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Summary

This work deals with some parametric and semiparametric modeling approaches for count

data distributions related to development of spiraling whitefly which is an insect pest

collected in Brazzaville, Republic of Congo. In this study, the count data distributions are

assumed to be modified Poisson probability mass functions. For the discrete semiparametric

associated kernel estimator investigated, its almost sure consistency and asymptotic

normality are shown under some asumptions. Some weighted Poisson models (WPD) are

applied in comparison with the semiparametric approach for finite samples characterizing the

growth of spiraling whitefly. Finally, the discrete semiparametric estimation is simple and

effective for estimating any count distribution while WPD are practically more meaningful.

Key words: count data; discrete associated kernel; semiparametric estimation; weighted

Poisson distribution.

1. Introduction

The spiraling whitefly (Aleurodicus dispersus Russell) is an insect pest which causes

damage to plants by sucking the sap, decreasing photosynthesis activity and drying up the

leaves. This insect comes originally from Central America and the Caribbean islands, and

is now present in the Congo-Brazzaville. Congolese biologists are searching for a suitable

method for modeling data related to the growth of this insect. Thus, some experimental

populations were raised on plantations of several host plants, among them some fruit trees

well-known in the Congo, such as safou (Dacryodes edulis), mango (Mangifera indica) or

citrus (Citrus paradisi); see Kiyindou et al. (1999), Miz�ere et al. (2008) and Miz�ere (2007).

These plantations consisted of young trees (5 to 6 months old) under varying conditions of

temperature and humidity, and the observations were made using a binocular loupe. The

development of the insect parasite studied is described by the following count explanatory

variables observed in days: the preimarginal development time from egg to adult stage, the

total number of days of egg laying and the longevity of the adult insect. These count data

deviate from the equidispersion assumption; thus it becomes necessary to use suitable count

estimation models for under- or overdispersed data and the standard framework provided by

the Poisson model is not sufficient. In order to express the deviation from classical Poisson

*Author to whom correspondence should be addressed.
1D�epartement Recherche et D�eveloppement, Centre ONF de Nancy, Velaine en Haye, F-54840, France.

e-mail: tristan.senga-kiesse@onf.fr
2Facult�e des Sciences, B.P. 69 Brazzaville, Congo. e-mail: dmizere@yahoo.fr

Acknowledgements. The authors are grateful to the Associate Editor and two anonymous referees whose

comments improved this paper.

1



models, any count data distribution f , on the set N of non-negative integers, can be formu-

lated as a weighted Poisson distribution (WPD) such that

f ðxÞ ¼ pðx; lÞ � xðxÞ; x 2 N; ð1Þ

where pðx; lÞ ¼ lx expð�lÞ=x! is the Poisson probability mass function (p.m.f.) with

mean parameter l[ 0 and xðxÞ is the nonnegative normalized Poisson weight function.

When the discrete function x does not represent the real recording mechanism, or is not

well-specified, it is better to allow the count data to yield an estimate of this weight func-

tion by a nonparametric method. This opens the way for semiparametric modeling which

consists of the construction of an estimate bp of the standard Poisson p.m.f. p multiplied

by a nonparametric kernel estimate of the function x ¼ f =bp. The nonparametric estimate

plays the role of a correction factor of the parametric estimate and intrinsically takes into

account special features of the counting phenomenon such as overdispersion (or underdi-

spersion) and zero-inflation (or zero-deflation); see Kokonendji et al. (2009). For compari-

son, several WPD are investigated as alternatives to the parametric Poisson model

classically applied for count data by specifying different discrete Poisson weight functions

x. Indeed, these weighted versions of the standard Poisson distribution allow us to take

into account the counting phenomena mentioned previously. More precisely, some trun-

cated and translated Poisson distributions, are investigated. Finally, the semiparametric

estimation procedure and WPD are applied to count datasets related to the growth of spi-

raling whitefly in plantations of citrus trees. The advantages provided by each method are

investigated with respect to the goodness-of-fit, the new information on insect growth and

the meaningfulness of the results in these applications.

The rest of the paper is organized as follows. Section 2 presents the discrete semi-

parametric kernel estimator using the Poisson p.m.f. as the start function, then WPD are

also presented. Basic properties of discrete kernel estimator studied are shown; in particu-

lar, mathematical results on the strong consistency and asymptotic normality of the estima-

tor are formulated. Section 3 contains the results of applications of the parametric and

semiparametric methods. Concluding remarks are given in Section 4.

2. Semiparametric estimation models and weighted Poisson distributions

Let us recall some notions about discrete semiparametric kernel estimation and WPD.

2.1. Semiparametric kernel estimation

For the semiparametric procedure, the discrete Poisson weight function xð�Þ in (1) is

not specified; thus, a discrete nonparametric kernel estimator of xð�Þ is used in addition to

a parametric estimate of pð�; lÞ.

2.1.1. Estimator

Let X1;X2; . . .;Xn be a sample of independent observations with an unknown count

distribution f as in (1). A discrete semiparametric estimator of f is proposed by Kokonendji

et al. (2009) as the combination of a parametric estimator bpðxÞ ¼ pðx; blÞ of p followed by

a nonparametric kernel estimator bxnðxÞ of xðxÞ ¼ f ðxÞ=bpðxÞ, such that we have
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bfnðxÞ ¼ bpðxÞ � bxnðxÞ ¼
1

n
pðx; blÞ

Xn

i¼1

Kx;hðXiÞ

pðXi; blÞ
; x 2 N: ð2Þ

The estimator bl ¼ n�1
Pn

i¼1 Xi is the sample mean, the bandwidth h ¼ hðnÞ[ 0 is an

arbitrary sequence of smoothing parameters that fulfills lim
n!1

hðnÞ ¼ 0, and the discrete

associated kernel Kx;hð�Þ of the random variable Kx;h is a p.m.f. with support Sx (included in

N) satisfying the following hypotheses:

H1 lim
h!0

EðKx;hÞ ¼ x and

H2 lim
h!0

VarðKx;hÞ ¼ 0:

The two previous quite general assumptions can be replaced by

H10 Pr ðKx;h ¼ xÞ ¼ 1� hAðKx;hÞ þ Oðh2Þ and

H20 Var ðKx;hÞ ¼ hVðKx;hÞ þ Oðh2Þ;

with
P

y2Sxnfxg
PrðKx;h ¼ yÞ ¼ hAðKx;hÞ þ Oðh2Þ ! 0 as h ! 0. Indeed, one can verify

that the hypotheses H10–H20 lead to H1–H2 and are also less general. Note that the

expressions for A and V are related to the chosen discrete kernel Kx;h but do not depend

on x and h as we will see in the following example.

Example of a discrete kernel. For (x,a) 2 N�N and h[ 0, Kokonendji et al. (2007)

present the symmetric discrete triangular kernel which is associated with random variable

(r.v.) Ka;x;h on support Sa;x ¼ fx; x� 1; :::; x� ag and whose p.m.f. is given by

PrðKa;x;h ¼ zÞ ¼
ðaþ 1Þh � jz� xjh

Pða; hÞ
; 8z 2 Sa;x;

with Pða; hÞ ¼ ð2aþ 1Þðaþ 1Þh � 2
Pa

k¼1 k
h the normalizing constant. This associated

kernel satisfies the assumptions H10 and H20, and consequently H1 and H2, since we have

PrðKa;x;h ¼ xÞ ¼ 1� 2hAðaÞ þ Oðh2Þ and VarðKa;x;hÞ ¼ 2hVðaÞ þ Oðh2Þ;

with AðaÞ ¼ a logðaþ 1Þ �
Pa

k¼1 logðkÞ and VðaÞ ¼ ðað2a2 þ 3aþ 1Þ=6Þ logðaþ 1Þ

�
Pa

k¼1 k
2 logðkÞ. One can see that A and V depend only on the integer parameter a but

not on x and h as stated previously. An R package for symmetric and asymmetric discrete

triangular distributions is provided by Senga Kiess�e et al. (2010).

Remark 1. Other examples of discrete associated kernels satisfying H10–H20 are the

Dirac and Aitchison-Aitken kernels given as examples by Kokonendji & Senga Kiess�e

(2011). For the Dirac kernel, which is a particular case of an associated kernel without

smoothing parameter, i.e. h ¼ 0, the modal probability at x is equal to 1 and thus A ¼ 0.

For the Aitchison-Aitken kernel, the modal probability at x is equal to 1� h and thus

A ¼ 1.

Now we propose a data-driven bandwidth selection procedure for the estimator bfn.
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Bandwidth choice. The bandwidth is generally chosen to minimize the mean integrated

squared error (MISE) of bfn such that an ideal parameter value is

hid ¼ argminh[ 0 MISEðn; h;K; f Þ with, successively,

MISEðbfnðxÞÞ ¼
X

x2N

EðbfnðxÞ � f ðxÞÞ2

¼ E
�X

x2N

bf 2n ðxÞ
�
� 2E

�X

x2N

bfnðxÞf ðxÞ
�
þ
X

x2N

f 2ðxÞ

¼ MISEcvðhÞ þ
X

x2N

f 2ðxÞ:

Thus, for a given discrete kernel Kx;h with x 2 N and h[ 0, an optimal bandwidth param-

eter hcv ¼ argminh[ 0 CVðhÞ is obtained by minimizing the cross-validation estimator

CVðhÞ ¼
X

x2N

bf 2n ðxÞ �
2

n

Xn

i¼1

bfn;�iðXiÞ

¼
1

n2

Xn

i¼1

Xn

j¼1

1

pðXi; blÞpðXj; blÞ
X

x2N

p2ðx; blÞKx;hðXiÞKx;hðXjÞ

�
2

nðn� 1Þ

Xn

i¼1

X

j 6¼i

KXi;hðXjÞ
pðXi; bl�iÞ

pðXj; bl�iÞ
;

where bfn;�iðxÞ ¼ ðn� 1Þ�1Pn
j 6¼i Kx;hðXjÞ is the leave-one-out kernel estimator of bfnðxÞ and

bl�i is computed as bl by excluding Xi. This estimator is asymptotically unbiased for

MISEcvðhÞ:

2.1.2. Asymptotic properties

First, the basic properties of the estimator bfn, such as its bias and variance have been

established already by Kokonendji et al. (2009); here, we take into account the novel

assumptions H10–H20 which ensure that we have

BiasðbfnðxÞÞ ¼ EðbfnðxÞÞ � f ðxÞ

¼
h

2
VðKx;hÞp0ðxÞx

ð2ÞðxÞ þ oðh2Þ þ Oðh2Þ; x 2 N;

VarðbfnðxÞÞ ¼
1

n

X

y2Sx

f ðyÞ PrðKx;h ¼ yÞ
� �2

�
1

n

X

y2Sx

f ðyÞ PrðKx;h ¼ yÞ

 !2

¼
1

n
f ðxÞð1� hAðKx;hÞÞ

2 �
1

n
f 2ðxÞ þ o

1

n

� �
þ Oðh2Þ;

where p0 ¼ pðx; l0Þ is the Poisson p.m.f with mean l0, bl converges to l0 and xð2Þ is the

finite difference of second order of x. It ensues BiasðbfnðxÞÞ ! 0 and VarðbfnðxÞÞ ! 0

when h ¼ hðnÞ ! 0 and n ! 1: Therefore, the pointwise and global consistencies of bfn
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can be deduced easily by showing, respectively, that the mean squared error MSE and the

integrated MISE both tend to 0 as h ! 0 and n ! 1 since we have:

MISEðbfnðxÞÞ ¼
X

x2N

MSEðxÞ ¼
X

x2N

Bias2ðbfnðxÞÞ þ
X

x2N

VarðbfnðxÞÞ:

Next a mathematical result on the almost sure consistency of the estimator bfn is for-

mulated, followed by another result concerning its asymptotic normality. The proofs of

the two results are postponed to the Appendix.

Theorem 1. For any fixed x 2 N, the semiparametric estimator bfnðxÞ converges almost

surely to p.m.f. f ðxÞ as follows:

bfnðxÞ ! f ðxÞ as n ! 1:

Theorem 2. For any fixed x 2 N, the semiparametric estimator bfnðxÞ converges in distri-

bution to the normal law as follows:

bfnðxÞ � EðbfnðxÞÞ

VarðbfnðxÞÞ
� �1=2 ! Nð0; 1Þ as n ! 1:

In the following section, we are interested in WPD when the discrete Poisson weight

function xð�Þ in (1) is well-specified. Thus, the modeling approach developed is com-

pletely parametric.

2.2. Weighted Poisson distributions

Let X be a r.v. having a Poisson p.m.f. pðx; lÞ with mean parameter l[ 0. The r.v.

X/ said to be the weighted version of X has a p.m.f. given by

PrðX/ ¼ xÞ ¼
/ðxÞpðx; lÞ

Eð/lðXÞÞ
¼ p/ðx; lÞ; x 2 N; ð3Þ

where /ðxÞ is a nonnegative weight function on N and the denominator is the normalizing

constant depending on l such that 0\Eð/lðXÞÞ\1. The discrete weight function

/ðxÞ ¼ /ðx; kÞ can depend both on the parameters k and l, where k represents the record-

ing mechanism. Clearly, the standard Poisson distribution is a WPD with unit weight

function xðxÞ ¼ 1; 8x 2 N. In addition, the weighted variable X/ is said to be over-

dispersed (underdispersed) when Fisher dispersion indicator IðX/Þ ¼ VarðX/Þ=EðX/Þ is

greater (smaller) than 1, while the Poisson variable is equidispersed when IðXÞ ¼ 1. Let

us finally remark that by comparing the equation (3) to equation (1) we have

xð�Þ ¼ /ð�Þ=Eð/lðXÞÞ. In the following we give some examples of WPD.

• We first present the modified Poisson model WPD2ðl; kÞ with discrete probability

distribution given by
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p/ðx; lÞ ¼
1þ x=ðkþ 1Þ

1� expð�lÞ þ l=ðkþ 1Þ
pðx; lÞ; x 2 Nnf0g:

Note that WPD2ðl; kÞ ! P0ðlÞ as k ! 1; where P0ðlÞ corresponds to the Poisson

p.m.f. PðlÞ truncated at 0. This WPD is underdispersed.

• The second model considered is WPD3ðl; k; kÞ with

p/ðx; lÞ ¼
1þ ðx� kÞ=ðkþ 1Þ

1þ l=ðkþ 1Þ
pðx� k; lÞ; x� k:

We have WPD3ðl; k; kÞ ! PTðl; kÞ as k ! 1; where PT is the translated Poisson

p.m.f. with parameters l and k. This WPD is also underdispersed.

• The third model is the zero-modified weighted distribution ZMWðl; k; p0Þ with the

following p.m.f.:

p/ðx; l; k; p0Þ ¼
p0 if x ¼ 0

ð1� p0Þ
1þx=ðkþ1Þ

1�expð�lÞþl=ðkþ1Þ pðx; lÞ if x 2 Nnf0g,

�

with 0\p0\1: This distribution can be under- or overdispersed depending on the

parameter p0.

Let us give some details about the possible interpretation of the parameters and the

method for their estimation. The integer parameter k serves to construct a family of distri-

butions p/ðx; l; kÞ which converge to p/ðx;lÞ and has no particular biological interpreta-

tion; the parameter l, is the mean of Poisson p.m.f.. These two parameters can be

estimated by maximum likelihood. The parameter p0 is the theoretical zero proportion and

can be estimated by the empirical zero proportion. Finally, the parameter k is the absolute

minimum time it takes for an insect to become an adult parasite; thus the host plant with

the lowest k-value is more favorable to the development of the parasite. This last parame-

ter is estimated using the method of moments. In the applications, our main concern is the

estimated value of k because it is useful for controlling reproduction of this specific insect

species. For more details on modeling count data phenomena and WPD, see Kokonendji

et al. (2008) and Miz�ere (2006).

3. Applications

In this section, some diagnostic checks are used to choose between the parametric

and semiparametric models. Then, the results are given for the application of each method

(classical Poisson, WPD and semiparametric bfn) on count datasets related to the growth of

Congolese spiraling whitefly.

Note that, for the discrete triangular kernel semiparametric estimator, the parameter

a 2 N is equal to 1; 2 or 3 in practice. We propose here to fix a ¼ 1 since the global error

MISE increases with a 2 N (Kokonendji et al., 2007). For example, Figure 1 illustrates the

comparative behaviors of function a 7!MISEða; n; h; f Þ of bfn with a discrete triangular ker-

nel Ka;x;h for the simulated p.m.f. f ðxÞ ¼ 0:4Pnðx; 0:5Þ þ 0:6Pnðx; 10Þ; x 2 N; which is a

mixture of two Poisson distributions Pnðx; lÞ with respective means l1 ¼ 0:5 and l2 ¼ 10.

For fixed h[ 0 and sample sizes n, the optimal value aopt ¼ argmina2NMISEðaÞ is less
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than or equal to 3; note that the case a ¼ 0 for the discrete triangular kernel results in a

naive kernel of Dirac type.

3.1. Model diagnostics for semiparametric estimation

The estimated discrete Poisson weight function bxn in (2) provides useful information

for model diagnostics. This Poisson weight function should equal one if the Poisson

p.m.f. is indeed the true p.m.f. Therefore, the adequacy of the model can be checked by

examining a plot of the weight function: we are interested here in plotting the log weight

function log bxnðxÞ ¼ logfbfnðxÞ=pðx; blÞg to see how far away it is from zero. Thus, a sim-

ple graphical goodness-of-fit diagnostic emerges by plotting x against

ZðxÞ ¼
log bxnðxÞ þ ð2nÞ�1ðpðx; blÞÞ�1

PrðKx;h ¼ xÞ

n�1
�
pðx; blÞ

��1
PrðKx;h ¼ xÞ

� �1=2 :

When the Poisson p.m.f. is indeed the true p.m.f., ZðxÞ is approximately distributed as

standard normal for each target x, meaning that the ZðxÞ-values should lie within �1:96

about 95% of the time; see Hjort & Glad (1995, section 8.2).

Concerning the preimarginal development time and egg laying datasets, the Z(x)-

values stay within �1:96 all the time; see Figures 2 and 3, respectively. This suggests that

it would be of interest to consider parametric Poisson (or also WPD) models for these data.

For the longevity data, only 44:4% of Z(x)-values belong to the confidence band �1:96
(Figure 4). This means semiparametric methods should work better than parametric methods

(see also Table 3 later).

The following section provides the detailed results about the performances of standard

and weighted Poisson models in comparison with the semiparametric kernel estimator.
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Figure 1. Simulated function a 7!MISEða; n; h; f Þ of the semiparametric estimator using the discrete

triangular kernel for f ¼ 0:4Pnð0:5Þ þ 0:6Pnð10Þ:
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3.2. Parametric and semiparametric results

In this section, the performance of each model applied is evaluated by using the prac-

tical integrated squared error

ISE ¼
X

x2N

bf ðxÞ � f0ðxÞ
� �2

;

which is a descriptive measure-of-fit, where f0 is the observed frequency and bf represents

the estimated frequency from the application of WPD or bfn. For count data, we can also

measure performance through the following chi-squared (v2) distance:

v20 ¼
X

x02f0;1;...;N0g

n bf ðx0Þ � f0ðx
0Þ

� �2

bf ðx0Þ
;

where N0 þ 1 represents the number of valid classes in the v2-test. Thus, the statistic v20
can be suitably approximated by the v2-distribution with N0 � r degrees of freedom (d.f.),

where r is the number of estimated parameters (e.g., Greenwood & Nikulin 1996; Saporta

–
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Figure 2. The ZðxÞ-values associated with the results on data of preimarginal development time.
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Figure 3. The ZðxÞ-values associated with the results on data of egg laying.
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1978). In particular, in semiparametric models, one definition of the degrees of freedom

for a kernel density estimation fit could be derived from theories of local regression mod-

eling which give
Xn

i¼1

logðbfn;�iðXiÞÞ �
Xn

i¼1

logðbfnðXiÞÞ � df þ 1;

TABLE 2

Estimation of total number of days of egg laying using weighted Poisson distributions and semipara-

metric triangular kernel estimation.

Days
Observed
frequencies

Expected
PðlÞ

frequencies

Expected
ZMWðl; 30; bp0Þ
frequencies

Expected
semiparametric bfn with a ¼ 1

frequencies

0 48 52.862 48 48.345
1 33 23.207 32.075 32.240
2 0 5.094 1.851 0.458
3 1 0.835 0.073 0.956

bl 0.439 0.111 –

hcv – – 0.05
ISE 0.021 0:0765� 10�2 0:013� 10�2

df 1 1 0
v20 8.677 0 0.006
p-value 0.003 1 0
AIC �15.120 �8.675 �13.051

TABLE 1

Estimation of preimarginal development time in days using weighted Poisson distributions and semi-

parametric triangular kernel estimation.

Days
Observed
frequencies

Expected PTðl; 20Þ
frequencies

Expected
WPD3ðl; 20; 30Þ
frequencies

Expected
semiparametric bfn with a ¼ 1

frequencies

25 10 8.174 8.120 8.044
26 7 6.783 6.775 7.807
27 7 8.993 9.000 7.716
28 10 10.432 10.454 11.127
29 18 10.757 10.787 14.970
30 4 9.983 10.011 6.191
31 3 8.423 8.441 4.148
32 8 6.514 6.521 7.174
33 6 4.650 4.647 6.131
34 4 3.082 3.074 4.628
35 5 4.204 4.165 4.061

bl 9.280 9.054 –

hcv – – 0.38
ISE 0.019 0.019 0:035� 10�1

df 7 7 6
v20 13.954 13.995 2.540
p-value 0.052 0.051 0.864
AIC �28.673 �28.655 �30.523
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see Loader (1999, page 92). Using this equation, the values of df are not integers but real

numbers. Here, these computed values of df are rounded to integers; they are often called

effective number of parameters. Thus, model comparison using the computed df is made

through the Akaike information criterion (AIC) and the v2 goodness-of-fit test.

Preimarginal duration. Table 1 presents the preimarginal development time data (in

days) of the insect studied. The observations have mean 29:280 and variance 8:870 so the

Fisher dispersion indicator is I ¼ 0:303\1 (i.e. underdispersion). Concerning the modified

Poisson models, WPD3ðl; k; kÞ and PTðl; kÞ are applied since they are left censored and

underdispersed. We have the estimated values bk ¼ 20 and bk ¼ 30 obtained by the meth-

ods of moments and maximum likelihood, respectively. Looking at the discrete semipara-

–
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Figure 4. The ZðxÞ-values associated with the results on data of longevity of adult insects.

TABLE 3

Estimation of longevity of adult insects observed in days using weighted Poisson distributions and

semiparametric triangular kernel estimation.

Days
Observed
frequencies

Expected
P0ðlÞ

frequencies

Expected
WPD2ðl; 30Þ
frequencies

Expected
semiparametric

bfn with a ¼ 1 frequencies

1 29 22.678 22.659 27.417
2 16 24.797 24.809 17.553
3 22 18.075 18.092 21.512
4 8 9.882 9.887 8.178
5 2 4.322 4.319 2.452
6 4 1.575 1.571 3.739
7 0 0.421 0.489 0.061
8 0 0.134 0.133 0.160
9 1 0.041 0.410 0.926

bl 2.187 2.123 –

hcv – – 0.07
ISE 0.022 0.022 0:082� 10�2

df 3 3 2
v20 6.131 6.137 0.259
p-value 0.105 0.105 0.878
AIC �8.732 �13.617 �13.712
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metric triangular kernel estimator bfn with a ¼ 1, the cross-validation procedure provides

an optimal h-value hcv ¼ 0:38. The descriptive measure-of-fit ISE indicates that the

semiparametric model is better than the models WPD3ðl; 20; 30Þ and PTðl; kÞ which both

have closed performances. In particular, let us note that the modal frequency at x ¼ 29 is

equal to 18 for observations while it is equal to 14.970 and around 10.8 for the semipara-

metric and Poisson models, respectively. Looking at the v2 goodness-of-fit test, for the

models PT and WPD3 we have v20-values equal to 13:954 and 13:995 (df ¼ 7) with the

p-values equal to 0:052 and 0:051, respectively; in comparison, for the semiparametric

model we have v20 ¼ 2:540 but a smaller df equal to 6 with p-value ¼ 0:864. Finally,
looking at the Akaike information criterion, for PT and WPD3 we have AIC values

around �28:7; the value is �30:523 for bfn.

Total number of days of egg laying. The observations of these data have mean 0:439

and variance 0:323 so the Fisher dispersion indicator is I ¼ 0:736\1; ZMWðl; k; p0Þ and
standard PðlÞ are applied on these data (see Table 2). Concerning ZMWðl; 30; bp0Þ, the

zero proportion observed bp0 ¼ 0:585 is smaller than the zero proportion

expð�0:439Þ ¼ 0:644 expected under the Poisson model PðlÞ. For the discrete semipara-

metric triangular kernel estimator bfn with a ¼ 1, we have hcv ¼ 0:05. Finally, the quality of

fit of bfn is better (in terms of ISE) than that of ZMWðl; 30; bp0Þ which is itself better than

PðlÞ. However, bfn and ZMWðl; 30; bp0Þ have some ISE-values of the same order. Looking

at the v2-test, for the models ZMWðl; k; p0Þ and PðlÞ we have v20 values equal to 0 and

8:677 with p-values equal to 1 and 0:003, respectively, for the same df equal to 1; in com-

parison, for the semiparametric estimator bfn, we have v20 ¼ 0 and p-value ¼ 0 with a null

value of df. In particular, let us consider the AIC since zero degrees of freedom looks unu-

sual: ZMW , P and bfn have AIC values of �8:675, �15:120 and �13:051, respectively.

AIC and v20 values do not result in the same conclusion concerning the performance of the

different models applied, but, a parametric model (ZMW or P) is better than the

semiparametric model, depending on the criterion used.

Longevity. Table 3 presents the longevity (in days) of the adult insect studied; the data

have mean 2:463 and variance 2:425 with a Fisher dispersion indicator of I ¼ 0:985\1

which is almost identical to one. Here WPD2ðl; kÞ and truncated P0ðlÞ are used since

there is no observed value at day 0. The discrete semiparametric triangular kernel estima-

tor bfn with a ¼ 1 and hcv ¼ 0:07 outperforms WPD2ðl; 30Þ and P0ðlÞ models in the

measure ISE. In particular, using bfn reduces boundary bias since it gives a good adjust-

ment at the left boundary x ¼ 1. Looking at the v2-test, bfn has a v20 value equal to 0:259

(with df ¼ 2 and p-value ¼ 0:878) while WPD2 and P0 have v20 values around 6:13 (with

df ¼ 3 and p-value=0:105). Finally, WPD2, P0 and bfn have AIC values of �13:617,

�8:732 and �13:712, respectively.

4. Concluding remarks

The discrete semiparametric kernel approach, in addition to being simple and effec-

tive for estimating any unknown count distribution, was intended to work well even if the

unknown p.m.f. cannot be approximated well by the Poisson distribution. This semipara-

metric modeling intrinsically took into account the special features of count data via

11



the discrete nonparametric weight function x, and, it provided some interesting measure-

of-fit in diagnostics. However, WPD opened the way for more practical interpretation and

discussion of counting phenomena observed in the data. Thus, concerning the examples

treated in this work, the biologist had to focus on stopping the reproduction of Aleurodi-

cus to fight against its spread because the minimum development time of this insect pest

was bk ¼ 20 days for citrus trees. Finally, WPD were more meaningful in these

applications than semiparametric modeling since they provided new information on insect

growth.

Appendix A: Proofs

The proof of Theorem 1 requires the use of the following lemma (see Hoeffding,

1963).

Lemma. Let Z1; Z2; . . .; Zn be i.i.d. random variables with finite second moments. If

there exist constants a and b such that PrðZi 2 ½a; b�Þ ¼ 1, then given �[ 0 we have

Pr
1

n

Xn

i¼1

Zi

					

					� �

!

	 2 exp �
n�2

�ðb� aÞ þ 2VarðZ1Þ

� �
:

Proof of Theorem 1. The demonstration is based on the following decomposition:

bfnðxÞ � f ðxÞ ¼ bfnðxÞ � EðbfnðxÞÞ þ EðbfnðxÞÞ � f ðxÞ:

First, the term EðbfnðxÞÞ � f ðxÞ tends to 0 since MSEðxÞ ¼ EðbfnðxÞ � f ðxÞÞ2 ! 0 as

n ! 1: Second, let us write bfnðxÞ � EðbfnðxÞÞ ¼ ð1=nÞ
Pn

i¼1 Zi with Zi ¼ p0ðxÞ=p0ðXiÞ

Kx;hðXiÞ � Efp0ðxÞ=p0ðXiÞKx;hðXiÞg: For any x 2 N, there exists 0\M1\1 and

0\M2\1 such that we have

jZij 	M1 and VarðZiÞ	Eðp0ðxÞ=p0ðXiÞKx;hðXiÞÞ
2
\M2;

since p0ð�Þ and Kx;hð�Þ are p.m.f. Therefore, according to the Hoeffding lemma, one has

Pr bfnðxÞ � EðbfnðxÞÞ
			

			� �
� �

¼ Pr
1

n

Xn

i¼1

Zi

					

					� �

 !

	 2 exp
�n�2

2�M1 þ 2M2

� �
;

for any �[ 0. Consequently, the Borel-Cantelli lemma leads to get bfnðxÞ � EðbfnðxÞÞ!
a:s:

0

since
P

n� 1 Prðj
bfnðxÞ � EðbfnðxÞÞj � �Þ\1:

Proof of Theorem 2. In order to get the desired convergence, a sufficient condition is

lim
n!1

Ejp�1
0 ðX1ÞKx;hðX1Þ � E

�
p�1
0 ðX1ÞKx;hðX1Þ

�
j3

n1=2ðVarðp�1
0 ðX1ÞKx;hðX1ÞÞÞ

3=2
¼ 0;

since bfn is a sum of i.i.d. random variables (see Breiman 1968, theorem 9.2). For this,

note that there exists 0\M\1 such that
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Ejp�1
0 ðX1ÞKx;hðX1Þ � Eðp�1

0 ðX1ÞKx;hðX1ÞÞj
3
\2M3

and

lim
n!1

Varðp0ðxÞp
�1
0 ðX1ÞKx;hðX1ÞÞ ¼ f ðxÞ � f 2ðxÞ:

Then, we have the following expressions successively,

Varðp0ðxÞp
�1
0 ðX1ÞKx;hðX1ÞÞ � ðf ðxÞ � f 2ðxÞÞ

¼
X

y2N\Sx

ðp0ðxÞp
�1
0 ðyÞKx;hðyÞÞ

2
f ðyÞ � f ðxÞ

�
� X

y2N\Sx

p0ðxÞp
�1
0 ðyÞKx;hðyÞf ðyÞ

�2
þ f 2ðxÞ

¼
X

y2N\Sx

ððp0ðxÞp
�1
0 ðyÞÞ2Kx;hðyÞf ðyÞ � f ðxÞÞKx;hðyÞ � f ðxÞ

X

y2N\Sx

Kx;hðyÞ

þ f 2ðxÞ � E2ðbfnðxÞÞ
� �

	ð1� Kx;hðxÞÞKx;hðxÞf ðxÞ

þ
X

y2N\Sxnfxg

jðp0ðxÞp
�1
0 ðyÞÞ2Kx;hðyÞf ðyÞ � f ðxÞjKx;hðyÞ þ 2jEðbfnðxÞÞ � f ðxÞj

	 ð1� Kx;hðxÞÞ þ 2jEðbfnðxÞÞ � f ðxÞj þ OðhÞ ! 0 as n ! 1: h
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