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High dimensional Poisson regression has become a standard framework for the analysis of massive counts datasets. In this work we estimate the intensity function of the Poisson regression model by using a dictionary approach, which generalizes the classical basis approach, combined with a Lasso or a group-Lasso procedure. Selection depends on penalty weights that need to be calibrated. Standard methodologies developed in the Gaussian framework can not be directly applied to Poisson models due to heteroscedasticity. Here we provide data-driven weights for the Lasso and the group-Lasso derived from concentration inequalities adapted to the Poisson case. We show that the associated Lasso and group-Lasso procedures satisfy fast and slow oracle inequalities. Simulations are used to assess the empirical performance of our procedure, and an original application to the analysis of Next Generation Sequencing data is provided.

Introduction

Poisson functional regression has become a standard framework for image or spectra analysis, in which case observations are made of n independent couples (Y i , X i ) i=1,...,n , and can be modeled as The X i 's (random or fixed) are supposed to lie in a known compact support of R d (d ≥ 1), say [0, 1] d , and the purpose is to estimate the unknown intensity function f 0 assumed to be positive. Wavelets have been used extensively for intensity estimation, and the statistical challenge has been to propose thresholding procedures in the spirit of [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF], that were adapted to the variance's spatial variability associated with the Poisson framework. An early method to deal with high dimensional count data has been to apply a variance stabilizing-transform (see [START_REF] Anscombe | The transformation of Poisson, binomial and negative-binomial data[END_REF]) and to treat the transformed data as if they were Gaussian. More recently, the same idea has been applied to the data's decomposition in the Haar-wavelet basis, see [START_REF] Fryzlewicz | A Haar-Fisz algorithm for Poisson intensity estimation[END_REF] and [START_REF] Fryzlewicz | Data-driven wavelet-Fisz methodology for nonparametric function estimation[END_REF], but these methods rely on asymptotic approximations and tend to show lower performance when the level of counts is low (see [START_REF] Besbeas | A comparative simulation study of wavelet shrinkage estimators for Poisson counts[END_REF]). Dedicated wavelet thresholding methods were developed in the Poisson setting by [START_REF] Kolaczyk | Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds[END_REF] and [START_REF] Sardy | Automatic smoothing with wavelets for a wide class of distributions[END_REF], and a recurrent challenge has been to define an appropriate threshold like the universal threshold for shrinkage and selection, as the heteroscedasticity of the model calls for component-wise thresholding.

Y i |X i ∼ Poisson(f 0 (X i )).
In this work we first propose to enrich the standard wavelet approach by considering the so-called dictionary strategy. We assume that log f 0 can be well approximated by a linear combination of p known functions, and we reduce the estimation of f 0 to the estimation of p coefficients. Dictionaries can be built from classical orthonormal systems such as wavelets, histograms or the Fourier basis, which results in a framework that encompasses wavelet methods. Considering overcomplete (ie redundant) dictionaries is efficient to capture different features in the signal, by using sparse representations (see [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF] or [START_REF] Tropp | Greed is good: algorithmic results for sparse approximation[END_REF]). For example, if log f 0 shows piece-wise constant trends along with some periodicity, combining both Haar and Fourier bases will be more powerful than separate strategies, and the model will be sparse in the coefficients domain. To ensure sparse estimations, we consider the Lasso and the group-Lasso procedures. Group estimators are particularly well adapted to the dictionary framework, especially if we consider dictionaries based on a wavelet system, for which it is well known that coefficients can be grouped scale-wise for instance (see [START_REF] Chicken | Block thresholding for density estimation: Local and global adaptivity[END_REF]). Finally, even if we do not make any assumption on p itself, it may be larger than n and methodologies based on 1 -penalties, such as the Lasso and the group-Lasso appear appropriate.

The statistical properties of the Lasso are particularly well understood in the context of regression with i.i.d. errors, or for density estimation for which a range of oracle inequalities have been established. These inequalities, now widespread in the literature, provide theoretical error bounds that hold on events with a controllable (large) probability. See for instance [START_REF] Bertin | Adaptive Dantzig density estimation[END_REF], [START_REF] Bickel | Simultaneous analysis of lasso and Dantzig selector[END_REF], Bunea et al. (2007a,b) and the references therein. For generalized linear models, [START_REF] Park | L 1 -regularization path algorithm for generalized linear models[END_REF] studied 1 -regularization path algorithms and van de Geer (2008) established non-asymptotic oracle inequalities. The sign consistency of the Lasso has been studied by [START_REF] Jia | The lasso under Poisson-like heteroscedasticity[END_REF] for a very specific Poisson model. Finally, we also mention than the Lasso has also been extensively consid-ered in survival analysis. See for instance [START_REF] Gaïffas | High-dimensional additive hazards models and the Lasso[END_REF], [START_REF] Zou | A note on path-based variable selection in the penalized proportional hazards model[END_REF], [START_REF] Kong | Non-asymptotic oracle inequalities for the high-dimensional cox regression via lasso[END_REF], [START_REF] Bradic | Regularization for Cox's proportional hazards model with NP-dimensionality[END_REF], [START_REF] Lemler | Oracle inequalities for the lasso in the high-dimensional multiplicative Aalen intensity model[END_REF] and [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF].

Here we consider not only the Lasso estimator but also its extension, the group-Lasso proposed by [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF], which is relevant when the set of parameters can be partitioned into groups. The analysis of the group-Lasso has been led in different contexts. For instance, consistency has been studied by [START_REF] Bach | Consistency of the group lasso and multiple kernel learning[END_REF], [START_REF] Obozinski | Support union recovery in high-dimensional multivariate regression[END_REF] and [START_REF] Wei | Consistent group selection in high-dimensional linear regression[END_REF]. In the linear model, [START_REF] Nardi | On the asymptotic properties of the group lasso estimator for linear models[END_REF] derived conditions ensuring various asymptotic properties such as consistency, oracle properties or persistence. Still for the linear model, [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] established oracle inequalities and, in the Gaussian setting, pointed out advantages of the group-Lasso with respect to the Lasso, generalizing the results of [START_REF] Chesneau | Some theoretical results on the grouped variables Lasso[END_REF] and [START_REF] Huang | The benefit of group sparsity[END_REF]. We also mention [START_REF] Meier | The group Lasso for logistic regression[END_REF] who studied the group-Lasso for logistic regression, [START_REF] Blazere | Oracle inequalities for a group lasso procedure applied to generalized linear models in high dimension[END_REF] for generalized linear model with Poisson regression as a special case and [START_REF] Dalalyan | Learning heteroscedastic models by convex programming under group sparsity[END_REF] for other linear heteroscedastic models.

As pointed out by empirical comparative studies (see [START_REF] Besbeas | A comparative simulation study of wavelet shrinkage estimators for Poisson counts[END_REF]), the calibration of any thresholding rule is of central importance. Here we consider Lasso and group-Lasso penalties of the form pen(β) = where G 1 ∪ • • • ∪ G K is a partition of {1, . . . , p} into non-overlapping groups (see Section 1 for more details). By calibration we refer to the definition and to the suitable choice of the weights λ j and λ g k , which is intricate in heteroscedastic models, especially for the group-Lasso. For functional Poissonian regression, the ideal shape of these weights is unknown, even if for the group-Lasso, the λ g k 's should of course depend on the groups size. As for the Lasso, most proposed weights in the literature are non-random and constant such that the penalty is proportional to β 1 , but when facing variable selection and consistency simultaneously, [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] showed the interest in considering non-constant data-driven 1weights even in the simple case where the noise is Gaussian with constant variance. This issue becomes even more critical in Poisson functional regression in which variance shows spatial heterogeneity. As [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF], our first contribution is to propose here adaptive procedures with weights depending on the data. Weights λ j for the Lasso are derived by using sharp concentration inequalities, in the same spirit as [START_REF] Bertin | Adaptive Dantzig density estimation[END_REF], [START_REF] Gaïffas | High-dimensional additive hazards models and the Lasso[END_REF], [START_REF] Lemler | Oracle inequalities for the lasso in the high-dimensional multiplicative Aalen intensity model[END_REF] and [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF], but adapted to the Poissonian setting. To account for heteroscedasticity, weights λ j are component-specific and depend on the data (see Theorem 1). We propose a similar procedure for the calibration of the group-Lasso. In most proposed procedures, the analogs of the λ g k 's are proportional to the |G k |'s (see [START_REF] Nardi | On the asymptotic properties of the group lasso estimator for linear models[END_REF], [START_REF] Bühlmann | Statistics for high-dimensional data[END_REF] or [START_REF] Blazere | Oracle inequalities for a group lasso procedure applied to generalized linear models in high dimension[END_REF]). But to the best of our knowledge, adaptive group-Lasso procedures (with weights depending on the data) have not been proposed yet. This is the purpose of Theorem 2, which is the main result of this work, generalizing Theorem 1 by using sharp concentration inequalities for infinitely divisible vectors. We show the shape relevance of the data-driven weights λ g k by comparing them to the weights proposed by [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] in the Gaussian framework. In Theorem 2, we do not impose any condition on the groups size. However, whether |G k | is smaller than log p or not highly influences the order of magnitude of λ g k .

Our second contribution consists in providing the theoretical validity of our approach by establishing slow and fast oracle inequalities under RE-type conditions in the same spirit as [START_REF] Bickel | Simultaneous analysis of lasso and Dantzig selector[END_REF]. Closeness between our estimates and f 0 is measured by using the empirical Kullback-Leibler divergence. We show that classical oracle bounds are achieved. We also show the relevance of considering the group-Lasso instead of the Lasso in some situations. Our results, that are non-asymptotic, are valid under very general conditions on the design (X i ) i=1,...,n and on the dictionary. However, to shed some light on our results, we illustrate some of them in the asymptotic setting with classical dictionaries like wavelets, histograms or Fourier bases. Our approach generalizes the classical basis approach and in particular block wavelet thresholding which is equivalent to group-Lasso in that case (see [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]). We refer the reader to [START_REF] Chicken | Block thresholding for density estimation: Local and global adaptivity[END_REF] for a deep study of block wavelet thresholding in the context of density estimation whose framework shows some similarities with ours in terms of heteroscedasticity. Note that sharp estimation of variance terms proposed in this work can be viewed as an extension of coarse bounds provided by [START_REF] Chicken | Block thresholding for density estimation: Local and global adaptivity[END_REF]. Finally, we emphasize that our procedure differs from [START_REF] Blazere | Oracle inequalities for a group lasso procedure applied to generalized linear models in high dimension[END_REF]'s one in several aspects: First, in their Poisson regression setting, they do not consider a dictionary approach. Furthermore, their weights are constant and not data-driven, so are strongly different from ours. Finally, rates of [START_REF] Blazere | Oracle inequalities for a group lasso procedure applied to generalized linear models in high dimension[END_REF] are established under much stronger assumptions than ours (see Section 3.1 for more details).

Finally, we explore the empirical properties of our calibration procedures by using simulations. We show that our procedures are very easy to implement, and we compare their performance with variance-stabilizing transforms and cross-validation. The calibrated Lasso and group-Lasso are associated with excellent reconstruction properties, even in the case of low counts. We also propose an original application of functional Poisson regression to the analysis of Next Generation Sequencing data, with the denoising of a Poisson intensity applied to the detection of replication origins in the human genome (see [START_REF] Picard | The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells[END_REF]).

This article is organized as follows. In Section 1, we introduce the Lasso and group-Lasso procedures we propose in the dictionary approach setting. In Section 2, we derive data-driven weights of our procedures that are extensively commented. Theoretical performance of our estimates are studied in Section 3 in the oracle approach. In Section 4, we investigate the empirical performance of the proposed estimators using simulated data, and an application is provided on next generation sequencing data in Section 5.

Penalized log-likelihood estimates for Poisson regression and dictionary approach

We consider the functional Poisson regression model, with n observed counts Y i ∈ N modeled such that:

Y i |X i ∼ Poisson(f 0 (X i )), (1.1)
with the X i 's (random or fixed) supposed to lie in a known compact support, say [0, 1] d .

Since the goal here is to estimate the function f 0 assumed to be positive on [0, 1] d , a natural candidate is a function f of the form f = exp(g). Then, we consider the socalled dictionary approach which consists in decomposing g as a linear combination of the elements of a given finite dictionary of functions denoted by Υ = {ϕ j } j∈J , with ϕ j 2 = 1 for all j. Consequently, we choose g of the form:

g = j∈J β j ϕ j ,
with p = card(J ) that may depend on n (as well as the elements of Υ). Without loss of generality we will assume in the following that J = {1, . . . , p}. In this framework, estimating f 0 is equivalent to estimating the vector of regression coefficients β = (β j ) j∈J ∈ R p . In the sequel, we write g β = j∈J β j ϕ j , f β = exp(g β ), for all β ∈ R p . Note that we do not require the model to be true, that is we do not suppose the existence of β 0 such that f 0 = f β 0 . The strength of the dictionary approach lies in its ability to capture different features of the function to estimate (smoothness, sparsity, periodicity,...) by sparse combinations of elements of the dictionary so that only few coefficients need to be selected, which limits estimation errors. Obviously, the dictionary approach encompasses the classical basis approach consisting in decomposing g on an orthonormal system. The richer the dictionary, the sparser the decomposition, so p can be larger than n and the model becomes high-dimensional.

We consider a likelihood-based penalized criterion to select β, the coefficients of the dictionary decomposition. We denote by A the n × p-design matrix with

A ij = ϕ j (X i ), Y = (Y 1 , . . . , Y n ) T and the log-likelihood associated with this model is l(β) = j∈J β j (A T Y) j - n i=1 exp j∈J β j A ij - n i=1 log(Y i !),
which is a concave function of β. Next sections propose two different ways to penalize -l(β).

The Lasso estimate

The first penalty we propose is based on the (weighted) 1 -norm and we obtain a Lasso-type estimate by considering

β L ∈ argmin β∈R p    -l(β) + p j=1 λ j |β j |    .
(1.

2)

The penalty term p j=1 λ j |β j | depends on positive weights (λ j ) j∈J that vary according to the elements of the dictionary and are chosen in Section 2.1. This choice of varying weights instead of a unique λ stems from heteroscedasticity due to the Poisson regression, and a first part of our work consists in providing theoretical data-driven values for these weights, in the same spirit as [START_REF] Bertin | Adaptive Dantzig density estimation[END_REF] or [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF] for instance. From the first order optimality conditions (see Bühlmann and van de Geer (2011)),

β L satisfies        A T j (Y -exp(A β L )) = λ j β L j | β L j | if β L j = 0, |A T j (Y -exp(A β L ))| ≤ λ j if β L j = 0,
where exp(Aβ) = (exp((Aβ) 1 ), . . . , exp((Aβ) n )) T and A j is the j-th column of the matrix A. Note that the larger the λ j 's, the sparser the estimates. In particular β L belongs to the set of the vectors β ∈ R p that satisfies for any j ∈ J ,

|A T j (Y -exp(Aβ))| ≤ λ j . (1.3)
The Lasso estimator of f 0 is now easily derived.

Definition 1 The Lasso estimator of f 0 is defined as

f L (x) := exp( g L (x)) := exp p j=1 β L j ϕ j (x) .
We also propose an alternative to f L by considering the group-Lasso.

The group-Lasso estimate

We also consider the grouping of coefficients into non-overlapping blocks. Indeed, group estimates may be better adapted than their single counterparts when there is a natural group structure. The procedure keeps or discards all the coefficients within a block and can increase estimation accuracy by using information about coefficients of the same block.

In our setting, we partition the set of indices J = {1, . . . , p} into K non-empty groups:

{1, . . . , p} = G 1 ∪ G 2 ∪ • • • ∪ G K .
For any β ∈ R p , β G k stands for the sub-vector of β with elements indexed by the elements of G k , and we define the block 1 -norm on R p by

β 1,2 = K k=1 β G k 2 .
Similarly, A G k is the n×|G k | submatrix of A whose columns are indexed by the elements of G k . Then the group-Lasso β gL is a solution to the following convex optimization problem:

β gL ∈ argmin β∈R p -l(β) + K k=1 λ g k β G k 2 ,
where the λ g k 's are positive weights for which we also provide a theoretical data-driven expression in Section 2.2. This group-estimator is constructed similarly to the Lasso, with the block 1 -norm being used instead of the 1 -norm. In particular, note that if all groups are of size one then we recover the Lasso estimator. Convex analysis states that β gL is a solution of the above optimization problem if the p-dimensional vector 0 is in the subdifferential of the objective function. Therefore, β gL satisfies:

         A T G k (Y -exp(A β gL )) = λ g k β gL G k β gL G k 2 if β gL G k = 0, A T G k (Y -exp(A β gL )) 2 ≤ λ g k if β gL G k = 0.
This procedure naturally enhances group-sparsity as analyzed by [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF], [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] and references therein.

Obviously, β gL belongs to the set of the vectors β ∈ R p that satisfy for any k ∈ {1, . . . , K},

A T G k (Y -exp(Aβ)) 2 ≤ λ g k .
(1.4) Now, we set Definition 2 The group Lasso estimator of f 0 is defined as

f gL (x) := exp( g gL (x)) := exp p j=1
β gL j ϕ j (x) .

In the following our results are given conditionally on the X i 's, and E (resp. P) stands for the expectation (resp. the probability measure) conditionally on X 1 , . . . , X n . In some situations, to give orders of magnitudes of some expressions, we will use the following definition:

Definition 3 We say that the design (X i ) i=1,...,n is regular if either the design is deterministic and the X i 's are equispaced in [0, 1] or the design is random and the X i 's are i.i.d. with density h, with

0 < inf x∈[0,1] d h(x) ≤ sup x∈[0,1] d h(x) < ∞.

Weights calibration using concentration inequalities

Our first contribution is to derive theoretical data-driven values of the weights λ j 's and λ g k 's, specially adapted to the Poisson model. In the classical Gaussian framework with noise variance σ 2 , weights for the Lasso are chosen to be proportional to σ √ log p (see [START_REF] Bickel | Simultaneous analysis of lasso and Dantzig selector[END_REF] for instance). The Poisson setting is more involved due to heteroscedasticity and such simple tuning procedures cannot be generalized easily. Sections 2.1 and 2.2 give closed forms of parameters λ j and λ g k . They are based on concentration inequalities specific to the Poisson model. In particular, λ j is used to control the fluctuations of A T j Y around its mean, which enhances the key role of V j , a variance term (the analog of σ 2 ) defined by

V j = Var(A T j Y) = n i=1 f 0 (X i )ϕ 2 j (X i ).
(2.1)

2.1 Data-driven weights for the Lasso procedure

For any j, we choose a data-driven value for λ j as small as possible so that with high probability, for any j ∈ J ,

|A T j (Y -E[Y])| ≤ λ j . (2.2)
Such a control is classical for Lasso estimates (see the references above) and is also a key point of the technical arguments of the proofs. Requiring that the weights are as small as possible is justified, from the theoretical point of view, by oracle bounds depending on the λ j 's (see Corollaries 1 and 2). Furthermore, as discussed in [START_REF] Bertin | Adaptive Dantzig density estimation[END_REF], choosing theoretical Lasso weights as small as possible is also a suitable guideline for practical purposes. Finally, note that if the model were true, i.e. if there existed a true sparse vector β 0 such that f 0 = f β 0 , then E[Y] = exp(Aβ 0 ) and β 0 would belong to the set defined by (1.3) with large probability. The smaller the λ j 's, the smaller the set within selection of β L is performed. So, with a sharp control in (2.2), we increase the probability to select β 0 . The following theorem provides the data-driven weights λ j 's. The main theoretical ingredient we use to choose the weights λ j 's is a concentration inequality for Poisson processes and to proceed, we link the quantity A T j Y to a specific Poisson process, as detailed in the proofs Section 7.1.

Theorem 1 Let j be fixed and γ > 0 be a constant. Define V j = n i=1 ϕ 2 j (X i )Y i the natural unbiased estimator of V j and

V j = V j + 2γ log p V j max i ϕ 2 j (X i ) + 3γ log p max i ϕ 2 j (X i ). Set λ j = 2γ log p V j + γ log p 3 max i |ϕ j (X i )|, (2.3) then P |A T j (Y -E[Y])| ≥ λ j ≤ 3 p γ .
(2.4)

The first term 2γ log p V j in λ j is the main one, and constitutes a variance term depending on V j that slightly overestimates V j (see Section 7.1 for more details about the derivation of V j ). Its dependence on an estimate of V j was expected since we aim at controlling fluctuations of A T j Y around its mean. The second term comes from the heavy tail of the Poisson distribution, and is the price to pay, in the non-asymptotic setting, for the added complexity of the Poisson framework compared to the Gaussian framework.

To shed more lights on the form of the proposed weights from the asymptotic point of view, assume that the design is regular (see Definition 3). In this case, it is easy to see that under mild assumptions on f 0 , V j is asymptotically of order n. If we further assume that max

i |ϕ j (X i )| = o( n/ log p), (2.5)
then, when p is large, with high probability, V j (and then V j ) is also of order n (using Remark 2 in the proofs Section 7.1), and the second term in λ j is negligible with respect to the first one. In this case, λ j is of order √ n log p. Note that Assumption (2.5) is quite classical in heteroscedastic settings (see [START_REF] Bertin | Adaptive Dantzig density estimation[END_REF]. By taking the hyperparameter γ larger than 1, then for large values of p, (2.2) is true for any j ∈ J , with large probability.

Data-driven weights for the group Lasso procedure

Current group-Lasso procedures are tuned by choosing the analog of λ g k proportional to |G k | (see [START_REF] Nardi | On the asymptotic properties of the group lasso estimator for linear models[END_REF], Chapter 4 of Bühlmann and van de Geer (2011) or [START_REF] Blazere | Oracle inequalities for a group lasso procedure applied to generalized linear models in high dimension[END_REF]). A more refined version of tuning group-Lasso is provided by [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] in the Gaussian setting (see below for a detailed discussion). To the best of our knowledge, data-driven weights (with theoretical validation) for the group-Lasso have not been proposed yet. It is the purpose of Theorem 2. Similarly to the previous section, we propose data-driven theoretical derivations for the weights λ g k 's that are chosen as small as possible, but satisfying for any k ∈ {1, . . . , K},

A T G k (Y -E[Y]) 2 ≤ λ g k (2.6)
with high probability (see (1.4)). Choosing the smallest possible weights is also recommended by [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] in the Gaussian setting (see in their Section 3 the discussion about weights and comparisons with coarser weights of [START_REF] Nardi | On the asymptotic properties of the group lasso estimator for linear models[END_REF]).

Obviously, λ g k should depend on sharp estimates of the variance parameters (V j ) j∈G k . The following theorem is the equivalent of Theorem 1 for the group-Lasso. Relying on specific concentration inequalities established for infinitely divisible vectors by [START_REF] Houdré | Concentration for norms of infinitely divisible vectors with independent components[END_REF], it requires a known upper bound for f 0 , which can be chosen as max i Y i in practice.

Theorem 2 Let k ∈ {1, . . . , K} be fixed and γ > 0 be a constant. Assume that there exists M > 0 such that for any x,

|f 0 (x)| ≤ M . Let c k = sup x∈R n A G k A T G k x 2 A T G k x 2 .
(2.7)

For all j ∈ G k , still with V j = n i=1 ϕ 2 j (X i )Y i , define V g j = V j + 2(γ log p + log |G k |) V j max i ϕ 2 j (X i ) + 3(γ log p + log |G k |) max i ϕ 2 j (X i ). (2.8) Let γ > 0 be fixed. Define b i k = j∈G k ϕ 2 j (X i ) and b k = max i b i k .
Finally, we set

λ g k = 1 + 1 2 √ 2γ log p j∈G k V g j + 2 γ log p D k , (2.9) 
where

D k = 8M c 2 k + 16b 2 k γ log p. Then, P A T G k (Y -E[Y]) 2 ≥ λ g k ≤ 2 p γ .
(2.10)

Similarly to the weights λ j 's of the Lasso, each weight λ g k is the sum of two terms. The term V g j is an estimate of V j so it plays the same role as V j . In particular, V g j and V j are of the same order since log |G k | is not larger than log p. The first term in λ g k is a variance term, and the leading constant 1 + 1/(2 √ 2γ log p) is close to 1 when p is large. So, the first term is close to the square root of the sum of sharp estimates of the (V j ) j∈G k , as expected for a grouping strategy (see [START_REF] Chicken | Block thresholding for density estimation: Local and global adaptivity[END_REF]).

The second term, namely 2 √ γ log p D k , is more involved. To shed light on it, since b k and c k play a key role, we first state the following proposition controlling values of these terms.

Proposition 1 Let k be fixed. We have

b k ≤ c k ≤ √ nb k . (2.11) Furthermore, c 2 k ≤ max j∈G k j ∈G k n l=1 ϕ j (X l )ϕ j (X l ) .
(2.12)

The first inequality of Proposition 1 shows that 2 √ γ log p D k is smaller than c k √ log p + b k log p ≤ 2c k log p up to a constant depending on γ and M . At first glance, the second inequality of Proposition 1 shows that c k is controlled by the coherence of the dictionary (see [START_REF] Tropp | Greed is good: algorithmic results for sparse approximation[END_REF]) and b k depends on (max i |ϕ j (X i )|) j∈G k . In particular, if for a given block G k , the functions (ϕ j ) j∈G k are orthonormal, then for fixed j = j , if the X i 's are deterministic and equispaced on [0, 1] or if the X i 's are i.i.d. with a uniform density on [0, 1] d , then, when n is large

1 n n l=1 ϕ j (X l )ϕ j (X l ) ≈ ϕ j (x)ϕ j (x)dx = 0 and we expect c 2 k max j∈G k n l=1 ϕ 2 j (X l ).
In any case, by using the Cauchy-Schwarz Inequality, Condition (2.12) gives

c 2 k ≤ max j∈G k j ∈G k n l=1 ϕ 2 j (X l ) 1/2 n l=1 ϕ 2 j (X l ) 1/2 . (2.13)
To further discuss orders of magnitude for the c k 's, we consider the following condition max

j∈G k n l=1 ϕ 2 j (X l ) = O(n), (2.14)
which is satisfied for instance for fixed k if the design is regular, since ϕ j 2 = 1. Under Assumption (2.14), Inequality (2.13) gives

c 2 k = O(|G k |n).
We can say more on b k and c k (and then on the order of magnitude of λ g k ) by considering classical dictionaries of the literature to build the blocks G k , which is of course realized in practice. In the subsequent discussions, the balance between |G k | and log p plays a key role. Note also that log p is the group size often recommended in the classical setting (p = n) for block thresholding (see Theorem 1 of [START_REF] Chicken | Block thresholding for density estimation: Local and global adaptivity[END_REF]).

Order of magnitude of λ g

k by considering classical dictionaries. Let G k be a given block and assume that it is built by using only one of the subsequent systems. For each example, we discuss the order of magnitude of the term

D k = 8M c 2 k + 16b 2 k γ log p.
For ease of exposition, we assume that f 0 is supported by [0, 1] but we could easily generalize the following discussion to the multidimensional setting.

Bounded dictionary. Similarly to [START_REF] Blazere | Oracle inequalities for a group lasso procedure applied to generalized linear models in high dimension[END_REF], we assume that there exists a constant L not depending on n and p such that for any j ∈ G k , ϕ j ∞ ≤ L. For instance, atoms of the Fourier basis satisfy this property. We then have

b 2 k ≤ L 2 |G k |.
Finally, under Assumption (2.14),

D k = O(|G k |n + |G k | log p).
(2.15)

Compactly supported wavelets. Consider the one-dimensional Haar dictionary: For

j = (j 1 , k 1 ) ∈ Z 2 we set ϕ j (x) = 2 j 1 /2 ψ(2 j 1 x -k 1 ), ψ(x) = 1 [0,0.5] (x) -1 ]0.5,1] (x). Assume that the block G k depends on only one resolution level j 1 : G k = {j = (j 1 , k 1 ) : k 1 ∈ B j 1 }, where B j 1 is a subset of {0, 1, . . . , 2 j 1 -1}. In this case, since for j, j ∈ G k with j = j , for any x, ϕ j (x)ϕ j (x) = 0, b 2 k = max i j∈G k ϕ 2 j (X i ) = max i,j∈G k ϕ 2 j (X i ) = 2 j 1
and Inequality (2.12) gives

c 2 k ≤ max j∈G k n l=1 ϕ 2 j (X l ).
If, similarly to Condition (2.5), we assume that max i,j∈G

k |ϕ j (X i )| = o( n/ log p), then b 2 k = o(n/ log p),
and under Assumption (2.14),

D k = O(n),
which improves (2.15). This property can be easily extended to general compactly supported wavelets ψ, since, in this case, for any j = (j 1 , k 1 )

S j = j = (j 1 , k 1 ) : k 1 ∈ Z, ϕ j × ϕ j ≡ 0
is finite with cardinal only depending on the support of ψ.

Regular histograms. Consider a regular grid of the interval [0, 1], {0, δ, 2δ, . . .} with δ > 0. Consider then (ϕ j ) j∈G k such that for any j ∈ G k , there exists such that ϕ j = δ -1/2 1 (δ( -1),δ ] . We have ϕ j 2 = 1 and ϕ j ∞ = δ -1/2 . As for the wavelet case, for j, j ∈ G k with j = j , for any x, ϕ j (x)ϕ j (x) = 0, then

b 2 k = max i j∈G k ϕ 2 j (X i ) = max i,j∈G k ϕ 2 j (X i ) = δ -1 .
If, similarly to Condition (2.5), we assume that max i,j∈G

k |ϕ j (X i )| = o( n/ log p), then b 2 k = o(n/ log p),
and under Assumption (2.14),

D k = O(n).
The previous discussion shows that we can exhibit dictionaries such that c 2 k and D k are of order n and the term b 2 k log p is negligible with respect to c 2 k . Then, if similarly to Section 2.1, the terms ( V g j ) j∈G k are all of order n, λ g k is of order n × max(log p; |G k |) and the main term in λ g k is the first one as soon as |G k | ≥ log p. In this case, λ g k is of order |G k |n.

Comparison with the Gaussian framework.

Now, let us compare the λ g k 's to the weights proposed by [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] in the Gaussian framework. Adapting their notations to ours, [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] estimate the vector β 0 in the model Y ∼ N (Aβ 0 , σ 2 I n ) by using the group-Lasso estimate with weights equal to

λ g k = 2 σ 2 T r(A T G k A G k ) + 2|||A T G k A G k |||(2γ log p + |G k |γ log p) ,
where

|||A T G k A G k ||| denotes the maximal eigenvalue of A T G k A G k (see (3.1) in Lounici et al. (2011)). So, if |G k | ≤ log p,
the above expression is of the same order as

σ 2 T r(A T G k A G k ) + σ 2 |||A T G k A G k |||γ log p. (2.16)
Neglecting the term 16b 2 k γ log p in the definition of D k (see the discussion in Section 2.2.1), we observe that λ g k is of the same order as

j∈G k V g j + M c 2 k γ log p.
(2.17)

Since M is an upper bound of Var(Y i ) = f 0 (X i ) for any i, strong similarities can be highlighted between the forms of the weights in the Poisson and Gaussian settings:

-For the first terms, V g j is an estimate of V j and

j∈G k V j ≤ M j∈G k n i=1 ϕ 2 j (X i ) = M × T r(A T G k A G k ).
-For the second terms, in view of (2.7),

c 2 k is related to |||A T G k A G k ||| since we have c 2 k = sup x∈R n A G k A T G k x 2 2 A T G k x 2 2 ≤ sup y∈R |G k | A G k y 2 2 y 2 2 = |||A T G k A G k |||.
These strong similarities between the Gaussian and the Poissonian settings strongly support the shape relevance of the weights we propose.

Suboptimality of the naive procedure

Finally, we show that the naive procedure that considers j∈G k λ 2 j instead of λ g k is suboptimal even if, obviously due to Theorem 1, with high probability,

A T G k (Y -E[Y]) 2 ≤ j∈G k λ 2 j .
Suboptimality is justified by following heuristic arguments. Assume that for all j and k, the first terms in (2.3) and (2.9) are the main ones and V j ≈ V g j ≈ V j . Then by considering λ g k instead of j∈G k λ 2 j , we improve our weights by the factor √ log p, since in this situation,

λ g k ≈ j∈G k V j and j∈G k λ 2 j ≈ log p j∈G k V j ≈ log p λ g k .
Remember that our previous discussion shows the importance to consider weights as small as possible as soon as (2.6) is satisfied with high probability. The next section will confirm this point.

Oracle inequalities

In this section, we establish oracle inequalities to study theoretical properties of our estimation procedures. The X i 's are still assumption-free, and the performance of our procedures will be only evaluated at the X i 's. To measure the closeness between f 0 and an estimate, we use the empirical Kullback-Leibler divergence associated with our model, denoted by K(•, •). Straightforward computations (see for instance [START_REF] Leblanc | Maximum likelihood estimation in poisson regression via wavelet model selection[END_REF]) show that for any positive function f ,

K(f 0 , f ) = E log L(f 0 ) L(f ) = n i=1 [(f 0 (X i ) log f 0 (X i ) -f 0 (X i ))] -[(f 0 (X i ) log f (X i ) -f (X i ))] ,
where L(f ) is the likelihood associated with f . We speak about empirical divergence to emphasize its dependence on the X i 's. Note that we can write

K(f 0 , f ) = n i=1 f 0 (X i )(e u i -u i -1), (3.1)
where

u i = log f (X i ) f 0 (X i )
. This expression clearly shows that K(f 0 , f ) is non-negative and K(f 0 , f ) = 0 if and only if for all i ∈ {1, . . . , n}, we have

u i = 0, that is f (X i ) = f 0 (X i ) for all i ∈ {1, . . . , n}.
Remark 1 To weaken the dependence on n in the asymptotic setting, an alternative, not considered here, would consist in considering n

-1 K(•, •) instead of K(•, •).
If the classical L 2 -norm is the natural loss-function for penalized least squares criteria, the empirical Kullback-Leibler divergence is a natural alternative for penalized likelihood criteria. In next sections, oracle inequalities will be expressed by using K(•, •).

Oracle inequalities for the group-Lasso estimate

In this section, we state oracle inequalities for the group-Lasso. These results can be viewed as generalizations of results by [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] to the case of the Poisson regression model. They will be established on the set Ω g where

Ω g = A T G k (Y -E[Y]) 2 ≤ λ g k ∀ k ∈ {1, . . . , K} . (3.2)
Under assumptions of Theorem 2, we have

P(Ω g ) ≥ 1 -2K p γ ≥ 1 -2p 1-γ
. By considering γ > 1, we have that P(Ω g ) goes to 1 at a polynomial rate of convergence when p goes to +∞. Even if our procedure is applied with weights defined in Section 2.2, note that subsequent oracle inequalities would hold for any weights (λ g k ) k=1,...,K such that the associated set Ω g has high probability. For any β ∈ R p , we denote by

f β (x) = exp p j=1 β j ϕ j (x) ,
the candidate associated with β to estimate f 0 . We first give a slow oracle inequality (see for instance Bunea et al. (2007a), [START_REF] Gaïffas | High-dimensional additive hazards models and the Lasso[END_REF] or [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF]) that does not require any assumption.

Theorem 3 On Ω g , K(f 0 , f gL ) ≤ inf β∈R p K(f 0 , f β ) + 2 K k=1 λ g k β G k 2 . (3.3) Note that K k=1 λ g k β G k 2 ≤ max k∈{1,...,K} λ g k × β 1,2
and (3.3) is then similar to Inequality (3.9) of [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF]. We can improve the rate of (3.3) at the price of stronger assumptions on the matrix A. We consider the following assumptions:

Assumption 1. We assume that

m := max i∈{1,...,n} |log f 0 (X i )| < ∞.
This assumption is equivalent to assuming that f 0 is bounded from below and from above by positive constants. We do not assume that m is known in the sequel.

Assumption 2. For some integer s ∈ {1, . . . , K} and some constant r, the following condition holds:

0 < κ n (s, r) := min (β T Gβ) 1/2 β J 2 : |J| ≤ s, β ∈ R p \ {0}, k∈J c λ g k β G k 2 ≤ r k∈J λ g k β G k 2 ,
where G is the Gram matrix defined by G = A T CA, where C is the diagonal matrix with C i,i = f 0 (X i ). With a slight abuse, β J stands for the sub-vector of β with elements indexed by the indices of the groups (G k ) k∈J .

This assumption is the natural extension of the classical Restricted Eigenvalue condition introduced by [START_REF] Bickel | Simultaneous analysis of lasso and Dantzig selector[END_REF] to study the Lasso estimate where the 1 -norm is replaced with the weighted • 1,2 -norm. In the Gaussian setting, [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] considered similar conditions to establish oracle inequalities for their group-Lasso procedure (see their Assumption (3.1)). RE-type assumptions are among the mildest ones to establish oracle inequalities (see [START_REF] Van De Geer | On the conditions used to prove oracle results for the Lasso[END_REF]). In particular, if the Gram matrix G has a positive minimal eigenvalue, say d G,min , then Assumption 2 is satisfied with κ 2 n (s, r) ≥ d G,min . Assumption 2 can be connected to stronger coherence type conditions involving the ratio [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF]). Furthermore, if c 0 is a positive lower bound for f 0 , then for all β ∈ R p ,

max k λ g k min k λ g k (see Appendix B.3. of
β T Gβ = (Aβ) T C(Aβ) ≥ c 0 Aβ 2 2 = c 0 n i=1 p j=1 β j ϕ j (X i ) 2 = c 0 n i=1 g 2 β (X i ),
with g β = p j=1 β j ϕ j . If (ϕ j ) j∈J is orthonormal on [0, 1] d and if the design is regular, then the last term is the same order as

n g 2 β (x)dx = n β 2 2 ≥ n β J 2 2
for any subset J ⊂ {1, . . . , K}. Under these assumptions, κ -2 n (s, r) = O(n -1 ). We now introduce for any µ > 0

Γ(µ) =    β ∈ R p : max i∈{1,...,n} p j=1 β j ϕ j (X i ) ≤ µ    .
In the sequel, we restrict our attention to estimates belonging to the convex set Γ(µ). Of course, if m were known we would take µ = m (or µ a bit larger than m). Note that we do not impose any upper bound on µ so this condition is quite mild. The role of Γ(µ) consists in connecting K(., .) to some empirical quadratic loss functions (see the proof of Theorem 4). Alternative stronger assumptions have been considered by [START_REF] Lemler | Oracle inequalities for the lasso in the high-dimensional multiplicative Aalen intensity model[END_REF] relying on van de Geer ( 2008) and [START_REF] Kong | Non-asymptotic oracle inequalities for the high-dimensional cox regression via lasso[END_REF]. The value of µ only influences constants in subsequent oracle inequalities. We consider the slightly modified group-Lasso estimate. Let α > 1 and let us set

β gL µ,α ∈ argmin β∈Γ(µ) -l(β) + α K k=1 λ g k β G k 2 , f gL µ,α (x) = exp p j=1 ( β gL µ,α ) j ϕ j (x)
for which we obtain the following fast oracle inequality.

Theorem 4 Let ε > 0 and s a positive integer. Let Assumption 2 be satisfied with s and

r = α + 1 + 2α/ε α -1 .
Then, under Assumption 1, there exists a constant B(ε, m, µ) depending on ε, m and µ such that, on Ω g ,

K(f 0 , f gL µ,α ) ≤ (1 + ε) inf β∈Γ(µ) |J(β)|≤s K(f 0 , f β ) + B(ε, m, µ) α 2 |J(β)| κ 2 n × max k∈{1,...,K} λ g k 2 , (3.4)
where κ n stands for κ n (s, r), and J(β) is the subset of {1, . . . , K} such that β G k = 0 if and only if k / ∈ J(β).

The estimate β gL µ,α studied in Theorem 4 slightly differs from the estimate β gL introduced in Section 1.2 since it depends on α and minimization is only performed on Γ(µ). Both estimates coincide when µ = +∞ and when α = 1. An examination of the proof of Theorem 4 shows that lim µ→+∞ B(ε, m, µ) = +∞. In practice, we observe that most of the time, with α = 1 and µ large enough, β gL µ,α and β gL coincide. So, when α is close to 1 and µ is large, Theorem 4 gives a good flavor of theoretical performances satisfied by our group-Lasso procedure.

Let us comment each term of the right-hand side of (3.4). The first term is an approximation term, which can vanish if f 0 can be decomposed on the dictionary. The second term is a variance term, according to the usual terminology, which is proportional to the size of J(β). Its shape is classical in the high dimensional setting. See for instance Theorem 3.2 of [START_REF] Lounici | Oracle inequalities and optimal inference under group sparsity[END_REF] for the group-Lasso in linear models, or Theorem 6.1 of [START_REF] Bickel | Simultaneous analysis of lasso and Dantzig selector[END_REF] and Theorem 3 of [START_REF] Bertin | Adaptive Dantzig density estimation[END_REF] for the Lasso. If the order of magnitude of

λ g k is n × max(log p; |G k |) (see Section 2.2.1) and if κ -2 n = O(n -1
), the order of magnitude of this variance term is not larger than |J(β)| × max(log p; |G k |). Finally, if f 0 can be well approximated (for the empirical Kullback-Leibler divergence) by a group-sparse combination of the functions of the dictionary, then the right hand side of (3.4) will take small values. So, the previous result justifies our group-Lasso procedure from the theoretical point of view. Note that (3.3) and (3.4) also show the interest of considering weights as small as possible. [START_REF] Blazere | Oracle inequalities for a group lasso procedure applied to generalized linear models in high dimension[END_REF] established rates of convergence under stronger assumptions, namely all coordinates of the analog of A are bounded by a quantity L, where L is viewed as a constant. Rates depend on L in an exponential manner and would highly deteriorate if L depended on n and p. So, this assumption is not reasonable if we consider dictionaries such as wavelets or histograms (see Section 2.2.1).

Oracle inequalities for the Lasso estimate

For the sake of completeness, we provide oracle inequalities for the Lasso. Theorems 3 and 4 that deal with the group-Lasso estimate can be adapted to the non-grouping strategy when we take groups of size 1. Subsequent results are similar to those established by [START_REF] Lemler | Oracle inequalities for the lasso in the high-dimensional multiplicative Aalen intensity model[END_REF] who studied the Lasso estimate for the high-dimensional Aalen multiplicative intensity model. The block 1 -norm • 1,2 becomes the usual 1 -norm and the group support J(β) is simply the support of β. As previously, we only work on the probability set Ω defined by

Ω = |A T j (Y -E[Y])| ≤ λ j ∀j ∈ {1, . . . , p} . (3.5)
Theorem 1 asserts that P(Ω) ≥ 1 -3 p γ-1 that goes to 1 as soon as γ > 1. As previously, subsequent oracle inequalities would hold for any weights (λ j ) j=1,...,p such that the asso-ciated probability set Ω has high probability. We obtain a slow oracle inequality for f L :

Corollary 1 On Ω, K(f 0 , f L ) ≤ inf β∈R p K(f 0 , f β ) + 2 p j=1 λ j |β j | .
Now, let us consider fast oracle inequalities. In this framework, Assumption 2 is replaced with the following: Assumption 3. For some integer s ∈ {1, . . . , p} and some constant r, the following condition holds:

0 < κ n (s, r) := min    (β T Gβ) 1/2 β J 2 : |J| ≤ s, β ∈ R p \ {0}, j∈J c λ j |β j | ≤ r j∈J λ j |β j |    ,
where G is the Gram matrix defined by G = A T CA, where C is the diagonal matrix with

C i,i = f 0 (X i ).
As previously, we consider the slightly modified Lasso estimate. Let α > 1 and let us set

β L µ,α ∈ argmin β∈Γ(µ) -l(β) + α p j=1 λ j |β j | , f L µ,α (x) = exp p j=1 ( β L µ,α ) j ϕ j (x)
for which we obtain the following fast oracle inequality.

Corollary 2 Let ε > 0 and s a positive integer. Let Assumption 3 be satisfied with s and

r = α + 1 + 2α/ε α -1 .
Then, under Assumption 1, there exists a constant B(ε, m, µ) depending on ε, m and µ such that, on Ω,

K(f 0 , f L µ,α ) ≤ (1 + ε) inf β∈Γ(µ) |J(β)|≤s K(f 0 , f β ) + B(ε, m, µ) α 2 |J(β)| κ 2 n ( max j∈{1,...,p} λ j 2 ) ,
where κ n stands for κ n (s, r), and J(β) is the support of β.

This corollary is derived easily from Theorem 4 by considering all groups of size 1. Comparing Corollary 2 and Theorem 4, we observe that the group-Lasso can improve the Lasso estimate when the function f 0 can be well approximated by a function f β so that the number of non-zero groups of β is much smaller than the total number of non-zero coefficients.

The simulation study of the next section illustrates this comparison from the numerical point of view.

Simulation study

Simulation settings. Even if our theoretical results do not concern model selection properties, we propose to start the simulation study by considering a simple toy example such that log(f 0 ) = Aβ 0 is generated from a true sparse vector of coefficients of size p = 2 J in the Haar basis, such that J = 10 and scales j = 1, 3, 4 have all non-null coefficients. More details on this function can be found in our code that is freely available 1 . In this setting, log(f 0 ) can be decomposed on the dictionary and we can assess the accuracy of selection of different methods.

We then explore the empirical performance of the Lasso and the group Lasso strategies using simulations. By performance we mean the quality of reconstruction of simulated signals as our theoretical results concern reconstruction properties. We considered different forms for intensity functions by taking the standard functions of [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF]: blocks, bumps, doppler, heavisine, to set g 0 . These functions do not have an exact decomposition on any dictionary considered below. The signal to noise ratio was increased by multiplying the intensity functions by a factor α taking values in {1, . . . , 7}, α = 7 corresponding to the most favorable configuration. Observations Y i were generated such that Y i |X i ∼ Poisson(f 0 (X i )), with f 0 = α exp(g 0 ), and (X 1 , . . . , X n ) was set as the regular grid of length n = 2 10 . Each configuration was repeated 20 times. Our method was implemented using the grpLasso R package of [START_REF] Meier | The group Lasso for logistic regression[END_REF] to which we provide our concentration-based weights (the code is fully available 1 ).

The basis and the dictionary frameworks. The dictionary we consider is built on the Haar basis, on the Daubechies basis with 6 vanishing moments, and on the Fourier basis, in order to catch piece-wise constant trends, localized peaks and periodicities. Each orthonormal system has n elements, which makes p = n when systems are considered separately, and p = 2n or 3n depending on the considered dictionary. For wavelets, the dyadic structure of the decomposition allows us to group the coefficients scale-wise by forming groups of coefficients of size 2 q . As for the Fourier basis, groups (also of size 2 q ) are formed by considering successive coefficients (while keeping their natural ordering). When grouping strategies are considered, we set all groups at the same size.

Weights calibration in practice. First for both the Lasso and the group Lasso introduced in Section 1, following the arguments at the end of Section 2.1 that provide some theoretical guarantees, we take γ larger than 1. More precisely, we take γ = 1.01. Our theoretical results do not provide any information about values smaller than 1, so we conduct an empirical study on a very simple case, namely we estimate f 0 such that log(f 0 ) = 1 [0,1] on the Haar basis, so that only one parameter should be selected. Fig. 1 shows that when γ is too small, the risk of the selected models explodes (left panel), because too many coefficients are selected (right panel). Taking γ = 1.01 actually corresponds to a conservative choice avoiding the explosion of the MSE and of the number of selected Figure 1: Tuning of the hyperparameter γ for the Lasso penalty. The simulated function is log(f 0 ) = 1 [0,1] , so that only one parameter should be selected on the Haar basis. For different values of n, the left/right panels represent the mean square error / the number of estimated parameters with respect to γ (averaged over 20 simulations). The vertical line corresponds to γ = 1. parameters. Furthermore this automatic choice provides good results in practice, as shown by our simulation study that considers many shapes of intensity functions (see below).

Then we estimate V j (resp V g j ) by V j (resp V g j ). Note that V j (resp V g j ) can also be used: these variances are easier to compute in practice, and this slight modification does not significantly change the performance of the procedures (not shown). The parameter γ being fixed, we use the expression (2.3) for Lasso weights. As for the group Lasso weights (Theorem 2), the first term is replaced by j∈G k V j , as it is governed by a quantity that tends to one when p is large. We conducted a preliminary numerical study (not shown) to calibrate the second term, that depends on quantities M , c k and b k defined in Theorem 2. The best empirical performance were achieved so that the left-and right-hand terms of (2.9) were approximatively equal. This resumes to group-Lasso weights of the form

2 j∈G k V j .
Competitors. We compete our Lasso procedure (Lasso.exact in the sequel), with the Haar-Fisz transform (using the haarfisz package), applied to the same data followed by soft-thresholding. Here we mention that we did not perform cycle-spinning (that is often included in denoising procedures) in order to focus on the effects of thresholding only. We also implemented the half-fold cross-validation proposed by [START_REF] Nason | Wavelet shrinkage using cross-validation[END_REF] in the Poisson case to set the weights in the penalty, with the proper scaling (2 s/2 λ, with s the scale of the wavelet coefficients) as proposed by [START_REF] Sardy | Automatic smoothing with wavelets for a wide class of distributions[END_REF]. Briefly, this cross-validation procedure is used to calibrate λ by estimating f 0 on a training set made of even positions (for different values of λ), and by measuring the reconstruction error on the test set made by odd positions (see [START_REF] Nason | Wavelet shrinkage using cross-validation[END_REF]). This procedure is referred to cross-validation in the sequel. Then we compare the performance of the group-Lasso with varying group sizes (2,4,8) to the Lasso, to assess the benefits or grouping wavelet coefficients.

Performance measurement. For any estimate f , reconstruction performance were measured using the (normalized) mean-squared error

M SE = f -f 0 2 2 / f 0 2 2 .
When there is a true sparse β 0 , model selection performance were measured by the standard indicators: accuracy on support recovery, sensitivity (proportion of true non-null coefficients among selected coefficients) and specificity of detection (proportion of true null coefficients among non-selected coefficients), based on the support of β 0 and on the support of its estimate.

Model selection performance with a true sparse β 0 . The simple toy example described above for model selection perfectly shows the performance of our Lasso procedure (Figure 2). Even if our theoretical results do not concern support recovery, our theoretically calibrated weights provide the best accuracy in support selection, along with the best sensitivity, specificity and reconstruction errors. This example also shows the interest of the theoretical weights calibration compared with the cross-validation procedure that shows bad performance, and also compared with the Haar-Fisz transform. Also, this toy example illustrates the need of scaling for the cross-validated vanilla Lasso: if the procedure proposed by [START_REF] Sardy | Automatic smoothing with wavelets for a wide class of distributions[END_REF] is not used, the cross-validated vanilla Lasso lacks of adaptation to heteroscedasticity, which leads to poor results on selection (lack of accuracy and specificity, or too many selected coefficients), and thus to overfitted reconstruction (Fig. 3). Thus, in further simulations we only considered the scaled version of the cross-validated Lasso, in order to compare methods that account for heteroscedasticity.

Performance in the basis setting. Here we focus on wavelet basis (Haar for blocks and Daubechies for bumps, doppler and heavisine) and not on a dictionary approach (considered in a second step) in order to compare our calibrated weights with other methods that rely on penalized strategy. It appears that, except for the bumps function, the Lasso with exact weights shows the lowest reconstruction error whatever the shape of the intensity function (Figure 4). Moreover, better performance of the Lasso with exact weights in cases of low intensity emphasize the interest of theoretically calibrated procedures rather than asymptotic approximations (like the Haar-Fisz transform). In the case of bumps, crossvalidation seems to perform better than the Lasso, but when looking at reconstructed average function (Figure 5a) this lower reconstruction error of cross-validation is associated with higher local variations around the peaks. Compared with Haar-Fisz, the gain of using exact weights is substantial even when the signal to noise ratio is high, which indicates that even in the validity domain of the Haar-Fisz transform (large intensities), the Lasso combined with exact thresholds is more suitable (Figure 5a). As for the group Lasso, its performance highly depend on the group size: while groups of size 2 show similar performance as the Lasso, groups of size 4 and 8 increase the reconstruction error (Figure Figure 2: Average (over 20 repetitions) accurracy in support recovery for the toy function f 0 with a true sparse β 0 and the Haar basis, specificity and sensitivity of selection, and Mean Square Error of reconstruction. Lasso.exact: Lasso penalty with our data-driven theoretical weights, Lasso.cv: Lasso penalty with weights calibrated by cross validation without scaling, Lasso.cvj: Lasso penalty with weights calibrated by cross validation with scaling 2 s/2 λ, group.Lasso.2/4/8: group Lasso penalty with our data-driven theoretical weights with group sizes 2/4/8, HaarFisz: Haar-Fisz tranform followed by soft-thresholding. Alpha (α) stands for the signal strength. lasso.cv lasso.cvj lasso.exact f0

Figure 3: Example of reconstruction for the toy function f 0 with a true sparse β 0 and the Haar basis. The reconstruction with the vanilla-lasso is based on too many coefficients which leads to over-fitting. Lasso.exact: Lasso penalty with our data-driven theoretical weights, Lasso.cv: Lasso penalty with weights calibrated by cross validation without scaling, Lasso.cvj: Lasso penalty with weights calibrated by cross validation with scaling 2 s/2 λ : Average (over 20 repetitions) Mean Square Error of reconstruction of different methods for the estimation of simulated intensity functions according to function shapes (blocks, bumps, doppler, heavisine) and signal strength (α). Lasso.exact: Lasso penalty with our data-driven theoretical weights, Lasso.cvj: Lasso penalty with weights calibrated by cross validation with scaling 2 s/2 λ, group.Lasso.2/4/8: group Lasso penalty with our data-driven theoretical weights with group sizes 2/4/8, HaarFisz: Haar-Fisz tranform followed by soft-thresholding. 4 and 5b), since they are not scaled to the size of the irregularities in the signal. This trend is not systematic as the group Lasso appears to be adapted to functions that are more regular (Heavisine), and seems to avoid edge effects in some situations.

Performance in the dictionary framework. Lastly, we explored the performance of the dictionary approach, by considering different dictionaries to estimate each function: Daubechies (D), Fourier (F), Haar (H), or their combinations (Figure 6). Rich dictionaries can be very powerful to catch complex shapes in the true intensity function (like the notch in the heavisine case Figure 6b), and the richest dictionary (DFH) often leads to the lowest reconstruction error (MSE) on average. However the richest dictionary (DFH) is not always the best choice in terms of reconstruction error, which is stricking in the case of the blocks function. In this case the Haar system only would be preferable for the Lasso (Figure 6a). For the group-Lasso and the blocks intensity function, the combination of the Daubechies and the Haar systems provides the best MSE, but when looking at the reconstructed intensity (Figure 6b-blocks), the Daubechies system introduces wiggles that are not relevant for blocks. Also, richer dictionaries do not necessarily lead to more selected parameters (Figure 6a), which illustrates that selection depends on the redundancies between the systems elements of the dictionary. In practice we often do not have any prior knowledge concerning the elements that shape the signal, and these simulations suggest that the blind use of the richest dictionary may not be the best strategy in terms of reconstructed functions. Consequently, in the following application, we propose to adapt the half-fold cross validation of [START_REF] Nason | Wavelet shrinkage using cross-validation[END_REF] to choose the best combinations of systems.

Applications

The analysis of biological data has faced a new challenge with the extensive use of next generation sequencing (NGS) technologies. NGS experiments are based on the massive parallel sequencing of short sequences (reads). The mapping of these reads onto a reference genome (when available) generates counts data (Y t ) spatially organized (in 1D) along the genome (at position X t ). These technologies have revolutionized the perspectives of many fields in molecular biology, and among many applications, one is to get a local quantification of DNA or of a given DNA-related molecule (like transcription factors for instance with chIP-Seq experiments, [START_REF] Furey | ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions[END_REF]). This technology has recently been applied to the identification of replication origins along the human genome. Replication is the process by which a genome is duplicated into two copies. This process is tightly regulated in time and space so that the duplication process takes place in the highly regulated cell cycle. The human genome is replicated at many different starting points called origins of replication, that are loci along the genome at which the replication starts. Until very recently, the number of such origins remained controversial, and thanks to the application of NGS technologies, first estimates of this number could be obtained. The signal is made of counts along the human genome such that reads accumulations indicate an origin activity (see [START_REF] Picard | The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells[END_REF]). Scan statistics were first applied to these data, to detect significant local enrichments reads accumulation, but there is currently no consensus on the best method to analyze such data. Here we propose to use the Poisson functional regression to estimate the intensity function of the data on a portion of the human chromosomes X and 20. Halffold cross-validation was used to select the appropriate dictionary between Daubechies, Fourier, Haar (and their combinations), and our theoretical weights were used to calibrate the Lasso (Figure 7). Our results are very promising as the sparse dictionary approach is very efficient for denoising (Chromosome X, Figure 7b) and produces null intensities when the signal is low (higher specificity). Another aspect of our method is that it seems to be more powerful in the identification of peaks that are more precise (Chromosome 20, , bumps, doppler, heavisine). Top panel corresponds to non-grouped strategies (5a) and bottom panel compares group-strategies to the Lasso (5b). Lasso.exact: Lasso penalty with our data-driven theoretical weights, Lasso.cvj: Lasso penalty with weights calibrated by cross validation with scaling 2 s/2 λ, group.Lasso.2/4/8: group Lasso penalty with our data-driven theoretical weights with group sizes 2/4/8, HaarFisz: Haar-Fisz tranform followed by soft-thresholding, f0: simulated intensity function. Figure 6: Average (over 20 repetitions) Mean Square Errors and number of selected coefficients (df) (6a), and reconstructed functions (6b) for different dictionaries: Daubechies (D), Fourier (F), Haar (H) and their combinations. Lasso.exact: Lasso penalty with our data-driven theoretical weights, group.Lasso.2: group Lasso penalty with our datadriven theoretical weights with group sizes 2, HaarFisz: Haar-Fisz tranform followed by soft-thresholding. positions 0.20 and 0.25Mb, Figure 7a), which indicates that the dictionary approach may be more sensitive to detect peaks. Given the spread of NGS data and the importance of peak detection in the analysis process, for chIP-Seq Furey (2012), FAIRE-Seq [START_REF] Thurman | The accessible chromatin landscape of the human genome[END_REF]), OriSeq Picard et al. (2014), our preliminary results suggest that the sparse dictionary approach will be a very promising framework for the analysis of such data.

Conclusion

We proposed new adaptive Lasso and group-Lasso procedures to estimate the regression function in high dimensional Poisson regression, with a special focus on the calibration of weights involved in the penalties. Inspired from the adaptive Lasso procedure proposed by [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] in the context of model selection, we derived data-driven component-specific weights, whose shape appears to be relevant from both theoretical and practical points of view. In the dictionary approach, which extends the classical basis approach, we obtain slow and fast oracle inequalities under RE-type conditions. These theoretical results are enhanced by a numerical study that illustrates the good performance of our procedure on simulated and experimental data. Moreover, even if our main objective is functional reconstruction (that is different from model selection), a numerical toy example shows very promising results of our Lasso and group-Lasso procedures for model selection. The theoretical study of this problem is an exciting challenge we wish to investigate in further works.

The purpose of our data-driven weights is to control the random fluctuations of the normalized observations, namely (A T j Y) j and (A T G k Y) k , around their expectation. To tain controls as sharp as possible, we use concentration inequalities for infinitely divisible vectors, which allows us to account for the heteroscedasticity that characterizes the Poisson setting. So, our approach is very different from [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] who considered weights proportional to the inverse of preliminary estimates (ordinary least squares estimates or maximum likelihood estimates). But both approaches confirm that random weighting schemes can provide suitable procedures for inference in regression models.

Finally, we mention that the constants of our procedure were tuned by using theoretical arguments, and our numerical studies show that they are suitable. Other values for these constants would probably be appropriate for some signals. Even if our empirical results show that the performance with γ = 1.01 are excellent, whatever the form of f 0 we considered, our procedure could be enriched by an additional calibration step for γ, with associated extra computational time. 

Proofs

Proof of Theorem 1

We denote by µ the Lebesgue measure on R d and we introduce a partition of the set [0, 1] d denoted ∪ n i=1 S i so that for any i = 1, . . . , n, X i ∈ S i and µ(S i ) > 0. Let h the function defined for any t ∈ [0, 1] d by

h(t) = n i=1 f 0 (X i ) µ(S i ) 1 S i (t).
Finally, we introduce N the Poisson process on [0, 1] d with intensity h (see [START_REF] Kingman | Poisson processes, volume 3 of Oxford Studies in Probability[END_REF]). Therefore, for any i = 1, . . . , n, N (S i ) is a Poisson variable with parameter S i h(t)dt = f 0 (X i ) and since ∪ n i=1 S i is a partition of [0, 1] d , (N (S 1 ), . . . , N (S n )) has the same distribution as (Y 1 , . . . , Y n ). We observe that if for any j = 1, . . . , p,

ϕ j (t) = n i=1 ϕ j (X i )1 S i (t), then ϕ j (t)dN (t) ∼ n i=1 ϕ j (X i )Y i = A T j Y.
We use the following exponential inequality (see Inequality (5.2) of [START_REF] Reynaud-Bouret | Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities[END_REF]). If g is bounded, for any u > 0,

P g(x)(dN (x) -h(x)dx) ≥ 2u g 2 (x)h(x)dx + u 3 ||g|| ∞ ≤ exp(-u). (7.1)
By taking successively g = ϕ j and g = -ϕ j , we obtain

P |A T j (Y -E[Y])| ≥ 2u ϕ 2 j (x)h(x)dx + u 3 ϕ j ∞ ≤ 2e -u . Since ϕ 2 j (x)h(x)dx = n i=1 ϕ 2 j (X i )f 0 (X i ) = V j ,
we obtain

P |A T j (Y -E[Y])| ≥ 2uV j + u 3 ϕ j ∞ ≤ 2e -u . (7.2)
To control V j , we use (7.1) with g = -ϕ 2 j and we have:

P V j -V j ≥ 2u ϕ 4 j (t)h(t)dt + u 3 ϕ j 2 ∞ ≤ e -u .
We observe that

ϕ 4 j (t)h(t)dt ≤ ϕ j 2 ∞ ϕ 2 j (t)h(t)dt = ϕ j 2 ∞ V j .
Setting v j = u ϕ j 2 ∞ , we have:

P V j -2v j V j - v j 3 -V j ≥ 0 ≤ e -u . Let α j = V j + 5 6 v j + v j 2 , such that α j is the positive solution to α 2 j -2v j α j -( V j + v j 3 ) = 0. Then P V j ≥ α 2 j = P V j ≥ α j ≤ e -u . (7.3)
We choose u = γ log p and observe that α 2 j ≤ V j . Then, by combining (7.2) and ( 7.3), we have

P |A T j (Y -E[Y])| ≥ 2γ log p V j + γ log p 3 ϕ j ∞ ≤ 3 p γ .
As ϕ j ∞ = max i |ϕ j (X i )|, the theorem follows.

Remark 2 By slightly extending previous computations, we easily show that for u > 0,

P |V j -V j | ≥ 2uV j ϕ j 2 ∞ + u 3 ϕ j 2 ∞ ≤ 2e -u ,
which leads to

P |V j -V j | ≥ V j 2 + 4γ log p 3 ϕ j 2 ∞ ≤ 2 p γ .

Proof of Theorem 2

For each k ∈ {1, . . . , K}, we recall that b

i k = j∈G k ϕ 2 j (X i ), so b i k = A T G k e i 2
, where e i is the vector whose i-th coordinate is equal to 1 and all others to 0. We first state the following lemma:

Lemma 1 Let k be fixed. Assume that there exists some M > 0 such that ∀ x, |f 0 (x)| ≤ M . Assume further that there exists some

c k ≥ 0 such that ∀ y ∈ R n , A G k A T G k y 2 ≤ c k A T G k y 2 . Then, ∀ x > 0, ∀ ε > 0, P A T G k (Y -E[Y]) 2 ≥ (1 + ε) j∈G k V j + x ≤ exp x b k - x b k + D ε k b 2 k log 1 + b k x D ε k , where D ε k = 8M c 2 k + 2 ε 2 b 2 k .
Proof With k ∈ {1, . . . , K} being fixed, we define f : R n → R by f

(y) = A T G k y 2 -E + ,
where E > 0 is a constant chosen later. We use Corollary 1 from [START_REF] Houdré | Concentration for norms of infinitely divisible vectors with independent components[END_REF], applied to the infinitely divisible vector Y-E[Y] ∈ R n , whose components are independent, and to f . First note that for any t > 0,

Ee tb i k |Y i -EY i | ≤ Ee tb i k (Y i +f 0 (X i )) = exp f 0 (X i )(e tb i k + tb i k -1) < ∞.
Furthermore, for any i ∈ {1, ..., n}, any y ∈ R n and any u ∈ R,

|f (y + ue i ) -f (y)| ≤ A T G k (y + ue i ) 2 -A T G k y 2 ≤ A T G k (ue i ) 2 = |u|b i k .
Therefore, for all x > 0,

P f (Y -E[Y]) -E[f (Y -E[Y])] ≥ x ≤ exp - x 0 h -1 f (s)ds ,
where h f is defined for all t > 0 by

h f (t) = sup y∈R n n i=1 R |f (y + ue i ) -f (y)| 2 e tb i k |u| -1 b i k |u| ν i (du)
and ν i is the Lévy measure associated with

Y i -E[Y i ].
It is easy to show that ν i = f 0 (X i )δ 1 , and so

h f (t) = sup y∈R n n i=1 f 0 (X i ) f (y + e i ) -f (y) 2 e tb i k -1 b i k . Furthermore, writing A i = A T G k (y + e i ) 2 ≥ E or A T G k y 2 ≥ E , we have |f (y + e i ) -f (y)| ≤ A T G k (y + e i ) 2 -A T G k y 2 1 A i = 1 A i A T G k (y + e i ) 2 2 -A T G k y 2 2 A T G k (y + e i ) 2 + A T G k y 2 = 1 A i 2 < A T G k e i , A T G k y > + A T G k e i 2 2 A T G k (y + e i ) 2 + A T G k y 2 ≤ 2 < A T G k e i , A T G k y > A T G k y 2 + A T G k e i 2 2 E ,
with < •, • > the usual scalar product. We now have

f (y + e i ) -f (y) 2 ≤ 8 < A T G k e i , A T G k y > 2 A T G k y 2 2 + 2 A T G k e i 4 2 E 2 .
The first term can be rewritten as 8

<e i ,A G k A T G k y> 2 A T G k y 2 2
and the second one is equal to 2

b i k 4
E 2 , so we can now bound h f (t) as follows.

h f (t) ≤ sup y i f 0 (X i ) e tb i k -1 b i k 8 < e i , A G k A T G k y > 2 A T G k y 2 2 + 2 b i k 4 E 2 ≤ e tb k -1 b k sup y 8M A G k A T G k y 2 2 A T G k y 2 2 + 2 E 2 i f 0 (X i )b i k 4 ≤ e tb k -1 b k 8M c 2 k + 2 E 2 i f 0 (X i )b i k 4 . Now, we set E = ε j∈G k V j .
So we have:

E 2 = ε 2 j∈G k n i=1 f 0 (X i )ϕ 2 j (X i ) = ε 2 n i=1 f 0 (X i ) j∈G k ϕ 2 j (X i ) = ε 2 n i=1 f 0 (X i )b i k 2 .
Thus, we can finally bound the function h f by the increasing function h defined by

h(t) = D ε k e tb k -1 b k , with D ε k = 8M c 2 k + 2b 2 k ε 2 . Therefore, exp - x 0 h -1 f (s)ds ≤ exp - x 0 h -1 (s)ds = exp x b k - x b k + D ε k b 2 k log 1 + b k x D ε k . Now, f (Y -E[Y]) -E[f (Y -E[Y])] = A T G k (Y -E[Y]) 2 -E + -E A T G k (Y -E[Y]) 2 -E + ≥ A T G k (Y -E[Y]) 2 -E -E A T G k (Y -E[Y]) 2 .
Furthermore, by Jensen's inequality, we have

E A T G k (Y -E[Y]) 2 ≤ E A T G k (Y -E[Y]) 2 2 = j∈G k E[(A T j (Y -EY)) 2 ] = j∈G k Var(A T j Y) = j∈G k V j .
Recalling that E = ε j∈G k V j , we thus have

P f (Y -E[Y]) -Ef (Y -E[Y]) ≥ x ≥ P A T G k (Y -E[Y]) 2 -(1 + ε) j∈G k V j ≥ x ,
which concludes the proof.

We apply Lemma 1 with

ε = 1 2 √ 2γ log p and x = 2 γ log pD ε k . Then, b k x D ε k = 2b k √ γ log p D ε k = 2b k √ γ log p 8M c 2 k + 2b 2 k ε 2 ≤ ε 2γ log p = 1 2 .
Finally, using the fact that log(1 + u) ≥ u -u 2 2 , we have:

exp x b k - x b k + D ε k b 2 k log 1 + b k x D ε k ≤ exp x b k - x b k + D ε k b 2 k b k x D ε k - b 2 k x 2 2D ε k 2 = exp -x 2 2D ε k + b k x 3 2D ε k 2 = exp -x 2 2D ε k 1 - b k x D ε k ≤ exp -x 2 4D ε k = 1 p γ .
We obtain

P A T G k (Y -E[Y]) 2 ≥ (1 + ε) j∈G k V j + 2 γ log pD ε k ≤ 1 p γ .
We control V j as in the proof of Theorem 1, but we take u = γ log p + log |G k |. The analog of (7.3) is

P V j > V g j ≤ e -u = 1 |G k |p γ and thus P ∃ j ∈ G k , V j > V g j ≤ 1 p γ .
This concludes the proof of Theorem 2.

Proof of Proposition 1

For the first point, we write:

A G k A T G k x 2 2 = n l=1 j∈G k ϕ j (X l ) n i=1 ϕ j (X i )x i 2 .
Then, we apply the Cauchy-Schwarz inequality:

A G k A T G k x 2 2 ≤ n l=1 j∈G k ϕ 2 j (X l ) j∈G k n i=1 ϕ j (X i )x i 2 = A T G k x 2 2 n l=1 j∈G k ϕ 2 j (X l ) = A T G k x 2 2 n l=1 (b l k ) 2 ≤ nb 2 k A T G k x 2 2 ,
which proves the upper bound of (2.11). For the lower bound, we just observe that for any i = 1, . . . , n, with e i the vector whose i-th coordinate is equal to 1 and all others to 0,

b i k 2 = A T G k e i 2 2 = < A T G k e i , A T G k e i > = < e i , A G k A T G k e i > ≤ e i 2 A G k A T G k e i 2 ≤ c k A T G k e i 2 = c k b i k ,
which obviously entails b k ≤ c k . For the last point, we observe that

A T G k x 2 2 = j∈G k K 2 j ,
where K j = n i=1 ϕ j (X i )x i . By expressing A G k A T G k x 2 2 with respect to the K j 's, we obtain:

A G k A T G k x 2 2 = n l=1 j∈G k ϕ j (X l ) n i=1 ϕ j (X i )x i 2 = n l=1 j∈G k ϕ j (X l ) n i=1 ϕ j (X i )x i j ∈G k ϕ j (X l ) n i =1 ϕ j (X i )x i = j∈G k j ∈G k n l=1 ϕ j (X l )ϕ j (X l ) n i=1 ϕ j (X i )x i n i =1 ϕ j (X i )x i = j∈G k j ∈G k n l=1 ϕ j (X l )ϕ j (X l )K j K j ≤ 1 2 j∈G k j ∈G k n l=1 ϕ j (X l )ϕ j (X l ) (K 2 j + K 2 j ) = j∈G k j ∈G k n l=1 ϕ j (X l )ϕ j (X l ) K 2 j ,
from which we deduce (2.12).

Proof of Theorem 3

For any β ∈ R p , we have

K(f 0 , f β ) = n i=1 f 0 (X i ) log f 0 (X i ) -log f β (X i ) + f β (X i ) -f 0 (X i ) = n i=1 Y i log f 0 (X i ) -log f β (X i ) + f β (X i ) -f 0 (X i ) + n i=1 (f 0 (X i ) -Y i ) log f 0 (X i ) -log f β (X i ) = log L(f 0 ) -log L(f β ) + n i=1 (f 0 (X i ) -Y i ) log f 0 (X i ) -log f β (X i ) .
Therefore, for all β ∈ R p ,

K(f 0 , f gL ) -K(f 0 , f β ) = l(β) -l( β gL ) + n i=1 f 0 (X i ) -Y i log f β (X i ) -log f gL (X i ) = l(β) -l( β gL ) + n i=1 f 0 (X i ) -Y i p j=1 (β j -β gL j )ϕ j (X i ) = l(β) -l( β gL ) + p j=1 ( β gL j -β j ) n i=1 ϕ j (X i )(Y i -f 0 (X i )).
Let us write

η j = n i=1 ϕ j (X i )(Y i -f 0 (X i )) = A T j (Y -E[Y]
). We have 

K(f 0 , f gL ) = K(f 0 , f β ) + l(
β gL G k -β G k 2 A T G k (Y -EY) 2 ≤ K k=1 λ g k β gL G k -β G k 2 . (7.5)
Therefore, for all β ∈ R p ,

K(f 0 , f gL ) ≤ K(f 0 , f β ) + K k=1 λ g k β gL G k -β G k 2 -β gL G k 2 + β G k 2 ,
from which we deduce (3.3).

Proof of Theorem 4

To avoid too tedious notations, we denote f gL instead of f gL µ,α and β gL instead of β gL µ,α . We start from Equality (7.4) combined with Inequality (7.5). Then, we have that on Ω g , for any β ∈ Γ(µ), K(f 0 , f gL )+(α-1)

K k=1 λ g k β gL G k -β G k 2 ≤ K(f 0 , f β )+ K k=1 αλ g k β gL G k -β G k 2 -β gL G k 2 + β G k 2 . On J(β) c , β gL G k -β G k 2 -β gL G k 2 + β G k 2 = 0 and K(f 0 , f gL ) + (α -1) K k=1 λ g k β gL G k -β G k 2 ≤ K(f 0 , f β ) + 2α k∈J(β) λ g k β gL G k -β G k 2 . (7.6)
By applying the Cauchy-Schwarz inequality we also have

K(f 0 , f gL )+(α-1) K k=1 λ g k β gL G k -β G k 2 ≤ K(f 0 , f β )+2α|J(β)| 1/2 k∈J(β) (λ g k ) 2 β gL G k -β G k 2 2 1/2 . (7.7)
If we write ∆ = D( β gL β), where D is a diagonal matrix with D j,j = λ g k if j ∈ G k , then we can rewrite (7.6) as K(f 0 , f gL ) + (α -1) ∆ 1,2 ≤ K(f 0 , f β ) + 2α ∆ J(β) 1,2 (7.8) and we deduce from (7.7) K(f 0 , f gL ) ≤ K(f 0 , f β ) + 2α(|J(β)|) 1/2 ∆ J(β) 2 . (7.9)

Now, on the event 2α ∆ J(β) 1,2 ≤ εK(f 0 , f β ) , the theorem follows immediately from (7.8). We now assume that εK(f 0 , f β ) ≤ 2α ∆ J(β) 1,2 . Since K is non-negative, we deduce from (7.8) that

(α -1) ∆ 1,2 ≤ 2α 1 + 1 ε ∆ J(β) 1,2 , (α -1) ∆ J(β) c 1,2 ≤ 2α 1 + 1 ε -(α -1) ∆ J(β) 1,2 and 
∆ J(β) c 1,2 ≤ α + 1 + 2α/ε α -1 ∆ J(β) 1,2 .
This is equivalent to

k∈J(β) c λ g k ( β gL -β) G k 2 ≤ α + 1 + 2α/ε α -1 k∈J(β) λ g k ( β gL -β) G k 2 .
From Assumption 2 we have that, if β is such that |J(β)| ≤ s, then

( β gL -β) J(β) 2 ≤ 1 κ n ( β gL -β) T G( β gL -β) 1/2 . Since G j,j = n i=1 ϕ j (X i )ϕ j (X i )f 0 (X i ),
by setting

u i = log f β (X i ) -log f 0 (X i ) and u gL i = log f β gL (X i ) -log f 0 (X i ),
we have

( β gL -β) T G( β gL -β) = p j=1 p j =1 ( β gL j -β j )( β gL j -β j )G j,j = n i=1 f 0 (X i ) p j=1 ( β gL j -β j )ϕ j (X i ) 2 = n i=1 f 0 (X i )( u gL i -u i ) 2 .
We set h(f 0 , f β ) = n i=1 f 0 (X i )u 2 i and h(f 0 , f gL ) = n i=1 f 0 (X i )( u gL i ) 2 . From (7.9) and since

∆ J(β) 2 ≤ (max k λ g k ) ( β gL -β) J(β) 2 ≤ max k λ g k κ n ( β gL -β) T G( β gL -β) 1/2 ,
we have

K(f 0 , f gL ) ≤ K(f 0 , f β ) + 2α κ n |J(β)| 1/2 (max k λ g k ) h(f 0 , f gL ) + h(f 0 , f β ) .
To conclude, we use arguments similar to [START_REF] Lemler | Oracle inequalities for the lasso in the high-dimensional multiplicative Aalen intensity model[END_REF]. We recall them for the safe of completeness. To connect h(f 0 , f β ) to K(f 0 , f β ), we use Lemma 1 of [START_REF] Bach | Self-concordant analysis for logistic regression[END_REF] that is recalled now.

Lemma 2 Let g be a convex three times differentiable function g : R → R such that for all t ∈ R, |g (t)| ≤ Sg (t) for some S ≥ 0. Then, for all t ≥ 0, g (0) S 2 φ(-St) ≤ g(t) -g(0) -g (0)t ≤ g (0) S 2 φ(St),

where φ(x) = e x -x -1.

Let h be a real function. We set

G(h) = n i=1
e h(X i ) -f 0 (X i )h(X i ) and g(t) = G(h + tk),

where h and k are functions and t ∈ R. We have :

g (t) = n i=1 k(X i )e h(X i )+tk(X i ) -f 0 (X i )k(X i ) , g (t) = n i=1
k 2 (X i )e h(X i )+tk(X i ) and g (t) = n i=1 k 3 (X i )e h(X i )+tk(X i ) .

Therefore |g (t)| ≤ Sg (t) with S = max i |k(X i )|. We choose h(X i ) = log f 0 (X i ) and k(X i ) = u i = log f β (X i )-log f 0 (X i ) and we apply Lemma 2 to g with t = 1. Computations yield that g(1) -g(0) = K(f 0 , f β ), g (0) = 0 and g (0) = n i=1 f 0 (X i )u 2 i = h(f 0 , f β ). Therefore φ(-S) S 2 h(f 0 , f β ) ≤ K(f 0 , f β ) ≤ φ(S) S 2 h(f 0 , f β ).

Finally, for β ∈ Γ(µ), S = max i |u i | ≤ µ + m. Furthermore, x -→ φ(x)

x 2 is a nonnegative increasing function and therefore we have

µ h(f 0 , f β ) ≤ K(f 0 , f β ) ≤ µ h(f 0 , f β ),
where µ = φ(-µ-m) (µ+m) 2 and µ = φ(µ+m) (µ+m) 2 . It follows that, for β ∈ Γ(µ) such that |J(β)| ≤ s,

K(f 0 , f gL ) ≤ K(f 0 , f β ) + 2α κ n √ µ |J(β)| 1/2 (max k λ g k ) K(f 0 , f gL ) + K(f 0 , f β ) .
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  Figure4: Average (over 20 repetitions) Mean Square Error of reconstruction of different methods for the estimation of simulated intensity functions according to function shapes (blocks, bumps, doppler, heavisine) and signal strength (α). Lasso.exact: Lasso penalty with our data-driven theoretical weights, Lasso.cvj: Lasso penalty with weights calibrated by cross validation with scaling 2 s/2 λ, group.Lasso.2/4/8: group Lasso penalty with our data-driven theoretical weights with group sizes 2/4/8, HaarFisz: Haar-Fisz tranform followed by soft-thresholding.

  reconstructed functions for the group strategies.

Figure 5 :

 5 Figure 5: Average (over 20 repetitions) reconstructed functions by different methods of estimation according to function shapes(blocks, bumps, doppler, heavisine). Top panel corresponds to non-grouped strategies (5a) and bottom panel compares group-strategies to the Lasso (5b). Lasso.exact: Lasso penalty with our data-driven theoretical weights, Lasso.cvj: Lasso penalty with weights calibrated by cross validation with scaling 2 s/2 λ, group.Lasso.2/4/8: group Lasso penalty with our data-driven theoretical weights with group sizes 2/4/8, HaarFisz: Haar-Fisz tranform followed by soft-thresholding, f0: simulated intensity function.

  Average Mean Square Error for different dictionaries with respect to the average number of selected coefficients (df).

  functions for the dictionaries with the smallest MSE.

Figure 7 :

 7 Figure 7: Estimation of the intensity function of Ori-Seq data (chromosomes 20 7a and X 7b). Grey bars indicate the number of reads that match genomic positions (x-axis, in MegaBases). The red line corresponds to the estimated intensity function, and vertical dotted lines stand for the detected origins by scanning statistics.
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We use twice the inequality 2uv ≤ bu 2 + v 2 b for any b > 0, applied to u = α κn |J(β)|(max k λ g k ) and v being either

Finally,

This completes the proof of Theorem 4.