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Discrete Nonparametric Kernel and Parametric
Methods for theModeling of Pavement Deterioration

TRISTAN SENGA KIESSÉ, TRISTAN LORINO, AND
HUSSEIN KHRAIBANI

Ifsttar, Bouguenais, France

This article is concerned with one discrete nonparametric kernel and two
parametric regression approaches for providing the evolution law of pavement
deterioration. The first parametric approach is a survival data analysis method;
and the second is a nonlinear mixed-effects model. The nonparametric approach
consists of a regression estimator using the discrete associated kernels. Some
asymptotic properties of the discrete nonparametric kernel estimator are shown as,
in particular, its almost sure consistency. Moreover, two data-driven bandwidth
selection methods are also given, with a new theoretical explicit expression
of optimal bandwidth provided for this nonparametric estimator. A comparative
simulation study is realized with an application of bootstrap methods to a measure
of statistical accuracy.

Keywords Bootstrap methods; Discrete associated kernel; Nonparametric
regression; Nonlinear regression; Pavement design; Survival data.

1. Introduction

Pavement detoriation models are important inputs for the pavement management
systems. These models are based on the analysis of observations of the pavement
section condition and provide the evolution law of pavement deterioration.
Different statistical models were used to model pavement conditions as classical
linear, nonlinear regression models, and Markov Chain. But the limitation of these
techniques in terms of discretization and their inefficiency in satisfying the goodness
of fit led to use the survival data methodology to determine the evolution law of
pavements (Lepert et al., 2003). Among these various investigations, the French
Institute of Science and Technology for Transport, Development and Networks
(Ifsttar) has been working on developping statistical modeling methods. The most
used is a survival data analysis method (SDAM) based on a parametric Weibull
model. However, some of the hypotheses in that approach may lead to biased
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estimations of parameters. A recent alternative consists of a logistic mixed model
(LMM) which reduces the bias of the estimations by taking into account the
correlation between observations on the same pavement sections because of the
random effects of this model (Khraibani et al., 2010).

In this article, we propose to complete the two previous parametric approaches
with a purely discrete nonparametric one. More precisely, it consists of a
nonparametric discrete kernel regression (NDKR) estimator using the associated
methodology (Kokonendji et al., 2009; Kokonendji and Senga Kiessé, 2011).
The specificity of this approach is the construction of discrete associated kernel
estimators which both focus on ordinal variables (consequently, on their discrete
realizations) and have the same “nature.” They are different from the continuous
kernel estimators applied until now on ordinal variables and which treat them as
continuous variables without being restricted on their discrete realizations. This
NDKR is of interest in terms of providing both discrete estimation and smoothing
of fatigue cracking data which are on a discrete support � (e.g., the set of
nonnegative integers �) included in the real line number �. In this approach, the
estimation at a point x ∈ � is influenced both by the choices of discrete associated
kernel and smoothing parameter which allow to take into account the observations
in the neighbourhood of x.

The rest of this article is organized as follows. Section 2 briefly presents
the survival data analysis method and the logistic mixed model. In Sec. 3, the
NDKR method is recalled. Then, the discrete nonparametric regression kernel
estimator is presented with some asymptotic properties; in particular, its almost
sure convergence is shown. Two methods are also presented for optimal bandwidth
choice. In Sec. 4, a comparison on the three approaches is realized based on discrete
simulated fatigue cracking data. Section 5 contains the concluding remarks.

2. Parametric Methods

In this section, we recall the survival data analysis method and the nonlinear mixed-
effects model without detailing all the mechanisms of these two approaches; for
more details, one can refer to Khraibani et al. (2010).

2.1. Survival Data Analysis Method

The SDAM presumes that the age T� at which a section reaches a deterioration
threshold of � is a random variable that follows a Weibull law characterized by a
parametric vector ��� �� and a corresponding hazard function h�t� x� = �t�−1�; the
function h is defined as the event rate at time t conditional on survival until time t.
The objective of this method is to estimate the parameters � and �, then to identify
the probability law of T�. In that purpose, the probability of the realization of all
the observations made on each section is calculated: this is the likelihood function
denoted by L��� ��.

One particularity of survival data analysis is the presence of a “censoring
random variable” reflecting the possible non observation for a given section to reach
the threshold exactly at the time t.

Hence, the likelihood function L��� �� is obtained as

L��� �� = F�Ti�
�1iS�Ti�

�2i�F�T1i�− F�T2i�	
�3if�Ti�

�4i

2



by combining the contributions of the failure time through the probability density
function f�T�; the left-censored observation reflected by the cumulative distribution
function F�T� = Pr�T < t�; the right-censored observation through the survival
function S�T� = 1− F�t�; and, the interval-censored observation through the factor
F�T2�− F�T1� with �pi, p = 1� 2� 3� 4, are indicative functions of the types of events
observed. Then this analysis is repeated for all the evolution thresholds � standing
between 0% and 100%, by 5% increments. Finally, to determine the evolution law of
a specific section, we use the notion of robustness; this notion states that if a given
section sec = 1� 2� 
 
 
 � k� 
 
 
 �M� with M ∈ �\�0	, has evolved more quickly that k
other at a given age, then this section will always evolve more quickly than the other
k sections.

2.2. Logistic Mixed Model

The nonlinear mixed-effects (NLME) framework is widely used for describing
nonlinear relationship between a response variable and parameters and covariates
in the repeated measurements data that are grouped according to a cluster factor.
The NLME models were initially proposed in biostatistics literature; here, we follow
the generalized NLME models proposed by Lindstrom and Bates (1990).

For pavement section sec with n�sec� repeated measurements, sec = 1� 2� 
 
 
 �M�

M ∈ �\�0	, the generalized NLME model for pavement cracking data can be
expressed as

ysec�j = m��sec� asec�j� xsec�j�+ esec�j� j = 1� 2� 
 
 
 � n�sec��

where ysec�j is the measured value of the deterioration at time j; asec�j denotes the
age (in years) on time j, m is the nonlinear function relating the response variable
to age and to the other possible covariates xsec�j varying with each section and time,
�sec is a vector with the parameters of nonlinear function, and esec�j is a normally
distributed within section error term.

The form adopted for predicting the cracking measurements is assumed to be
sigmoïdal. Therefore, the pavement sections can be described by the logistic model:

ysec�j =
1

1+ exp�−�
tsec�j−2

3
�	

+ esec�j� (1)

where ysec�j is the percentage of cracking for the sec-th section at the jth
measurement time tsec�j , sec = 1� 2� 
 
 
 �M with M ∈ �\�0	, j = 1� 2� 
 
 
 � n�sec�; and
esec�j represents an independent and identically normally distributed within section
error term with zero mean and variance �2. The parameter 1 corresponds to the
value of the limit of cracking growth at which roads will be completely degraded
and is set to 100% of cracking. The parameter 2 is the midpoint, the time at
which ysec�j = 1/2 = 50%. The parameter 3 is the scale parameter and represents
the distance on the time axis between the midpoint and the point where the response
is 1/�1+ e−1� = 73% of cracking (see Fig. 1).
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Figure 1. Growth curve of logistic model.

In order to account for the variation on the same pavement section, random
components were intoduced into model (1) yielding the following nonlinear mixed-
effects model:

ysec�j =
100

1+ exp�−�
tsec�j−�2+bsec�

�3+csec�
	�

+ esec�j� (2)

where we have the assumptions (bsec, csec)∼ � �0� �2
sec�, esec�j ∼ � �0� �2� and

b1� b2� 
 
 
 � bM , c1� c2� 
 
 
 � cM , e1� e2� 
 
 
 � eM , respectively, are independent (with M

the number of section). The parameter 2 is replaced by 2 + bsec to account for the
correlation between observations on the intra-individual variability in the midpoint
time. The parameter 2 is called the fixed effect, bsec is called the random effect and
represents the individual section departure from the average time of the midpoint.
Similarly, the fixed effect 3 represents the mean level of the growth time for the
population and csec is the individual section departure from the mean level of the
growth time. In the application, we will fit data with the model (2), assuming that
the random effects are added to the formula.

3. Nonparametric Discrete Kernel Regression

In this section we present the discrete associated kernel methodology introduced by
Kokonendji and Senga Kiessé (2011); then we also provide the NDKR estimator
(Kokonendji et al., 2009). Some asymptotic properties and the bandwidth optimal
choice are studied for this estimator.
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3.1. Discrete Associated Kernel

Let us recall some notions about the discrete associated kernel approach. First, the
kernel Kx�h�·� is a pmf with support �x which contains x and does not depend on h

such as

H1. limh→0 E��x�h� = x�

H2. limh→0 Var��x�h� = 0�

with �x�h the discrete r.v. of pmf Kx�h�·�. Here, we propose the following new
assumptions less general than H1–H2:

H3. Pr��x�h = x� = 1− hU��x�h�+ O�h2�,
H4. Var��x�h� = hV��x�h�+ O�h2�,

with
∑

y∈�x\�x	
Pr��x�h = y� = hU��x�h�+ O�h2� → 0 as h → 0; one can verify that

H3–H4 lead to H1–H2. These new assumptions can be useful both for specifying
the rate of convergence of �x�h to x and explaining an explicit expression of optimal
bandwidth. Note that the notations “U��x�h�” and “V��x�h�” reflects that U and V

are connected to �x�h but do not obligatory depend on x and h as we will see in
the following example from Kokonendji and Senga Kiessé (2011). Now we give a
class of symmetric discrete associated kernels Kx�h�·� that fullfill assumptions H3–H4
(and, consequently, H1–H2).

Example 3.1. Let a be a fixed integer and h > 0 be a smoothing parameter. For
any fixed x ∈ � = �, consider the discrete r.v. ��a�x�h defined on support �a�x =

�x� x ± 1� 
 
 
 � x ± a	 and whose pmf is given by

Ka�x�h�y� =
�a+ 1�h − �y − x�h

A�a� h�
� ∀y ∈ �a�x�

where A�a� h� = �2a+ 1��a+ 1�h − 2
∑a

k=1 k
h is the normalizing constant. We have

the mean ����a�x�h� = x and the variance

Var���a�x�h� =
1

A�a� h�

{
a�2a+ 1��a+ 1�h+1

3
− 2

a∑
k=1

kh+2

}
= V�a� h�

which does not depend on x and tends to 0 when h → 0. The R package for
symmetric discrete triangular distributions is available Senga Kiessé et al. (2009).

First, for h sufficiently small, the modal probability of ��a�x�h can be
approximate by

Pr���a�x�h = x� =
�a+ 1�h

A�a� h�

≃
1+ h log�a+ 1�

1+ h��2a+ 1� log�a+ 1�− 2
∑a

k=1 log�k�	

= 1− h

{
2a log�a+ 1�− 2

a∑
k=1

log�k�
}
+ O�h2�

= 1− 2hU�a�+ O�h2�
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Furthermore, we have the following expansion for the variance of ��a�x�h:

Var���a�x�h� ≃

[
a�a+ 1��2a+ 1�

3
�1+ h log�a+ 1�	− 2

a∑
k=1

k2�1+ h log�k�	
]

×

[
1+ h

{
�2a+ 1� log�a+ 1�− 2

a∑
k=1

log�k�
}]−1

=

{
a�2a2 + 3a+ 1�

3
log�a+ 1�− 2

a∑
k=1

k2 log�k�

}
h+ O�h2�

= 2hV�a�+ O�h2��

which also holds for h sufficiently small. Note that U and V depend on parameter
a but not on x and h as said previously.

Remark 3.1. The class of standard discrete kernels built from usual discrete
probability distributions (Poisson, binomial, and negative binomial) does not fulfill
hypotheses H3–H4 but only H1. For all x ∈ � and h > 0, the modal probability at
x of these kernels does not tend to 1 as h goes to 0; moreover, the r.v. associated to
these discrete kernels satisfies limh→0 Var��x�h� ∈ 	 �0� instead of H2 where 	 �0� is
a neighbourhood of 0. See Kokonendji and Senga Kiessé (2011) for more details on
these discrete kernels.

3.2. Nonparametric Regression Estimator

Consider the nonparametric regression model of yi on xi,

yi = m�xi�+ ei�

where yi denotes the observation of the response variable Yi in �, xi is the realization
of the explanatory variable Xi in � = �, ei is assumed to be the residual from
the real random variable �i satisfying commonly ���i� = 0 and Var��i� = �2, and
m � � �→ � is an unknown discrete bounded regression function such as m�xi� =

��Yi�Xi = xi� and Var�Yi�Xi = xi� < �. The NDKR estimator of Nadaraya-Watson
type for m is proposed by Kokonendji and Senga Kiessé (2011) as

m̃n�x� =
n∑

i=1

YiKx�h�Xi�∑n
j=1 Kx�h�Xj�

� x ∈ �
 (3)

In the following we study some asymptotic properties of NDKR estimator m̃n.

3.2.1. Asymptotic Properties. First, for any fixed x ∈ �, assume that the discrete
r.v. X has a pmf such that f�x� = Pr�X = x� > 0. Under assumptions H1–H2,
the pointwise bias and variance of the estimator m̃n�x� are given in Kokonendji
et al. (2009) and Kokonendji and Senga Kiessé (2011), depending on the modal
probability Pr��x�h = x� and variance Var��x�h�. Therefore, by taking into account
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the hypotheses H3–H4 we have

Bias�m̃n�x�	 =
h

2

{
m�2��x�+ 2m�1��x�

(
f �1�

f

)
�x�

}
V��x�h�+O

(
1
n
+ h2

)
+ o�h�� (4)

Var�m̃n�x�	 =
Var�Y �X = x�

nf�x�
�1− hU��x�h�	

2 + o

(
1
n

)
+ O�h2�� (5)

where f �1�, m�1�, and m�2� are finite differences used instead of the usual
differentiation on the real line numbers �. Then, the pointwise consistency of the
discrete semiparametric estimator m̃n is obtained through the asymptotic behaviour
of its mean square error (MSE) as

MSE�x� n� h�K� f� = Bias2
{
m̃n�x�

}
+ Var

{
m̃n�x�

}
→ 0� x ∈ �


Indeed, under assumptions H1–H4 and Var�Y �X = x� < �� the asymptotic
expansions of the bias and variance of m̃n are such as Bias

{
m̃n�x�

}
→ 0 and

Var
{
m̃n�x�

}
→ 0� as h = h�n� → 0 when n → �. In addition, the global consistency

of m̃n such as

MISE�n� h�K� f� =
∑
x∈�

MSE�x� → 0 when h = h�n� → 0 and n → � (6)

comes from adding the condition

∑
x∈�

∣∣∣∣
{
m�2��x�+ 2m�1��x�

(
f �1�/f

)
�x�

} ∣∣∣∣ < �

to the previous assumptions.
In what follows we present the theorem on almost sure consistency of the

NDKR estimator m̃n in (3), to this we need first to recall the following lemma
(Hoeffding, 1963).

Lemma 3.1. Let Z1� Z2� 
 
 
 � Zn be i.i.d. random variables with finite second moments.

If there exist constants a and b such that Pr�Zi ∈ �a� b�� = 1, then given � > 0 we have

Pr

(∣∣∣∣∣
1
n

n∑
i=1

Zi

∣∣∣∣∣ ≥ �

)
≤ 2 exp

{
−

n�2

��b − a�+ 2Var�Z1�

}



Now we present the theorem on almost sure consistency of m̃n.

Theorem 3.1. For any fixed x ∈ �, under assumptions H1–H2, the nonparametric

estimator m̃n�x� converges almost surely to m(x) as follows:

m̃n�x�
a
s

−→ m�x�


The notation “
a
s

−→” stands for “almost sure convergence.”
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Proof. Let us write the nonparametric regression estimator as m̃n = g̃n�x�/f̃n�x�
where

g̃n�x� =
1
n

n∑
i=1

Wx�h�Xi�Yi and f̃n�x� =
1
n

n∑
i=1

Wx�h�Xi�

with Wx�h�Xi� = Kx�h�Xi�/��Kx�h�X1�	 such as ��Wx�h�Xi�	 = 1
 The estimator m̃n

can be expressed as:

m̃n�x�−m�x� =
g̃n�x�−��g̃n�x�	

f̃n�x�
− �m�x�−��g̃n�x�	�−

m�x�

f̃n�x�
�f̃n�x�− 1	


Firstly, we have

m�x�−��g̃n�x�	 = m�x�−����Wx�h�Xi�Yi	�Xi�

= m�x���Wx�h�Xi�	−��Wx�h�Xi�m�Xi�	

= ���m�x�−m�X�	Wx�h�Xi��


The continuity of m � � → � at x ∈ � can be defined as follows:

∀ � > 0� ∃ � > 0 � ∀ y ∈�x− �� x + ��∩� ⇒ �m�y�−m�x�� < �� (7)

we easily deduce that any crf is continuous in the sense of this definition. Note that,
for � > 0 in (7), the notion of discrete neighbourhood �x− �� x + ��∩� of x can
be reduced to the single point �x	. The continuity of the crf m results in m�x�−
��g̃n�x�	 → 0.

Secondly, let us write g̃n�x�−��g̃n�x�	 = �1/n�
∑n

i=1 Zi with Zi = Wx�h�Xi�Yi −
��Wx�h�Xi�Yi	
 For any x ∈ �, there exists 0 < M < � such that we have �Zi� ≤
�Yi� ≤ �M� then successively

Var�Zi� = Var�Wx�h�Xi�Yi	

≤ ��W 2
x�h�Xi�Y

2
i 	

≤ ��Y 2
i 	 < ��

since 0 ≤ Wx�h�·� ≤ 1 and m�x� is bounded with Var�Y �X = x� < �
 Therefore,
according to Lemma, one has

Pr ��g̃n�x�−��g̃n�x�	� ≥ ��=Pr

(∣∣∣∣∣
1
n

n∑
i=1

Zi

∣∣∣∣∣≥ �

)
≤ 2 exp

(
−n�2

2�M + 2

)
≤ 2 exp

(−n�

2

)
�

for any � > 0. Consequently, Borel-Cantelli lemma leads to get g̃n�x�−��g̃n�x�	
a
s

−→

0 since
∑

n≥1 Pr ��g̃n�x�−��g̃n�x�	� ≥ �� < �


Thirdly, we have f̃n�x�− 1
a
s

−→ 0. For the demonstration, we just express

f̃n�x�− 1 = �1/n�
∑n

i=1 Z
′
i with Z′

i = Kx�h�Xi�− 1
 It comes that

−1 ≤ Z′
i ≤ 0 and Var�Z′

i� ≤ ��K2
x�h�X1�	 ≤ 1�

then the rest of the demonstration for this third part is similar to the second part.
Hence, the theorem is shown.
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3.2.2. Bandwidth Optimal Selection. Here, we investigate two approaches for
selecting the optimal parameter.

Minimization of Mean Integrated Squared Error. The first possibility is the
minimization of MISE of m̃n in (6) that we obtain from the bias and the variance
in (4) and (5), respectively. Then, the differentiation of the approximate MISE
(AMISE) with respect to h is such as

d

dh
AMISE = −

1
n

∑
x∈�

Var�Y �X = x�

f�x�
U��x�h�− hU 2��x�h�	

+
h

4

∑
x∈�

[{
m�2��x�+ 2m�1��x�

(
f �1�

f

)
�x�

}
V��x�h�

]2




From the equation d/dh�AMISE� = 0, it ensues the explicit expression

hopt�n� =

∑
x∈� Var�Y �X = x�U��x�h�/f�x�∑

x∈� Var�Y �X = x�U 2��x�h�/f�x�+ �n/4�
∑

x∈��W�x�× V��x�h�	
2

with
∑

x∈� W 2�x� =
∑

x∈�

{
m�2��x�+ 2m�1��x�

(
f �1�/f

)
�x�

}2
< � and hopt�n� → 0 as

n → �.
However, this explicit expression hopt cannot be always used because it requires

to knwon the true functions m and f . In the following we present an alternative
approach to find an optimal h-value.

Cross-validation Procedure. The selection of the optimal bandwidth parameter
also can be realized by the cross-validation method. For a given discrete associated
kernel, let us write the nonparametric count regression estimator m̃n of the crf m as

m̃n�x� =
n∑

i=1

�x�h�Xi�Yi

with �x�h�Xi� = Kx�h�Xi�/
∑n

j=1 Kx�h�Xj�. The optimal smoothing parameter is hcv =
argminh>0 CV�h� with

CV�h� =
1
n

n∑
i=1

m̃2
n�−i�Xi� h�−

2
n

n∑
i=1

m̃n�−i�Xi� h�Yi�

where

m̃n�−i�Xi� h� =
n∑
j �=i

YjKXi�h
�Xj�∑n

j �=i KXi�h
�Xj�

=
n∑
j �=i

�Xi�h
�Xj�Yj

is the leave-one-out kernel estimator of m̃n�Xi� h� being computed by excluding Xi

(Kokonendji et al., 2009).

4. Illustrations

In this section, the SDAM, LMM, and NDKR associated kernel regression are
illustrated on simulated performance data. The data set was generated using
a fatigue-crack propagation model whose random parameters follow a Weibull
probability distribution. These simulated data contained M = 100 maintained
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sections. For each section, 70–134 measurements varying from 0–100% were
considered. In order to evaluate the performance of the different models we compare
the root mean squared error RMSE defined as

RMSE�sec� =

√∑n�sec�

j=1 �ysec�j − ŷsec�j�
2

n�sec�
� (8)

where ŷsec�j is the ajustement of the j-th observation ysec�j of percentage of cracking
for the sec-th section with a number n�sec� of repeated measurements, sec =

1� 2� 
 
 
 � 100. For nonparametric estimator, the bandwidth optimal choice is realized
using cross-validation procedure; we omit here to present the optimal h-value
obtained. All computations are done with the R statistical language (Senga Kiessé
et al., 2009).

4.1. Global Study

The illustrations are realized on the sections sec ∈ �1� 13� 30� 41	 that some
characteristics are given in Table 1.

Table 2 presents the values of the RMSE�sec� resulting from the application of
each model on the sections sec ∈ �1� 13� 30� 41	. In addition, Fig. 2 provides graphic
illustrations corresponding to sections 1 and 30 which are taken as examples,
because the sections 1, 13, and 41 have closed characteristics (see Table 1).
Looking at these examples, the discrete nonparametric kernel regression estimator
m̃n provides the discrete estimations whom are closest to observations. Thus, in
terms of goodness of fit, the estimator m̃n provides the best estimations followed by
the LMM and, at last, the SDAM.

Note that the performance of the parametric models is slightly improved by
introducing covariables but not sufficiently to make them better than the NDKR.
Indeed, the order of performance between the three approaches is not changed in
this case that we do not present here.

The calculation of individual RMSE�sec� for a section is completed with a more
robust evaluation using the Monte-Carlo simulations (see Table 3 and Fig. 3).

It consists of a bootstrap approximate ̂RMSE
�sec�

of the RMSE�sec� obtained by
resampling the observations of the section sec chosen. Indeed, from the actual
sample y1� y2� 
 
 
 � yn�sec�� of a section, we draw with replacement N random samples
y∗1� y

∗
2� 
 
 
 � y

∗
n�sec�

� of the same size n�sec�. Thus, we obtain N bootstrap samples on
whom we apply SDAM, LMM, and the regression estimator m̃n in (3). From the

Table 1

Some characteristics of sections

Section sec n�sec� Mean Variance Coefficient of variation

1 71 0
524 0
135 0
702
13 72 0
528 0
134 0
692
30 134 0
565 0
140 0
662
41 70 0
521 0
133 0
700
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Table 2

RMSE (in %) coming from fitting some pavement sections

RMSE�sec�

Section SDAM LMM NDKR∗

1 2
25 1
14 0
231
13 2
42 1
22 0
084
30 4
02 0
93 0
224
41 2
46 1
17 0
271

∗With a = 2

adjustement of each simulated sample i = 1� 2� 
 
 
 � N� of the fixed section, it ensues
the corresponding RMSE

�∗�
i and the calculation of the average:

RMSE�∗� =
1
N

N∑
i=1

RMSE
�∗�
i =� ̂RMSE

�sec�

Figure 2. Comparison of evolution curves using SDAM, LMM, and discrete tringular
kernel regression from simulated fatigue data of pavement sections 1 and 30.
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Table 3

Means of RMSE (in %) calculated from bootstrap
samples of simulated fatigue data

̂RMSE
�sec�

Section N SDAM LMM NDKR∗

100 4
49 3
01 0
379
1 300 4
39 2
87 0
399

600 4
45 2
86 0
383

100 4
76 2
93 0
390
13 300 4
43 2
93 0
373

600 4
36 2
89 0
373

100 3
29 2
15 0
216
30 300 3
21 2
14 0
214

600 3
25 2
11 0
203

100 4
71 2
95 0
393
41 300 4
72 2
89 0
378

600 4
80 2
94 0
397

∗With a = 2

which converges as N is increasing; see Efron and Tibshirani (1986) for bootstrap
methods. All the results coming from the application of the SDAM, LMM, and
discrete nonparametric regression estimator m̃n on the 100 sections are not presented
here. Finally, the evolution curves are obtained using the linear interpolation
procedure between the discrete points.

Figure 3. An example of section (in black with dash lines) with its boostrap replicates (in
grey).
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Table 4

Some characteristics of sections 1 and 30 with respect to the age (in years)

Section Age Mean Variance Coefficient of variation

0–5 0
067 0
003 0
859
1 5–15 0
638 0
062 0
391

>15 0
980 0
011× 10−2 0
011

0–5 0
027 0
029× 10−2 0
629
30 5–25 0
529 0
087 0
559

>25 0
979 0
018× 10−2 0
014

4.2. Study with Respect to the Age

Here, the bootstrap samples generated from the sections 1 and 30 are studied by
three parts with respect to the age, then the average error RMSE�∗� is calculated on
each part. These parts are defined such that they correspond to similar behaviors
of fatigue cracking data of the two chosen sections. Thus, the first part corresponds

Table 5

Means of RMSE (in %) calculated from bootstrap samples
of simulated fatigue data

̂RMSE
�sec�

Age∗ N SDAM LMM NDKR∗∗

Section 1
100 2
80 2
50 0
265

0–5 300 2
80 2
49 0
261
600 2
88 2
52 0
260

100 5
25 3
12 0
500
5–15 300 5
36 3
19 0
447

600 5
42 3
17 0
471

100 1
07 1
44 0
142
>15 300 1
19 1
40 0
114

600 1
18 1
39 0
116

Section 30
100 1
61 1
95 0
102

0–5 300 1
51 1
87 0
488
600 1
55 1
81 0
102

100 3
95 2
45 0
258
5–25 300 3
95 2
42 0
256

600 3
99 2
41 0
255

100 0
92 0
88 0
075
>25 300 0
95 0
88 0
411

600 0
93 0
91 0
070

∗Age in years. ∗∗With a = 2
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to small fatigue cracking values (about <20%) ang goes from 0–5 years for the two
sections. At the opposite, the last part corresponds to large fatigue cracking values
(about >90%) and is over 15 years for the section 1 and 25 years for the section 30.
In the middle, there is an intermediary part from 5–15 years for the section 1, and
from 5–25 years for the section 30. Some characteristics of the fixed sections with
respect to the age are given in Table 4.

By applying each model, the estimations are better on the section parts
corresponding to small and large fatigue cracking data in comparison with the
intermediary part (refer to Table 5). Then, looking at the performances of the three
models, the nonparametric kernel regression estimator outperforms the two other
models on each of the three parts. About the LMM and SDAM, they are closed
in mean (in the sense of the RMSE) for small and large fatigue cracking values
which correspond to a small data dispersion (Table 4). The LMM is better than the
SDAM on the middle part where both the mean and the dispersion of the data are
largest. These results confirm the global perfomance of these three approaches, as
it has been arleady pointed out in the previous paragraph. Moreover, through the
varying results between the middle part and the two other parts, this study seems
pointed out that the performance of each model and the dispersion of the data are
connected.

5. Discussion

This article is concerned with a discrete associated kernel approach in comparison
to a survival data analysis method and a logistic regression for the modelisation
of discrete pavement condition data. A comparative simulation study is provided
leading to the following concluding remarks.

The purely discrete nonparametric approach outperforms the two parametric
approaches, in term of fitting the discrete observed data of pavement condition.
Indeed, the nonparametric estimation techniques are well known to be impartial
to special types of the underlying density function. Moreover, the nonparametric
associated kernel regression estimator takes into account the correlation between the
observations on a same section through both the behaviour of the associated kernel
and the role of the smoothing parameter. However, there are some limitations to
this discrete associated kernel method as the fact that we can not expect it to involve
covariates.

The parametric approaches may have the advantages both to include ordinal
covariables and examine their influence in the modelisation of the phenomenon,
which may lead to more detailed analysis. In addition, some confidence intervals of
the parameters are provided as in the LMM. In these approaches some various tests
are also available to evaluate their accuracy in terms of fitting and prediction. At
last, the parametric approaches, based on some known probability density functions
(e.g., Weibull, logistic) contrary to discrete nonparametric kernel procedure, are
useful to detail the “true form” of the underlying function to estimate.

Finally, the nonparametric and parametric procedures are complementary and
can be used depending on the researched purpose of the user. In perspective, it
would be interesting to investigate the NDKR results depending on the choice
of discrete kernel and of bandwidth. Moreover, a generalized linear mixed model
or a discrete semiparametric procedure recently proposed by Abdous et al. (2012)
might be compared to NDKR. In this way, some parametric, nonparametric, and
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semiparametric procedures will be available for fitting pavement deterioration, and
using diagnostic checks will allow to choose the appropriate approach according to
the data set. Some works are in progress in this direction.
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