stated by Joseph Bernstein and proved in the most general case by George Lusztig [Lu89].
This presentation emphasizes the role of the translations in W and uses new relations, now
often called the Bernstein-Lusztig relations. In the building-like definition of these algebras,
the group K (resp. K7) is the fixer of a special vertex (resp. a chamber) for the action of G
on the Bruhat-Tits building .#, [BrT72].

The Kac-Moody setting. Kac-Moody groups are interesting generalizations of semisimple
groups, hence it is natural to define the Iwahori-Hecke algebras also in the Kac-Moody setting.

So, from now on, let G be a Kac-Moody group over I, assumed minimal or “algebraic”,
i.e. as studied by Jacques Tits [T87] in the split case and by Bertrand Rémy [Re02] in the
almost split case. Unfortunately there is, up to now, no good topology on G and no good
compact subgroup, so the “convolution product” has to be defined by other means. Alexander
Braverman and David Kazhdan [BrK11] succeeded in defining geometrically such a spherical
Hecke algebra, when G is split and untwisted affine, see also the survey [BrK14| by the same
authors. We were able, in [GR14], to generalize their construction to any Kac-Moody group
over KC. In [BrKP14|, using results of [Ga95] and [BrGKP14|, Alexander Braverman, David
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Kazhdan and Manish Patnaik construct the spherical Hecke algebra and the Iwahori-Hecke
algebra by algebraic computations in the Kac-Moody group, still assumed split and untwisted
affine (and even simply laced for some statements). Those algebras are convolution algebras
of functions on G bi-invariant under some analogue group K, or K; (C Kj), but there are
two new features: the support has to be in a subsemigroup G+ of G and the description of
the Iwahori-Hecke algebra has to use Bernstein-Lusztig type relations since W is no longer a
Coxeter group.

Iwahori-Hecke algebras in the Kac-Moody setting. As in [GR14], our idea is to define
the Iwahori-Hecke algebra using the hovel associated to the almost split Kac-Moody group
G that we built in [GRO8|, [Roll] and [Rol2|. This hovel .# is a set with an action of G
and a covering by subsets called apartments. They are in one-to-one correspondence with
the maximal split subtori, hence permuted transitively by G. Each apartment A is a finite
dimensional real affine space. Its stabilizer N in GG acts on A via a generalized affine Weyl
group W = WY x Y, where Y C X is a discrete subgroup of translations. The group W
stabilizes a set M of affine hyperplanes called walls. So, .# looks much like the Bruhat-Tits
building of a reductive group. But as the root system @ is infinite, the set of walls M is not
locally finite. Further, two points in . are not always in a same apartment. This is why .# is
called a hovel. However, there exists on .# a G—invariant preorder < which induces on each
apartment A the preorder given by the Tits cone 7 C X

Now, we consider the fixer K; in G of some (local) chamber Cj in a chosen standard
apartment A;: it is our Iwahori subgroup. Fix a ring R. The Iwahori-Hecke algebra Hp will
be defined as the space of some Kj-bi-invariant functions on G with values in R. In other
words, it will be the space ! Hﬁ of some G-invariant functions on Car X Car , where CaL =G/K;
is the orbit of Car in the set C of chambers of .#. The convolution product is easy to guess
from this point of view:

(p*)(Cay, Cy) = D p(C, Co)ib(C, Cy)

c.ect

(if this sum means something). As for points two chambers in .# are not always in a same
apartment, i.e. the Bruhat-Iwahori decomposition fails: G # Kj;.N.Kj. So, we have to
consider pairs of chambers (C,, Cy) € Cf x< Cf, i.e. C; (vesp. Cy) € Cf has x (resp. y) for
vertex and x < y. This implies that C,,C} are in a same apartment. For I g, this means
that the support of ¢ € Hp has to be in K;\G"/K; where GT = {g € G | 0 < ¢.0} is
a semigroup. We suppose moreover this support to be finite. In addition, K;\G" /K is in
bijective correspondence with the subsemigroup W+ = WY x Y of W, where YT =Y N T.

With this definition we are able to prove that /Hpg is really an algebra, which generalizes
the known Iwahori-Hecke algebras in the semi-simple case (see §2).

The structure constants. The structure constants of Hp are the non-negative integers
al ., for w,v,u € W, such that

W,V
TwsTy= Y a% T,
ueW+
where Ty, is the characteristic function of K;.w.K; and the sum is finite. Each chamber in .¢
has only a finite number of adjacent chambers along a given panel. These numbers are called
the parameters of .# and form a finite set Q. In the split case, there is only one parameter ¢:
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the number of elements of the residue field of K. We conjecture that each ay, , is a polynomial
in these parameters with integral coefficients depending only on the geometry of the model
apartment A and on W. We prove this only partially: this is true if G is split or if we replace
“polynomial” by “Laurent polynomial” (cf. 6.7); this is also true for w,v “generic” (cf. 3.8).
Actually in the generic case, we give, in section 3, an explicit formula for agy, .

Generators and relations. If the parameters in Q are invertible in the ring R, we are able,
in section 4, to deduce from the geometry of .# a set of generators and some relations in 'Hp.
The family (T * Tyy)rey+ wewr is an R-basis of k. And the subalgebra Y wewe BTy is
the abstract Hecke algebra Hyr(W") associated to the Coxeter group W, generated by the
T; = T,,, where the r; are the fundamental reflections in W". So, R is a free right Hp(W?)-
module. We get also some commuting relations between the T and the T, including some
relations of Bernstein-Lusztig type (see Theorem 4.8).

From all these relations, we deduce algebraically in section 5 that there exists a new basis
(X x Tw)rey+wewr of N g, associated to some new elements X* € /Hp. These elements
satisfy X* = T) for A € Yt = Y N CY, where C}’ is the fundamental Weyl chamber, and
XA XH = XMH = X5 XA for \,u € Y. As, for any A € YT, there is 4 € YT with
A+ p € YTt these X* are some quotients of some elements 7, - The Bernstein-Lusztig type
relations may be translated to this new basis. When R contains sufficiently high roots of the
parameters in Q (e.g. if R D R), we may replace the T, and X A by some R*-multiples H,,
and Z*. We get a new basis (Z* % Hy) ey + wewv of N g, satisfying a set of relations very
close to the Bernstein-Lusztig presentation in the semi-simple case (cf. 5.7).

In section 6, we define algebraically the Bernstein-Lusztig-Hecke algebra BXH g, : it is the
free module with basis written (Z*Hy)yey+ wew over the algebra Ry = Z[(o;*!, agil)iel],
where 0;, 0} are indeterminates (with some identifications). The product * is given by the
same relations as above for the Z* « H,, one just extends A\ € YT to A\ € Y and replace
V4> \/q_z’ by o;,0.. We prove then that, up to a change of scalars, " r may be identified to a
subalgebra of XM g, . This Bernstein-Lusztig algebra may be considered as a ring of quotients
of the Iwahori-Hecke algebra.

Ordered affine hovel. Actually, this article is written in a more general framework (ex-
plained in §1): we work with .# an abstract ordered affine hovel (as defined in [Rol11]), and we
take G to be a strongly transitive group of (positive, “vectorially Weyl”) automorphisms. In
section 7, we drop the assumption that G is vectorially Weyl to define extended versions ! H
and BLH of 1M and BLH. In the affine case, we prove that they are graded algebras and that
the summand of degree 0 of BLY is very close to Cherednik’s double affine Hecke algebra.

1. GENERAL FRAMEWORK

1.1. Vectorial data. We consider a quadruple (V, W9, («;)icr, ()

J)ier) where V' is a finite
dimensional real vector space, W a subgroup of GL(V') (the vectorial Weyl group), I a finite
set, (o) )ier a family in V and (a;)ier a free family in the dual V*. We ask these data to
satisfy the conditions of [Roll, 1.1]. In particular, the formula 7;(v) = v — a;(v)a defines a
linear involution in V' which is an element in W and (W",{r; | ¢ € I}) is a Coxeter system.

To be more concrete, we consider the Kac-Moody case of [l.c. ; 1.2]: the matrix M =

(aj(ay))ijer is a generalized Cartan matrix. Then W is the Weyl group of the corresponding
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Kac-Moody Lie algebra gy and the associated real root system is

O = {w(e) |weW"icl} C Q=D Z.a.
el
We set @ = & N QF where QF = £(P,c; (Z>0).u) and Q¥ = (B,e; Z.ov), QL =
+(B,e; (Z>0).f). We have ® = &F U@~ and, for o = w(e;) € @, 1o = w.rjw™! and
ro(v) = v — a(v)a’, where the coroot o = w(e;") depends only on a.

The set ® is an (abstract, reduced) real root system in the sense of [MoP89|, [MoP95]
or [Ba96]. We shall sometimes also use the set A = ® U A} U A, of all roots (with
—A; = A} CQT, WY—stable) defined in [Ka90]. It is an (abstract, reduced) root system
in the sense of [Ba96|.

The fundamental positive chamberis C} = {v € V | a;(v) > 0,Vi € I}. Its closure C_}’ is the
disjoint union of the vectorial faces FV(J) = {v € V | a;(v) = 0,V¥i € J,a;(v) > 0,Vi € I\ J}
for J € I. We set Vy = FY(I). The positive (resp. negative) vectorial faces are the sets
w.FY(J) (resp. —w.F(J)) for w € W¥ and J C I. The support of such a face is the vector
space it generates. The set J or the face w.F"(J) or an element of this face is called spherical
if the group W"(J) generated by {r; | i € J} is finite. An element of a vectorial chamber
:I:w.C'}’ is called regular.

The Tits cone T (resp. its interior 7°) is the (disjoint) union of the positive (resp. and
spherical) vectorial faces. It is a W"—stable convex cone in V.

We say that AV = (V,W") is a vectorial apartment. A positive automorphism of A" is
a linear bijection ¢ : AY — AV stabilizing 7 and permuting the roots and corresponding
coroots; so it normalizes W" and permutes the vectorial walls MY(a) = Ker(a). As WV
acts simply transitively on the positive (resp. negative) vectorial chambers, any subgroup
W of the group Aut™(A") (of positive automorphisms of AY) containing W? may be written
WY = Q x W?v where Q is the stabilizer in WV of C’}’ (and —C’}’). This group €2 induces a
group of permutations of I (by w(a;) = ay), w(ay) = ozx(i)); but it may be greater than the
whole group of permutations in general (even infinite if (NKera;) # {0}).

1.2. The model apartment. As in [Roll, 1.4] the model apartment A is V' considered as
an affine space and endowed with a family M of walls. These walls are affine hyperplanes
directed by Ker(a) for a € .

We ask this apartment to be semi-discrete and the origin 0 to be special. This means
that these walls are the hyperplanes defined as follows:

M(a, k) ={veV |alv)+k=0} for « € ® and k € A,,

with Ay = ko.Z a non trivial discrete subgroup of R. Using Lemma 1.3 in [GR14] (i.e.
replacing ® by another system ®1) we may (and shall) assume that A, = Z,Va € O.

For a = w(ey) € @, k € Z and M = M(w, k), the reflection ro = 7y with respect to
M is the affine involution of A with fixed points the wall M and associated linear involution
ro. The affine Weyl group W is the group generated by the reflections ry; for M € M; we
assume that W stabilizes M. We know that W* = W¥ x Q¥ and we write Wg = W" x V;
here QY and V have to be understood as groups of translations.

An automorphism of A is an affine bijection ¢ : A — A stabilizing the set of pairs (M, a")
of a wall M and the coroot associated with « € ® such that M = M(«, k), k € Z. The group
Aut(A) of these automorphisms contains W and normalizes it. We consider also the group

Autll (A) = {p € Aut(A) | § € W} = Aut(A) N WE.



6 NICOLE BARDY-PANSE, STEPHANE GAUSSENT AND GUY ROUSSEAU

For a € ® and k € R, D(a, k) = {v € V | a(v) + k > 0} is an half-space, it is called an
half-apartment if k € Z. We write D(a, 00) = A.

The Tits cone 7 and its interior 7° are convex and WY—stable cones, therefore, we can
define two W¥—invariant preorder relations on A:

r<y & y—xeT; mgy S y—zeTel.

If W has no fixed point in V'\ {0} and no finite factor, then they are orders; but, in general,
they are not.

1.3. Faces, sectors, chimneys... The faces in A are associated to the above systems of walls
and half-apartments. As in [BrT72|, they are no longer subsets of A, but filters of subsets of
A. For the definition of that notion and its properties, we refer to [BrT72] or [GROS].

If F is a subset of A containing an element x in its closure, the germ of F' in z is the filter
germ,, (F') consisting of all subsets of A which contain intersections of F' and neighbourhoods
of z. In particular, if z # y € A, we denote the germ in x of the segment [x,y] (resp. of the
interval |x,y]) by [z,y) (resp. |z,y)).

Given F a filter of subsets of A, its enclosure cly(F) (resp. closure F) is the filter made of
the subsets of A containing an element of F' of the shape NoeaD(a, ko), where ko € ZU {0}
(resp. containing the closure S of some S € F).

A local face F in the apartment A is associated to a point x € A, its vertex, and a
vectorial face FV in V, its direction. It is defined as F' = germy(z + F") and we denote
it by F = F(z, F¥). Tts closure is Ft(x, F¥) = germg(z + F?)

There is an order on the local faces: the assertions “F is a face of I’ 7, “F’ covers F”
and “F < F' " are by definition equivalent to F C F’. The dimension of a local face F' is
the smallest dimension of an affine space generated by some S € F. The (unique) such affine
space E of minimal dimension is the support of F; if F = F(z, F?), supp(F) = x+ supp(F").
A local face F = F* (x, F) is spherical if the direction of its support meets the open Tits cone
(i.e. when F"V is spherical), then its pointwise stabilizer W in W is finite.

We shall actually here speak only of local faces, and sometimes forget the word local.

Any point x € A is contained in a unique face F'(x,Vy) C cla({x}) which is minimal of
positive and negative direction (but seldom spherical). For any local face F* = Ff(z, F?),
there is a unique face F' (as defined in [Ro11]) containing F. Then F¢ C F = cly(F*) = clp(F)
is also the enclosure of any interval-germ |z, y) = germy(Jz,y]) included in F*.

A local chamber is a maximal local face, i.e. a local face FK(CC,:EZU.C})) for x € A and

w € W?. The fundamental local chamber is Cf = germo(C}).
A (local) panel is a spherical local face maximal among local faces which are not chambers,
or, equivalently, a spherical face of dimension n — 1. Its support is a wall.

A sector in A is a V—translate s = x + C" of a vectorial chamber C¥ = :I:w.C'}’, we Wv.
The point z is its base point and CV its direction. Two sectors have the same direction if, and
only if, they are conjugate by V —translation, and if, and only if, their intersection contains
another sector.

The sector-germ of a sector s = = + C" in A is the filter & of subsets of A consisting of
the sets containing a V —translate of s, it is well determined by the direction CV. So, the
set of translation classes of sectors in A, the set of vectorial chambers in V' and the set of
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sector-germs in A are in canonical bijection. We denote the sector-germ associated to the
negative fundamental vectorial chamber —C% by 6 _o.

A sector-face in A is a V—translate f =  + FV of a vectorial face F¥ = +w.F"(J). The
sector-face-germ of f is the filter § of subsets containing a translate f' of f by an element of F"
(i.e. ¥ C §). If F¥ is spherical, then f and § are also called spherical. The sign of f and § is
the sign of F.

A chimney in A is associated to a face F' = F(xz, Fy), called its basis, and to a vectorial
face F, its direction, it is the filter

o(F, F') = clp(F + F).

A chimney v = v(F, F") is splayed if F" is spherical, it is solid if its support (as a filter, i.e.
the smallest affine subspace containing t) has a finite pointwise stabilizer in W". A splayed
chimney is therefore solid. The enclosure of a sector-face f = x 4+ FV is a chimney.

A ray 0 with origin in z and containing y # = (or the interval |z, y], the segment [z,y]) is

called preordered if x < y or y < x and generic if < yory < x. With these new notions, a
chimney can be defined as the enclosure of a preordered ray and a preordered segment-germ
sharing the same origin. The chimney is splayed if, and only if, the ray is generic.

1.4. The hovel. In this section, we recall the definition and some properties of an ordered
affine hovel given by Guy Rousseau in [Roll].

1) An apartment of type A is a set A endowed with a set Isom"(A, A) of bijections (called
Weyl-isomorphisms) such that, if fo € Isom"(A, A), then f € Isom"(A, A) if, and only if,
there exists w € W satisfying f = fo o w. An isomorphism (resp. a Weyl-isomorphism,
a vectorially-Weyl isomorphism) between two apartments ¢ : A — A’ is a bijection such
that , for any f € Isom(A, A), f' € Isom"(A,A"), f~Lopo f € Aut(A) (resp. € W¢,
€ Autl/ (A)); the group of these isomorphisms is written Isom(A, A’) (resp. Isom™ (A, A'),
Isoml (A, A")). As the filters in A defined in 1.3 above (e.g. local faces, sectors, walls,..) are
permuted by Aut(A), they are well defined in any apartment of type A and exchanged by any
isomorphism.

Definition. An ordered affine hovel of type A is a set .# endowed with a covering A of subsets
called apartments such that:

(MA1) any A € A admits a structure of an apartment of type A;

(MAZ2) if F is a point, a germ of a preordered interval, a generic ray or a solid chimney in
an apartment A and if A’ is another apartment containing F', then A N A’ contains
the enclosure cl4(F') of F' and there exists a Weyl-isomorphism from A onto A’ fixing
cla(F);

(MA3) if R is the germ of a splayed chimney and if F' is a face or a germ of a solid chimney,
then there exists an apartment that contains SR and F;

(MA4) if two apartments A, A’ contain R and F as in (MA3), then their intersection contains
claA(R U F) and there exists a Weyl-isomorphism from A onto A’ fixing cla(R U F);

(MAO) if z,y are two points contained in two apartments A and A’, and if <4 y then the
two line segments [z,y]4 and [z,y]4 are equal.

We ask here .# to be thick of finite thickness: the number of local chambers containing
a given (local) panel has to be finite > 3. This number is the same for any panel in a given
wall M [Roll, 2.9]; we denote it by 1 + gas.
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An automorphism (resp. a Weyl-automorphism, a vectorially-Weyl automorphism) of .# is
a bijection ¢ : & — & such that A € A <= ¢(A) € A and then a4 : A — ¢(A) is an
isomorphism (resp. a Weyl-isomorphism, a vectorially-Weyl isomorphism).

2) For x € #, the set T,.% (resp. T, .#) of segment germs [z,y) for y > x (resp.
y < x) may be considered as a building, the positive (resp. negative) tangent building.
The corresponding faces are the local faces of positive (resp. negative) direction and vertex
x. The associated Weyl group is W. If the W —distance (calculated in 7,5.#) of two local
chambers is dV (C, C.) = w € W?, to any reduced decomposition w = r;, - - -1, corresponds
a unique minimal gallery from C, to C’ of type (i1, -+ ,i,). We shall say, abusively, that this
gallery is of type w.

The buildings 7,7.# and T,”.# are actually twinned. The codistance d*"V (C,, D,) of two
opposite sign chambers C, and D, is the W —distance dW(C’x,opr), where opD, denotes
the opposite chamber to D, in an apartment containing C, and D,.

Lemma. [Roll, 2.9| Let D be an half-apartment in % and M = 9D its wall (i.e. its boundary).
One considers a panel F' in M and a local chamber C in & covering F. Then there is an
apartment containing D and C.

3) We assume that .# has a strongly transitive group of automorphisms G, i.e. all isomor-
phisms involved in the above axioms are induced by elements of G, ¢f. [Ro13, 4.10] and [CiR15].
We choose in . a fundamental apartment which we identify with A. As G is strongly tran-
sitive, the apartments of . are the sets g.A for g € G. The stabilizer N of A in G induces
a group W = v(N) C Aut(A) of affine automorphisms of A which permutes the walls, local
faces, sectors, sector-faces... and contains the affine Weyl group W% = W' x QV [Rol3, 4.13.1].

We denote the stabilizer of 0 € A in G by K and the pointwise stabilizer (or fixer) of Cg
by K7r; this group K7y is called the Twahori subgroup.

4) We ask W = v(N) to be positive and vectorially-Weyl for its action on the vectorial
faces. This means that the associated linear map @ of any w € v(N) is in W¥. As v(N)
contains W and stabilizes M, we have W = v(N) = WY x Y, where W" fixes the origin 0 of
A and Y is a group of translations such that: QY CY c PV ={v eV |a(v) € Z,Va € d}.
An element w € W will often be written w = A\.w, with A € Y and w € W".

We ask Y to be discrete in V. This is clearly satisfied if ® generates V* i.e. (a;)icr is a
basis of V*.

5) Note that there is only a finite number of constants gps as in the definition of thickness.
Indeed, we must have q,n = qur, Yw € v(N) and w.M(a, k) = M(w(a), k),Yw € WY. So
now, fix i € I, as a;() = 2 the translation by «; permutes the walls M = M («;, k) (for
k € Z) with two orbits. So, @Y C W% has at most two orbits in the set of the constants
dM(a;,k) - One containing the g; = qps(q,,0) and the other containing the q = qM (a;,+1)- Hence,
the number of (possibly) different gps is at most 2.|I|. We denote this set of parameters by
Q={g.q |iel}

If a;(a)) is odd for some j € I, the translation by o exchanges the two walls M (a;,0)
and M («;, —ai(ajv)); so ¢; = ¢.. More generally, we see that ¢; = ¢, when o;(Y) = Z, i.e.
a;(Y) contains an odd integer. If a;(a) = a;(e;’) = —1, one knows that the element r;r;r;
of W¥({i,7}) exchanges a; and —ay, so ¢; = ¢; = q; = ¢j.

Actually many of the following results (in sections 2, 3) are true without assuming the
existence of G: we have only to assume that the parameters ¢y; satisfy the above conditions.
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6) Examples. The main examples of all the above situation are provided by the hovels of
almost split Kac-Moody groups over fields complete for a discrete valuation and with a finite
residue field, see 7.2 below.

7) Remarks. a) In the following, we sometimes use results of [GRO8| even though, in this
paper we deal with split Kac-Moody groups and residue fields containing C. But the cited
results are easily generalizable to our present framework, using the above references.

b) All isomorphisms in [Roll| are Weyl-isomorphisms, and, when G is strongly transitive,
all isomorphisms constructed in [ c. are induced by an element of G.

1.5. Type 0 vertices. The elements of Y, through the identification ¥ = N.0, are called
vertices of type 0 in A; they are special vertices. Wenote YT =Y N7 and Y™ =Y N C_}’
The type 0 vertices in . are the points on the orbit % of 0 by GG. This set . is often called
the affine Grassmannian as it is equal to G/K, where K = Stabg({0}). But in general, G is
not equal to KYK = KNK |[GRO08, 6.10] i.e. %y # K.Y.

We know that .7 is endowed with a G—invariant preorder < which induces the known one on
A and satisfies v <y = JA € A with z,y € A |Roll,5.9]. Weset #* ={zr e ¥ |0<x},
I = NIt and Gt ={g € G|0< g.0};s0 7 =GT.0=GT/K. As < is a G—invariant
preorder, G is a semigroup.

Ifx e fOJr there is an apartment A containing 0 and z (by definition of <) and all apartments
containing 0 are conjugated to A by K (axiom (MA2)); so z € K.Y T as S  NA = YT,
But y(NNK) = WY and YT = WY.Y"", with uniqueness of the element in Y**. So
S = K.Y, more precisely .%;" = G /K is the union of the KyK/K for y € Y™+. This
union is disjoint, for the above construction does not depend on the choice of A (¢f. 1.9.a).

Hence, we have proved that the map Y+ — K\G" /K is one-to-one and onto.

1.6. Vectorial distance and @QQV—order. For x in the Tits cone T, we denote by ™+ the
unique element in C_}’ conjugated by WV to x.

Let & x< F ={(z,y) € # x F | x <y} be the set of increasing pairs in .#. Such a pair
(w,y) is always in a same apartment g.A; so (g~1).y — (¢~ !).x € T and we define the vectorial
distance d*(x,y) € C_}’ by d(z,y) = ((g71).y — (g7 1).x)*T. It does not depend on the choices
we made (by 1.9.a below).

For (z,y) € S x< S = {(z,y) € A x | © < y}, the vectorial distance d’(z,y)
takes values in Y*+. Actually, as .%) = G.0, K is the stabilizer of 0 and f0+ = KY*t+
(with uniqueness of the element in Y1), the map d* induces a bijection between the set
Iy X< Hy/G of G—orbits in S x< Fy and Y.

Further, dY gives the inverse of the map Y™+ — K\G"/K, as any ¢ € G" is in
K.d"(0,¢.0).K.

For z,y € A, we say that x <gv y (resp. = <qQy y) when y —z € QY (resp. y —z €
Quy = Dicr R>0.y’). We get thus a preorder which is an order at least when (o );es is free
or Ry—free (i.e. > a;o) =0,a; > 0= a; =0,Vi).

1.7. Paths. We consider piecewise linear continuous paths 7 : [0,1] — A such that each
(existing) tangent vector 7'(¢) belongs to an orbit WY.\ for some \ € C_}’ Such a path is
called a A—path; it is increasing with respect to the preorder relation < on A.

For any ¢ # 0 (resp. t # 1), we let ©’_(t) (resp. 7/, (t)) denote the derivative of 7 at ¢ from
the left (resp. from the right). Further, we define w4 (t) € W" to be the smallest element in
its (W") —class such that 7/ (t) = wx(t).\ (where (W?), is the stabilizer in W of \).
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Hecke paths of shape A (with respect to the sector germ &_, = germoo(—C}))) are A—paths
satisfying some further precise conditions, see [KMO08, 3.27| or [GR14, 1.8]. For us their interest
will appear just below in 1.8.

But to give a formula for the structure constants of the forthcoming Iwahori-Hecke algebra,
we will need slight different Hecke paths whose definition is detailed in Section 3.3.

1.8. Retractions onto Y. For all z € .# 7 there is an apartment containing x and C; =
germo(—C}’) [Rol1, 5.1] and this apartment is conjugated to A by an element of K fixing C;’
(axiom (MA2) ). So, by the usual arguments and [Lc. , 5.5], see below 1.10.a), we can define
the retraction P of #* into A with center Cj; its image is e (1) =T =7"NA and
por () =Y.

Using axioms (MA3), (MA4), c¢f. [GRO8, 4.4], we may also define the retraction p_o, of &
onto A with center the sector-germ &_ .

More generally, we may define the retraction p of .# (resp. of the subset &>, = {y € .7 |
y > z}, for a fixed z) onto an apartment A with center any sector germ (resp. any local
chamber of negative direction with vertex z). For any such retraction p, the image of any
segment [z,y| with (z,y) € & x< # and d’(z,y) = X € C_}’ (resp. and moreover z,y € &>)
is a A—path [GR08, 4.4]. In particular, p(z) < p(y).

Actually, the image by p_o of any segment [z,y] with (z,y) € & x< .# and d"(z,y) =
A € YT is a Hecke path of shape A with respect to &_., [GRO8, th. 6.2], and we have the
following.

Lemma. a) For A\ € YT andw € WY, w A € A= QY, i.e. wA <gv A
b) Let m be a Hecke path of shape X € YT with respect to &_, fromyo € Y toy; €Y.
Then, for 0 <t <t <1,

A=al ()T =al (')

7Tf|_(t) <qv 7TI_(t/) <gv ﬂg_(tl) <gv 7TI_(1);
T (0) <gv X

7 (0) <qy (y1 —wo) <qy (1) <gv s
Y1 — Yo <gv A

Moreover y1 —yg is in the convex hull conv(WV.\) of all w.\ for w € WY, more precisely in
the convex hull conv(WV.\,> 7’ (0)) of all w' .\ for w’ € W, w' < w, where w is the element
with minimal length such that @' (0) = w.A.

¢) If moreover (o) )ier is free, we may replace above <qy by <qv.

d) If v <z <y in H, then d’(z,y) <gv d’(x,z) + d"(z,y).

N.B. In the following, we always assume (o );e; free.

Proof. Everything is proved in [GR14, 2.4], except the second paragraph of b). Actually we see
in [.c. that y1 —ypo is the integral of the locally constant vector-valued function 7/, () = w,(t).A,
where w4 (t) is decreasing for the Bruhat order [GR14, 5.4], hence the result. O

1.9. Chambers of type 0. Let ‘ﬁoi be the set of all local chambers with vertices of type 0
and positive or negative direction. An element of vertex z € .% in this set (resp. its direction)
will often be written C, (resp. C?). We consider €," x< 6" = {(Cy, Cy) € 65" x 6, | z < y}.
We sometimes write C, < Cy when z < y.
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Proposition. [Roll, 5.4 and 5.1] Let z,y € % with x <y. We consider two local faces Fy, F,
with respective vertices x,.

a) {x,y} is included in an apartment and two such apartments A, A" are isomorphic by a
Weyl-isomorphism in G, fizing cla({z,y}) = cla({x,y}) D [z,y].

b) There is an apartment containing F, and F,, if we assume moreover 2 yorxz =y
when F, and Fy are respectively of positive and negative direction.

Consequences. 1) We define W = W? x Y which is a subsemigroup of W.

If C, € €, we know by b) above, that there is an apartment A containing CJ and C.
But all apartments containing C’g’ are conjugated to A by K; (Axiom (MA2)), so there is
k € K; with k~1.C, ¢ A. Now the vertex k~'.x of k~1.C, satisfies k~1.z > 0, so there is
w € W such that k~1.C, = W.CB".

When g € GT, g.C'ar is in %OJF and there are k € K;, w € W with g.CBL = kw.Cl, ie.
g € K. W+ .K;. We have proved the Bruhat decomposition G+ = K;.WT.K.

2) Let x € S, Cy € CKJ with z < y, © # y. We consider an apartment A containing x
and Cy (by b) above) and write C,, = F(y,Cy) in A. For y' € y + C sufficiently near to
y, oy’ — ) # 0 for any root . So |z,y) is in a unique local chamber pr;(C) of vertex z;
this chamber satisfies [z, y) C pry(Cy) C cla({z,y’'}) and does not depend of the choice of y/'.
Moreover, if A’ is another apartment containing = and C),, we may suppose y' € AN A" and
lz,y'), cda{z,y'}), pro(Cy) are the same in A’. The local chamber pr,(C,) is well determined
by z and Cy, it is the projection of Cy in TF.7.

The same things may be done changing accordingly 4+ to — and < to >. But, in the above
situation, if C, € €, we have to assume x 2 y to define the analogous pry,(Cy) € CKOJF.

Proposition 1.10. In the situation of Proposition 1.9,

a) If x 2 y or F, and F, are respectively of negative and positive direction, any two
apartments A, A" containing Fy and F, are isomorphic by a Weyl-isomorphism in G fizing
the convex hull of Fy and F, (in A or A').

b) If © = y and the directions of Fy, F, have the same sign, any two apartments A, A’
containing Fy, and F, are isomorphic by a Weyl-isomorphism in G, ¢ : A — A', fizing F,, and
F,. If moreover Fy is a local chamber, any minimal gallery from F, to Fy is fived by ¢ (and
in AnNA).

¢) If Fy and F, are of positive directions and F, is spherical, any two apartments A, A’
containing I, and Fy are isomorphic by a Weyl-isomorphism in G fizing F, and F,.

Remark. The conclusion in c) above is less precise than in a) or in 1.9.a. We may actually
improve it when the hovel is associated to a very good family of parahorics, as defined in
|[Ro13] and already used in [GRO8]. Then, using the notion of half good fixers, we may assume
that the isomorphism in c¢) above fixes some kind of enclosure of F, and F, (containing the
convex hull). This particular case includes the case of an almost split Kac-Moody group over
a local field.

Proof. The assertion a) (resp. b)) is Proposition 5.5 (resp. 5.2) of [Roll]. To prove c) we
improve a little the proof of 5.5 in [.c. and use the classical trick that says that it is enough
to assume that, either F}, or F), is a local chamber. We assume now that F, = C, is a local
chamber; the other case is analogous.

We consider an element €, (resp. Q) of the filter C, (resp. F),) contained in AN A". We
have x € Q,, y € Q_y and one may suppose ), open and {2, open in the support of F},. There
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is an isomorphism ¢ : A — A’ fixing Q,. Let 3 € Q,, we want to prove that p(y') = 3. As
F, is spherical, z < y < y', hence x < y'. So a’ <y for any 2’ € Q, (Q, sufficiently small).
Moreover [2/,y'] N Q, is an open neighbourhood of 2’ in [2/,4/]. By the following lemma, we
get o(y) =y O
Lemma. Let us consider two apartments A, A" in #, a subset Q C ANA", apoint z€ ANA

and an isomorphism ¢ : A — A’ fiving (pointwise) Q. We assume that there is 2’ € Q with
2 <zorz >zand[Z,2z) NQ open in [, z]; then ¢(2) = 2.

N.B. This lemma tells, in particular, that any isomorphism ¢ : A — A’ fixing a local facet
FcANA fixes F.

Proof. ¢l is an affine bijection of [2/,z] onto its image in A’, which is the identity in a
neighbourhood of 2. But 1.9.a) tells that [2/, 2] C AN A" and the identity of [2/, z] is an affine
bijection (for the affine structures induced by A and A’). Hence ¢l coincides with this
affine bijection; in particular ¢(z) = z. m

1.11. W—distance. Let (C,,Cy) € €," x< €', there is an apartment A containing C, and
Cy. We identify (A, Cf) with (A, C,) i.e. we consider the unique f € Isom} (A, A) such that
f(Cf) = Cy. Then f~1(y) > 0 and there is w € W such that f~1(C,) = w.C;". By 1.10.c,
w does not depend on the choice of A.

We define the W —distance between the two local chambers C, and C, to be this unique
element: dV(C,,Cy) =w e WH =Y T x W', If w = Aw, with A € YT and w € W?, we
write also dV (C,,y) = \. As < is G—invariant, the W —distance is also G—invariant. When
x =y, this definition coincides with the one in 1.4.2.

tc,,c,,C, e € ", with <y < z, are in a same apartment, we have the Chasles relation:
dV(Cy,, C,) = dV (Cy, Cy).dV (Cy, Cy).

When C, = Cy and C, = ¢.Cy (with ¢ € GT), dV(C,,C,) is the only w € W+
such that ¢ € K;.w.K;. We have thus proved the uniqueness in Bruhat decomposition:
G+ = HWEW+ K].W.K].

The W —distance classifies the orbits of K; on {Cy € €, | y > 0}, hence also the orbits of
G on ‘€0+ X< %OJF.

2. IWAHORI-HECKE ALGEBRAS

Throughout this Section, we assume that (o) );cs is free and we consider any ring R. To
each w € W, we associate a function Ty from %OJF X< ‘€0+ to R defined by

N [ 1 ifdV(C,C)=w,
Iw(C,C7) = { 0 otherwise.

Now we consider the following free R—module

It = {p= Z awTw | aw € R, aw = 0 except for a finite number of w},
weWw+

We endow this R—module with the convolution product:

(p* ) (Ce, Cy) = Z P(Ca, C2)Y(C, Cy).
C.
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where C, € CKJL is such that + < z < y. It is clear that this product is associative and
R—Dbilinear. We prove below that this product is well defined.

As in [GR14, 2.1], we see easily that 7H7 can be identified with the natural convolution
algebra of the functions G™ — R, bi-invariant under K; and with finite support.

Lemma 2.1. Let G~ C A be a sector-germ with negative direction in an apartment A,
p_ & — A the corresponding retraction, and w € WT. Then the set

P={d"(p_(Cy),p—(Cy)) € WT |V(Cy,C,) € C,F x<C,F, V' (C,, C)) = W}

is finite and included in a finite subset P’ of W depending only on w and on the position of
C,, with respect to &~ (i.e. on the codistance w, € W from C, to the local chamber C in x
of direction &~ ).

Let us write w = A\ow for X\ € YT and w € WY, If we assume C, and &~ opposite (i.e.
wy = 1), then any v = p.v € P’ satisfies A <gv u <gv AT and p is in cono(WY.AT). More
precisely p is in the conver hull conv(WY AT > X) of all W' XTT for w' € WY, w' < wy,
where wy is the element with minimal length such that A = wy 1.

If moreover X\ € YT+, then p = X\ and v < w. In particular, for w = X € YT,
P={w}={A}.

Proof. We consider an apartment A; containing C, and C,. We set CZ’J =Cp+ (y—x)in A;.
Identifying (A, Cy) with (A1, Cy) (resp. (A1, C})), we have y =z + A (resp. Cyy = wC}).

We have to prove that the possibilities for p_(Cy) vary in a finite set determined by p_(C.),
w, and w,. We shall prove this by successively showing the same kind of result for p_([z,y)),
p—(y) and p_(Cy). Up to isomorphism, one may suppose C;; C A.

a) Fixing a reduced decomposition for wy gives a minimal gallery between C, and [x,y).
By retraction, we get a gallery with the same type from p_(C,) to p_([x,y)). The possible
foldings of this gallery determine the possibilities for p_([z,y)). More precisely, p—([z,y)) =
z+w' (A{1)[0,1) for w’ < wy and AT the image in A of AT by the identification of (A, C{")
with (A4, Cy).

b) We fix now p_([z,y)). By Lemma 1.8 b), p_([z,y]) is a Hecke path 7 of shape AT (with
respect to &7). Its derivative 7/, (0) is well determined by p_([z,y)). We identify A with A
in such a way that &~ has direction —Cy. Then A}* = w,(A™") and 7, (0) = w'w,(A*F),
with w’ as above. By Lemma 1.8 b), ©/, (0) <gv p_(y) — p—(z) <gv AT*. So there is a finite
number of possibilities for p_(y).

¢) Now we fix p_([z,y)), p—(y) and investigate the possibilities for p_(Cj). Let £ € Y+
and in the interior of the fundamental chamber C}. In the apartment A, with (A1,Cy)
identified with (A, C), we consider 2’ =z + ¢ and v/ = y + £ (hence y' = 2/ + \).

As in a) and b) above, we get that there is a finite number of possibilities for p_(z').

cl) On one side, we may also enlarge the segment [z, 2’| with [2/,2"), where 2"/ = 2/ + €.
On the other side, [z, 2] can be described as a path m : [0,1] — Ay, mi(t) =  + . The
retracted path m = p_(m) satisfies p_(2') — p_(z) <gv 7/.(1) <gv AT, again by Lemma
1.8. So there is a finite number of possibilities for 7/, (1), i.e. for [z/,2”). But there exists
(in A7) a minimal gallery of the type of a reduced decomposition of wy from the unique local
chamber (C, + &) containing [2/,2”) to [2/,y"). Hence, there exists a gallery of the same type
between (a local chamber containing) p_([z’,2")) and p_([2’,y)). Therefore, there is a finite
number of possibilities for p_([2/,y")).

As in b) above, we deduce that there is a finite number of possibilities for p_(y’).
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¢2) The path p_([y,y']) is a Hecke path of shape £ from p_(y) to p_(y'). By |GROS|
Corollary 5.9, there exists a finite number of such paths. In particular, there is a finite
number of possibilities for the segment-germ p_([y,3")) and for p_(Cy).

d) Next, we fix p,(C’z’J). Fixing a reduced decomposition for w gives a minimal gallery
between C; and C,, hence a gallery of the same type between p_(Cy) and p_(Cy). So, the
number of possible p_(Cy) is finite and dW(p,(C{/),p,(Cy)) < w.

e) Finally, let us consider the case w, = 1, then A}T = AT, So, in b), we get 7/, (0) =
w (ATH) with w” < wy, hence 7/ (0) >gv wrA(ATT) = Xand A <gv 7/, (0) <gv p—(y)—p—(z) =
p <gv ATT. If moreover A is in Y, then A = A*" and g = A. The Hecke path of shape
A p—([z,y]) is the segment [p_(z), p—(x) + A]. Its dual dimension is 0 (see [GRO§| 5.7). By
[GROS8| 6.3, there is one and only one segment in .# with end y that retracts onto this Hecke
path: any apartment containing y and &~ contains [z,y]. But C, is the enclosure of z
and CZ’/ = Cy (computation in A;). So, any apartment containing &~ and C; contains C'.
Therefore, we have A = d"V(Cy, Cp) = dV (p—(C.), p-(Cy)).

The end of the proof of the lemma follows then from d) above. m

Proposition 2.2. Let C,,C,,C, € %OJF be such that x < z <y and dV (C,,C,) =w € WT,
dV(C.,Cy) =v € Wt. Then dV(C,,C,) varies in a finite subset Py~ of W, depending
only on w and v.

Let us write w = Aw and v = pv for A,p € Y and w,v € WY. If we assume
A= AT and w = 1, then any w' = v € Py satisfies XN+ p <gv v <gv A+ putt
and v — X € cono(W?.u™, > p) C conv(W@.ut).

If, moreover, p = pt € YT, then v = XA+ p and uw < v. In particular, forw =\, w =
in Y, Pyy ={\+ u}.

Proof. Now we consider any apartment A containing C,, the sector-germ &~ opposite C,
and the retraction p_ as in Lemma 2.1. Then p_(C,) = C, and dV(C,,p_(C,)) varies
in a finite subset P, of W+ depending on w, by Lemma 2.1. If d"(C,,p_(C.)) = N/,
then the relative position w, € WY of C, and &~ is equal to w’. Applying once more
Lemma 2.1 to C, and Cy, we get that d"'(p_(C.),p—(Cy)) varies in a finite subset P,
of W depending only on v and w'. Finally, dV(C,, p_(C,)) varies in the finite subset
Pyyv={w~v eWt|w =XNuw € P, v'€ P,}. Taking now A containing C; and Cy, we
get " (Cy, Cy) = dV(Cy, p- (Cy)) € Py
To finish, suppose that A = AT+ and w = 1. By Lemma 2.1, P, = {\}, hence v’ = w, = 1.
Applying again Lemma 2.1, any v/ = p/.v’ € P,y satisfies p <gv i/ <gv pt*. Soany w” = v.u
in Py v is equal to (A + /)0 for pf/ 0" € Py = Py, hence A4 p <gv v = A+ <gv A+ptT.
If moreover 1 € Y™, then v = A + p and u < v. The last particular case is now clear.
m

Proposition 2.3. Let us fiz two local chambers C,, and Cy, in 6, withx <y and d" (C,,Cy) =
ue Wt. We consider w and v in W+. Then the number ay, , of C, € Cor withz < 2z <y,
dV(Cy,C,) =w and dV (C,,Cy) = v is finite (i.e. in N).

If we assume w = X\, v = p and u = v, then ag, , = a3 , > 1 (resp. =1) when X € Y+,
peYt (resp. \peYT) andv=\+p.

Proof. We have d¥(x,z) = AT and d¥(z,y) = u™". So, by |[GR14], 2.5, the number of possible
z is finite. Hence, we fix z and count the possible C,.
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Let C, be the local chamber in z containing [z,y) and [z,7') for 3/ in a sufficiently small
element of the filter C,,. By convexity, C?, is well determined by z and C,. But in an apartment
containing Cy, C; (hence also C.), we see that d" (C”,C) is well determined by v. So there
is a gallery (of a fixed type) from C’, to C,, thus the number of possible C, is finite.

Assume now that w =X € Y v =y € Y™ and u = A + p. Taking an apartment A;
containing C, and Cy, it is clear that the local chamber C in A; such that dW(Cm, C,) =\
satisfies also d"'(C.,Cy) = u (as dV(Cy, Cy) = X + p). So aij;“ > 1. We consider now any
O, satisfying the conditions, with moreover u € Y+,

As in Proposition 2.2, we choose A containing C, and &~ opposite C,.. We saw in Lemma
2.1 e) that any apartment containing C, and &~ contains C, and dV (Cy,p_(C,)) = A\
With the same Lemma applied to C, and C,, we see that any apartment containing C,
and &~ contains C,. In particular, there is an apartment A; containing C,,C;,C, and
dV(Cy,C,) = X, dV(C.,Cy) = p, dV(Cr,Cy) = X+ p. But \,u € YT so C, is in the
enclosure of C, and Cy. Therefore, C, is unique: any other apartment A, containing C, and
Cy contains z,y (with < y) and 2’ = 2 +§, v’ = y+ £ (with 2’ <y'), for § € C} = O} small;
by 1.9.a, Ag contains z € cla, {z,y}), 2/ = 24+& € cla, ({2/,9'}), hence also C, C cla,(]z,2")).

m

Theorem 2.4. For any ring R, I?—L'Ig 1s an algebra with identity element Id = T1 such that

Tw * Tv = Z a:zlv,vTu

ueP’w,v
and Ty x T}, = Tayp, for \,p e YT

Proof. 1t derives from Propositions 2.2 and 2.3, as the function Ty, * 75 : CKJ‘ X< CKO'F — R is
clearly G—invariant. i

Definition 2.5. The algebra ! H){ is the Iwahori-Hecke algebra associated to .# with coeffi-
cients in R.

The structure constants ay, , are non-negative integers. We conjecture that they are
polynomials in the parameters g;, ¢, with coefficients in Z and that these polynomials depend
only on A and W. We prove this in the following section for w,v generic, see the precise
hypothesis just below. We get also this conjecture for some A, W when all ¢;, ¢; are equal; in
the general case we get only that they are Laurent polynomials, see 6.7.

Geometrically, it is possible to get more informations about T\ T}, when A € Y+ e Y+,

but we shall obtain them algebraically (Corollary 5.3).

3. STRUCTURE CONSTANTS

In this section, we compute the structure constants ay, ,, of the Iwahori-Hecke algebra 1 ’Hﬁ ,
assuming that v = p.v is regular and w = A\.w is spherical, i.e. p is regular and A spherical
(see 1.1 for the definitions). We will adapt some results obtained in the spherical case in
[GR14] to our situation.

These structure constants depend on the shape of the standard apartment A and on the
numbers ¢y of 1.4. Recall that the number of (possibly) different parameters is at most 2.|1].
We denote by @ = {q1, - ,q1,¢} = @141, ¢ = qu} this set of parameters.
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3.1. Centrifugally folded galleries of chambers. Let z be a point in the standard apart-
ment A. We have twinned buildings 7.*.# (resp. T, -#). We consider their unrestricted
structure, so the associated Weyl group is W and the chambers (resp. closed chambers) are
the local chambers C' = germ,(z + CV) (resp. local closed chambers C' = germ,(z + CV)),
where C? is a vectorial chamber, cf. |[GR0S8, 4.5] or [Rol1l, § 5]. The distances (resp. codis-
tances) between these chambers are written d" (resp. d*'V'). To A is associated a twin system
of apartments A, = (A;,A}).

We choose in A a negative (local) chamber C; and denote by C} its opposite in AJ.
We consider the system of positive roots ®* associated to CF. Actually, &+ = w.@}r, if
<I>}r is the system ®* defined in 1.1 and C = germ.(z + w.C¥). We denote by (;)ier the
corresponding basis of ® and by (r;);cr the corresponding generators of W". Note that this
change of notation is limited to Section 3.

Fix a reduced decomposition of an element w € W", w = r;, ---7;, and let i = (iy, ..., ;)
be the type of the decomposition. We consider now galleries of (local) chambers ¢ =
(C;,C4,...,Cy) in the apartment A7 starting at C; and of type i.

The set of all these galleries is in bijection with the set I'(i) = {1,r;,} x --- x {1,7;}
via the map (c1,...,¢;) = (C7,e1C;,..;e1--¢,C;). Let B = —c1---¢j(a;), then j3; is
the root corresponding to the common limit hyperplane M; = M (8, —S;(2)) of type i; of
Ci—1=c1---¢j—1C7 and Cj = ¢1 --- ¢;C and satisfying 3;(C;) > B;(z).

Definition. Let 9 be a chamber in AT. A gallery ¢ = (C;,Cy,...,C,) € T'(i) is said to be
centrifugally folded with respect to Q if C; = C;_; implies that M; is a wall and separates Q
from C; = Cj_1. We denote this set of centrifugally folded galleries by F;S(i).

3.2. Liftings of galleries. Next, let pg : ., — A, be the retraction centered at Q. To a
gallery of chambers ¢ = (C;,C,...,C;) in I'(i), one can associate the set of all galleries of
type i starting at C in .# that retract onto c, we denote this set by Cq(c). We denote the
set of minimal galleries (i.e. Cj_1 # Cj) in Ca(c) by CJ(c). Recall from [GR14], Proposition
4.4, that the set CJ(c) is nonempty if, and only if, the gallery c is centrifugally folded with
respect to 9. Recall also from loc. cit., Corollary 4.5, that if ¢ € I‘g(i), then the number of
elements in CJ(c) is:

wcg(e)= [ -Dx ] w
je1 jeJ2
where ¢; = qu; € Q, J1 = {j € {1,---,r} | ¢g =1} and Jo = {j € {1,--- 7} | ¢; =
7;; and Mj is a wall separating Q from Cj}.

3.3. Liftings of Hecke paths. The Hecke paths we consider here are slight modifications
of those used in [GR14]. Let us fix a local positive chamber C, € 6,7 N A. Namely, a Hecke
path of shape pt with respect to C; in A is a u™"—path in A that we denote by 7 = [/ =
20, 21, - 20, , y] and that satisfies the following assumptions. For all z = m(t), z # z9 = 7(0),

we ask = < z and then we choose the local negative chamber C; as C; = pr,(C,) such that

C; contains [z,z) and [z,2) for 2’ in a sufficiently small element of the filter C,. Then we
assume moreover that for all k € {1,..., 4}, there exists a (W7 ,C )—chain from 7’ (t;) to
7', (t), where 2z, = m(t)). More precisely, this means that, for all k € {1,...,{;}, there exist
finite sequences (& = 7’_(t),&1,...,& = 7/ (t)) of vectors in V" and (f1,...,[s) of real roots

such that, for all j =1,...,s:
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i) rg (§J 1) =&

i) (5; 1) <0,

iii) rp; € (t ) i.e. Bj(m(ty)) € Z,

iv) each f3; is positive with respect to Cy i.e. (2, — Cy) > 0.

The centrifugally folded galleries are related to the lifting of Hecke paths by the following
lemma that we proved in [GR14| Lemma 4.6.

Suppose z € Az 2 2 Let ¢ and 7 be two segment germs in Af. Let —n and —¢ opposite
respectively 7 and { in A7 . Let i be the type of a minimal gallery between C and C_¢, where
C_¢ is the negative (local) chamber containing —¢ such that d" (C7, C_¢) is of minimal length.
Let 9Q be a chamber of AJ containing 1. We suppose ¢ and 71 conjugated by W7.

Lemma. The following conditions are equivalent:

(i) There exists an opposite ¢ to n in &, such that pAz,C;(C) = —¢£.

(it) There exists a gallery ¢ € T§ (i) ending in —.

(iii) There exists a (WY, C)—chain from £ to n.

Moreover the possible ¢ are in one-to-one correspondence with the disjoint union of the sets
Ca(c) for c in the set T§(i,—n) of galleries in T§(i) ending in —n.

For an Hecke path as above and for k € {1,...,;}, we define the segment germs 7, =
7y (tg) = w(ty) + 7 (tx).[0,1) and —& = 7_(tx) = 7(tg) — 7_(tx).[0,1). As above i, is the
type of a minimal gallery between C and C_¢,, where C_¢, is the negative (local) chamber
such that —&, C C_¢, and dV(C_, C—Ek) is of minimal length. Let Qj, be a fixed chamber in

ZE)

Al containing n and ng (ix, —mi) be the set of all the galleries (C',

2k 2K

A7, centrifugally folded with respect to Qj and with —ny € C,.

Cy,...,Cy) of type iy in

Let us denote the retraction pa ¢, : &>, — A simply by p and recall that y = w(1). Let
Sc, (m,y) be the set of all segments [z,y] such that p([z,y]) = 7, in particular, p(z) = 2.
The following two theorems are proved in the same way as Theorem 4.8 and Theorem 4.12 of
[GR14], in particular, we lift the path 7 step by step starting from the end of .

Theorem 3.4. The set Sc,(m,y) is non empty if, and only if, w is a Hecke path with respect
to Cy. Then, we have a bijection

Sc, (7, y) H H c3, (c).

k=1 c€F+k(lk7 le)

In particular, the number of elements in this set is a polynomial in the numbers q € Q with
coefficients in 7, depending only on A.

Theorem 3.5. Let \,ju,v € YT with \ spherical. Then, the number my (V) of triangles
0, z,v] in Z with d*(0,2z) = X and d*(z,v) = p is equal to:

(1) mau) = ZH > 4eg ()

weWr/(W2)y 7 k=1 cer§ (ix,—m)

where ™ runs over the set of Hecke paths of shape p with respect to Cy from w. A to v and
ng(ik, —ni) and CF (c) are defined as above for each such m.
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Remark. In theorems 3.4, 3.5 above and in [GR14], it is interesting to precise that, if ¢, = 1,
i.e. zg_ =y, then, in the above formulas, —ny_and 9Q,_ are not well defined: 7 (1) does not
exist. We have to understand that [ cers, (iemer) Cg, (c) is the set of all minimal galleries

of type iy, starting from C,~ (whose cardinality is H§:1 Qi;» if ig, = (i1, i)

3.6. The formula. Let us fix two local chambers C, and C, in ‘€0+ with < y and
dV(Cy,Cy) = u € WH. We consider w and v in W*. Then we know that the number
agy of C. € %y with x < 2z <y, dV(C,,C;) = w and d"'(C,, Cy) = v is finite, see Proposi-
tion 2.3. In order to obtain a formula for that number, we first use equivalent conditions on
the W —distance between the chambers.

Lemma. 1) Assume X spherical. Let C; = pr,(Cy) and let wy be the longest element such
that w:\F.A € C_}’ Then

o AV (Cy,2) = A
o T
A7 (G, C2) = Aw = { W (C5,C) = wiw.
2) Let CF = pr.(Cy) and let wy, be the smallest element such that "+ = wy,. € C7. Then

dV(C,,CH) = w,
dV(CF,Cy) = pTwy.

1
dV(C,,C,) = pv = {

If we assume moreover pi regular, then C; = pry(C,) (resp. CF = pr.(Cy)) is the unique
local chamber in y (resp. z) containing [y, z) (resp. [z,y)) and we have :

dV(ct,c,) = pttww = d'(z,y) = ptt and d*W(C;,Cy) = w,v.

~ is in any apartment containing C, and C,. Let us fix such an
apartment A and identify (A4, Cy) with (A, germo(CY)). By definition, we have dV(Cyp,2) =
dV(Cy,z + Cp). Then, of course, dV(C,,z) = X\. Next as ) is supposed spherical, the

stabilizer (W?), is finite, so wj\' is well defined and z < z, so C; is well defined. More-
over, dV (opsCs,z + Cp) = w; and dV(z + C,,C,) = w. Therefore, by Chasles, we get
dV(opaC;,C.) = wiw, but, by definition, d*"' (C,C,) = d" (opaC;, 2z + C.).

2) The first assertion is the Chasles’ relation, as C.,, Cyy, C (and C,) are in a same apartment
A'. The second comes from the fact that, if 1 is regular, then d"V (CF,Cf)) = d*(z,y) e YT,
where C, opposites Cj, at y in A’. Moreover, d*W(C;, Cy) = dW(C;g/, Cy) € W by definition,
so we conclude by Chasles. i

Proof. 1) By convexity, C

Theorem 3.7. Assume u is reqular and X is spherical. We choose the standard apartment A
containing Cy and C,. Then

S [(zﬁl 5> )ﬁ%(c))( 5 )ﬁ%’;(@)( 5 ttcggo<e>>

Toten=1 k=1 cergk (i, — 7k dergy (ig,Cy eGF;_ (1,C%,)
: %

_l’_

Lr
+ KH > ﬁ@i(@)( ) ttcgo(e))],
Mhtr<t LAKR=1 cery (in,~m) eGI’;_ (1,C%,)
20
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where the w, in the first sum, runs over the set of all Hecke paths in A with respect to C,
of shape u™* from x + X\ = zg to x + v =y such that t,. = 1, whereas in the second sum,
the paths have to satisfy t,, < 1 and d*W(CZ’/,C’y) = wyv, where C = pry(Cy) is the local
chamber in y containing [y, x) and [y, x") for &’ in a sufficiently small element of the filter C,.

Moreover i is a reduced decomposition of wy, C. is the local chamber at zo in A defined by
d*W(CZO,C" ) = w;\rw, ig 1s the type of a minimal gallery from C, to the local chamber Cy

at y in A containing the segment germ w_(y) = y — 7_(1).[0,1) and C'y is the unique local
chamber at y in A such that d*W(C'y, Cy) = wyv. The rest of the notation is as defined above.

Proof. Recall that, to compute the structure constants, we use the retraction p = pa c, :
& — A, where C, and Cy are fixed and in A. We have y = p(y) = = + v and the condition
dV(C,,z) = X is equivalent to p(z) = ¥ + A = z9. We want to prove a formula of the form

Uy = Z <number of liftings of 7'(') X <number of Cz> ,

s

where 7 runs over some set of Hecke paths with respect to C, of shape ™ from z + X to
x + v. It is possible to calculate like that for, in the case of a regular u*+, p(C}) is well
determined by 7. Hence, the number of C, only depends on m and not on the lifting of .

The local chambers C, satisfying d*"'(C, C.) = wiw and d" (C,,C}) = wul are at the

end of a minimal gallery starting at C’+ of type i and retracting by p,, Ners onto the local
chamber C’ at z defined by &V (C;,C’) = w>\ w in a fixed apartment A’ containing C, and
C}. So their number is given by the number of minimal galleries starting at C of type
i and retracting on a centrifugally folded gallery e of type i ending in C’. In other words,

their number is given by the cardinality of the set Cg (e), for each e € F+ (i,C%). Using
an isomorphism fixing C, and sending A’ to A, we may replace in this formula z,C;,Cl
and CF by zy,C,,CL, and the unique local chamber CJ in A containing the segment germ

74+(0) = 2o + 7, (0). [0 1). Hence:

number of C, = Z ﬁCTCn;O (e).

Tt i,C1
€Ty (CY)

Now, we compute the number of liftings of a Hecke path m starting from the formula in
Theorem 3.5 and according to the two conditions d" (Cy, 2) = A and dV (C,Cy) = p™Fwv.
The first one fixes one element in the set W /(W"),, namely the coset of wj\', i.e. 7T(0) =
2 + X. The second one is equivalent to the fact that the segment [z,y] is of type ™" and
d*W(CL, Cy) = wyv, as we have seen in the Lemma above.

Further, we have that t, <1 <= 7_(y) € C,/. If 7_(y) € C; then p(Cy) = C, = C,,
whence, d*W(C; ,Cy) = wyv. Since we lift the Hecke path into a segment backwards starting
with its behaviour at y = (1), there is nothing more to count.

Ifty, =1, then 7_(y) € Cy = p(C}) # C,. We want to lift the path but with the condition
that d*V(Cy,C,) = wyv, which may be translated in p/'(C;) = C,, for p' = pa,c,- Since ptt
is regular, to find [y, z) it is enough to find C; i.e. to lift C'y with respect to p/. The liftings
of C’y are then given by the liftings of all the centrifugally folded galleries in A with respect
to Cy of type iy from C to C'y to minimal galleries. Therefore, their number is given by the
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cardinality of the set Ci (d), for each d € ng (ir, Cy). The rest of the lifting procedure is the
same as in the proof of Theorem 4.12 in [GR14]. m

3.8. Consequence. The above explicit formula, together with the formula for §CZ'(c) in 3.2,
tell us that the structure constant ay,  is a polynomial in the parameters ¢, q, € Q with
coefficients in Z and that this polynomial depends only on A, W, w, v and u. So we have
proved the conjecture following Definition 2.5 in this generic case: when A is spherical and u

regular.

4. RELATIONS

Here we study the Iwahori-Hecke algebra ! Hf as a module over Hi(W?") and we prove the
first instance of the Bernstein-Lusztig relation. For short, we write /Hp = ! H){ and T; = T,
(when i € I).

Proposition 4.1. Let A\€ Y, w € WY and i € I, then,

1) Thy * Ti = Ty, if, and only if, either (w(a;))(A) < 0 or (w(a))(A) = 0 and
L(wr;) > L(w). Otherwise Ty *T; = (¢ — 1) T + ¢ Txwr, -

2) T * Txw = Ty, (\).rpw i, and only if, either a;(A) > 0 or a;(A) = 0 and £(r;w) > {(w).
Otherwise T; « Thp = (¢; — 1)Thw + @, (A s

Proof. We consider local chambers C,,C.,C, with x < z < y and dV(Cy,C.) = \w,

dV(c., Cy) = 1. So there is an apartment A containing C,, C, and, if we identify (A, Cy) to

(A, CJ), we have C, = (A\.w)(C,). Moreover y = z, C, # C, and C,, C, share a panel F; of

type i. We write D the half apartment of A containing C, and with wall 0D containing Fj.
We first note that

C. C D < ((w(a))(N) <0) or ((w(ai))()\) =0 and £(wr;) > E(w)).

Then, by Lemma 1.4.2, there exists an apartment A’ containing C, and D, hence also
Cy,C,Cy. So dW(Cw,Cy) = Aawr;. The panel F;, = Fg(z,Fiv) C A is a spherical local

face, so, for any p € z + FY C A, we have z Z p, hence x 2 p. By 1.10.a, any apartment A”
containing C';, and F; contains C,; moreover C, is well determined by F; and C.. The number
aiﬁ?ﬁi of 2.3 is equal to 1 and we have proved that T, * T; = T ;-

If C, is not in D, we denote by C” the local chamber in D with panel F;. By the above
argument, C?, is well determined by F; and C,., moreover d" (C,,C’) = A.wr;. There are two
cases for Cy: either C,, = C?, or not. If C; = C., then d"(Cy, Cy) = Awr; and, if C,, C,, are
given, there are ¢; possibilities for C, (all local chambers covering F; and different from C):
ai:lwvf;fi = q;. If Cy # CL, then d"(C,,Cy) = Aw and, if C,, C, are given, there are ¢; — 1
possibilities for C, (all local chambers covering F; and different from C7, Cy): a§:$7ri =q; — 1.

We have proved 1) and we leave to the reader the similar proof of 2). O

4.2. The subalgebra Hr(W"). We consider the R—submodule Hz(W?) of IHp with basis

(Tw)wewv. As dV(Cy,Cy) € WP if and only if = y, it is clearly a subalgebra of Hp.

Actually Hr(W?) is the Iwahori-Hecke algebra of the tangent building 7,7.# for any x € .#.
By Proposition 4.1, we have:

- Ty x T; = Ty, if £(wr;) > l(w) and T, * T; = (¢; — 1)Toy + ¢iTwr, otherwise.

- T x Ty = Ty if £(r;w) > l(w) and T; * T,y = (¢; — 1)Toy + ¢iTr, otherwise.
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In particular T2 = (¢; — 1)T; + ¢;Id and, for any reduced decomposition w = r;, -+ 7 ,
Tw=T, T,

Therefore, the algebra Hr(W") is the well known Hecke algebra associated to the Coxeter
system (WY {r; | i € I}) with (in general unequal) parameters (g;);c; and coefficients in the
ring R. It is generated, as an R—algebra, by the T;, for i € I.

Suppose each ¢; invertible in R, then, as well known, T, ' = ¢; (T} — (¢; — 1)Id) € Hr(W")
is the inverse of T;. In particular any T, is invertible: for any reduced decomposition
w=ri -1, Tyt :lengl

Remark. If ¢; is invertible, it is easy to see from Proposition 4.1 that, either T ,r, = T *1;
or Thar, = Taww * T ' and, either T, (x) i = Ty % Thw or Ty () TV 5Ty .

W riow — 4y

Corollary 4.3. Suppose each q; invertible in R and consider X\ € Y. We may write
A =w ATt withw € WY, Then Ty = Ty * Tyt x T L.

Proof. We consider a reduced decomposition w = r;, ---r;, and argue by induction on n.
So, for w' =7, -1y and N = W' AT we have Ty = Ty x Ty++ * Tuj,l. We consider
Tw * Tow+ * Tl = Tj, % Ty * T;l But 4(r;,w’) > f(w') and \TT € YT C C_}’, )
i, (W ATY) >0, de o, (V) > 0. We get Tj, + T = T,, (xyr,, by 412 and then

T;, « T T;l =T,, vy =T by 4.1.1 (and the above remark). m
Corollary 4.4. Let A € Y+ and w,w' € W7, then we may write
Tyw * T = ay e T o
w" <w
where each aﬁigj%/ is a polynomial in the q; with coefficients in Z and, when w' =1, a§;$ >0

s a primitive monomial. This polynomaial aﬁf’u:%/ depends only on A and on W.

Proof. We write w = r;, ---r; and argue by induction on n. The result is then clear from
Proposition 4.1.1. We get actually that aﬁ‘% is the product of some of the ¢;; (1 <j <n). o

4.5. The Iwahori-Hecke algebra as a right Hz(W")—module. We assume here that
each ¢; is invertible in R.

Given A € Yt we see from Corollary 4.4 that {Ty*T,, | w € W?} and {Th., | w € WV} are
two bases of the same R—module. The base-change matrix is triangular with respect to the
Bruhat order on WY and the coefficients are Laurent polynomials in the ¢;, with coefficients
in Z (primitive Laurent monomials on the diagonal). These polynomials depend only on A
and W.

As {Thw | X €Y T, we WV} (vesp. {T,, | we€ W"}) is a R—basis of /Hp (resp. Hr(W?)),
this means in particular that Hp is a free right Hz(W")—module with basis {Ty | A € Y*}.

In particular the R—algebra !Hr is generated by the T} (for i € I') and the Ty (for A € Y'F)
and even by the T; (for i € I') and the T (for A € Y1), as we see from Corollary 4.3.

Lemma 4.6. Let C1,C € CSL, with vertices x1,xo be such that dV (Cy,Cy) = X € Y. We
consider i € I, F} (resp. Fi) the panel of type i of Cy (resp. Ca). In an apartment Ay (resp.
As) containing Cy (resp. Cs), we consider the sector panel f; (resp. f3 ) with base point x1
(resp. x2) and direction opposite the direction of F} (resp. equal to the direction of Fi).

Then there is an apartment A containing {1, f;, C1,Cy and, in this apartment A, the
directions of f{ and {3, Fi and §{ (resp. F} and §3 ) are opposite (resp. equal).
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Proof. We choose \; € F'({i}) NY C Y*T. We write 3;t the germ of f;.—L and Fji” its
direction in A;. In A; (resp. As) we consider the splayed chimney tv; = v(Cy, F|") (resp.
tf = v(Cy, F;)) containing f; (resp. f3) and, for n € N, the chamber of type 0 C1(—n) =
Cy —n\; C ) (resp. Cz(+n) = Co + n\; C ty); actually we identify (A, Cy") with (A1, C)
(resp. (Az2,(C3)) to consider \; in A (resp. As).

Then dW(Cl(—n),Cl) = dW(CQ7CQ(+n)) = n)\i e Yt and dW(Cl,CQ) =)\e Yt
By (MAS3) there is an apartment A containing the germs ] and 9‘{; of v] and t;, hence
C1(—n) and Cy(+n) for n great. By Proposition 2.2 and the last paragraph of the proof of
2.3, dV(Cy(—n),Ca(+n)) = X+ 2n\; € Y and A contains Cp,Cy. By (MA4) A contains
also f; Ct] Ccla, (C1,M|]) and f C vf C cla,(C2,R7). So all assertions of the Lemma are
satisfied. 0

Proposition 4.7. Let C1,Co,C3,Cy € C(T be such that dW(Cl, CQ) =\e Y++, dW(CQ, Cg) =
r; and dV (C3,Cy) = p € Y. Then there is a direction of wall M (cf. [Roll, § 4] or [GR14,
5.5]), chosen accordingly to Cy,Co (but independently from Cs,Cy), such that Cy,Co,Cs,Cy
are in the extended tree S (MS®).

Proof. We denote by z1,z2 = x3, 74 the three vertices of C1, Cy, C3, Cy and by F}, Fi = Fg, F}
their panels of type i. We choose §; associated to C; and F} in an apartment A; (resp. f}
associated to Cy and F} in an apartment A,), as in Lemma 4.6. By this Lemma, using C;
and Cy, the direction of §; opposites that of Fi = F% in some apartment As and, using Cs
and CYy, the direction of fi‘ is the same as that of FQZ = F?f in some apartment As. In As (resp.
Az) we consider the sector face f§ (resp. f, ) with base point x5 = z3 and same direction as
fi or Fi = Fi (resp. same direction as f; and opposite Fi = F¥).

We may use the Lemma for Cy,Ca, 1 ,f5; so the directions of §; (or f;) and f3 (or ;) are
opposite and C,Cy are in a same apartment As of & (M), if we consider the direction of
wall M associated to the directions of f; and fjf Using now the Lemma for Cs, Cy, f, , fjf,

we see that these filters are in a same apartment Ag of & (M®). O
Theorem 4.8. Let \,u € Y1+ and i € I. We write N = inf(a;(\), (1)) € N and, for
n €N, ¢ = qdiqiq, - - -, with n terms in this product.

a) If N = a;(p) < a;(A), then Ty x Ty + T), = Thyp, * T; for N =0 and, for N >0,
Ty *T; * T,u, = Q;‘kNT)\—l—u—Na;/ * T + (Q:N - Q;Nil)T)\—i—u—(N—l)oz;/ +e
st (Q;‘k2 - qi)TAJr‘U/*CV;/ + (Qi - 1)T)\+,u
b) If N = a;(N) < a;(p), then T  T; x Ty, = Tj x Ty, for N =0 and, for N > 0,
Ty x T Ty = GNTox oo nvay + (@GN = ¢V ) D (vonyay -+
A (@ = @) Ty + (6 — DTy
Remarks. 1) The case b) is less interesting for us, as we try to express any element in the
basis of 4.5 for 7Hp considered as a right Hz(W¥)—module.

2) In the case a) we have p— Ny = r;(p) and A+ pu— Noy € YT as (A +p— Naoy) =
a;(A) = N and aj(A+ p— No') > a;;(N) + aj(p) for j # i. So all v such that T, appears on
the right of the formula are in the o —chain between A + p and A + r;(p); in particular they
are all in Y+,

3) We call relation a) or relation b) the Bernstein-Lusztig relation for the T, (BLT) for
short. We shall use it essentially when A\ = p.
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4) When «a;(X) or o;(p) is odd, we know that ¢; = ¢;, cf. 1.4.5.

Proof. We consider C,Cs,C3,Cy and M as in Proposition 4.7. When N = 0 the results
come from 4.1. We concentrate on the case 0 < N = «;(u) < «a;(\); the other case is left
to the reader. We have to evaluate dW(Cl, C4) and, given C1,Cy satisfying dW(Cl, Cy) = u,
to count the number of possible Co, C3. By Proposition 4.7 everything is in the extended
tree .#(M£°), which is semi-homogeneous with thicknesses 1 + ¢;,1 + ¢/. By Proposition
4.1.2, Cy is well determined by Cs, C4 and lies in any apartment containing Cs, Cy; moreover
dW(CQ, 04) = Ti(u).m.

We consider an apartment A; (resp. Ag) of .# (M) containing Cy and Cy (resp. Co and
Cy, hence also C3). We identify (A1, C1) and (A2, Co) with (A, Cy); we consider the retraction
p1 (resp. pa) of S (M) onto Ay (resp. Ag) with center C) (resp. C2). The closed chambers in
an apartment of .# (M) are stripes limited by walls of direction M. In A; = A, these walls
are M(ay,n), n € Z and we write S the stripe S¥ = {z | k < a;(z) < k + 1}, in particular
Cy € SY and Cy C S?i()‘). In Ay = A, we get also stripes S§ = {z | k < a;(x) < k + 1} such
that Cy € S9 =M €y c 85  and €y Sy N1

We have Cy = C1 + X in Ay and po(Cy) = C3 4 7;(1) in Ay. To find d"'(Cy, Cy) we have
to determine the image of Cy under p;. It depends actually on the highest number j such
that S, (hence also S9,---,557 le) isin Aj. A classical result for affine buildings (clear for
extended trees and generalized to hovels in [Rol1, 2.9.2|) tells, then, that there is an apartment
containing the stripes S;jfl, e ,S;Nfl and the half apartment Uk<ai(>\)—j—1 S{‘“.

If j =0, S5 or C3 is not in Ay, so p1(C3) = Cy and, more generally, p;(S; *) = Sfi(/\)+k_1,

for k > 1 (see the picture below). We get p1(Cy) = Co + p and d"V (C1,Cy) = A+ . When
C4 and C} are fixed with this W —distance, we have to count the number of possible C5. But
Cs C 52_1 is in the enclosure of C7 C S? and Cy C SQ_N_lz it is well determined by C; and
Cy. Now (s has to share its panel of type ¢ with C5 and to be neither in 52—1 nor in Sf{i()‘)fl;
so there are g; — 1 possibilities.

A
Cy
C3CSy?
Ay >e . . - - >
0 Cl CQCSO
If1 <j < N—1, then A contains S§ = Sfi()‘), S;l = S?"(A)fl, . ,S;j = Sf{io‘)*j but not
S;jfl, e ,S;Nfl (see the picture below). So pl(Sgk = Sfio‘)dﬁrk, for k > j. The image

of the line segment [x2,z4] = [v2,x2 + p] under py is p1([z2,z4]) = [z2, 22 + (§/N)ri(p)] U
[z2 + (j/N)ri(p), 22 + (§/N)ri(p) + (N — j)/N)p]. As N = a;(p) and ri(p) = p — Noy,
this means that p(Cy) = Cy + p — ja;/. When Cf and Cy4 are fixed with this W —distance,
we have to count the number of possible Cy. As SY,- - ,Sfi(/\)_]_l,Sz_]_l, e ,SQ_N_l are
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well determined by C7,Cy, we have to count the possibilities for (Sfi()‘)_j oo, ST i(/\)). As

above there are ¢; — 1 possibilities for Sfi()‘)fj (or ¢ — 1 if j is odd) and then ¢} (or g;)

possibilities for Sf{io‘)*j“, etc. . Finally the total number of possibilities is (¢; — 1)q}qiq, - - -
or (¢} — 1)¢iqiqi - -+ (according to j being even or odd) with j + 1 terms in the product. The

last factor is necessarily g¢;, so this total number is (q;‘ L q; J ).

Cy

Sy 77t
Ay > < >
0 Cy C5cS; b Chcsy=s7iY

It is convenient to look at the cases j = N or j = N + 1 simultaneously. This means that
S;N = S?io‘)*N is in Aj; in particular the panel Fj of type i of Cy is in Aj, in the wall
{z | a;(z) = a;(\) — N}. More precisely F} is the panel of type i of C} = C1 + A +7;(u) C A;.
This means that (T, * 7;)(C1,C4) > 1. Conversely if Cy,Cy are fixed satisfying this
condition, we can find Cs,C3 with the required W —distances. We have now to count the
number of possibilities for Cy, C3 i.e. for Cy or for (Sfi(/\)_N,--- ,Sf"(A)). The number of

possibilities for Sy i(N-N

is exactly (Thp,(u) * 7i)(C1,Cy). Then the number of possibilities
for S?"()‘)fNJrl, e ,S?i()‘) is alternatively ¢; or ¢;. Finally the total number of possibilities for
Co is ¢ (Tsry () * T3)(C1, Cu) (as, when N is odd, ¢; = ¢}). O

5. NEwW BASIS

In this section, we prove that left multiplication by T),, for p € Y, is injective. That
allows us to introduce a new basis of the Iwahori-Hecke algebra Hp in terms of (Ty,)wew
and (X*) ey +-

We suppose Z C R and each ¢;, ¢} in R, the invertibles in R. As we saw in 4.5, R is a
free right Hr(W")—module with basis {7\ | A € Y*}. For A € Yt and H € Hr(W?), we
say that T\ x H is of degree \.

For i € I and 2 a subset of the model apartment A, we write ¢(z)(€2) the convex hull of QU
7:(Q). For (i1,ia,...,ip) € I" and (Mo, A1, .., An) € (YT we define : D(ip)(Ap_1, \n) =
An—1 + c(ip)(Ap) and, by induction for k from h — 1 to 1, D(ig,...,in)(Ak—1, Ay« -5 Ap) =
Ak—1 + €(ik) (D(ikt1y -+ -5 80) (N A1, - -+, An)) (of course c(in)(An) = c(in)({An}).

Lemma 5.1. With notation as above,
a) if N,y € D(ip)(An—1,An), then
D(Zk;a cee aih—Za ih—l)(Ak‘—la )‘ka ey >‘h—2’ )‘;171) C D(Zk;a cee aih—la Z’h)()‘k‘—ly >‘k‘a ey Ah—la )‘h);
b) if riyriy -1, is a reduced word in WY and X € D(iy,...,i5)( Ao, A1s. .., An), then
Ao + T4y ()\1) + 75y Ty ()\2) Fo Ty T, ()‘h) SQ]]{ A.
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Remark. If the expression 7,7, -7, is reduced, we get D(iy,...,4)(0,0,...,0,\;) =
conv({w(Ap) | w <, 7riyriy -+ -1, }) where <, denotes the Bruhat order.

Proof. The proof of a) is easy.

b) We have D(il, R ,ih)()\o, Alyons ,)\h) C )\0+C(il)()\1)+c(il,iz)(Ag)—i—- . -+C(i1, 19, . .. ,ih)()\h),

with (i1, 2, ..., 1) (Ar) = c(i1)(c(ia) (. .. (c(ir)(Ag))- . ) = conv({w(Ag) | w <g 13,75y -+ 75, })
where 0 < k < h and <, denotes the Bruhat order. For w <, 17, -1, there is a
sequence w = W, Wi,..., W, = T;Ti, -~ 14, such that, for each 1 < ¢ < r, there is a re-
duced decomposition w1 = 1,7, = T4, T 0 Ty With wy = ryrgy oory iy,
Then wi(Ag) = wip1(Ak) +aj, (7,00 75, (M) 7575 - - 7j,—1 (e} ) and QY contains the term
(7 g (0,)) (M) Ty 7 -+ - rjp_l(a}/p) by minimality of the expressions 77, -+ 7j,_,7j,
and rj, -+ 7j,.,75,. So we get by induction that w(Ax) >qv i 1y -+ i, (M) and w(p) =gy
TiiTiy -+~ T4, (M) for any p € c(iq, ..., i) (Ar). The expected result is now clear. O

Proposition 5.2. For any expression Hy = T\, * T;, + T, x T % ---x Ty, | *T;, + Ty, x H
with \; € YT+, H € Hz(W"V) and any p € YT sufficiently great, the product T, * H, may be
written as a R-linear combination of elements T, H,, withv € p+D(i1,...,ik)( Aoy A1,- -+, Ak)
and H, € Hr(W").

Moreover, if ri,1iy -+ 14, s a reduced word and vy = p+ Xo + 73, (A1) + 13,7y (A2) + -+
TinTig = ** Ty (A\k), then Hy, € R*T;, « Tj, %+« - % T;, * H and more precisely the constant in R*
is a primitive monomial in the g;,q.. Further, Hy, is the only H, in RT;, «T;, % ---xT;, + H.

N.B. So one may write T}, * Hj, = Zy,w aywT, * Ty, with a,,, € R, v running in p +
D(iq,...,ik)( Aoy A1y .-+, Ak) and w in W. Moreover we get from the following proof, that each
ayq 1s a Laurent polynomial in the parameters g;, ¢;, with coefficients in Z; these polynomials
depend only on the expression Hy, on A and on W.

Proof. The proof is easy in the following special case (I).
(I). We say that the expression of Hy is normalizable of length &k when it satisfies the
following properties:
(i) Mp—1 — A € YT,
(ii) For all A from k to 2, A\p_o — D(in, -, ix)(An_1, Any - -5 Ap) C C_}’.
For such an expression, we write D(Hy) = D(i1,. .., i) ( Aoy A1y .-y Ak).
We will then prove that Ty, * Tj, Ty, * Ty, % --- Ty, _, * T;, «T», * H is a Z[g;, ¢}]—linear
combination of normalizable elements H},_, of length k — 1 such that D(H;_,) C D(Hy).
Using the fact A,_1 — A\x € YT and Theorem 4.8, or (BLT), for T\, , *T;, = T),, we have:

*(ciy (Ak))
(E) Hk — Zk(ak( k) T)\O*EI*T)\l*...*ﬂk_l*T)\(aik(Ak))*(ﬂk*H)
k—1
iy (Ak)—1
h+1 *(h
+ Z (q’;k(+)_qi())T)\O*Til*TAl*”'*zﬂik—l*T)\;f’)l*H
h=0 B

) _ Ai—1 + 7i, (Ar). Let us consider, for

with )‘l(ch—)1 = M1 + A — hoz;;, in particular )\,(f_"{ (A

each 0 < h < a;, (M), Aj = N fori <k —2and \,_| = )\gi)l, then (Ag,...,\,_,) satisfies
Ny o — N, q € YT by (ii) for h = k and A;fliD(ik)()\k,l,)\k), and, for all A from k£ — 1
to 2, N,_o — D(ip, ... ’ik—l)()‘;z—lg - A—1) C C§. This last result comes from (ii) A, _, —
D(ipy-eoyig) M1, My -y Ak) C C} and the inclusion D(ipy .o yik—1) (N3 Apy oo M) C
D(ip, .. ig)(Ab—1, Ans - - - M), coming from Lemma 5.1 a). We have T;, « H € Hr(W"), so
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every term of the right hand side of (E) is a normalizable element H}_, of length k — 1 with
D(H;_,) C D(Hy).

By induction on each term, after k steps, we obtain Hy, as a Z[g;, ¢;]—linear combination of
T, = H, with v € D(Hy) and H, € Hr(W").

Moreover, if the decomposition 7,7, ---r;, is reduced, we take vy = Ao + ri (A1) +
TiiTig(A2) + + - + 73,73y -1, (Ar) and look more carefully at the decomposition (E). For
0 < h < a;,(\g), we have vy ¢ D(Ty, * Tj, * Ty, % -+« % T)\](Ch)l « H) C D(Hj) by Lemma

5.1b). Indeed, if A € D(T), * Tj, * Th, * -+ - * T\ H), then, by minimality of 7 i, -+ - r,,
k—1

vy <qv uéh) <@v A with uéh) =X+ iy (A1) +riyri,(No) + - iy --rk—1()\§:zl) # 0.
So the unique term of degree vy of the final decomposition comes from the term of first kind
(i.e. obtained like the first term of the right hand side of (E)) in every step of the reduction
and is also the only term containing all the 7;;. And so, we prove that, in front of the term
Ty * T;, x Tj, * - - - x T;, x H obtained for 1y, the constant is equal to the primitive monomial
c— q?«(aik(xk))q*(aik,l Ae—14ri, () qf(ocil A1 47iy A2+ 7y 7y (AR)))

i le—1 1

Let us consider now the general case and first prove the following result (II).

(IT) If Hy, = Ty # Ty, Ty # Ty - - -xT,_ *T;, *Th, *H with \; € YT, H € Hr(W?), we can
choose g € YT such that T,,, * Hj, can be written as a R-linear combination of normalizable
expressions Hj, of length < k and with D(H}) C po+ D(i1,...,ik) (Ao, A1, -+, Ak)-

We prove this result for Hy_p = Ty, *Tj,, * T\, *---*Tx,_, *T;, * T, * H by decreasing
inductionon 0 < h < k—1. For h = k—1, we have Hy = T, *T;, *T\,*H. Choose pij,_1 = A,
then T),, , * Hy is normalizable of length 1 and D(T),, , * Hy) C pp—1 + D(ir)(Ax—1, Ak)-

Let 0 < h < k—2 and suppose that we can choose i, 41 € Y+ such that T, *Hy_(p41) =
Tppr * Tonyyy * Tip iy % -+ % Ty % Ty, * H can be written as a R—linear combination of
normalizable expressions Hlfcf(hﬂ) of length < k — (h+ 1) and with D(H,’gi(hﬂ)) C fht1 +
D(ipyay -y ik)(Ant1s-- -5 k). Let us write these normalizable expressions Hlfci(hﬂ) =Ty, *
Ty Ty % Ty x - % Ty, % Ty % H', where k' < k—(h+1) and (Xj,...,\},) satisfies
(i) and (ii). Consider p™" € Y such that p/™™ — D(i}, ... i) ( Ay, Ay .y M) C C_}’
for all these expressions. We take u, = ,uzm" + 20p41 + 7ijy (Bnt1), then Ty x Hy p =
Ty, * Ty, * Loy % Hk*(h+1) = Tuﬁ”i”Jr)\th,uhH * Tﬂh+1+rih+l(uh+1) * Tijypy Hk*(hﬂLl)'

By (BLT), we have:

(v (Bn+1))
/ h+1 _ ) .
(E ) q,ih+1 Tp,h * Hk)*h - Tﬂ;:”n+)\h+2ﬂh+1 * Eh+l * Tuh+1 * Hk*(h‘i’l)

Qipy g (Bpg1)—1

_ *(J+1) _  *(j) ,
Z (qih+1 Dip 1 )TAh‘FMZ”"'F?MhH —joy

v kT % He(n)
0 ht1
.]_

The choice of MZ”” and the hypothesis on Ty, ., * Hy_j,41) allow us to say that we have written

T, * Hi_j, as a R—linear combination of normalizable expressions H}_, of length < k —h
with D(H}, ;) C 24414 D(ing1s - - - k) Ay A1+ Hht 1, - - - Ag) for the first term and
D(H,,_,) C pim + 24y — jozivh+1 + D(int1,s - 0)(An, Ant1 + fhs1,s - - - Ag) for the others.

We need to be more precise to prove D(Hj._,) C ptn, + D(ipt1, - 0k)(Any oo Ak).
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By the part I) of this proof and the hypothesis on 7, . |

can be written ZCATA s« H® with A = 1 + A where A € D(ipsa,. .. ir) Mgty -5 Ak)

*Hj,_(p41) we know that this element

A
ca € R, HN € Hr(W?). The first term of the right hand side of (E’) becomes:

A A
Tymin s 2y * T # (Q_eaTa x HY) = Ty oy % (O eaTypin # Ty % T HY).
A A
By the condition on umm and (BLT), we write it

O‘Zh+1 A)) A
Ty, +2p41 * < cA( Dy, \y T "”"Jrrth(A) Ty * H

Yippr ()~

G+1) _ *() A
T +2pm 41 * (ZCA( > (qzh+1 = @iy Tpimajoy, >>
A =0
The first term of thi ill be S epgy i , «T,,, + H® and
e first term of this sum will be » cag;, Nt 2 inry o * Lin an
A
Ab A+ 2ph1 + ™ 1 (A) = An 4 2pngn + "+ i (1) + 1 (D) = A+ s+
Tip, 1 (A') is an element of Ay + oy, + 74, (D(ing2, - .. ik) (A1, - - -, A)) which is included, as
eXpeCted) in Hh + D(ih+17 ih+27 e 7ik)()‘h7 )‘thla cee 7)‘]6)
iy (A)—1
. +1 *
The second term is ZCA< Z (qwfj+1 ) ql}ffl)T)\hH%HJmZunJrA —jey, | *HA>. And we
A j=0
see that in fact (E’) becomes (E”):
(g, g (Bhs1)) s, o (A)) A
qih+lh+l Tﬂh * Hk*h Zc Zh+1h+l T)\h+ﬂh+rih+1 (A’) * Eh-ﬁ-l * H
a'h+1(A)
*(G+1) () A
+ZCA Z (qlh+1 qlh+1)T)\h+2ﬂh+1+Hm"+A ]Oflh_H * H
=0

iy g (Bhg1)—1

_ *#(j+1) () _ A
ZCA Z (qlh+1 qzhﬂ)T)\h+%nm+2“h+1,jai>{+l *Thx H
7=0

*(alh+1(A A
- Z 1h+1 T)‘h+ﬂh+7’ih+1(/\/) * Tih+1 * H

*(j+1) *(4) A
+ZCA€AZ q2h+1 qlh+1)T)\h+2ﬂh+1+H2m"+A joy * HT,

th+1

where a;, , (Hpt1) < J < o 2h+1(A) 1 and en=11if O‘ih+1(:uh+1) < aih+1(A) (i.e. aih+1(A/) 2
0) and oy, (A) < j < i, (pry1) — 1 and ex = —1if oy (pny1) > ath(A) (i.e.
@iy, (A) < 0). For these values of j, by using A — ]oth_H = i (h1) + 7 alh+1 + A
with j" = i, (phe1) — J, we have Ay 424y 11 —i—uhmm—i—A jalhﬂ M+ pn+7 lh+1 + A If
iy (ng1) < iy (N, iy (1) — iy (A) +1 <7 <0 that is —ay,, (A) +1 <57 <0.
If ay, (hg1) > iy, (A), then oy, (pny1) — ayy (A) > 5 > 1 that is —ay,, (A) > 5" > 1.
In all cases, j’athH + A’ is between A" and 74, ,, (A') and so, as expected, Ap + 2pup41 + pp"" +
A—jaj € pht D(ingtsinsa, k) (Aps Angts o, Ak).

So we have proved that T),, * Hj can be written as a R-linear combination of normalizable
expressions Hj. of length < k and with D(H}) C po + D(i1,..., i) (Ao, A1,..., ). By
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the I) of the proof we can write it as a R-linear combination of elements T, % H, with

V€ﬂ0+D(i1,.. ) )(}\0,)\1,.. )\k) and H, GHR(WU)
Like in I) we can say, if moreover the decomposition 7;,7;, - - - r;, is reduced, that only the
*(alh+1 A . 1"
term Z G,y TAh+2ﬂh+1+ﬂT”+nh+l( *Tj,., * H™ (which contains Tj, . ) in (E") can

give us a term of lowest degree pp + A + 74, (Apg1) + -+ 74, - 74, (Ax). More precisely,
the term of lowest degree comes from the term with Ag = ppi1 + A1 + 70y, (Mpg2) + -+
Tipyo = Tip (k) for which we have o, (Ag) > i, (pny1)- So, it’s easy to see by induction
that the coefficient of that term is a primitive monomial in the g;, ¢;. i

Corollary 5.3. a) For A€ YT and p € Y sufficiently great, we have

T, T\ = ZAnguﬁQvA++ Tyqr x H” with H” € Hp(W?).

b) More precisely, if H” # 0 then u+v € YT and v is in the convexr hull conv(W?.\TT)
of WYXt or better in the convex hull conv(WY XTT, > X) of all W' AT for w' <, wy, with
wy the smallest element of WY such that A = wy AT,

¢) For v = \, H» is a strictly positive integer ay which may be written as a primitive
monomial in g;,q;, i € I (depending only on A).

d) In a) above, we may write H" = Yy a. /\Tw and, then each a’ )\ 1s a Laurent
polynomial in the parameters q;, q, with coefficients m 7., depending only on A and W.

Proof. Only the result ¢) is new (cf. Propositions 2.2 and 2.3), and we already saw that
the constant term in H? is in Z~o. We have to prove that H» € Hr(W?) is actually a
constant (for p sufficiently great). Write A = wy(A*TT) (with wy minimal in WY for this
property), choose a minimal decomposition wy = r; 4, -7, by corollary 4.3 we have
T\ =T * Ty * - % Ty o+ Thav * T;l * ek Tgl Then, by Proposition 5.2, for p great,
T, * T\ may be written as a R-linear combination of elements T}, * (HY * Tzzl - Tgl)
with v € D(i1,...,i£)(0,...,0,AT") and HY € Hr(W?) with term of lowest degree vy = .
Moreover H» = H 1)‘ * lel ERRRE Tgl is a primitive monomial in the ¢;, ¢..

To prove d), we remark that lel K oeee ok T;l may be written ZwEW“ ap Ty with a, €
Z[(gF")ier] and we apply 5.2 with H = T, O
Corollary 5.4. In "Hpg, for p € Y1+ the left multiplication by T,, 1s injective.

Proof. As T, 11, = Ty * Ty, for pi,pe € Y1, we may assume w sufficiently great. Let
H e "Hp\{0}. We may write H =37 ; Ty, « H’ with A; € Y and 0 # H/ € Hp(W"). We
choose Aj, minimal among the A; for <gv. Then T),«H = 3. ;> T,,, % HY  HY.
Hence vj, = p1+ Aj, is minimal for <gv and H"0° is a monomial in g;, ¢}; so H"90:70 x HJo =£ 0

and T}, * H # 0. i

Theorem 5.5. 1) For any A € Y, there is a unique X € "Hp such that: for all p € Y+
with A+ p € YT, we have T), * XN = Toip-
2) More precisely,

B+ <gvyj

A= b T\ + ZTU « H",

v
where H" € Hr(W?), v € conv(WPATH > X))\ {\} and by is a primitive monomial in
/—1
q‘ ?qz .
3) For A € Y*t, we have X» =Ty. For A\ XN € YT, X2« XV = XMV = XV« XA
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Remarks. :

a) We have two bases for the free right Hp(WV)—module {Hp, {T\ | A € Y} and
{X* | XA € Y*}. The change of bases matrix is triangular (for the order >¢v) with diagonal
coefficients primitive monomials in ¢g; 1,q2’~71. From 5.3.d we get that all coefficients of this

matrix are Laurent polynomials in the parameters g;, ¢}, with coeflicients in Z, depending only
on A and on W.

b) By 1) above and Corollary 5.4, it is clear that the left multiplication by X* is injective,
for any A € Y.

Proof. By Corollary 5.4, the uniqueness is clear and 3) follows from the relation Ty T}, = T4,
of the Theorem 2.4. We have just to prove 1) and 2) for a u € Y (chosen sufficiently great).

We argue by induction on the height ht(AT+ —X) of AT+ — X with respect to the free family
() in QY. When the height is 0, A = AT+ and X* = T). By Corollary 5.3, we write

TM * T)\ = a)\T,tL+>\ + Z T/J/_i_y * HY
)\SQvVSQv)\++;>\7£V
with H” € Hr(W") and v € conv(WY.ATT) hence v+ € conv(WY.ATT) (in particular

vt <gv AT ). ¢f. Lemma 1.8.a).
So ht(v™t —v) < ht(ATT — X). By induction and for p sufficiently great, we can consider

the element X" such that 7,4, = T}, * X”; we can write it X" = Z T, « H"'"
VSQ\/V,SQ\/V++

and we may take X* = a7\ — Z XV % H”)
)\SQvVSQv)\++;)\7£V

L < > < Yoo Ty H”’7”> * H”).

A<gvr<gy At Ay v<ovr'<gv v+

Proposition 5.6. For A € Y and i € I we have the following relations :
a; (A)—1

a) If a;(\) >0, then T; * X* = q:(ai()‘))X”()‘) * Ty + Z (q:(hﬂ) - q:(h))XA_ha;/.

h=0
b) If a;(N) < 0, then

i *(—ay *(—qy —ha
Ty« XA = q*(Tlm)Xr,(A) « T, — W Z (q@' (i) Fht1) _ az()\)+h))X)\ hay
‘ ‘ h=ai(X\)

N.B. These relations are the Bernstein-Lusztig relations for the X*, (BLX) for short.

Proof. If X € Y*+* by Proposition 4.8 a), we know that X* x T} + X* = X « T}
when ;(A) = 0 and, when a;(\) > 0, X* % T} + X* = q;kai()‘)X)‘+ri(>‘) * Ty + (q;(ai()‘)) -
q:(ai(k)—l))XAJr)\f(ai()\)fl)a;/ 4oy (q;k2 _ qi)XAJr)\fa;/ + (Qi _ 1)X)‘+)‘, so we have the result.
In the general case, A € Y, we write A\ = p — v with p, v chosen in Y *F. By Theorem 5.5,
XV % X» = X*. From (BLX) for X* and X¥, we have :
a;(A+v)—1
T« XH = qf(ai()‘ﬂLV))XT’i()\‘f'V) « T; + Z (q’f(thl) _ q’f(h))Xu-‘r)\—ha;/
7 7 7
h=0
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which can also be written

o (v)—
T, x XVTA — (th " Xu) + X = ( *(az(l/))Xn(u) * T, + Z *(h+1) *(h))Xl/ hay > X)\

h=0
a;(v)—

= q *( o (v ))Xr,(u) « T, x XA + Z h+1) q'(h))Xlﬁi’)\*th;/‘

h=0
If a;(A\) > 0, we obtain
o (A v)—1
q:(ai(y))Xri(V) * T * XA *(az(A-i—V))Xn(M) « T + Z h+1) qf(h))Xy.i_)\_haiV.
h=a;(v)
We take W' = h — «;(v), then XvHi-ha!  _ xv-aiaf+A-hel  _ xriw)+A-h'al apq
q;k(ai(th ) = q;ai(y)q;‘hl (by ¢; = ¢} if a;(v) is odd, and an easy calculation if o;(v) is even). So,
a;(A)—1
q:(ai(y))X”(V)*Ti*X)‘ _ q;‘(ai(V))XT‘i(l/) < (OCZ(A))XTZ()\ «Ti+ Z *(h/+1) q?‘(h/))XA—h’a;/>.
h'=0

And we are done thanks to the injectivity of left multiplication by X"i(*).
If a;(A) < 0, we obtain

a;(v)—1
(ozz(u))Xn(u) « T} % XN — (Oéz()\+V))XTz(>\+V) « Ty — Z (q:(h—f—l) B q:(h))XV"')‘_hO‘iv_
h=a; (A +v)
We have q;k(ai(y)) = q;(fai(A))q;k(al(Aer)) by an easy calculus if «;(v) and a;(\) are even and
because ¢; = ¢} whenever o;(v) or o;(\) is odd. So,
o (v)—1
ri(v r v *(h *(h v oy
X" 5 Ty XA = WX O T, qf<a1i<»>> > (" — M) x el and we
‘ h=a; (A +v)
have (because of the injectivity of the left multiplication by X" (*)):
a;(v)—1
r. * h+1 * h a;(v)— 04\./
E*XA:WXZ(A)*E_W Z (qi( )_qi())XAJr( (v)—h)a;
% % h=a; (A v)
-1
1 1 () — s ) — s v
= yriN) ""(az(V) a;(AN)+h+1) f"(Oéz(V) a;(N)+h) A—ho;
X ey 2 @ 4i )X
4q; 4; 4; h=a; ()
-1
1 1 *(—ay *(—ay —
— SEeY Xn()\) * z‘lz _ Y Z (ql( Z(A)+h+1) _ ql( Z(A)‘f’h))X)\ ha;l
(=i (X)) (=i ()
4q; 4q; h=a;()\)

O

5.7. The classical Bernstein-Lusztig relation. The module 6 : Q¥ — R is defined by
0 eraieyy) = Tler(@igl)™ |GR14, 5.3.2]. After replacing eventually R by a bigger ring
R’ containing some square roots \/q;,/q, of ¢;,¢} (with /g, = \/d., if ¢; = ¢}), we assume
moreover that there exists an homomorphism §%/2 : Y —> R*, such that S(A) = (6%/2(N\))? for
any A € QV and §'/2 (o)) = 4. \/7 In particular /g; i L and \/q_z are well defined in R*.
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In the common example where R = R or C, these expressions are chosen to be the classical
ones: §'/2(Y) C R%.

We define H; = (,/g;)"'T; and Z*» = 5~ /2(\)X* for A € Y. When w = 7y, -7y, is
a reduced decomposition, we set H,, = H;, * ---* H; ; this does not depend of the chosen
decomposition of w.

We may translate the relations (BLX) for these elements.

Proposition. For A\ € Y, we have the following relation:
Lai(k)—lJ O‘zo‘)J 1

Hix2h = 20VsHik Y (V@i — @ )z @ Z \/q’ \/q’ ) 7A@kt Do
k=0

Remarks. 1) This is the Bernstein-Lusztig relation for the Z*, (BLZ) for short.

2) In the following section, we shall consider an algebra containing /H g and, for any i € I,
an element Z~%" satisfying ZA~hei" = ZX « (Z_O‘iv)h for h € N, A, A — hay € Y*. In such
an algebra the relation (BLZ) may be rewritten (using that /g; = \/q. if o;()) is odd) as the
classical Bernstein-Lusztig relation (BL):

A _ gri(AN) ZA— ay — gri(\)— ay
Hix 2N = Z"WN s« Hy + (/@i — /G~ ) \/q: \/qj ~

— 7 20r) _7 20y
t tt —u!
ive. HixZ =2V H; = 0(\/Gi, /g 270 ) (22 =27 ) where b(t, u; 2) = ;_(UQ w)e
—Zz

This is the same relation as in [Ma03, 4.2|, up to the order; see below in 3).
3) Actually this relation (BLZ) is still true when A € Y and «a;(\) > 0 (same proof as
below). If a;(A) < 0, we leave to the reader the proof of the following relation:

_ai(A) _041 7
T« 2> = 27 « T, — ( Z < )Z)\Jrhal 4 Z ( /qi-qé Y qi-qz>ZA+ha;/>
h even,h=2 h odd,h=1 E

In the situation of 2) above, it may be rewritten
\ » — gri(\) Z)\—oz;/ _ Zri(A)—a;/
Hi * / ZT’,( * H (\/@ \/@ ) _ 7 2a \/q71 \/;z 1 — Z72a7}/
= b(\/Gis\/ 4 2™ ot BIAEPALL)
It is the same relation (BLZ) as above. Moreover, it’s easy to see in the first equality that
H;«Z*— 7"« H, = Z « H; — H; % 27V, Actually we shall see in section 6 that this same
relation is true for any A € Y in a greater algebra containing elements Z* for A € Y.

Proof. From Z* = §~1/2(\)X* and 6'/2(a) = \/4:-q, , we get
gA—hay 5 1/2(}\ ha )X)\ hay
- 5 1/2()\)(51/2( ))hX)\ hay

5RO (i) XA
By a@;(A) > 0 and (BLX) we have

a;(\)—

T, * Z)\ (az()‘)) ( /q g ) az(A)ZT’z()\) « T, + Z *(thl) qz*h)( /qu; ) (=h) Z)\—hozz"

h=0
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Moreover qfh = ¢iq.q;- -+ with h terms in the product so qfh = (\/qi.qg )h if h is even and
g = qi(\/qi.qg)(h_l) if h is odd. So, if a;(\) is even, we have

o (A)—2 (V)2
2 2
T 7 = 770N Ty 4 Z (gi — 1)Z>\f(2k)al\/ i (4id _qi)(\/qqu)—lz)\f(%ﬂ)aiv.
k=0 k=0
a; (A)—1
If a;(A) is odd, we have ¢; = ¢}, and we obtain T; % ZA = ZriN) « T, + Z (q; — 1)Z)‘_h°‘iv.
h=0

In both cases, by H; = (\/q;) T}, we get:
a; (V-1 a (N
[=e5—1 [=5=]-1

HZ'*ZA — gri(N) « H; + Z (\/@ B \/@—1)2)\—(2/6)04;/ + Z (\/(;; B \/qig—l)Z)\—(Qk—i—l)a;/.
k=0 k=0

O

6. BERNSTEIN-LUSZTIG-HECKE ALGEBRAS

The aim of this section is to define, in a formal way, an associative algebra BLH g, called the
Bernstein-Lusztig-Hecke algebra. This construction by generators and relations is motivated
by the results obtained in the previous section (in particular 5.6) and we will be able next to
identify /Hr and a subalgebra of XH (up to some hypotheses on R).

We use the same notations as before, even if the objects are somewhat different. This choice
will be justified by the identification obtained at the end of this section.

We consider A as in 1.2 and Aut(A) D W = WY x Y D W% with Y a discrete group of
translations.

6.1. The module 5%y . We consider now the ring Ry = Z[(o7™", a;il)ig] where the
indeterminates o;, o satisfy the following relations (as ¢; and ¢/ in 1.4.5 because in the further
identification, oy, o} will play the role of |/g; and \/qj)

If o;(Y) = Z, then o, = o}.

If r; and 7; are conjugated (i.e. if aj(a) = a;(a) = 1), then 0; = 0; = 0} = 0.

We denote by BLH g, the free Ri-module with basis (ZAHw)Aey,wer. For short, we write

H;=H,, H,=2H, and Z* = Z Hj.

Theorem 6.2. There exists a unique multiplication x on BLH R, Which makes it an associative
unitary Ry-algebra with unity Hy and satisfies the following conditions:
(1)VAEY Ywe WY Z« Hy, = Z*H,,,
(2)Viel YweW? H; « Hy, = Hyp if £(ryw) > (w)
= (0 — 0; D Hy + Hy o if £(riw) < £(w),
(3)VAEY Yuey ZN s« ZH = ZM 1
(J)¥YN €Y VYiel Hix2Z—2WN«H = bloy,0l; 274 (2> — 2"N); where

b(t,u; 2) = (o )z

Remarks 6.3. 1) It is already known (see e.g. [Hu90, Th. 7.1] or [Bo68, IV § 2 exer. 23|)
that the free submodule with basis (Hy)wew» can be equipped, in a unique way, with a
multiplication * that satisfies (2) and gives it a structure of an associative unitary algebra
called the "Hecke algebra of the group W over R;" and denoted by Hp, (W?).
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2) The submodule Hg, (Y) with basis (Z*)\ey will be a commutative subalgebra.

3) When all 0;,0! are equal, the existence of this algebra L is stated in [GaG95] and
justified by an action on some Grothendieck group.

4) This R;—algebra depends only on A and Y (i.e. A and W). We call it the Bernstein-
Lusztig-Hecke algebra over R; (associated to A and W).

6.4. Proof of Theorem 6.2. 1) The uniqueness of the multiplication x is clear: by associa~
tivity and distributivity, we have only to identify H,, « Z*. If w = ry, 7, ---r;, is a reduced
decomposition, then, by (2), (4) and remark 1), Hy, * ZH = H;, % (H;, * (--- % (H;, x Z")--+))
has to be a well defined linear combination of terms Z"H,, : H,, * Z" = ", ayZ"* H,, with
ar € Ry, vy € Y,u, € WY,

2) Construction of *. We define H,, * Z" as above and we have to prove that it does not
depend on the reduced decomposition w = 7,7, -+ - 15

a) We define L; € Endg,(PLHg,) by :

Li(ZFHy) = Hy % (Z'Hy) = Z"W (H;  Hy) + b(oy, 0 279 )(Z1 — 274 x H,,
where H; x Hy, = H,.,, if £(r;w) > (w) and H;* Hy, = (0 — 03 V) Hyy + Hy.p if £(r;w) < £(w).

By Matsumoto’s theorem [Bo68, IV 1.5 prop. 5|, the expected independence will be a
consequence of the braid relations, i.e.:

(*)  Li(Lj(Li(...(Z Hy)...))) = Lj(Li(L;(...(Z Hy)...))) (with m;; factors L on
each side), whenever the order m; ; of r;r; is finite.

As Hp, (W) is known to be an algebra, it is enough to prove (x) for w = 1. We may also
suppose a;(a;) # 0 as otherwise L; and L; commute clearly.

We choose 4, j € I with m; ; finite, then +o;, o generate a finite root system ®; ; of rank
2 (or 1if ¢ = j). Moreover, Y = ker(a;) Nker(a;) NY is cotorsion free in Y; let Y be a
supplementary module containing ;" and a]V». Y” is a lattice (of rank 2 or 1) between the

lattices ;/j of coroots and PZVJ of coweights, associated to ®; ;.

Any X € Y may be written A = N + )\ with \ € Y’ and \’ € Y”. By (4), L;(Z") = Z* H;
and Lj(Z)‘/) = ZV H;. So we have to prove (x) for A = \ € Y”. We shall do it by comparing
with some Macdonald’s results.

b) In [Ma03] Macdonald builds affine Hecke algebras H(W (R, L')) over R, associated
to any finite irreducible root system R and any lattice L’ between the lattices of coroots
and coweights; more precisely this algebra is associated to the extended affine Weyl group
W(R,L') = W(R) x L'. It is defined by generators and relations, but it is proven that it
is endowed with a basis (Y*T(w))xer/ wew (r) [l-c. ; 4.2.7] and satisfies relations analogous
to (1), (2), (3), (4) as above. There are parameters (7;);er and 79 which are reals (but may
be algebraically independent over @, so may be considered as indeterminates) and satisfy
7i = 7 if ai(a)) = aj(ey) = —1. The relation (4) is satisfied with 0; = 7; and o] = 7; when
a;(L') =Z, o} = 79 when «;(L') = 2Z.

c) In the case R = ®;j, irreducible, L’ = Y”, we may choose 7;,7; and 7y such that the
relations (4) are the same, for us and Macdonald: either a;(a)) = —1 or aj(ef) = —1, so
To = 0, Or Tp = O';. In particular R; may be identified to a subring of R. The operators L; and
Lj of both theories coincide on the elements Z*H, (identified with Y 7'(v) in Macdonald’s
work) for A € L’ = Y"” and v € (r;,r;). So (x) is satisfied as H(W (R, L)) is an associative
algebra.

n
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d) So, if H, * ZM =), apZ"* H,,, with a;, € Ri,v, € Y,u, € WY, we define the product
of Z H,, and Z*H, by: (Z Hy,) x (ZVH,) = >, apZ Ve % (H,, + H,). We get a distributive
multiplication on BXH g, with unit Hj.

3) Associativity.

a) Using the associativity in Hp, (Y') and Hg, (W") and the formula 2.d above, it is clear
that, for any A € Y,w € WV, Ey, By € BEH R, , we have:

(R1)  Z*x (B % E») = (Z* % Ey) * s,

(RZ) E1 * (EQ * Hw) = (E1 * Eg) * Hw-

We need also to prove (for Aj, A2 € Y, w,wy,wy € WY E € BL’HRl),

(A)  Hyx(ZM % 2%2) = (Hy, x ZM) * 272,

(B)  Hy, * (Hy, x E) = (Hy, * Hy,) * E.

Then the general associativity will follow : using (R1), (R2), (A), (B) and the formula 2d for
the product, it is not too difficult (and left to the reader) to prove that :

(ZMHyp,) % (22 Hyy) % (222 Hyy)) = ZM % (Hyy % (222 Huy) % Z79)) % Hyy
= ZM« ((H wy * Z)‘2 s (Hy, * Z23)) % Hyp,y
= ZM x ((Hy, Hw2))*Z’\3) * Hy,
= ((ZMHy,) = (ZMH o)) * (Z23 Hy,).

b) Proof of (B). This condition is equivalent to the fact that the left multiplication by
Hp, (W?) on BEHp, is an action. But the associative algebra Hpg, (W?) is generated by
the H; with relations the braid relations and sz = (0; — O';I)Hi + Hy. As L; is the left
multiplication by H;, we have (B) if, and only if, these L; satisfy the relation (x) in 2.a and

(x%) Li(Li(Z H,)) = (0; — 0; ") Ly(Z*H,) + Z*H,,.

As in 2b, we reduce the verification of (xx) to the case v = 1 and A € Y” (associated to
i=j)ie. A€ Y” =Qa/NY. Then we look at Macdonald’s construction of H(W ({£a;},Y"))
with 7; = 04, 70 = 0. We conclude, as in 2.c that (*x) is satisfied.

¢) The proof of (A) is by induction on ¢(w).
If w = r;, we have:
(Hy» 2% 5 2% = (2O H) 2 2%  (b{oy, 0 2 (2% - 2700) 5 2%
= 7" x (Zmi2) H, 4 (b(ois 0!y 27 ) (272 — 77 O2))) 4 b(0y, 003 Z %V)(ZMHQ 7m0 +Az)
— gria+i) f. +b(0, U . 7o )(Zn(h)-i-)\g Zn()\1)+n()\2))+b(o.z,o. 7oy )(Z)\1+)\2 Zri()\l)—I—)\g)
_ ZTZ()\1+>\2)H —|—b(0’,,0’ 7y )(Z)qu)\g _ Zrz()\1+>\2))
= H; * (Z)‘1 * Z)‘Q)
If the result is known when ¢(w) = n. Let us consider w = w'r; with /(w) = n + 1 and
(w') = n, then
Hy % (ZM % Z72) = Hyy x (H; x ZM7122) (left multiplication by Hg, (W?) is an action)
= Hy * (H; % ZM) % Z72) (case L(w) = 1)
= Hy * ((ZOVH;) % 222 + (b(0, 0); 2700 ) (20 — Z27i0))) 5 Z272).
On the other hand, we have
(Hy % ZM) % Z72 = (Hyy * (H; x ZM)) % Z72
= (Hy * (Z7"OVH; + b(oy, 0l 2700 (22 — Z7600)) 5 272
= (Hy + (ZiOVHy)) % 272 + (Hyy + (b(04, 0}; 27 ) (22 — Z7iO0)))) x 272
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The second term of the right hand side is a Rj-linear combination of (H,s * Z Atk )% Z2
and we see by induction that it is the same as Hyy  ((b(0y,0%; Z~% )(Z)‘1 77Oy 5 Z722)
in Hy, * (ZM x 272).

In the first term, (H, * (Z7OVH;)) « 222 = ((Hyy * 27O x Hy)) % Z*2, we can write
H,yx Z"i(M) = Dk ckZ)‘kHwk and we will use later in the same way H; % Z*? = YonoanZthHy,
with cg,ap € Ri, A\g, up € Y and wy, v, € WY, So, we have :

(g eu 2 Huy, ) 5 Hy) 5 22 = (3 cr(Z% # (Huy, + Hy))) + 222 (by (R2))

=31 ek ZM % (Hy,, + Hy) % 272) (by formula 2d)
S 2k (Hyy + (i 2%))  (by (B))

S (2 Hy )+ (H;+ 2%) (by (R1))

= Zk Ck(ZAk * Hwk) * (Zh ahZMthh)

= Zk,h Ckah(Z)\k * lec) * (Z'uh * th)

= 2o kan(((Z7  Hy, ) x Z00) % Hy, ) (by (R2))

= Y an((Hyr  Z2700) 5 Z00) + Hy, )

=3 an((Hyy + (2700 5 Z0)) « H,, ) (by induction)
= Y anHuy + (Z70) « Z1m) « Hy,) - (by (R2))

= Hy * (Z7) « (H; + Z72)). (by (R1))

This corresponds to the term Hyy % ((Z7 M) H;) % Z*2) in Hy, % (ZM % Z*?) so we obtain the
equality when £(w) =n + 1. O

6.5. Change of scalars. 1) Let us suppose that we are given a morphism ¢ from R; to a
ring R, then we are able to consider, by extension of scalars, P/Hr = R® RIBLH R, as an
R-associative algebra. The family (Z)‘Hw))\eyﬂﬂewv is still a basis of the R-module BLH p.
2) In order to consider elements similar to the X* of section 4, we are going to define a
ring Rs containing R; such that there exists a group homomorphism 6%/2 : Y — R with
§(\) = 6Y2(\)? for any A € QY and §'/%(aY) = 0y.0!.

Since Q" is a submodule of the free Z-module Y, by the elementary divisor theorem, if we
denote m the biggest elementary divisor, then for any p € Y N (QV®zR), we have mu € QV.
Let us consider the ring Ry = Z[(r; =, 7/ )icr] (with 75,7/ satisfying conditions similar to
those of 6.1) and the identification of Ry as a subring of Rz given by 7/* = o; and 7" = 0.
Then, for A € Y we have mA = }_,_; a;jo) + Ao with the a; € Z and A\ ¢ QV®zR and we
can define §'/2(\) = ILie 1(7;7])* and obtain a group homomorphism from Y to Rz, with the
wanted properties.

n BE g, let us consider X = 51/2()\)Z)‘ for A € Y and T; = 0;H; = (1;)™H;. It’s easy
to see that T\, =15, « T}, *---x 15 is independent of the choice of a reduced decomposition
iy Tiy - - T, Of w. It is clear that the family (X*+T,, Jaey,wew is a new basis of the Rz-module

3) We can give new formulas to define * in terms of these generators. The relation (4) of the
definition of PXH g, can be written as previously :

If a;(A\) > 0, then

a’z(>\) 1 a, )\) 1
(BLZ+) H;xZ*=2Z"Ms«Hi+ Y ( HzA kel 1 NT (0] — o Tz ke
k even, k= 0 k odd, k=0

If a;(A) < 0, then
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—a;(N) —a; (A)
(BLZ—) Hix2 =2"NsH;— > (05—0; N2 — N7 (o] — o] Tz MR
k even, k=2 kodd, k=1
With the same arguments as in 5.7, these relations (after changing the variables and writing
(62)*" = 620!%020]% - - with n terms in this product) become :
a;(A)—1
(BLXH) T au(A) > 0, then TeX? = (o) O XMyt 37 (o041 — (o2 0) XA
h=0

(BLX—) If a;(A) < 0, then,

TZ'*XA - (0-2)*(304()\)) X7"i(>\) *Ti— (0.2)*&%'()\)) Z ((U?)*(iai()\)Jthrl) _qi*(_ai(k)—i_h))X)\_hay.
! ' h=a;(\)

The other formulas give easily:
(2)Viel YweW? T; % Ty = Ty if L(rjw) > L(w)
= (02 = )Ty + 02T}, if £(r;w) < f(w),
(BYVAEY VueY XMk XF=XMe
In all these relations, we can see that the coefficients are in the subring Ry = Z[(JZTJEQ, o' Fiel]
of Ry. So, if we consider XX H . the Ry—submodule with basis (X* *Tw)rey,wew, the mul-

tiplication * gives it a structure of associative unitary algebra over Rs.

6.6. The positive Bernstein-Lusztig-Hecke algebra. If we consider in BXXHp,, the
submodule with basis (X* * T,,)xey+ wewe, it is stable by multiplication * (in (BLX+) and
(BLX—) if A € YT all the A & ha) written are also in Y). We denote by BL’HJISQ this

Ry—subalgebra of PXX%Hp, . Actually, we can define such positive Hecke subalgebras inside
all algebras in 6.5.

Like before, if we are given a morphism ¢ from Ry to a ring R, we are able to consider, by
extension of scalars, B L’HE = R®p, BLHEQ. Let us consider the ring R of the section 4 (such
that Z C R and all g;, ¢, are invertible in R), we can construct a morphism ¢ from Ry to R by
$(02) = ¢; and ¢(0'7) = ¢/. So, we obtain an algebra BLyE with basis (X* « Ty) ey + wewe
and the same relations as in 'Hp. So :

Proposition. Over R, the Iwahori-Hecke algebra 'Hp and the positive Bernstein-Lusztig-
Hecke algebra BL?—[}; are isomorphic.

Remark. BXX%p is a ring of quotients of BL?-L}; ~ "Hp as we added, in it, inverses of
the X* = Ty for A € YT+, Actually, from 5.2, 5.4 and similar results, one may prove that
S = {T\,\ € YT} satisfies the right and left Ore condition and that the map from BL’HE to
the corresponding quotient ring is injective (see e.g. [McCRO1| 2.1.6 and 2.1.12).

6.7. Structure constants. From Proposition 6.6, we get that the structure constants of the
convolution product * of /Mg, in the basis (X* * T,) Aey+ wewv, are Laurent polynomials in
the parameters ¢;, ¢}, with coefficients in Z, depending only on A and W. By Remark 5.5.a,
we get the same result for the structure constants in the basis (T) * Ty ) ey + wew» and then
still the same result for the structure constants ay, , in the basis (Tw)wew+ (by 4.5).

This last result is not as precise as the one expected in the conjecture of § 2. But there is
at least one case where we can prove it:

Remark. Suppose .# is the hovel associated to a split Kac-Moody group G over a local field
K, ¢f. [GR14, § 3]. Then all parameters g;, g, are equal to the cardinality ¢ of the residue field,
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moreover we know that each ay, , is an integer and a Laurent polynomial in ¢, with coeflicients
in Z, depending only on A and W. But, as G is split, the same thing is true (without changing
A and W) for all unramified extensions of the field K, hence for infinitely many ¢. So the
Laurent polynomial ay, , is an integer for infinitely many integral values of the variable g: it
has to be a true polynomlal.

7. EXTENDED AFFINE CASES AND DAHAS

In this section, we define the extended Iwahori-Hecke algebras and explore their relationship

with the Double Affine Hecke Algebras introduced by Cherednik.

7.1. Extended groups of automorphisms. We may consider a group G containing the
group G of 1.4 and an extension to G of the action of G on .#. We assume that G permutes
the apartments and induces isomorphisms between them, hence G is equal to G. N where
N O N is the stabilizer of A in G. This group N has almost the same properties as the group
N described in 1.4.4 above. But we assume now W = v(N) C Aut(A) only positive for its

action on the vectorial faces; this means that the associated linear map W of any w € W is in
Aut™(AV). We assume moreover that W may be written W = W? x Y, where W? fixes the
origin 0 of A and Y" is the same group of translations as for G (cf. 1.4.4 above) In particular,

W is isomorphic to the group {@ | w € W} and may be written W¥ = Q x W (¢f. 1.1
above); moreover W = Qx W, where Q is the stabilizer of C% in W". Finally, we assume that

G contains the fixer Kerv of A in G; so that G <t G is the subgroup of all “vectorially-Weyl”
automorphisms in G and G/G ~ Q.

As W is positive, G preserves the preorder < on .#. So Gt = -{g € G | 0<g.0} is a semi-
group with GTNG=G*. And WH=Qx W+ =W'x YT C Wisalso a semigroup, with
WHnw =wt.

7.2. Examples: Kac-Moody and loop groups. 1) One considers a field K complete for a
normalized, discrete valuation with a finite residue field (of cardinality ¢). If & is an almost
split Kac-Moody group-scheme over IC, then the Kac-Moody group G = &(K) acts on an
affine ordered hovel .#, with the properties described in 1.4. See [Ro12|, [GR14, § 3| in the
split case (where all g;, ¢, are equal to ¢) and [Chal0|, [Chall| or [Ro13] in general.

2) Let &( be a simply connected, almost simple, split, semi-simple algebraic group of rank
r over K. Its fundamental maximal torus T is Q ®zMult, where Q (resp. Fy') is the coroot
lattice (resp. coweight lattice) of the root system &g C V; with Weyl group W.

Then some central extension by KX of (a subgroup of) the loop group &g (K[t,t71]) x K>
(where z € KX acts on &q(K[t,t71]) via t +— xt) is G = &(K) for the most popular example
& of an untwisted, affine, split, Kac-Moody group-scheme over K. Its fundamental, maximal
torus ¥ is Mult x Tp x Mult =Y ®z Mult, with cocharacter group Y = Zc @ QY @ Zd, where
¢ is the canonical central element and d the scaling element.

The set @ of real roots is {ag +nd | g € Pog,n € Z} in the dual V* of V =Y @z R =
Re @ Vy @ Rd, where d(ac 4+ v + bd) = b and ag(ac + vg + bd) = ap(vg). The corresponding
Weyl group W is actually the affine Weyl group W = W x QY acting linearly on V; its
action on the hyperplane d + Vj of V/Rc is affine: W acts linearly on Vj and QY acts by
translations. The group G is generated by 7' = T(K) and root groups U, ~ K = 2000(K) for
a € ®; if a = ag + nd, then U, = U, (t".K).
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The fundamental apartment A of the associated hovel is as described in 1.2 with W =
W x Y containing the affine Weyl group W = W¥ x QV, with QV = Zc¢ @ Q.

This is the situation considered in [BrKP14]. We saw in [GR14, Rem. 3.4] that our
group K is the same as the K of [BrKP14]. It is clear that the Iwahori group I of Le. is
included in our group K;. But from 1.4.2 and [l.c. 3.1.2], we get two Bruhat decompositions
K= I—leW” Krw Ky = Llwer IT.w.I. So K; = I and, in this case, our results are the same
as those of [.c.

3) Let us consider a central schematical quotient &gy of &¢g. It is determined by the
cocharacter group Yo of its fundamental torus Topo: Qf C Yoo C Py and Tpo = Yo @z Mult.
The root system ®g C V; and the Weyl group W§ C GL(Vp) are the same.

We get a more general untwisted, affine, split Kac-Moody scheme &; by "amalgamating"
® and the K—split torus T = Y; ®z Mult (with Y7 = Zc @ Yoo @ Zd) along T. A little
more precisely the Kac-Moody group G; = &1(K) is a quotient of the free product of G and
Too = Too(K) = Yoo ®z K* by some relations; essentially Tpg normalizes T" and each U, (hence
also G) and one identifies both copies of Tp, c¢f. [Ro12, 1.8]. The new fundamental torus is ¥;.
We keep the same V, ®, WY A and .#, but now W7 =W"x Y, D W D W€

4) We may consider a central extension by K of (a subgroup of) the loop group &og(K[t,t71])x
K*. We get thus an extended Kac-Moody group Go (not among the Kac-Moody groups of
[T87] or [Ro12]) which may also be described by amalgamation: G is a quotient of the free
product of G and Ypo ®z K[t,t71]* by relations similar to those above; in particular the con-
jugation by A ® xt" sends Ung4ps 10 Ungt(prna(r))s- The group Go contains G4 as a normal
subgroup, its fundamental torus is 77 = Y7 ®z K, with normalizer NQ =N Gy (T1) containing
Yoo ®z K[t, t~ ] O Yy @y t% =: Yoo,

The group G2 is generated by t¥0 and G (which contains Ny = No NG D tQO)
particular Go /G1 ~ Yy0/Q. We keep the same V and @, but now the corresponding Vectorlal
Weyl group is W; = Ny /T = W§ x Y. As in 1.1, we may also write Wﬁ’ = Q9 x WY, where
)y is the stabilizer in W; of C}). It is well known that €5 is a finite group isomorphic to
Y00/Qy; it is isomorphic to its image in the permutation group of the affine Dynkin diagram
of Bgg or B¢ (indexed by I) and acts sunply transitively on the special vertices of this dlagram

It is not too difficult to extend to G2 the action of GG; on the hovel .#. The group N2 is the
stabilizer of A; it acts through W2 W2 X Y] D W D W% We are exactly in the situation of
7.1 with (GQ,Gl).

5) We may get new couples (éj, G) satisfying 7.1 for the same hovel .#:

We may enlarge Go and Gy by amalgamating them with 75 = Y3 ®z K along T3 (or with
Tooo = Yoo ®7 K> along Too), where Yyo C Yoo C POV and Y3 = Z(l/m)c ® Yooo € Zd, with
m € Z~qo. Then Wg’ = Wﬁ’, Q3 = Qo, Wg = Wﬁ’ X Y3 and Gy is still a Kac-Moody group with
maximal torus T5. B N

We may keep G; (or G3) and take a semi-direct product of Gy (or Gs) by a group I’
of automorphlsms of the Dynkm dlagram of &g, stabﬂmng Yoo (or Ypo and Ypoo). Then
W4 —FMWQ,Q4—FD<QQ andW4—W4 X Y5 (orW4—W4 X Y3).

6) We may also add a split torus as direct factor to any of the preceding groups C~¥, or Gy,
enlarge .# by a trivial euclidean factor of the same dimension as the torus and add to W and
2, as a direct factor, any automorphism group (possibly infinite) of this torus.
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7.3. Marked chambers. We come back to the general situation of 7.1. We want a set of
"geometric objects" in .# on which G acts with the Iwahori subgroup K7 as one of the isotropy
groups.

1) A marked chamber in the hovel .# is the class of an isomorphism ¢ : A - A € A
sending the fundamental chamber C”L to some local chamber C,, modulo the equivalence
01~ o == IS € Cf,p1]ls = pa|s. It is simply written o : Cf — Cy; this does not depend
on A.

The group G permutes the marked chambers; for g € G and © as above, g.¢o = ¢ if, and
only if, g fixes (pointwise) C,. In particular the isotropy group in G of Cg‘ =1d: C+
CJcAcfisKICG.

A local chamber of type 0, C, € CKOJF determines a unique marked chamber 53 : CO+ — Oy
(said normalized) which is the restriction of some ¢ € Isomy (A, A) (cf. 1.11). These
normalized marked chambers are permuted transitively by G.

2) A marked chamber is said of type 0 if it is in the orbit under G of any of those CO So
the set ‘€+ of marked chambers of type ( 0is G /K g
By hypothesis G may be written G.€, where Q = v~ LQ) c N stabilizes Cy (considered
as in .#) and induces €2 on it. So CKO'F —{C,=Cl w|C, € Gy w € Q).

7.4. W—distance. 1) Let Cy Car — Cy, CN'y : C’SL — Cy be in %NOJF with z<y. There is an
apartment A containing C, and Cy so @C,éy may be extended to p,1 € Isom(A, A). We
"identify" (A, Cy) with (A, Cy) via ¢. Then ¢~ 1(y)>0 and, as C, 5y are in a same orbit of
C~¥, there is W € W such that 1) = p ow. This w does not depend on the choice of A by
1.10.c.

We define the W — distance between the marked chambers 5’36 and 5y as this unique element:

dV(C,,C,) =w € W+. So we get a G—invariant map
VG x< G ={(Cr,Cy) €6 X G sy} - W

2) For (Cy,Cy) € €, X< 6y, we have dW(ég,ﬁg) = gW(Cgc, Cy) aild, more g~enerally, for
Wy, wy € £, we have (%9 ow, 1,0 ow,t) € Gy x< €, and dV(CQ o wt,CYow ) =
we.dV (Cy, Cy) .yt € W, For (éx,éy) € %NO"' X< ‘€~0+ and wy,wy, € €, we have also
AV (Cpow;t,Cyo wy 1) = we.dV (C,, C~'y).wy’1 e W,

We deduce from this some interesting consequences:

3) If CN'x,éy,CN'Z, with x<y<z, are in a same apartment, we have the Chasles relation:
dV(C,,C., ) = dW(Cx,C ) dW(Cy,C’ )

4) For (CJC,C ) € CKJF x< G5, if C, (resp. éy) is normalized, then dw(éx,éy) e Wt if,
and only if, C (resp. ém) is normalized.

5) For (Cx,C ) € C€~0+ X < ‘€~0+, then dW(éw,éy) —weN — 5’y = C, ow; in particular
C is uniquely determined by 5’36 and w, moreover Cy = C,.

6) If (Cy,Cy) € €y x< %y and dV (Cy, Cy) =1; € WP (resp. =X € Y1) and w € , then
dV(CYow™1, CN'O ow ™) =wriw ! =7y (resp. = w(A) € YT), where we consider the action
of Qon I (resp Y).

7) When C, = C and C'y =g. C’Jr (with g € G1), then dW(Cm,C’ ) is the only w € W+

such that g € K;.w.K. There is a Bruhat decomposition G = Ui+ K1-w K.
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The W—distance classifies the orbits of K on {5y € CKEF | y>0}, hence also the orbits of
G on ‘€0+ X< %OJF .
7.5. The extended Iwahori-Hecke algebra. 1) We define this extended algebra for G as
we did in § 2 for Gt B N

To each w € W™, we associate a function T : CKO'F X< CKOJF — R defined by

Geno 1 itd"(C. 0 =w,
Ts(C,C) = { 0 otherwise.

And we consider the following free R—module of functions CKNOJF X< C€~0+ — R:

Iﬁf ={p= Z azTs | aw € R, ag = 0 except for a finite number},
weWw+
We endow this R—module with the convolution product:

(p* ) (Ca, Cy) = Z P(Ca, C2)Y(C, Cy).
C.

where 52 € C€~0+ is such that x < z < y. This product is associative and R—bilinear. We prove
below that it is well defined. N

Asin § 2, we see easily that 7-[‘}{ is the natural convolution algebra of the functions G — R,
bi-invariant under K; and with finite support.

2) For w € Q, w € W, the products T, * T and Tg * T,, are well defined: actually
T,xTsz =1, and T x T, = T, see 7.4.3 and 7.4.5.

3) As the formula for ¢ * ¢ is clearly G—invariant, we may fix C, normalized to calculate
@ * ). From 7.4.4, we deduce that, when w,v € W, Ty, * T, may be computed using only
normalized marked chambers. So it is well defined and the same as in ! ’Hﬁ .

From 2) we deduce now that the convolution product is well defined in ! 7—7% :

Proposition. For any ring R, I’I-Nlﬁ s an algebra; it contains I?—lf as a subalgebra.

Definition. The algebra ! ﬁ){ is the extended Iwahori-Hecke algebra associated to .# and G
with coefficients in R.

7.6. Relations. 1) From 7.5 we see that I’I-Nlﬁ contains the algebra R[] = ®,eq R.T,, of the
group 2. Moreover, as an R—module, Iﬁf is a tensor product, Iy — R[Q] @R I’Hﬁ: we
identify T, w = T}, * T and T, ® Tiy for w € Q and w € WT.
The multiplication in this tensor product is semi-direct:
(T @Tw) (T @Ty) =Ty Ty x Ty x Ty =Ty o x Ty
=Toww *Ty =Ty x Ty xTy =T, 0 @ (Tw’ * Tv)
where w' = ' waw’ = ' H(w) € W,
In particular, we get the following relations among some elements:
2) Forwe Q,we W', T, Tw* T, =T, w),
if moreover w = r; € W, w(r;) = 1) hence T, « Ty« T, = T,
ifnoww=Ae YT T, «T\*T;' = Wy, With w(A) e Y.
3) From 5.5.1 and 2) above, it is clear that T, * X* + T;! = X*W if w € Q and A € Y+
(as Q stabilizes YT =Y N C?).
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4) As the action of Q on A is induced by automorphisms of .#, we have ¢; = o (i) and
q = qi}(i) for w € Q and ¢ € I. We may also choose the homomorphism §'/2 : Y — R* of 5.7
invariant by Q (for R great enough). So, for w € Q, w,r; € W and A € Y, we have:

T,*Hy,+T;' =H Tw*Hi*Tujl:H(l-) and T>|<Z’\>|<T1 Zw),

w(w) > w

7.7. The extended Bernstein-Lusztig-Hecke algebra. Notations of 7.1 are still in use.
But we no longer assume the existence of a group G or G. The group W = W' x Y w
satisfies W = Q x W and the conditions of § 6.
We consider the rlng R = 7|5+, (64)*1)ic1), where the indeterminates &;, 5, satisfy the
same relations as 0y, 0} in 6.1 and the following additional relation (see 7.6.4 above):
If w(i) = j for some w € Q, then ¢; = 7; and 7] = 7.
We denote by BLﬁﬁ the free R—module with basis (TWZAHw)w€Q7A€Y7w€WU and write

H,=T,72H,, H; =T1Z°H;, Z» = T1Z*H, and T, = T,,Z°H,.

Proposition. There exists a unique multiplication * on BLyq 5 Which makes it an associative,
unitary R—algebra with unity Hy = Ty = Z° and satisfies the conditions (1), (2), (3), (4) of
Theorem 6.2 plus the following:

(5) FOTW,W’ eQieland ey, T «T, =1, Tw*TZ'*Tw_l =T, w(i) s T, *T)\*T =dyn)-

Proof. As E—modules, BL7-[§ = }NE[Q] ® BIH 7> where the homomorphism R; — R is given
by o; — G;,0) — &!. Now the multiplication is classical on R[(2], given by 6.2 on BLH 7 and
semi-direct for general elements. i

Definition. This R—algebra BLﬁ depends only on A, Y and Q (i.e. on A and /VI\;) We call
it the extended Bernstein-Lusztig- Hecke algebra associated to A and W with coefficients in R.

As in 6.6, we may identify, up to an extension of scalars, a subalgebra BL’HE of BL’H@ with
the extended Iwahori-Hecke algebra ! 7—71{ :

7.8. The affine case. 1) We suppose now (AY, W?) affine. So there is a smallest positive
imaginary root § = Y a;c; € A} C QF satisfying 6(a) = 0,Vi € I and a canonical central
element ¢ = )" a/ay € QY satisfying a;(¢c) = 0,Vi € I. In particular § and ¢ are fixed by W?
and W°.

As 0 € QT, it takes integral values on Y. For n € Z, we define Y = {A € Y | §(A) = n}
which is stable under W and W?. We have Y = Unez Y™ and Y = (|, Y™) Y, with
YP=Y'NYT =Y NQc We write \. = (1/m)c a generator of Y (with m € Z-q). As
6(QY) = 0, we have 6(\) = d(u) whenever p<qvA or u<pvAin Y.

2) Considering 2.2 and 5.5.2, we get the following gradations of algebras (for a suitable R):

17_[1? _ @ IH]{"
n>0
where /H{™ has for R—basis the Ty T, (resp. X**T,,, Z*x H,) for A € Y™ (in Y2 if n = 0)
and w € W".

Iﬁ}}%’ _ @ Iﬁgn

n>0
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where Iﬁf" has for R—basis the T}, * Ty * Ty, (resp. T, % X* * Ty, T,y % Z* x Hy,) for w € Q,
AeY™ (VP ifn=0)and we W,

n
BLyp = @ BLHR17

nezl
where BL’H%I has for Ry—basis the Z H,, for A € Y™ and w € W?.

BLﬁ @ BLHRa
nez

where BL?-?% has for R—basis the T,Z* H,, for w e Q, A € Y™ and w € W?.

These gradations are compatible with the identifications explained in 6.6 or 7.7.

3) For any C,, € CKNOJF and any A € Y = Z)\,, there is a unique 5y € C€~0+ with dV (C,, 5y) =
A: the translation by A in A stabilizes all enclosed sets and extends to .# as a translation
in any apartment. From this we see that T\ x T, = Thy, = T, * Ty (for p € YT),
Ty *x Xt = XMP = Xt Ty (for p € Y) and T\ x Ty = Thy = Twr = T * Ty (for
w € W"). Such a T) is central and invertible in IHR 7—[‘% BLY R, or BL’I-N[ﬁ.

Actually / Hep 20 is the tensor product R[Y ] ®@r Hr(W?) with a direct multiplication (factor
by factor) and ki 7-[ R[Y?] ®@r (R[] @ g Hr(W?)) with a semi-direct multiplication.

7.9. The double affine Hecke algebra. The subalgebra BLﬁ% is well known as the Chered-
nik’s double affine Hecke algebra (DAHA). More precisely in [Che92| and [Che95|, Cherednik
considers an untwisted affine root system, as in [Ka90, Ch. 7|; but, as he works with roots
instead of coroots, we write ®V this system. He considers the case where W is the full ex-
tended Weyl group (W¥ = W x Py with the notations of 7.2) i.e. Q ~ P /Q acts on the
extended Dynkin diagram, simply transitively on its “special” vertices. His choice for Y is
YO = Z.(1/m)c®d Py C PV (and Y = Y @ Zd e.g.), where m € Z>; is suitably chosen.
He then defines the DAHA as an algebra over a field of rational functions C(d, (¢»)vecyy,) with
generators (71})ier, (Xﬁ)ﬁepa/ and some relations. It is easy to see that this DAHA is, up

to scalar changes, a ring of quotients of our BL’I-N[O’R (for A, W as described above): actually
J stands for our Z*¢. Here is a partial dictionary to translate from [Che92] and [Che95] to
our article: roots <+ coroots, Xg ZP T, — H;, g — o5, I = Q, 7. — T, d — T, and
é = ém = Tc~

In [Che92| there is another presentation of the same DAHA using the Bernstein presentation
of Hr(W?). This is also the point of view of [Ma03|, where the framework is more general.
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