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kernel and applications
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This work is concerned with a semiparametric associated kernel estimator for count explanatory variables.
The proposed semiparametric estimator is a multiplicative combination between a parametric model and
a discrete nonparametric kernel estimator of Nadaraya–Watson type. In this semiparametric approach,
the parametric model plays the role of the start function and the nonparametric kernel estimator is a
correction factor of the parametric estimate. Some asymptotic properties of the discrete semiparametric
kernel regression estimator are pointed out; in particular, we show its asymptotic normality and the order of
the optimal bandwidth. The parametric part is illustrated by some nonlinear and generalised linear models;
for the nonparametric estimator, we apply the discrete general triangular associated kernel providing bias
reduction. The usefulness of the discrete semiparametric kernel regression estimator is shown on three
practical examples in comparison with logistic, generalised linear and additive models.

Keywords: asymptotic normality; bandwidth optimal order; discrete regression; parametric regression
model

AMS Subject Classification: 62G07; 62G08; 62F10

1. Introduction

Let (x1, y1), (x2, y2), . . . , (xn, yn) be the observations of the variables (X, Y ) in S × R connected

through the model

yi = m(xi) + ei,

where m : S �→ R is an unknown regression function to be estimated and ei is assumed to be the

residual from the real random variable ǫi with mean E(ǫi) = 0 and variance Var(ǫi) = σ 2 < ∞.

To estimate the conditional mean function m, several approaches are available; one can consider

the classical parametric regression models, some nonparametric techniques such as generalised

additive models (GAMs, see Hastie and Tibshirani 1990) or local polynomials. Here, we are con-

cerned with some multiplicative or additive procedures of nonparametric kernel and parametric
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regression models; for example, see Fan,Wu and Feng (2009) and Martins-Filho, Mishra and Ullah

(2008) for some continuous models. Indeed, the nonparametric kernel estimator is known to be

completely impartial to the special features of the function to be estimated; consequently, its com-

bination with parametric models may lead to the improvement of the accuracy of the estimation.

In this way, Abdous, Kokonendji and Senga Kiessé (2010) proposed a discrete semiparametric

estimator, which is analogous to the continuous version presented by Glad (1998). The discrete

semiparametric regression estimator uses the discrete associated kernels method introduced by

Kokonendji, Senga Kiessé and Zocchi (2007) for estimating a function on a discrete support S

as the non-negative integer set N (see Senga Kiessé 2009). Thus, we assume S = N throughout

this paper. In the discrete associated kernel methodology, the kernel Kx,h(·) is a probability mass

function (p.m.f.) with support Sx , which contains x ∈ N and does not depend on the smoothing

parameter h > 0, such as

A1. limh→0 E(Kx,h) = x,

A2. limh→0 Var(Kx,h) = 0,

where Kx,h is the discrete random variable of p.m.f. Kx,h(·). In addition, the finite differences

g(k), k ∈ N \ {0}, of any count function g : N → R are used instead of the usual differentiation

on R such as

g(k)(x) = {g(k−1)(x)}(1) and g(1)(x) =

⎧
⎨
⎩

{g(x + 1) − g(x − 1)}/2 if x ∈ N \ {0}

g(1) − g(0) if x = 0,
(1)

from which the finite difference of second order may be derived as

g(2)(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

{g(x + 2) − 2g(x) + g(x − 2)}/4 if x ∈ N \ {0, 1}

{g(3) − 3g(1) + 2g(0)}/4 if x = 1

{g(2) − 2g(1) + g(0)}/2 if x = 0.

(2)

Within the semiparametric context, let us consider m as a discrete weighted parametric

regression function given by

m(x) = l(x; �) × ω(x), x ∈ N, (3)

where l(x; �) is a nonrandom function relative to the parameter � and x �→ ω(x) is a positive

nonparametric weight function. The discrete semiparametric associated kernel regression esti-

mator results from a parametric estimation l̂(x) ≡ l(x; �̂) of l multiplied by a nonparametric

Nadaraya–Watson estimation ω̂n of ω as follows:

ω̂n(x) =
n∑

i=1

YiKx,h(Xi)∑n
j=1 Kx,h(Xj )

× 1

l̂(Xi)
, x ∈ N,

where h = h(n) > 0 is an arbitrary sequence of smoothing parameters that fulfils limn→∞ h(n) =
0 and Kx,h(·) is a suitably chosen discrete associated kernel function. Then, the discrete

semiparametric estimator of m in Equation (3) is given by

m̂n(x) = l̂(x) × ω̂n(x). (4)

Concerning the parametric model, the smoothness of the function l(x, t) with respect to t is

required, and the estimator �̂ of � is obtained, for example, by the generalised least-squared
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method. In the situation where the parametric function l(x; �) is mis-specified, the estimator

�̂ of � converges in probability to a certain value �0 such that l(x; �0) ≡ l0(x) is the best

approximant to m(x) with respect to the Kullback–Leibler distance of l(x; �) from the true

function m(x) as
∑

x∈N

m(x) log
m(x)

l(x; �)
=: d{m(·), l(·;�)};

see Abdous et al. (2010) and references therein for more details.

In this work, we establish the asymptotic normality of the discrete semiparametric kernel

estimator. We use some parametric (logistic and generalised linear) models as start functions

and a discrete associated kernel that provides bias reduction. The usefulness of the constructed

discrete semiparametric regression model is illustrated on three practical data sets of agriculture,

economy and agronomy in comparison with classical parametric regression models.
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Figure 1. GLM (black curve), GAM (circles) and semiparametric regression using discrete general triangular associated
kernels with (a1, a2) = (3, 1) (black points) on average daily fat data.
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The first example concerns the study of average daily fat (kg/day) yields from the milk of a single

cow for each of the 35 first weeks denoted xi (Kokonendji, Senga Kiessé and Demétrio 2009b).

The quantity of fat in the milk increases during the first 14 weeks and decreases thereafter. The

fitted curve comes from a generalised linear model (GLM): it is a normal model with a logarithmic

link (McCullagh and Nelder 1989). This model does not fit well to data. In particular, it does not

detect the plateau associated with observations x = 19, 20, . . . , 27 (Figure 1). We will compare

these results with those obtained by using our semiparametric model and GAM.

The second example given in Table 1 is a sales data set with multiple yi at a given xi (Kokonendji

et al. 2009b). We analyse the amount of daily sales of a new product during the first 24 days.

The 151 observations (xi, yi), i = 1, . . . , 24, represent the day xi and the corresponding mean of

sales numbers yi ∈ {yAi, yBi, . . . , yHi}. The number of sale centres for each state (A, B, . . . , H)

is not available except for the state H, where this number is equal to one. We apply the GLM and

GAM in comparison with the semiparametric model for fitting the sales data (Figure 2).

The third example deals with volume data from a forest beech tree (Table 2) provided by the

French national research agency project ‘EMERGE’ (Compatible volume/biomass and nutrient

content equations for fuelwood and forest resource; tools for sustainable and clear management);

(Rivoire et al. 2010). On the stem of this tree, from the base (ca. 53 cm in diameter) to the tip

(0 cm), 15 measures have been taken with a diameter tape. Cumulative stem volumes denoted

y have been calculated to any possible diameter x ∈ {0, 1, . . . , 53} (cm) based on cone frustum

volumes. More exactly, at the base of the tree, where the diameter is close to 53 cm, the cumulative

volume is 0, whereas at the tip of the tree, the diameter is close to zero and the cumulative volume

is the total stem volume. We apply the GAM, semiparametric model and parametric logistic one,

since the tree data distribution has a sigmoïdal form (Figure 3).

The given examples indicate that the use of continuous semiparametric model of Glad (1998)

may provide fitted values at continuous point as 0.3 or 1.2, while the predictor is an ordinal variable.

Table 1. Sales data.

xi yAi yBi yCi yDi yEi yFi yGi yHi

1 16.4 15.9 ∗5.0 16.1 16.2 15.4 16.2 16

2 21.4 18.9 22.2 19.7 17.2 20.7 19.9 23

3 22.0 19.7 24.2 20.5 18.1 22.4 21.1 20

4 20.4 19.2 23.0 19.8 17.6 21.7 20.5 23

5 18.2 18.1 20.4 18.4 16.8 19.8 ∗8.8 24

6 16.1 16.6 17.7 16.6 15.7 17.6 ∗6.5 12

7 14.2 15.0 15.2 14.8 14.5 15.3 ∗4.0 13

8 12.6 13.5 13.0 13.0 13.3 13.3 ∗1.8 9

9 11.1 12.0 11.1 11.5 12.1 11.5 9.9 9

10 9.9 10.6 9.5 10.0 10.9 9.9 8.5 8

11 8.7 9.4 8.2 8.8 9.8 8.6 7.5 10

12 7.8 8.3 7.1 7.7 8.7 7.4 6.8 8

13 6.9 7.3 6.2 6.7 7.8 6.5 6.3 7

14 – 6.4 5.4 5.9 6.9 5.6 5.9 2

15 5.4 5.6 4.7 – 6.1 4.9 5.6 ∗12

16 4.8 – 4.1 4.6 5.4 – – 3

17 4.3 – 3.6 – – 3.8 – 5

18 – 3.8 – – – 3.3 – 4

19 – – – 3.2 3.7 – 4.3 2

20 – 2.9 – 2.8 3.2 – – 2

21 – – – – 2.9 2.3 3.5 5

22 – – – – 2.5 – 3.2 5

23 – – 2.1 1.8 2.2 – – 2

24 – – 1.9 – – – 2.5 –

Notes: – denotes a missing observation and ∗ can be considered as a strange value.
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Figure 2. GLM (black curve), GAM (circles) and semiparametric regression using discrete general triangular associated
kernels with (a1, a2) = (3, 1) (black points) on sales data.

Table 2. Data of a beech tree.

x 0 1 2 3 4 5 6 7 8 9

y 1.51625 1.51621 1.51609 1.51575 1.51510 1.51384 1.51126 1.50838 1.50535 1.50195

x 10 11 12 13 14 15 16 17 18 19

y 1.49773 1.49436 1.48930 1.48450 1.47750 1.47750 1.47102 1.46363 1.45516 1.44807

x 20 21 22 23 24 25 26 27 28 29

y 1.43756 1.42577 1.39242 1.34545 1.33754 1.33329 1.32418 1.31423 1.30341 1.29166

x 30 31 32 33 34 35 36 37 38 39

y 1.27896 1.27225 1.25805 1.24281 1.22648 1.15572 1.04385 0.92528 0.80005 0.67887

x 40 41 42 43 44 45 46 47 48 49

y 0.53924 0.36795 0.27868 0.21124 0.19722 0.16811 0.13754 0.10548 0.07190 0.03674

x 50 51 52 53

y 0 0 0 0
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Figure 3. Logistic regression (black curve), GAM (circles) and semiparametric regression using discrete general
triangular associated kernels with (a1, a2) = (3, 1) (black points) on tree data.

This motivates the recommendation of a discrete model that focuses on ordinal covariates and has

the same nature. Hence, the nonparametric correction in all the three examples is available only for

discrete predictors even if the parametric models indeed treat predictors as continuous variables.

Through these three applications, we point out that the discrete semiparametric associated kernel

approach may produce better explanations of real data with both satisfying amounts of smoothing

and goodness of fit.

The remainder of this paper is organised as follows. Section 2 is concerned with the bias,

variance and asymptotic normality of the discrete semiparametric kernel regression estimator.

Section 3 presents the result of the three applications. The optimal order of the bandwidth is shown

under some assumptions for the discrete associated kernels used. Finally, Section 4 presents the

concluding remarks.

2. Asymptotic properties

This section is concerned with the usual asymptotic results for the discrete semiparametric

associated kernel regression estimator m̂n in Equation (4). In particular, we demonstrate its
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asymptotic normality; one can refer to Martins-Filho et al.(2008) for the asymptotic normality of

the semiparametric estimator proposed by Glad (1998).

We state the bias and variance of m̂n shown in Abdous et al.(2010). For x ∈ N, let l0(x) be a

fixed parametric start in Equation (3). Under assumptions A1 and A2, the discrete semiparametric

estimator m̂n in Equation (4) admits the following bias and variance:

E{m̂n(x)} − m(x) =
{
l0(x)ω(2)(x) + 2l0(x)ω(1)(x)

(
f (1)

f

)
(x)

}
Var(Kx,h)

2

+ O

(
1

n

)
+ o(h), (5)

Var{m̂n(x)} = σ 2

nf (x)
{Pr(Kx,h = x)}2 + o

(
1

n

)
, (6)

where f > 0 is the p.m.f. of the regressor X and f (1), m(1) and m(2) are the finite differences

of f as given in Equations (1) and (2). Hence, the consistency of the discrete semiparametric

estimator m̂n in Equation (4) is obtained through the asymptotic behaviour of its mean-squared

error (MSE) as

MSE(x) = Bias2{m̂n(x)} + Var{m̂n(x)} −→ 0, x ∈ N.

Indeed, under assumptions A1 and A2, the asymptotic expansions of the bias in Equation (5) and

variance in Equation (6) are such that

Bias{m̂n(x)} = O

(
1√
n

)
+ o(h) −→ 0 and Var{m̂n(x)} = O

(
1

n

)
−→ 0,

as h = h(n) → 0 and n → ∞, since we assume Var(Kx,h) = O(n−1/2). This assumption will be

developed at the end of this section.

For the asymptotic normality, we need to recall the Lyapounov central limit theorem for

triangular arrays (Wesolowski 1994).

Theorem 2.1 (Lyapounov) Assume that {Xn,j , j = 1, . . . , kn} are zero-mean independent ran-

dom variables, n = 1, 2, . . .. If

lim
n→∞

kn∑

j=1

E(X2
n,j ) = �2 > 0,

lim
n→∞

kn∑

j=1

E(|Xn,j |3) = 0,

then Sn = Xn,1 + · · · + Xn,kn
converges in distribution to the normal law with the mean zero and

the variance �2

Sn
d−→ N (0, �2) as n −→ ∞.

The notation ‘
d−→’ stands for convergence in distribution. Now, we are able to formulate the

following theorem.
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Theorem 2.2 For any fixed x ∈ N, under assumptions A1 and A2, the semiparametric estimator

m̂n(x) converges in distribution to the normal law as follows:

√
n{m̂n(x) − m(x)} d−→ N (μ, �2) as n −→ ∞,

with the mean μ = √
nVar(Kx,h){ω(2)(x)l0(x) + 2l0(x)ω(1)(x)(f (1)/f )(x)}/2 and the variance

�2 = σ 2{Pr(Kx,h = x)}2/f (x).

Proof For x ∈ N and h > 0, let us consider the semiparametric estimator m̂n in Equation (4) and

the sequence f̃n(x) = (1/n)
∑n

j=1 Kx,h(Xj ). Using the discrete Taylor expansion of l̂(x)/l̂(Xi)

around l0(x)/ l0(Xi), we have

m̂n(x) × f̃n(x) = 1

n

n∑

i=1

Kx,h(Xi)Yi

l0(x)

l0(Xi)
+ 1

n

n∑

i=1

Kx,h(Xi)
Yi

l0(Xi)
{l̂(x) − l0(x)}

− 1

n

n∑

i=1

Kx,h(Xi)Yi

l0(x)

l2
0(Xi)

{l̂(Xi) − l0(Xi)}{1 + op(1)} a.s.

By using the equation Yi = l0(Xi)ω(Xi) + ǫi , where Xi and ǫi are independent variables, the

terms

1

n

n∑

i=1

Kx,h(Xi)
ǫi

l0(Xi)
{l̂(x) − l0(x)} and

1

n

n∑

i=1

Kx,h(Xi)ǫi

l0(x)

l2
0(Xi)

{l̂(Xi) − l0(Xi)}

are of order op(h2), and it ensues the following equalities:

{m̂n(x) − m(x)} × f̃n(x) = l0(x)

n

n∑

i=1

Kx,h(Xi)

{
ω(Xi) + ǫi

l0(Xi)

}
− l0(x)ω(x)f̃n(x)

+ 1

n

n∑

i=1

Kx,h(Xi)ω(Xi){l̂(x) − l0(x)}

− 1

n

n∑

i=1

Kx,h(Xi)ω(Xi)
l0(x)

l0(Xi)
{l̂(Xi) − l0(Xi)} + op(h2)

= An(x; h) + Bn(x; h) − Cn(x; h) + op(h2). (7)

For calculating the expectation of Equation (7), we begin with the first term An. Under assumptions

A1 and A2 and using the discrete Taylor expansion such that

E{f (Kx,h)} = E[f {E(Kx,h)} + {Kx,h − E(Kx,h)}f (1){E(Kx,h)} + o{Kx,h − E(Kx,h)}2]
= f {E(Kx,h)} + o(h2)

= f (x) + 1

2
f (2)(x)Var(Kx,h) + o(h2),

8



we have successively

E{An(x; h)} = l0(x)

n
E

[
n∑

i=1

Kx,h(Xi){ω(Xi) − ω(x)}
]

+ l0(x)

n
E

{
n∑

i=1

Kx,h(Xi)
ǫi

l0(Xi)

}
(8)

= l0(x)

⎡
⎣∑

y∈Sx

ω(y)f (y) Pr(Kx,h = y) − ω(x)
∑

y∈Sx

f (y) Pr(Kx,h = y)

⎤
⎦

= l0(x)[(ωf ){E(Kx,h)} − ω(x)f {E(Kx,h)}] + o(h2)

= l0(x)

2
{ω(2)(x)f (x) + 2ω(1)(x)f (1)(x)}Var(Kx,h) + o(h2).

The expectations of the second and third terms Bn and Cn in Equation (7) are given by

E{Bn(x; h)} = E{Kx,h(X1)ω(X1)}EXi
{l̂(x) − l0(x)}

=
∑

y∈Sx

ω(y)f (y) Pr(Kx,h = y)EXi
{l̂(x) − l0(x)}

= ω(x)f (x)EXi
{l̂(x) − l0(x)} + o(h2),

E{Cn(x; h)} = l0(x)E

{
Kx,h(X1)

ω(X1)

l0(X1)

}
EXi

{̂l(Xi) − l0(Xi)}

= ω(x)f (x)EXi
{̂l(Xi) − l0(Xi)} + o(h2).

It results in E[{m̂n(x) − m(x)} × f̃n(x)] = E{An(x; h)} + o(h2). Then, for the variance of

Equation (7), we have

Var{An(x; h) + Bn(x; h) − Cn(x; h)} = 1

n
σ 2f (x){Pr(Kx,h = x)}2 + o

(
1

n

)
,

with σ 2 = Var(ǫi) < ∞. This result is essentially due to the second term in Equation (8) given

by

A1n(x; h) = n−1l0(x)

n∑

i=1

ǫi l
−1
0 (Xi)Kx,h(Xi),

which is a sum of i.i.d. random variables; thus, we have E{A1n(x; h)} = 0 and, under assumptions

A1 and A2,

Var{A1n(x; h)} = l2
0(x)E2(ǫ1)

n

∑

y∈Sx

f (y)l−2
0 (y){Pr(Kx,h = y)}2

= f (x)σ 2

n
{Pr(Kx,h = x)}2 − 1

n
f 2(x)l−2

0 (x) + Qn(x; h),

where

Qn(x; h) = l2
0(x)σ 2

n

∑

y∈Sx\{x}
l−2
0 (y)f (y){Pr(Kx,h = y)}2 + 1

n
f 2(x)l−2

0 (x)

9



tends to 0 as n → ∞ and h = h(n) → 0. Indeed, let y ∈ Sx \ {x}, we can find a constant η =
η(y) > 0 such that

Pr(Kx,h = y) ≤ Pr(|Kx,h − x| > η)

≤ 1

η2
E{(Kx,h − x)2} = 1

η2
[Var(Kx,h) + {E(Kx,h) − x}2] −→ 0 as h −→ 0,

and for y = x, we deduce the asymptotic modal probability Pr(Kx,h = x) → 1 when h → 0.

The other terms in the variance of Equation (7) provide the order o(h2); we omit to detail here

all these calculations. Rather, by applying the Lyapounov central limit theorem on A1n, we have
√

nA1n(x; h)
d−→ N (0, f (x)σ 2{Pr(Kx,h = x)}2).

Finally, by considering the convergence of f̃n to f states by Abdous and Kokonendji (2009), it

results in

√
n{m̂n(x) − m(x)}f̃n(x) =

√
n{m̂n(x) − m(x)}f (x) + op(1)

= μf (x) +
√

nA1n(x; h) + op(1),

E{m̂n(x) − m(x)} =
{
ω(2)(x)l0(x) + 2l0(x)ω(1)(x)

(
f (1)

f

)
(x)

}
Var(Kx,h)

2
+ o(h2)

= μ√
n

+ o(h2)

and

Var{m̂n(x) − m(x)} = 1

nf (x)
σ 2{Pr(Kx,h = x)}2 + o

(
1

n
+ h2

)

= 1

n
�2 + o

(
1

n
+ h2

)
,

with μ ≡ μ(x; h, n) and �2 ≡ �2(x; h). Hence, the desired result is obtained. �

Remark 1 As a result, our estimator achieves O(n−1/2) convergence rate; in addition, one can

assume Var(Kx,h) = O(n−1/2) and replace the assumption A2 with this. A more thorough treat-

ment of the optimal order of the bandwidth h assuming Var(Kx,h) = O(n−1/2) will be presented

in Section 3.2 for the discrete associated kernels applied in this work.

3. Applications

This section presents the illustrations on data of average daily fat, sales data and cumulative stem

volume. The data are fitted by the logistic model and GLM with parameter � = (θ1, θ2, θ3) in

comparison to the GAM and semiparametric model using general discrete triangular associated

kernels. The measure of error used is the root mean square error (RMSE) defined as

RMSE =

√∑n
j=1(yj − ŷj )2

n
,

where ŷj is the adjustment of the j th observation yj and n is the number of observations.

In the following, we first present the parametric models (logistic and GLM) used as start

functions for the discrete semiparametric model.
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3.1. Parametric models

The GLM represents a normal model for the response variable Yi with a logarithmic link. It has

a linear predictor based on a combination of explanatory variables, such as

yi = θ1 + θ2xi + θ2 log xi + ei, xi ∈ N.

The nonlinear model corresponds to a logistic one for the situation of population growth towards

a limited value. It is given by

yi = θL
1

1 + exp
{
−

(
(xi − θL

2 )/θL
3

)} + ei, xi ∈ N.

The fixed effect parameter θL
1 is the asymptote towards which the population grows. The parameter

θL
2 is the midpoint and corresponds to the time at which yi = θL

1 /2. The parameter θL
3 is the scale

and represents the distance on the time axis between the midpoint and the point where the response

is θL
1 /(1 + e−1).

Then, let us present an example of the discrete associated kernel constructed from a new discrete

probability distribution introduced by Kokonendji and Zocchi (2010). It is a generalisation of the

symmetric discrete triangular distributions (Kokonendji et al. 2007). We show the optimal order

of the bandwidth parameter h such as Var(Kx,h) = O(n−1/2) for these discrete associated kernels

(Remark 1).

3.2. Discrete associated kernel

Let a1 and a2 be the fixed integers and h1 and h2 be the smoothing parameters. For any fixed x ∈ Z,

consider the random variable DT x;a1,a2,h1,h2
defined on supports Sa1,x = {x − 1, x − 2, . . . , x −

a1} and Sx,a2
= {x, x + 1, . . . , x + a2} and whose p.m.f. is

Kx;a1,a2,h1,h2
(y) = 1

U(a1, a2, h1, h2)
×

{[
1 −

(
x − y

a1 + 1

)h1

]
1Sa1 ,x

(y)

+
[

1 −
(

y − x

a2 + 1

)h2

]
1Sx,a2

(y)

}
,

where

U(a1, a2, h1, h2) = (a1 + a2 + 1) − (a1 + 1)−h1

a1∑

k=1

kh1 − (a2 + 1)−h2

a2∑

k=1

kh2 ≡ U

is the normalising constant. Then, the mean is given by E(DT x;a1,a2,h1,h2
) = x +

V (a1, a2, h1, h2) ≡ x + V with

V = 1

U

{
a2(a2 + 1) − a1(a1 + 1)

2
+

a1∑

k=1

k

(
k

a1 + 1

)h1

−
a2∑

k=1

k

(
k

a2 + 1

)h2

}
,
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and the variance is Var(DT x;a1,a2,h1,h2
) = W(a1, a2, h1, h2) − [V (a1, a2, h1, h2)]2 ≡ W − [V ]2

with

W = 1

U
×

{
a2(a2 + 1)(2a2 + 1) + a1(a1 + 1)(2a1 + 1)

6
−

a1∑

k=1

k2

(
k

a1 + 1

)h1

−
a2∑

k=1

k2

(
k

a2 + 1

)h2

}
.

Note that an R package for general discrete triangular distributions is available (Senga Kiessé,

Libengué, Zocchi and Kokonendji 2010).

First, for showing the optimal order of the bandwidth assuming Var(DT x;a,h) = O(n−1/2), we

consider the symmetric discrete triangular associated kernels Kx;a,h with one arm a = a1 = a2

and one smoothing parameter h = h1 = h2. For h that is sufficiently small and a ∈ N fixed, we

have the following expansion:

Var(DT x;a,h) = 1

(a + 1)hU(a, h)

{
a(2a + 1)(a + 1)h+1

3
− 2

a∑

k=1

kh+2

}

≃
[

a(2a + 1)(a + 1)

3
{1 + h log(a + 1)} − 2

a∑

k=1

k2{1 + h log(k)}
]

×
[

1 + h

{
(2a + 1) log(a + 1) − 2

a∑

k=1

log(k)

}]−1

=
{

a(2a2 + 3a + 1)

3
log(a + 1) − 2

a∑

k=1

k2 log(k)

}
h + O(h2)

= 2hVar∗(DT x;a,h) + O(h2).

It results in the following expression for the leading term of order O(n−1/2) of the bias term in

Equation (5) given by

Bias∗{m̂n(x)} = h

{
l0(x)ω(2)(x) + 2l0(x)ω(1)(x)

(
f (1)

f

)
(x)

}
Var∗(DT x;a,h).

Hence, the bandwidth h is of optimal order O(n−1/2). This result can be generalised to the

bandwidths hi, i = 1, 2, for the discrete triangular associated kernels Kx;a1,a2,h1,h2
, since

Var(DT x;a1,a2,h1,h2
) =

2∑

i=1

hi

{
ai(2a2

i + 3ai + 1)

6
log(ai + 1) −

ai∑

k=1

k2 log(k)

}
+ O(h2

1 + h2
2)

=
2∑

i=1

hiVar∗(DT x;ai ,hi
) + O(h2

1 + h2
2).

Then, for the bandwidth selection, one can directly use the optimal values of (h1, h2), which

minimise the integrated squared error (ISE) such as ISE(h1, h2) =
∑

x∈N
{m̂n(x) − m0(x)}2,

where m0 is the observed value. Another method should be to minimise the integrated MSE of

the proposed discrete semiparametric regression estimator; thus, the bandwidth selection might

be realised by a cross-validation score function. One can refer to Chiu (1991) for kernel density
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estimation and to Kokonendji, Senga Kiessé and Balakrishnan (2009a) for semiparametric kernel

estimation of p.m.f. Here, we do not investigate these different approaches and just propose some

small and large values of h1 and h2 equal to 0.1 and 3.0 to point out the influence of both band-

width parameters h1 and h2 on goodness of fit, degree of smoothing and boundary bias. To reduce

this bias, we fix one bandwidth parameter and vary the other; in this way, we have an influence

on both smoothing and fitting. Another possibility is to transform the arms for reducing bias as

proposed by Kokonendji and Zocchi (2010). However, we do not exclude another discrete kernel

as binomial or Poisson proposed in density estimation because of their advantage for small or

moderate sample sizes (Senga Kiessé 2009), even if this advantage does not still hold for the

regression.

At last, for both arms a1 and a2, in practice, they are small and equal to 1, 2 or 3 (Kokonendji and

Zocchi 2010). Therefore, in what follows, we consider the general discrete triangular distributions

with a1 = 3 and a2 = 1. We recommend these discrete distributions for using an associated kernel

for our proposed estimator because of the advantages provided by the two smoothing parameters

(h1, h2).

3.3. Average daily fat

Figure 1 indicates the difference between discrete semiparametric general triangular kernel model

(a1, a2) = (3, 1) and GAM, on the one hand, and GLM, on the other hand. Indeed, both first ones

detect the plateau associated with the observations x = 19, 20, . . . , 27, while the third does not

detect it. The results given in Table 3 show that a better discrete semiparametric adjustment is

obtained using bandwidth parameters h1 = h2 = 0.1 (giving the smallest RMSE); however, there

is a lack of smoothing. The value of the RMSE increases and the degree of smoothing is improved

when the values of h1 and h2 increase to 3.0. Then, we fix one of the bandwidth parameter and

change the other. For h1 = 0.1 fixed and h2 varying to 3.0, the error RMSE increases, but we keep

a good estimation at the right boundary x = 35 with a satisfying amount of smoothing, which is

improved in comparison with the case h1 = h2 = 0.1. For h2 = 0.1 fixed and h1 varying to 3.0,

we obtain a similar result by keeping a good adjustment on the left boundary x = 1.

3.4. Sales data

Table 4 and Figure 2 present the results corresponding to sales data. Similar to the previous

example, the h-values h1 = h2 = 0.1 for the discrete semiparametric general triangular model

Table 3. RMSE (in %) calculated from the GLM, GAM and discrete semiparametric model with general
triangular associated kernels on average daily fat data.

Semiparametric regression with general discrete triangular kernel a1 = 3, a2 = 1

GLM GAM h1 = h2 = 0.1 h1 = h2 = 3.0 h1 = 0.1 and h2 = 3.0 h1 = 3.0 and h2 = 0.1

5.129 2.438 1.075 3.886 2.032 4.998

Table 4. RMSE calculated from the logistic model, GAM and discrete semiparametric model with general
triangular associated kernels on sales data.

Semiparametric regression with general discrete triangular kernel a1 = 3, a2 = 1

GLM GAM h1 = h2 = 0.1 h1 = h2 = 3.0 h1 = 0.1 and h2 = 3.0 h1 = 3.0 and h2 = 0.1

2.427 2.245 2.218 2.569 2.289 2.778
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with (a1, a2) = (3, 1) give the smallest RMSE but not the most satisfying amount of smoothing. In

comparison to the parametric model, both satisfying degree of smoothing and fitting are obtained

with h1 = h2 = 3.0. Furthermore, in general, the logistic model seems to underestimate the y-

values contrary to the semiparametric associated kernel model and GAM.

In the two previous applications, the discrete semiparametric estimator using triangular asso-

ciated kernel with (a1, a2) = (3, 1) and (h1, h2) = (0.1, 3.0) and GAM are closed in terms of

goodness of fit and smoothing. Concerning the semiparametric model with discrete general tri-

angular kernel (a1, a2) = (3, 1), use of smoothing parameters h1 = h2 = 3.0 provides the most

interesting results, considering the researched compromise between some good smoothing and

fitting. Thus, some relative big bandwidths are recommended, considering the lack of smoothing,

in spite of the fact that the optimal bandwidth is of order O(n−1/2); however, a bandwidth of this

optimal order would be recommended, considering the goodness of fit. For the last example, we

directly apply the semiparametric model using these values of parameters with a logistic model

as the start function.

3.5. Tree data

Here, the performance of the discrete semiparametric logistic kernel regression model m̂n is

illustrated on a tree data set (Table 2) having a distribution with sigmoïdal form in comparison

with the purely logistic model and GAM. In Figure 3, the fitted curve for the logistic model does not

succeed well in describing the variations of the distribution; it results in an error RMSE = 5.378%.

The semiparametric logistic model indicates that the use of discrete general triangular kernel with

bandwidth parameters h1 = h2 = 3.0 and arms (a1, a2) = (3, 1) provides some better amount

of smoothing and adjustment on data. Thus, the capacity of the semiparametric estimator to

detect the variations of the distribution to be estimated is clearly shown through the role of

the nonparametric correction factor ω(x), x = 0, 1, . . . , 55, (RMSE = 1.341%) at the opposite

of the parametric model. In addition, the semiparametric associated kernel model gives good

estimations at the left and right boundary points. The used semiparametric model is similar to

GAM (RMSE = 1.757%) in terms of performance and thus the corresponding fitted points are

closed to the observations in Figure 3; however, GAM does not adjust well at the right boundary.

4. Concluding remarks

This paper has investigated discrete semiparametric kernel estimators with logistic and normal

models as the known start functions. The general discrete triangular associated kernel with left

and right bandwidth parameters was used, which provided control on both the goodness of fit and

degree of smoothing. Thus, the constructed semiparametric estimators outperformed the para-

metric models in the three examples given. They allowed to obtain some satisfying adjustments,

amount of smoothing and reduction of boundary bias, which are often required. Several paramet-

ric models may be used as start functions in the semiparametric procedure such as some nonlinear

Gompertz or log-linear models for count data. Similarly, other discrete associated kernels may

be useful as binomial. Finally, the introduction of count explanatory variables and an optimal

choice of bandwidth parameters may be studied for the discrete semiparametric associated kernel

estimator.
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