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‡CEREMADE UMR CNRS 7534, Université Paris Dauphine,F-75775 Paris, France
⋆LBBE, UMR CNRS 5558 Univ. Lyon 1, F-69622 Villeurbanne, France

December 22, 2014

Abstract

High dimensional Poisson regression has become a standard framework for the analysis of
massive counts datasets. In this work we estimate the intensity function of the Poisson
regression model by using a dictionary approach, which generalizes the classical basis ap-
proach, combined with a Lasso or a group-Lasso procedure. Selection depends on penalty
weights that need to be calibrated. Standard methodologies developed in the Gaussian
framework can not be directly applied to Poisson models due to heteroscedasticity. Here we
provide data-driven weights for the Lasso and the group-Lasso derived from concentration
inequalities adapted to the Poisson case. We show that the associated Lasso and group-Lasso
procedures are theoretically optimal in the oracle approach. Simulations are used to assess
the empirical performance of our procedure, and an original application to the analysis of
Next Generation Sequencing data is provided.

Introduction

Poisson functional regression has become a standard framework for image or spectra analysis,
in which case observations are made of n independent couples (Yi, Xi)i=1,...,n, and can be
modeled as

Yi|Xi ∼ Poisson(f0(Xi)). (0.1)

TheXi’s (random or fixed) are supposed to lie in a known compact support of Rd (d ≥ 1), say
[0, 1]d, and the purpose is to estimate the unknown intensity function f0 assumed to be pos-
itive. Wavelets have been used extensively for intensity estimation, and the statistical chal-
lenge has been to propose thresholding procedures in the spirit of [Donoho and Johnstone, 1994],
that were adapted to the variance’s spatial variability associated with the Poisson frame-
work. An early method to deal with high dimensional count data has been to apply a
variance stabilizing-transform (see [Anscombe, 1948]) and to treat the transformed data as
if they were Gaussian. More recently, the same idea has been applied to the data’s decom-
position in the Haar-wavelet basis, see [Fryzlewicz and Nason, 2004] and [Fryzlewicz, 2008],
but these methods rely on asymptotic approximations and tend to show lower performance
when the level of counts is low [Besbeas et al., 2004]. Dedicated wavelet thresholding meth-
ods were developed in the Poisson setting by [Kolaczyk, 1999] and [Sardy et al., 2004], and
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a recurrent challenge has been to define an appropriate threshold like the universal threshold
for shrinkage and selection, as the heteroscedasticity of the model calls for component-wise
thresholding.

In this work we first propose to enrich the standard wavelet approach by considering
the so-called dictionary strategy. We assume that log f0 can be well approximated by a
linear combination of p known functions, and we reduce the estimation of f0 to the estima-
tion of p coefficients. Dictionaries can be built from classical orthonormal systems such as
wavelets, histograms or the Fourier basis, which results in a framework that encompasses
wavelet methods. Considering overcomplete (ie redundant) dictionaries is efficient to cap-
ture different features in the signal, by using sparse representations (see [Chen et al., 2001]
or [Tropp, 2004]). For example, if log f0 shows piece-wise constant trends along with some
periodicity, combining both Haar and Fourier bases will be more powerful than separate
strategies, and the model will be sparse in the coefficients domain. To ensure sparse es-
timations, we consider the Lasso and the group-Lasso procedures. Group estimators are
particularly well adapted to the dictionary framework, especially if we consider dictionar-
ies based on a wavelet system, for which it is well known that coefficients can be grouped
scale-wise for instance (see [Chicken and Cai, 2005]). Finally, even if we do not make any
assumption on p itself, it may be larger than n and methodologies based on ℓ1-penalties,
such as the Lasso and the group-Lasso appear appropriate.

The statistical properties of the Lasso are particularly well understood in the context of
regression with i.i.d. errors, or for density estimation for which a range of oracle inequal-
ities have been established. These inequalities, now widespread in the literature, provide
theoretical error bounds that hold on events with a controllable (large) probability. See for
instance [Bertin et al., 2011], [Bickel et al., 2009], [Bunea et al., 2007a, Bunea et al., 2007b]
and the references therein. For generalized linear models, [Park and Hastie, 2007] studied
ℓ1-regularization path algorithms and [van de Geer, 2008] established non-asymptotic oracle
inequalities. The sign consistency of the Lasso has been studied by [Jia et al., 2013] for a very
specific Poisson model. Finally, we also mention than the Lasso has also been extensively
considered in survival analysis. See for instance [Gäıffas and Guilloux, 2012], [Zou, 2008],
[Kong and Nan, 2014], [Bradic et al., 2011], [Lemler, 2013] and [Hansen et al., 2014].

Here we consider not only the Lasso estimator but also its extension, the group-Lasso
proposed by [Yuan and Lin, 2006], which is relevant when the set of parameters can be
partitioned into groups. The analysis of the group-Lasso has been led in different con-
texts. For instance, consistency has been studied by [Bach, 2008], [Obozinski et al., 2011]
and [Wei and Huang, 2010]. In the linear model, [Nardi and Rinaldo, 2008] derived condi-
tions ensuring various asymptotic properties such as consistency, oracle properties or per-
sistence. Still for the linear model, [Lounici et al., 2011] established oracle inequalities and,
in the Gaussian setting, pointed out advantages of the group-Lasso with respect to the
Lasso, generalizing the results of [Chesneau and Hebiri, 2008] and [Huang and Zhang, 2010].
We also mention [Meier et al., 2008] who studied the group-Lasso for logistic regression,
[Blazere et al., 2014] for generalized linear model with Poisson regression as a special case
and [Dalalyan et al., 2013] for other linear heteroscedastic models.

As pointed out by empirical comparative studies [Besbeas et al., 2004], the calibration
of any thresholding rule is of central importance. Here we consider Lasso and group-Lasso
penalties of the form

pen(β) =

p∑

j=1

λj |βj |
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and

peng(β) =

K∑

k=1

λgk‖βGk
‖2,

where G1 ∪ · · · ∪ GK is a partition of {1, . . . , p} into non-overlapping groups (see Sec-
tion 1 for more details). By calibration we refer to the definition and to the suitable
choice of the weights λj and λgk, which is intricate in heteroscedastic models, especially
for the group-Lasso. For functional Poissonian regression, the ideal shape of these weights
is unknown, even if for the group-Lasso, the λgk’s should of course depend on the groups
size. As for the Lasso, most proposed weights in the literature are non-random and con-
stant such that the penalty is proportional to ‖β‖1, but when facing variable selection
and consistency simultaneously, [Zou, 2006] showed the interest in considering non-constant
data-driven ℓ1-weights even in the simple case where the noise is Gaussian with constant
variance. This issue becomes even more critical in Poisson functional regression in which
variance shows spatial heterogeneity. As [Zou, 2006], our first contribution is to propose
here adaptive procedures with weights depending on the data. Weights λj for the Lasso are
derived by using sharp concentration inequalities, in the same spirit as [Bertin et al., 2011],
[Gäıffas and Guilloux, 2012], [Lemler, 2013] and [Hansen et al., 2014], but adapted to the
Poissonian setting. To account for heteroscedasticity, weights λj are component-specific
and depend on the data (see Theorem 1). We propose a similar procedure for the calibra-
tion of the group-Lasso. In most proposed procedures, the analogs of the λgk’s are propor-

tional to the
√
|Gk|’s (see [Nardi and Rinaldo, 2008], [Bühlmann and van de Geer, 2011] or

[Blazere et al., 2014]). But to the best of our knowledge, adaptive group-Lasso procedures
(with weights depending on the data) have not been proposed yet. This is the purpose of
Theorem 2, which is the main result of this work, generalizing Theorem 1 by using sharp
concentration inequalities for infinitely divisible vectors. We show the shape relevance of the
data-driven weights λgk by comparing them to the weights proposed by [Lounici et al., 2011]
in the Gaussian framework. In Theorem 2, we do not impose any condition on the groups
size. However, whether |Gk| is smaller than log p or not highly influences the order of
magnitude of λgk.

Our second contribution consists in providing the theoretical validity of our approach by
establishing slow and fast oracle inequalities under RE-type conditions in the same spirit
as [Bickel et al., 2009]. Closeness between our estimates and f0 is measured by using the
empirical Kullback-Leibler divergence. We show that classical oracle bounds are achieved.
We also show the relevance of considering the group-Lasso instead of the Lasso in some
situations. Our results, that are non-asymptotic, are valid under very general conditions
on the design (Xi)i=1,...,n and on the dictionary. However, to shed some light on our re-
sults, we illustrate some of them in the asymptotic setting with classical dictionaries like
wavelets, histograms or Fourier bases. Our approach generalizes the classical basis approach
and in particular block wavelet thresholding which is equivalent to group-Lasso in that case
(see [Yuan and Lin, 2006]). We refer the reader to [Chicken and Cai, 2005] for a deep study
of block wavelet thresholding in the context of density estimation whose framework shows
some similarities with ours in terms of heteroscedasticity. Note that sharp estimation of
variance terms proposed in this work can be viewed as an extension of coarse bounds pro-
vided by [Chicken and Cai, 2005]. Finally, we emphasize that our procedure differs from
[Blazere et al., 2014]’s one in several aspects: First, in their Poisson regression setting, they
do not consider a dictionary approach. Furthermore, their weights are constant and not
data-driven, so are strongly different from ours. Finally, rates of [Blazere et al., 2014] are
established under much more stronger assumptions than ours (see Section 3.1 for more
details).
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Finally, we explore the empirical properties of our calibration procedures by using sim-
ulations. We show that our procedures are very easy to implement, and we compare their
performance with variance-stabilizing transforms and cross-validation. The calibrated Lasso
and group-Lasso are associated with excellent reconstruction properties, even in the case
of low counts. We also propose an original application of functional Poisson regression
to the analysis of Next Generation Sequencing data, with the search of peaks in Pois-
son counts associated with the detection of replication origins in the human genome (see
[Picard et al., 2014]).

This article is organized as follows. In Section 1, we introduce the Lasso and group-Lasso
procedures we propose in the dictionary approach setting. In Section 2, we derive data-driven
weights of our procedures that are extensively commented. Theoretical performance of our
estimates are studied in Section 3 in the oracle approach. In Section 4, we investigate the
empirical performance of the proposed estimators using simulated data, and an application
is provided on next generation sequencing data in Section 5.

1 Penalized log-likelihood estimates for Poisson regres-

sion and dictionary approach

We consider the functional Poisson regression model, with n observed counts Yi ∈ Nmodeled
such that:

Yi|Xi ∼ Poisson(f0(Xi)), (1.1)

with the Xi’s (random or fixed) supposed to lie in a known compact support, say [0, 1]d.
Since the goal here is to estimate the function f0 assumed to be positive on [0, 1]d, a natural
candidate is a function f of the form f = exp(g). Then, we consider the so-called dictionary
approach which consists in decomposing g as a linear combination of the elements of a
given finite dictionary of functions denoted by Υ = {ϕj}j∈J , with ‖ϕj‖2 = 1 for all j.
Consequently, we choose g of the form:

g =
∑

j∈J

βjϕj ,

with p = card(J ) that may depend on n (as well as the elements of Υ). Without loss of
generality we will assume in the following that J = {1, . . . , p}. In this framework, estimating
f0 is equivalent to selecting the vector of regression coefficients β = (βj)j∈J ∈ R

p. In the
sequel, we write gβ =

∑
j∈J βjϕj , fβ = exp(gβ), for all β ∈ R

p. Note that we do not require
the model to be true, that is we do not suppose the existence of β0 such that f0 = fβ

0
.

The strength of the dictionary approach lies in its ability to capture different features
of the function to estimate (smoothness, sparsity, periodicity,...) by sparse combinations
of elements of the dictionary so that only few coefficients need to be selected, which lim-
its estimation errors. Obviously, the dictionary approach encompasses the classical basis
approach consisting in decomposing g on an orthonormal system. The richer the dictio-
nary, the sparser the decomposition, so p can be larger than n and the model becomes
high-dimensional.

We consider a likelihood-based penalized criterion to select β, the coefficients of the
dictionary decomposition. We denote by A the n × p-design matrix with Aij = ϕj(Xi),
Y = (Y1, . . . , Yn)

T and the log-likelihood associated with this model is

l(β) =
∑

j∈J

βj(A
TY)j −

n∑

i=1

exp
(∑

j∈J

βjAij

)
−

n∑

i=1

log(Yi!),
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which is a concave function of β. Next sections propose two different ways to penalize −l(β).

1.1 The Lasso estimate

The first penalty we propose is based on the (weighted) ℓ1-norm and we obtain a Lasso-type
estimate by considering

β̂
L ∈ argmin

β∈Rp



−l(β) +

p∑

j=1

λj |βj |



 . (1.2)

The penalty term
∑p

j=1 λj |βj | depends on positive weights (λj)j∈J that vary according to
the elements of the dictionary and are chosen in Section 2.1. This choice of varying weights
instead of a unique λ stems from heteroscedasticity due to the Poisson regression, and a first
part of our work consists in providing theoretical data-driven values for these weights, in
the same spirit as [Bertin et al., 2011] or [Hansen et al., 2014] for instance. From the first

order optimality conditions (see [Bühlmann and van de Geer, 2011]), β̂
L
satisfies





AT
j (Y − exp(Aβ̂

L
)) = λj

β̂L
j

|β̂L
j |

if β̂L
j 6= 0,

|AT
j (Y − exp(Aβ̂

L
))| ≤ λj if β̂L

j = 0,

where exp(Aβ) = (exp((Aβ)1), . . . , exp((Aβ)n))
T
and Aj is the j-th column of the matrix

A. Note that the larger the λj ’s, the sparser the estimates. In particular β̂
L
belongs to the

set of the vectors β ∈ R
p that satisfies for any j ∈ J ,

|AT
j (Y − exp(Aβ))| ≤ λj . (1.3)

The Lasso estimator of f0 is now easily derived.

Definition 1. The Lasso estimator of f0 is defined as

f̂L(x) := exp(ĝL(x)) := exp

(
p∑

j=1

β̂L
j ϕj(x)

)
.

We also propose an alternative to f̂L by considering the group-Lasso.

1.2 The group-Lasso estimate

We also consider the grouping of coefficients into non-overlapping blocks. Indeed, group
estimates may be better adapted than their single counterparts when there is a natural
group structure. The procedure keeps or discards all the coefficients within a block and can
increase estimation accuracy by using information about coefficients of the same block. In
our setting, we partition the set of indices J = {1, . . . , p} into K non-empty groups:

{1, . . . , p} = G1 ∪G2 ∪ · · · ∪GK .

For any β ∈ R
p, βGk

stands for the sub-vector of β with elements indexed by the elements
of Gk, and we define the block ℓ1-norm on R

p by

‖β‖1,2 =

K∑

k=1

‖βGk
‖2.
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Similarly, AGk
is the n×|Gk| submatrix of A whose columns are indexed by the elements of

Gk. Then the group-Lasso β̂
gL

is a solution to the following convex optimization problem:

β̂
gL ∈ argmin

β∈Rp

{
− l(β) +

K∑

k=1

λgk‖βGk
‖2
}
,

where the λgk’s are positive weights for which we also provide a theoretical data-driven
expression in Section 2.2. This group-estimator is constructed similarly to the Lasso, with
the block ℓ1-norm being used instead of the ℓ1-norm. In particular, note that if all groups are

of size one then we recover the Lasso estimator. Convex analysis states that β̂
gL

is a solution
of the above optimization problem if the p-dimensional vector 0 is in the subdifferential of

the objective function. Therefore, β̂
gL

satisfies:




AT
Gk

(Y − exp(Aβ̂
gL

)) = λgk
β̂
gL

Gk

‖β̂gL

Gk
‖2

if β̂
gL

Gk
6= 0,

‖AT
Gk

(Y − exp(Aβ̂
gL

))‖2 ≤ λgk if β̂
gL

Gk
= 0.

This procedure naturally enhances group-sparsity as analyzed by [Yuan and Lin, 2006],
[Lounici et al., 2011] and references therein.

Obviously, β̂
gL

belongs to the set of the vectors β ∈ R
p that satisfy for any k ∈

{1, . . . ,K},
‖AT

Gk
(Y − exp(Aβ))‖2 ≤ λgk. (1.4)

Now, we set

Definition 2. The group Lasso estimator of f0 is defined as

f̂gL(x) := exp(ĝgL(x)) := exp

(
p∑

j=1

β̂gL
j ϕj(x)

)
.

In the following our results are given conditionally on the Xi’s, and E (resp. P) stands
for the expectation (resp. the probability measure) conditionally on X1, . . . , Xn. In some
situations, to give orders of magnitudes of some expressions, we will use the following defi-
nition:

Definition 3. We say that the design (Xi)i=1,...,n is regular if either the design is deter-

ministic and the Xi’s are equispaced in [0, 1] or the design is random and the Xi’s are i.i.d.

with density h, with
0 < inf

x∈[0,1]d
h(x) ≤ sup

x∈[0,1]d
h(x) <∞.

2 Weights calibration using concentration inequalities

Our first contribution is to derive theoretical data-driven values of the weights λj ’s and
λgk’s, specially adapted to the Poisson model. In the classical Gaussian framework with
noise variance σ2, weights for the Lasso are chosen to be proportional to σ

√
log p (see

[Bickel et al., 2009] for instance). The Poisson setting is more involved due to heteroscedas-
ticity and such simple tuning procedures cannot be generalized easily. Sections 2.1 and 2.2
give closed forms of parameters λj and λgk. They are based on concentration inequalities
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specific to the Poisson model. In particular, λj is used to control the fluctuations of AT
j Y

around its mean, which enhances the key role of Vj , a variance term (the analog of σ2)
defined by

Vj = Var(AT
j Y) =

n∑

i=1

f0(Xi)ϕ
2
j (Xi). (2.1)

2.1 Data-driven weights for the Lasso procedure

For any j, we choose a data-driven value for λj as small as possible so that with high
probability, for any j ∈ J ,

|AT
j (Y − E[Y])| ≤ λj . (2.2)

Such a control is classical for Lasso estimates (see the references above) and is also a key point
of the technical arguments of the proofs. Requiring that the weights are as small as possible
is justified, from the theoretical point of view, by oracle bounds depending on the λj ’s (see
Corollaries 1 and 2). Furthermore, as discussed in [Bertin et al., 2011], choosing theoretical
Lasso weights as small as possible is also a suitable guideline for practical purposes. Finally,
note that if the model were true, i.e. if there existed a true sparse vector β0 such that
f0 = fβ

0
, then E[Y] = exp(Aβ0) and β0 would belong to the set defined by (1.3) with large

probability. The smaller the λj ’s, the smaller the set within selection of β̂
L
is performed.

So, with a sharp control in (2.2), we increase the probability to select β0. The following
theorem provides the data-driven weights λj ’s. The main theoretical ingredient we use to
choose the weights λj ’s is a concentration inequality for Poisson processes and to proceed,
we link the quantity AT

j Y to a specific Poisson process, as detailed in the proofs Section 6.1.

Theorem 1. Let j be fixed and γ > 0 be a constant. Define V̂j =
∑n

i=1 ϕ
2
j (Xi)Yi the natural

unbiased estimator of Vj and

Ṽj = V̂j +

√
2γ log pV̂j max

i
ϕ2
j (Xi) + 3γ log pmax

i
ϕ2
j (Xi).

Set

λj =

√
2γ log pṼj +

γ log p

3
max

i
|ϕj(Xi)|, (2.3)

then

P

(
|AT

j (Y − E[Y])| ≥ λj

)
≤ 3

pγ
. (2.4)

The first term
√

2γ log pṼj in λj is the main one, and constitutes a variance term de-

pending on Ṽj that slightly overestimates Vj (see Section 6.1 for more details about the

derivation of Ṽj). Its dependence on an estimate of Vj was expected since we aim at con-
trolling fluctuations of AT

j Y around its mean. The second term comes from the heavy tail
of the Poisson distribution, and is the price to pay, in the non-asymptotic setting, for the
added complexity of the Poisson framework compared to the Gaussian framework.

To shed more lights on the form of the proposed weights from the asymptotic point of
view, assume that the design is regular (see Definition 3). In this case, it is easy to see that
under mild assumptions on f0, Vj is asymptotically of order n. If we further assume that

max
i

|ϕj(Xi)| = o(
√
n/ log p), (2.5)
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then, when p is large, with high probability, V̂j (and then Ṽj) is also of order n (using Remark
2 in the proofs Section 6.1), and the second term in λj is negligible with respect to the first
one. In this case, λj is of order

√
n log p. Note that Assumption (2.5) is quite classical in

heteroscedastic settings (see [Bertin et al., 2011]). By taking the hyperparameter γ larger
than 1, then for large values of p, (2.2) is true for any j ∈ J , with large probability.

2.2 Data-driven weights for the group Lasso procedure

Current group-Lasso procedures are tuned by choosing the analog of λgk proportional to√
|Gk| (see [Nardi and Rinaldo, 2008], Chapter 4 of [Bühlmann and van de Geer, 2011] or

[Blazere et al., 2014]). A more refined version of tuning group-Lasso is provided by [Lounici et al., 2011]
in the Gaussian setting (see below for a detailed discussion). To the best of our knowledge,
data-driven weights (with theoretical validation) for the group-Lasso have not been pro-
posed yet. It is the purpose of Theorem 2. Similarly to the previous section, we propose
data-driven theoretical derivations for the weights λgk’s that are chosen as small as possible,
but satisfying for any k ∈ {1, . . . ,K},

‖AT
Gk

(Y − E[Y])‖2 ≤ λgk (2.6)

with high probability (see (1.4)). Choosing the smallest possible weights is also recommended
by [Lounici et al., 2011] in the Gaussian setting (see in their Section 3 the discussion about
weights and comparisons with coarser weights of [Nardi and Rinaldo, 2008]). Obviously, λgk
should depend on sharp estimates of the variance parameters (Vj)j∈Gk

. The following the-
orem is the equivalent of Theorem 1 for the group-Lasso. Relying on specific concentration
inequalities established for infinitely divisible vectors by [Houdré et al., 2008], it requires a
known upper bound for f0, which can be chosen as max

i
Yi in practice.

Theorem 2. Let k ∈ {1, . . . ,K} be fixed and γ > 0 be a constant. Assume that there exists

M > 0 such that for any x, |f0(x)| ≤M . Let

ck = sup
x∈Rn

‖AGk
AT

Gk
x‖2

‖AT
Gk

x‖2
. (2.7)

For all j ∈ Gk, still with V̂j =
∑n

i=1 ϕ
2
j (Xi)Yi, define

Ṽ g
j = V̂j +

√
2(γ log p+ log |Gk|)V̂j max

i
ϕ2
j (Xi) + 3(γ log p+ log |Gk|)max

i
ϕ2
j (Xi). (2.8)

Let γ > 0 be fixed. Define bik =
√∑

j∈Gk
ϕ2
j (Xi) and bk = max

i
bik. Finally, we set

λgk =

(
1 +

1

2
√
2γ log p

)√∑

j∈Gk

Ṽ g
j + 2

√
γ log pDk, (2.9)

where Dk = 8Mc2k + 16b2kγ log p. Then,

P

(
‖AT

Gk
(Y − E[Y])‖2 ≥ λgk

)
≤ 2

pγ
. (2.10)
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Similarly to the weights λj ’s of the Lasso, each weight λgk is the sum of two terms. The

term Ṽ g
j is an estimate of Vj so it plays the same role as Ṽj . In particular, Ṽ g

j and Ṽj are
of the same order since log |Gk| is not larger than log p. The first term in λgk is a variance
term, and the leading constant 1 + 1/(2

√
2γ log p) is close to 1 when p is large. So, the first

term is close to the square root of the sum of sharp estimates of the (Vj)j∈Gk
, as expected

for a grouping strategy (see [Chicken and Cai, 2005]).
The second term, namely 2

√
γ log pDk, is more involved. To shed light on it, since bk

and ck play a key role, we first state the following proposition controlling values of these
terms.

Proposition 1. Let k be fixed. We have

bk ≤ ck ≤ √
nbk. (2.11)

Furthermore,

c2k ≤ max
j∈Gk

∑

j′∈Gk

∣∣∣
n∑

l=1

ϕj(Xl)ϕj′(Xl)
∣∣∣. (2.12)

The first inequality of Proposition 1 shows that 2
√
γ log pDk is smaller than ck

√
log p+

bk log p ≤ 2ck log p up to a constant depending on γ and M . At first glance, the second
inequality of Proposition 1 shows that ck is controlled by the coherence of the dictionary
(see [Tropp, 2004]) and bk depends on (maxi |ϕj(Xi)|)j∈Gk

. In particular, if for a given
block Gk, the functions (ϕj)j∈Gk

are orthonormal, then for fixed j 6= j′, if the Xi’s are
deterministic and equispaced on [0, 1] or if the Xi’s are i.i.d. with a uniform density on
[0, 1]d, then, when n is large

1

n

n∑

l=1

ϕj(Xl)ϕj′(Xl) ≈
∫
ϕj(x)ϕj′(x)dx = 0

and we expect

c2k . max
j∈Gk

n∑

l=1

ϕ2
j (Xl).

In any case, by using the Cauchy-Schwarz Inequality, Condition (2.12) gives

c2k ≤ max
j∈Gk

∑

j′∈Gk

(
n∑

l=1

ϕ2
j (Xl)

)1/2( n∑

l=1

ϕ2
j′(Xl)

)1/2

. (2.13)

To further discuss orders of magnitude for the ck’s, we consider the following condition

max
j∈Gk

n∑

l=1

ϕ2
j (Xl) = O(n), (2.14)

which is satisfied for instance for fixed k if the design is regular, since ‖ϕj‖2 = 1. Under
Assumption (2.14), Inequality (2.13) gives

c2k = O(|Gk|n).
We can say more on bk and ck (and then on the order of magnitude of λgk) by considering
classical dictionaries of the literature to build the blocks Gk, which is of course realized in
practice. In the subsequent discussions, the balance between |Gk| and log p plays a key role.
Note also that log p is the group size often recommended in the classical setting (p = n) for
block thresholding (see Theorem 1 of [Chicken and Cai, 2005]).
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2.2.1 Order of magnitude of λgk by considering classical dictionaries.

Let Gk be a given block and assume that it is built by using only one of the subsequent
systems. For each example, we discuss the order of magnitude of the term Dk = 8Mc2k +
16b2kγ log p. For ease of exposition, we assume that f0 is supported by [0, 1] but we could
easily generalize the following discussion to the multidimensional setting.

Bounded dictionary. Similarly to [Blazere et al., 2014], we assume that there exists a
constant L not depending on n and p such that for any j ∈ Gk, ‖ϕj‖∞ ≤ L. For instance,
atoms of the Fourier basis satisfy this property. We then have

b2k ≤ L2|Gk|.

Finally, under Assumption (2.14),

Dk = O(|Gk|n+ |Gk| log p). (2.15)

Compactly supported wavelets. Consider the one-dimensional Haar dictionary: For
j = (j1, k1) ∈ Z

2 we set ϕj(x) = 2j1/2ψ(2j1x− k1), ψ(x) = 1[0,0.5](x)− 1]0.5,1](x). Assume
that the block Gk depends on only one resolution level j1: Gk = {j = (j1, k1) : k1 ∈ Bj1},
where Bj1 is a subset of {0, 1, . . . , 2j1 − 1}. In this case, since for j, j′ ∈ Gk with j 6= j′, for
any x, ϕj(x)ϕj′(x) = 0,

b2k = max
i

∑

j∈Gk

ϕ2
j (Xi) = max

i,j∈Gk

ϕ2
j (Xi) = 2j1

and Inequality (2.12) gives

c2k ≤ max
j∈Gk

n∑

l=1

ϕ2
j (Xl).

If, similarly to Condition (2.5), we assume that maxi,j∈Gk
|ϕj(Xi)| = o(

√
n/ log p), then

b2k = o(n/ log p),

and under Assumption (2.14),
Dk = O(n),

which improves (2.15). This property can be easily extended to general compactly supported
wavelets ψ, since, in this case, for any j = (j1, k1)

Sj = {j′ = (j1, k
′
1) : k′1 ∈ Z, ϕj × ϕj′ 6≡ 0}

is finite with cardinal only depending on the support of ψ.

Regular histograms. Consider a regular grid of the interval [0, 1], {0, δ, 2δ, . . .} with
δ > 0. Consider then (ϕj)j∈Gk

such that for any j ∈ Gk, there exists ℓ such that ϕj =
δ−1/21(δ(ℓ−1),δℓ]. We have ‖ϕj‖2 = 1 and ‖ϕj‖∞ = δ−1/2. As for the wavelet case, for
j, j′ ∈ Gk with j 6= j′, for any x, ϕj(x)ϕj′(x) = 0, then

b2k = max
i

∑

j∈Gk

ϕ2
j (Xi) = max

i,j∈Gk

ϕ2
j (Xi) = δ−1.
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If, similarly to Condition (2.5), we assume that maxi,j∈Gk
|ϕj(Xi)| = o(

√
n/ log p), then

b2k = o(n/ log p),

and under Assumption (2.14),
Dk = O(n).

The previous discussion shows that we can exhibit dictionaries such that c2k and Dk

are of order n and the term b2k log p is negligible with respect to c2k. Then, if similarly to

Section 2.1, the terms (Ṽ g
j )j∈Gk

are all of order n, λgk is of order
√
n×max(log p; |Gk|) and

the main term in λgk is the first one as soon as |Gk| ≥ log p. In this case, λgk is of order√
|Gk|n.

2.2.2 Comparison with the Gaussian framework.

Now, let us compare the λgk’s to the weights proposed by [Lounici et al., 2011] in the Gaus-
sian framework. Adapting their notations to ours, [Lounici et al., 2011] estimate the vector
β0 in the model Y ∼ N (Aβ0, σ

2In) by using the group-Lasso estimate with weights equal
to

λ̃gk = 2

√
σ2
(
Tr(AT

Gk
AGk

) + 2|||AT
Gk

AGk
|||(2γ log p+

√
|Gk|γ log p)

)
,

where |||AT
Gk

AGk
||| denotes the maximal eigenvalue ofAT

Gk
AGk

(see (3.1) in [Lounici et al., 2011]).
So, if |Gk| ≤ log p, the above expression is of the same order as

√
σ2Tr(AT

Gk
AGk

) +
√
σ2|||AT

Gk
AGk

|||γ log p. (2.16)

Neglecting the term 16b2kγ log p in the definition of Dk (see the discussion in Section 2.2.1),
we observe that λgk is of the same order as

√∑

j∈Gk

Ṽ g
j +

√
Mc2kγ log p. (2.17)

Since M is an upper bound of Var(Yi) = f0(Xi) for any i, strong similarities can be high-
lighted between the forms of the weights in the Poisson and Gaussian settings:

- For the first terms, Ṽ g
j is an estimate of Vj and

∑

j∈Gk

Vj ≤M
∑

j∈Gk

n∑

i=1

ϕ2
j (Xi) =M × Tr(AT

Gk
AGk

).

- For the second terms, in view of (2.7), c2k is related to |||AT
Gk

AGk
||| since we have

c2k = sup
x∈Rn

‖AGk
AT

Gk
x‖22

‖AT
Gk

x‖22
≤ sup

y∈R
|Gk|

‖AGk
y‖22

‖y‖22
= |||AT

Gk
AGk

|||.

These strong similarities between the Gaussian and the Poissonian settings strongly support
the shape relevance of the weights we propose.
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2.2.3 Suboptimality of the naive procedure

Finally, we show that the naive procedure that considers
√∑

j∈Gk
λ2j instead of λgk is sub-

optimal even if, obviously due to Theorem 1, with high probability,

‖AT
Gk

(Y − E[Y])‖2 ≤
√∑

j∈Gk

λ2j .

Suboptimality is justified by following heuristic arguments. Assume that for all j and k, the
first terms in (2.3) and (2.9) are the main ones and Ṽj ≈ Ṽ g

j ≈ Vj . Then by considering λgk

instead of
√∑

j∈Gk
λ2j , we improve our weights by the factor

√
log p, since in this situation,

λgk ≈
√∑

j∈Gk

Vj

and √∑

j∈Gk

λ2j ≈
√
log p

∑

j∈Gk

Vj ≈
√

log p λgk.

Remember that our previous discussion shows the importance to consider weights as small
as possible as soon as (2.6) is satisfied with high probability. The next section will confirm
this point.

3 Oracle inequalities

In this section, we establish oracle inequalities to study theoretical properties of our estima-
tion procedures. The Xi’s are still assumption-free, and the performance of our procedures
will be only evaluated at the X ′

is. To measure the closeness between f0 and an estimate, we
use the empirical Kullback-Leibler divergence associated with our model, denoted by K(·, ·).
Straightforward computations (see for instance [Leblanc and Letué, 2006]) show that for any
positive function f ,

K(f0, f) = E

[
log

(L(f0)
L(f)

)]

=

n∑

i=1

[(f0(Xi) log f0(Xi)− f0(Xi))]− [(f0(Xi) log f(Xi)− f(Xi))] ,

where L(f) is the likelihood associated with f . We speak about empirical divergence to
emphasize its dependence on the Xi’s. Note that we can write

K(f0, f) =
n∑

i=1

f0(Xi)(e
ui − ui − 1), (3.1)

where ui = log f(Xi)
f0(Xi)

. This expression clearly shows that K(f0, f) is non-negative and

K(f0, f) = 0 if and only if for all i ∈ {1, . . . , n}, we have ui = 0, that is f(Xi) = f0(Xi) for
all i ∈ {1, . . . , n}.
Remark 1. To weaken the dependence on n in the asymptotic setting, an alternative, not

considered here, would consist in considering n−1K(·, ·) instead of K(·, ·).
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If the classical L2-norm is the natural loss-function for penalized least squares criteria,
the empirical Kullback-Leibler divergence is a natural alternative for penalized likelihood
criteria. In next sections, oracle inequalities will be expressed by using K(·, ·).

3.1 Oracle inequalities for the group-Lasso estimate

In this section, we state oracle inequalities for the group-Lasso. These results can be viewed
as generalizations of results by [Lounici et al., 2011] to the case of the Poisson regression
model. They will be established on the set Ωg where

Ωg =
{
‖AT

Gk
(Y − E[Y])‖2 ≤ λgk ∀ k ∈ {1, . . . ,K}

}
. (3.2)

Under assumptions of Theorem 2, we have P(Ωg) ≥ 1 − 2K
pγ ≥ 1 − 2p1−γ . By considering

γ > 1, we have that P(Ωg) goes to 1 at a polynomial rate of convergence when p goes to
+∞. For any β ∈ R

p, we denote by

fβ(x) = exp

(
p∑

j=1

βjϕj(x)

)
,

the candidate associated with β to estimate f0. We first give a slow oracle inequality (see
for instance [Bunea et al., 2007a], [Gäıffas and Guilloux, 2012] or [Lounici et al., 2011]) that
does not require any assumption.

Theorem 3. On Ωg,

K(f0, f̂
gL) ≤ inf

β∈Rp

{
K(f0, fβ) + 2

K∑

k=1

λgk‖βGk
‖2
}
. (3.3)

Note that
K∑

k=1

λgk‖βGk
‖2 ≤ max

k∈{1,...,K}
λgk × ‖β‖1,2

and (3.3) is then similar to Inequality (3.9) of [Lounici et al., 2011]. We can improve the
rate of (3.3) at the price of stronger assumptions on the matrix A. We consider the following
assumptions:

Assumption 1. There exists µ > 0 such that the convex set

Γ(µ) =



β ∈ R

p : max
i∈{1,...,n}

∣∣∣∣∣∣

p∑

j=1

βjϕj(Xi)− log f0(Xi)

∣∣∣∣∣∣
≤ µ





contains a non-empty open set of Rp.

In the sequel, we restrict our attention to estimates β̂
gL

belonging to Γ(µ). Note that we
do not impose any upper bound on µ so this assumption is quite mild. This assumption (or
variations of it) has already been considered by [van de Geer, 2008], [Kong and Nan, 2014]
and [Lemler, 2013]. Its role consists in connecting K(., .) to some empirical quadratic loss
functions (see the proof of Theorem 4).
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Assumption 2. For some integer s ∈ {1, . . . ,K} and some constant r, the following
condition holds:

0 < κn(s, r) = min
J⊂{1,...,K}

|J|≤s

min
β∈R

p−{0}
‖βJc‖1,2≤r‖βJ‖1,2

(βTGβ)1/2

‖βJ‖2
,

where G is the Gram matrix defined by G = ATCA, where C is the diagonal matrix with
Ci,i = f0(Xi). With a slight abuse, βJ (resp. βJc) stands for the sub-vector of β with
elements indexed by the indices of the groups (Gk)k∈J (resp. (Gk)k∈Jc).

This assumption is the natural extension of the classical Restricted Eigenvalue condition

introduced by [Bickel et al., 2009] to study the Lasso estimate. RE-type assumptions are
among the mildest ones to establish oracle inequalities (see [van de Geer and Bühlmann, 2009]).
In the Gaussian setting, [Lounici et al., 2011] considered similar conditions to establish ora-
cle inequalities for their group-Lasso procedure. In particular, if c0 is a positive lower bound
for f0, then for all β ∈ R

p,

βTGβ = (Aβ)TC(Aβ) ≥ c0‖Aβ‖22 = c0

n∑

i=1

( p∑

j=1

βjϕj(Xi)
)2

= c0

n∑

i=1

g2β(Xi),

with gβ =
∑p

j=1 βjϕj . If (ϕj)j∈J is orthonormal on [0, 1]d and if the design is regular, then
the last term is the same order as

n

∫
g2β(x)dx = n‖β‖22 ≥ n‖βJ‖22

for any subset J ⊂ {1, . . . ,K}. Under these assumptions, κ−2
n (s, r) = O(n−1).

Under Assumption 1, we consider the slightly modified group-Lasso estimate. Let α > 1
and let us set

β̂
gL ∈ argmin

β∈Γ(µ)

{
− l(β) + α

K∑

k=1

λgk‖βGk
‖2
}
, f̂gL(x) = exp

(
p∑

j=1

β̂gL
j ϕj(x)

)

for which we obtain the following fast oracle inequality.

Theorem 4. Let ε > 0 and s a positive integer. Let Assumption 2 be satisfied with s and

r =
maxk λ

g
k

mink λ
g
k

α+ 1 + 2α/ε

α− 1
.

Then there exists a constant B(ε, µ) depending on ε and µ such that, on Ωg,

K(f0, f̂
gL) ≤ (1 + ε) inf

β∈Γ(µ)
|J(β)|≤s

{
K(f0, fβ) +B(ε, µ)

α2|J(β)|
κ2n

×
(

max
k∈{1,...,K}

λgk

)2
}
, (3.4)

where κn stands for κn(s, r), and J(β) is the subset of {1, . . . ,K} such that βGk
= 0 if and

only if k /∈ J(β).

Let us comment each term of the right-hand side of (3.4). The first term is an approx-
imation term, which can vanish if f0 can be decomposed on the dictionary. The second
term is a variance term, according to the usual terminology, which is proportional to the
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size of J(β). Its shape is classical in the high dimensional setting. See for instance The-
orem 3.2 of [Lounici et al., 2011] for the group-Lasso in linear models, or Theorem 6.1 of
[Bickel et al., 2009] and Theorem 3 of [Bertin et al., 2011] for the Lasso. If the order of mag-
nitude of λgk is

√
n×max(log p; |Gk|) (see Section 2.2.1) and if κ−2

n = O(n−1), the order of
magnitude of this variance term is not larger than |J(β)| ×max(log p; |Gk|). Finally, if f0
can be well approximated (for the empirical Kullback-Leibler divergence) by a group-sparse
combination of the functions of the dictionary, then the right hand side of (3.4) will take
small values. So, the previous result justifies our group-Lasso procedure from the theoretical
point of view. Note that (3.3) and (3.4) also show the interest of considering weights as small
as possible.

[Blazere et al., 2014] established rates of convergence under stronger assumptions, namely
all coordinates of the analog of A are bounded by a quantity L, where L is viewed as a con-
stant. Rates depend on L in an exponential manner and would highly deteriorate if L
depended on n and p. So, this assumption is not reasonable if we consider dictionaries such
as wavelets or histograms (see Section 2.2.1).

3.2 Oracle inequalities for the Lasso estimate

For the sake of completeness, we provide oracle inequalities for the Lasso. Theorems 3 and
4 that deal with the group-Lasso estimate can be adapted to the non-grouping strategy
when we take groups of size 1. Subsequent results are similar to those established by
[Lemler, 2013] who studied the Lasso estimate for the high-dimensional Aalen multiplicative
intensity model. The block ℓ1-norm ‖·‖1,2 becomes the usual ℓ1-norm and the group support
J(β) is simply the support of β. As previously, we only work on the probability set Ω defined
by

Ω =
{
|AT

j (Y − E[Y])| ≤ λj ∀j ∈ {1, . . . , p}
}
. (3.5)

Theorem 1 asserts that P(Ω) ≥ 1− 3
pγ−1 that goes to 1 as soon as γ > 1. We obtain a slow

oracle inequality for f̂L:

Corollary 1. On Ω,

K(f0, f̂
L) ≤ inf

β∈Rp

{
K(f0, fβ) + 2

p∑

j=1

λj |βj |
}
.

Now, let us consider fast oracle inequalities. In this framework, Assumption 2 is replaced
with the following:

Assumption 3. For some integer s ∈ {1, . . . , p} and some constant r, the following condi-
tion holds:

0 < κn(s, r) = min
J⊂{1,...,p}

|J|≤s

min
β∈R

p−{0}
‖βJc‖1≤r‖βJ‖1

(βTGβ)1/2

‖βJ‖2
,

where G is the Gram matrix defined by G = ATCA, where C is the diagonal matrix with
Ci,i = f0(Xi).

Under Assumption 1, we consider the slightly modified Lasso estimate. Let α > 1 and
let us set

β̂
L ∈ argmin

β∈Γ(µ)

{
− l(β) + α

p∑

j=1

λj |βj |
}
, f̂L(x) = exp

(
p∑

j=1

β̂L
j ϕj(x)

)

for which we obtain the following fast oracle inequality.
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Corollary 2. Let ε > 0 and s a positive integer. Let Assumption 3 be satisfied with s and

r =
maxj λj
minj λj

α+ 1 + 2α/ε

α− 1
.

Then there exists a constant B(ε, µ) depending on ε and µ such that, on Ω,

K(f0, f̂
L) ≤ (1 + ε) inf

β∈Γ(µ)
|J(β)|≤s

{
K(f0, fβ) +B(ε, µ)

α2|J(β)|
κ2n

( max
j∈{1,...,p}

λj
2)

}
,

where κn stands for κn(s, r), and J(β) is the support of β.

This corollary is derived easily from Theorem 4 by considering all groups of size 1.
Comparing Corollary 2 and Theorem 4, we observe that the group-Lasso can improve the
Lasso estimate when the function f0 can be well approximated by a function fβ so that
the number of non-zero groups of β is much smaller than the total number of non-zero
coefficients. The simulation study of the next section illustrates this comparison from the
numerical point of view.

4 Simulation study

Simulation settings. We explore the empirical performance of the Lasso and the group
Lasso strategies using simulations. We considered different forms for intensity functions
by taking the standard functions of [Donoho and Johnstone, 1994]: blocks, bumps, doppler,
heavisine, to set g0. The signal to noise ratio was increased by multiplying the intensity func-
tions by a factor α taking values in {1, . . . , 7}, α = 7 corresponding to the most favorable
configuration. Observations Yi were generated such that Yi|Xi ∼ Poisson(f0(Xi)), with
f0 = α exp(g0), and (X1, . . . , Xn) was set as the regular grid of length n = 210. Each config-
uration was repeated 20 times. Our method was implemented using the grpLasso R package
of [Meier et al., 2008] to which we provide our concentration-based weights. The correspond-
ing code is available at http://pbil.univ-lyon1.fr/members/fpicard/software.html.

The basis and the dictionary frameworks. The dictionary we consider is built on the
(periodized) Haar and Daubechies basis, and on the Fourier basis, in order to catch piece-wise
constant trends, localized peaks and periodicities. Each orthonormal system has n elements,
which makes p = n when systems are considered separately, and p = 2n or 3n depending on
the considered dictionary. For wavelets, the dyadic structure of the decomposition allows
us to group the coefficients scale-wise by forming groups of coefficients of size 2q. As for
the Fourier basis, groups (also of size 2q) are formed by considering successive coefficients
(while keeping their natural ordering). When grouping strategies are considered, we set all
groups at the same size.

Weights calibration in practice. First for both the Lasso and the group Lasso, we
estimate Vj (resp V g

j ) by V̂j (resp V̂ g
j ) instead of using Ṽj (resp Ṽ g

j ). This simplification
is easier to compute in practice, and does not have any impact on the performance of the
procedures. Lasso weights only depend on hyperparameter γ that we choose equal to 1.01,
following the arguments at the end of Section 2.1. As for the group Lasso weights (Theorem

2), the first term is replaced by
√∑

j∈Gk
V̂j , as it is governed by a quantity that tends to

one when p is large. The second term was calibrated by using different values of γ, and
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the best empirical performance were achieved so that the left- and right-hand terms of (2.9)

were approximatively equal. This resumes to group-Lasso weights of the form 2
√∑

j∈Gk
V̂j .

Competitors. We compete our Lasso procedure (Lasso.exact in the sequel), with the
Haar-Fisz transform (for Haar and Daubechies systems) applied to the same data followed
by soft-thresholding. Here we mention that we did not perform cycle-spinning (that is often
included in denoising procedures) in order to focus on the effects of thresholding only. We
also implemented the half-fold cross-validation proposed by [Nason, 1996] in the Poisson
case to set the weights in the penalty, with the proper scaling (2s/2λ, with s the scale of the
wavelet coefficients) as proposed by [Sardy et al., 2004]. Then we compare the performance
of the group-Lasso with varying group sizes (2,4,8) to the Lasso, to assess the benefits or
grouping wavelet coefficients.

Performance measurement. For any estimate f̂ , reconstruction performance were mea-
sured using the (normalized) mean-squared error MSE = ‖f̂ − f0‖22/‖f0‖22 (Figure 1a), and
selection performance were measured by the standard indicators: accuracy on support re-
covery, sensitivity (proportion of true non-null coefficients among selected coefficients) and
specificity of detection (proportion of true null coefficients among non-selected coefficients),

based on the estimated support of β̂ and on the support of β0, the coefficients associated
with the projection of function f0 on the dictionary.

Performance in the basis setting. The first step of our simulation study relies on
wavelet basis (Haar or Daubechies) and not on a dictionary approach (considered in a
second step) in order to compare our calibrated weights with other methods that rely on
penalized strategy. It appears that, except for the bumps function, the Lasso with exact
weights shows the lowest reconstruction error whatever the shape of the intensity function
(Figure 1a). Moreover, better performance of the Lasso with exact weights in cases of low
intensity emphasize the interest of theoretically calibrated procedures rather than asymp-
totic approximations (like the Haar-Fisz transform). In the case of bumps, cross-validation
seems to perform better than the Lasso, but when looking at reconstructed average function
(Figure 2a) this lower reconstruction error of cross-validation is associated with higher local
variations around the peaks. Compared with Haar-Fisz, the gain of using exact weights is
substantial even when the signal to noise ratio is high, which indicates that even in the va-
lidity domain of the Haar-Fisz transform (large intensities), the Lasso combined with exact
thresholds is more suitable (Figure 2a). As for the group Lasso, its performance highly de-
pend on the group size: while groups of size 2 show similar performance as the Lasso, groups
of size 4 and 8 increase the reconstruction error (Figure 1a and 2b), since they are not scaled
to the size of the irregularities in the signal. This trend is not systematic as the group Lasso
appears to be adapted to functions that are more regular (Heavisine), and seems to avoid
edge effects in some situations. Very interestingly, the group Lasso of size 2 increases the
sensitivity of detection for the Lasso (Figure 1b), while keeping the same specificity, which
suggests that it accounts for (true) local variations of nearby coefficients, which results in
a slightly better reconstruction error. As a last remark we mention that the sensitivities
of all methods are rather low regarding coefficients selection, meaning that many true non
null coefficients remain unselected. Since reconstruction errors are satisfactory, this means
that only few coefficients needed to be selected for good reconstruction properties in the
functional domain.
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Performance in the dictionary framework. Lastly, we explored the performance of
the dictionary approach, by considering different dictionaries to estimate each function:
Daubechies (D), Fourier (F), Haar (H), or their combinations (Figure 3). Rich dictionaries
can be very powerful to catch complex shapes in the true intensity function (like the notch
in the heavisine case Figure 3b), and the richest dictionary (DFH) often leads to the lowest
reconstruction error (MSE) on average. However the richest dictionary (DFH) is not always
the best choice in terms of reconstruction error, which is stricking in the case of the blocks
function. In this case the Haar system only would be preferable for the Lasso (Figure 3a). For
the group-Lasso and the blocks intensity function, the combination of the Daubechies and
the Haar systems provides the best MSE, but when looking at the reconstructed intensity
(Figure 3b-blocks), the Daubechies system introduces wiggles are not relevant for blocks.
Also, richer dictionaries do not necessarily lead to more selected parameters (Figure 3a),
which illustrates that selection depends on the redundancies between the systems elements
of the dictionary. In practice we often do not have any prior knowledge concerning the
elements that shape the signal, and these simulations suggest that the blind use of the richest
dictionary may not be the best strategy in terms of reconstructed functions. Consequently, in
the following application, we propose to adapt the half-fold cross validation of [Nason, 1996]
to choose the best combinations of systems.

5 Applications

The analysis of biological data has faced a new challenge with the extensive use of next gen-
eration sequencing (NGS) technologies. NGS experiments are based on the massive parallel
sequencing of short sequences (reads). The mapping of these reads onto a reference genome
(when available) generates counts data (Yt) spatially organized (in 1D) along the genome
(at position Xt). These technologies have revolutionized the perspectives of many fields in
molecular biology, and among many applications, one is to get a local quantification of DNA
or of a given DNA-related molecule (like transcription factors for instance with chIP-Seq
experiments, [Furey, 2012]). This technology has recently been applied to the identifica-
tion of replication origins along the human genome. Replication is the process by which a
genome is duplicated into two copies. This process is tightly regulated in time and space
so that the duplication process takes place in the highly regulated cell cycle. The human
genome is replicated at many different starting points called origins of replication, that are
loci along the genome at which the replication starts. Until very recently, the number of
such origins remained controversial, and thanks to the application of NGS technologies, first
estimates of this number could be obtained. The signal is made of counts along the human
genome such that reads accumulations indicate an origin activity (see [Picard et al., 2014]).
Scan statistics were first applied to these data, to detect significant local enrichments reads
accumulation, but there is currently no consensus on the best method to analyze such data.
Here we propose to use the Poisson functional regression to estimate the intensity function
of the data on a portion of the human chromosomes X and 20. Half-fold cross-validation
was used to select the appropriate dictionary between Daubechies, Fourier, Haar (and their
combinations), and our theoretical weights were used to calibrate the Lasso (Figure 4). Our
results are very promising as the sparse dictionary approach is very efficient for denoising
(Chromosome X, Figure 4b) and produces null intensities when the signal is low (higher
specificity). Another aspect of our method is that it seems to be more powerful in the iden-
tification of peaks that are more precise (Chromosome 20, positions 0.20 and 0.25Mb, Figure
4a), which indicates that the dictionary approach may be more sensitive to detect peaks.
Given the spread of NGS data and the importance of peak detection in the analysis process,
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(a) Mean Square error of reconstruction.
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(b) Sensitivity of selection.

Figure 1: Average (over 20 repetitions) Mean Square Error of reconstruction (1a) and
sensitivity of selection (1b) of different methods for the estimation of simulated inten-
sity functions according to function shapes (blocks, bumps, doppler, heavisine) and sig-
nal strength (α). Lasso.exact: Lasso penalty with our data-driven theoretical weights,
Lasso.cvj: Lasso penalty with weights calibrated by cross validation with scaling 2s/2λ,
group.Lasso.2/4/8: group Lasso penalty with our data-driven theoretical weights with
group sizes 2/4/8, HaarFisz: Haar-Fisz tranform followed by soft-thresholding.
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(a) Average reconstructed functions for the Lasso and competitors.

0
1
0

2
0

3
0

0.00 0.25 0.50 0.75 1.00

blocks

5
1
0

1
5

2
0

2
5

0.00 0.25 0.50 0.75 1.00

bumps

0
5

1
0

1
5

2
0

2
5

0.00 0.25 0.50 0.75 1.00

doppler

0
1
0

2
0

0.00 0.25 0.50 0.75 1.00

lasso.exact

grplasso.2

grplasso.4

grplasso.8

f0

heavi

(b) Average reconstructed functions for the group strategies.

Figure 2: Average (over 20 repetitions) reconstructed functions by different methods of
estimation according to function shapes (blocks, bumps, doppler, heavisine). Top panel
corresponds to non-grouped strategies (2a) and bottom panel compares group-strategies
to the Lasso (2b). Lasso.exact: Lasso penalty with our data-driven theoretical weights,
Lasso.cvj: Lasso penalty with weights calibrated by cross validation with scaling 2s/2λ,
group.Lasso.2/4/8: group Lasso penalty with our data-driven theoretical weights with
group sizes 2/4/8, HaarFisz: Haar-Fisz tranform followed by soft-thresholding, f0: simu-
lated intensity function. 20
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(a) Average Mean Square Error for different dictionaries with respect to the average number of
selected coefficients (df).
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Figure 3: Average (over 20 repetitions) Mean Square Errors and number of selected co-
efficients (df) (3a), and reconstructed functions (3b) for different dictionaries: Daubechies
(D), Fourier (F), Haar (H) and their combinations. Lasso.exact: Lasso penalty with
our data-driven theoretical weights, group.Lasso.2: group Lasso penalty with our data-
driven theoretical weights with group sizes 2, HaarFisz: Haar-Fisz tranform followed by
soft-thresholding. 21



for chIP-Seq [Furey, 2012], FAIRE-Seq [Thurman et al., 2012], OriSeq [Picard et al., 2014],
our preliminary results suggest that the sparse dictionary approach will be a very promising
framework for the analysis of such data.
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Figure 4: Estimation of the intensity function of Ori-Seq data (chromosomes 20 4a and
X 4b). Grey bars indicate the number of reads that match genomic positions (x-axis, in
MegaBases). The red line corresponds to the estimated intensity function, and vertical
dotted lines stand for the detected origins by scanning statistics.
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6 Proofs

6.1 Proof of Theorem 1

We denote by µ the Lebesgue measure on R
d and we introduce a partition of the set [0, 1]d

denoted ∪n
i=1Si so that for any i = 1, . . . , n, Xi ∈ Si and µ(Si) > 0. Let h the function

defined for any t ∈ [0, 1]d by

h(t) =

n∑

i=1

f0(Xi)

µ(Si)
1Si

(t).

Finally, we introduce N the Poisson process on [0, 1]d with intensity h (see [Kingman, 1993]).
Therefore, for any i = 1, . . . , n, N(Si) is a Poisson variable with parameter

∫
Si
h(t)dt =

f0(Xi) and since ∪n
i=1Si is a partition of [0, 1]d, (N(S1), . . . , N(Sn)) has the same distribution

as (Y1, . . . , Yn). We observe that if for any j = 1, . . . , p,

ϕ̃j(t) =

n∑

i=1

ϕj(Xi)1Si
(t),

then ∫
ϕ̃j(t)dN(t) ∼

n∑

i=1

ϕj(Xi)Yi = AT
j Y.

We use the following exponential inequality (see Inequality (5.2) of [Reynaud-Bouret, 2003]).
If g is bounded, for any u > 0,

P

(∫
g(x)(dN(x)− h(x)dx) ≥

√
2u

∫
g2(x)h(x)dx+

u

3
||g||∞

)
≤ exp(−u). (6.1)

By taking successively g = ϕ̃j and g = −ϕ̃j , we obtain

P

(
|AT

j (Y − E[Y])| ≥
√

2u

∫
ϕ̃2
j (x)h(x)dx+

u

3
‖ϕ̃j‖∞

)
≤ 2e−u.

Since ∫
ϕ̃2
j (x)h(x)dx =

n∑

i=1

ϕ2
j (Xi)f0(Xi) = Vj ,

we obtain

P

(
|AT

j (Y − E[Y])| ≥
√
2uVj +

u

3
‖ϕ̃j‖∞

)
≤ 2e−u. (6.2)

To control Vj , we use (6.1) with g = −ϕ̃2
j and we have:

P

(
Vj − V̂j ≥

√
2u

∫
ϕ̃4
j (t)h(t)dt+

u

3
‖ϕ̃j‖2∞

)
≤ e−u.

We observe that
∫
ϕ̃4
j (t)h(t)dt ≤ ‖ϕ̃j‖2∞

∫
ϕ̃2
j (t)h(t)dt = ‖ϕ̃j‖2∞Vj .
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Setting vj = u‖ϕ̃j‖2∞, we have:

P

(
Vj −

√
2vjVj −

vj
3

− V̂j ≥ 0

)
≤ e−u.

Let αj =
√
V̂j +

5
6vj+

√
vj
2 , such that αj is the positive solution to α2

j−
√

2vjαj−(V̂j+
vj

3 ) =

0. Then
P

(
Vj ≥ α2

j

)
= P

(√
Vj ≥ αj

)
≤ e−u. (6.3)

We choose u = γ log p and observe that α2
j ≤ Ṽj . Then, by combining (6.2) and (6.3), we

have

P

(
|AT

j (Y − E[Y])| ≥
√
2γ log pṼj +

γ log p

3
‖ϕ̃j‖∞

)
≤ 3

pγ
.

As ‖ϕ̃j‖∞ = maxi |ϕj(Xi)|, the theorem follows. �

Remark 2. By slightly extending previous computations, we easily show that for u > 0,

P

(
|Vj − V̂j | ≥

√
2uVj‖ϕ̃j‖2∞ +

u

3
‖ϕ̃j‖2∞

)
≤ 2e−u,

which leads to

P

(
|Vj − V̂j | ≥

Vj
2

+
4γ log p

3
‖ϕ̃j‖2∞

)
≤ 2

pγ
.

6.2 Proof of Theorem 2

For each k ∈ {1, . . . ,K}, we recall that bik =
√∑

j∈Gk
ϕ2
j (Xi), so b

i
k = ‖AT

Gk
ei‖2, where

ei is the vector whose i-th coordinate is equal to 1 and all others to 0. We first state the
following lemma:

Lemma 1. Let k be fixed. Assume that there exists some M > 0 such that ∀x, |f0(x)| ≤M .

Assume further that there exists some ck ≥ 0 such that ∀y ∈ R
n, ‖AGk

AT
Gk

y‖2 ≤ ck‖AT
Gk

y‖2.
Then, ∀x > 0, ∀ ε > 0,

P

(
‖AT

Gk
(Y − E[Y])‖2 ≥ (1 + ε)

√∑

j∈Gk

Vj + x

)
≤ exp

(
x

bk
−
( x
bk

+
Dε

k

b2k

)
log
(
1 +

bkx

Dε
k

))
,

where Dε
k = 8Mc2k + 2

ε2 b
2
k.

Proof. With k ∈ {1, . . . ,K} being fixed, we define f : Rn → R by f(y) =
(
‖AT

Gk
y‖2−E

)
+
,

where E > 0 is a constant chosen later. We use Corollary 1 from [Houdré et al., 2008],
applied to the infinitely divisible vector Y−E[Y] ∈ R

n, whose components are independent,
and to f . First note that for any t > 0,

Eetb
i
k|Yi−EYi| ≤ Eetb

i
k(Yi+f0(Xi))

= exp
(
f0(Xi)(e

tbik + tbik − 1)
)
<∞.
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Furthermore, for any i ∈ {1, ..., n}, any y ∈ R
n and any u ∈ R,

|f(y + uei)− f(y)| ≤
∣∣∣‖AT

Gk
(y + uei)‖2 − ‖AT

Gk
y‖2
∣∣∣

≤ ‖AT
Gk

(uei)‖2
= |u|bik.

Therefore, for all x > 0,

P

(
f(Y − E[Y])− E[f(Y − E[Y])] ≥ x

)
≤ exp

(
−
∫ x

0

h−1
f (s)ds

)
,

where hf is defined for all t > 0 by

hf (t) = sup
y∈Rn

n∑

i=1

∫

R

|f(y + uei)− f(y)|2 e
tbik|u| − 1

bik|u|
ν̃i(du)

and ν̃i is the Lévy measure associated with Yi−E[Yi]. It is easy to show that ν̃i = f0(Xi)δ1,
and so

hf (t) = sup
y∈Rn

n∑

i=1

f0(Xi)
(
f(y + ei)− f(y)

)2 etbik − 1

bik
.

Furthermore, writing Ai =
{
‖AT

Gk
(y + ei)‖2 ≥ E or ‖AT

Gk
y‖2 ≥ E

}
, we have

|f(y + ei)− f(y)| ≤
∣∣∣‖AT

Gk
(y + ei)‖2 − ‖AT

Gk
y‖2
∣∣∣1Ai

=
1Ai

∣∣∣‖AT
Gk

(y + ei)‖22 − ‖AT
Gk

y‖22
∣∣∣

‖AT
Gk

(y + ei)‖2 + ‖AT
Gk

y‖2

=
1Ai

∣∣∣2 < AT
Gk

ei,A
T
Gk

y > +‖AT
Gk

ei‖22
∣∣∣

‖AT
Gk

(y + ei)‖2 + ‖AT
Gk

y‖2

≤ 2

∣∣∣ < AT
Gk

ei,A
T
Gk

y >
∣∣∣

‖AT
Gk

y‖2
+

‖AT
Gk

ei‖22
E

,

with < ·, · > the usual scalar product. We now have

(
f(y + ei)− f(y)

)2
≤ 8

< AT
Gk

ei,A
T
Gk

y >2

‖AT
Gk

y‖22
+ 2

‖AT
Gk

ei‖42
E2

.

The first term can be rewritten as 8
<ei,AGk

AT
Gk

y>2

‖AT
Gk

y‖2

2

and the second one is equal to 2
bik

4

E2 , so

we can now bound hf (t) as follows.

hf (t) ≤ sup
y

∑

i

f0(Xi)
etb

i
k − 1

bik

(
8
< ei,AGk

AT
Gk

y >2

‖AT
Gk

y‖22
+ 2

bik
4

E2

)

≤ etbk − 1

bk
sup
y

(
8M

‖AGk
AT

Gk
y‖22

‖AT
Gk

y‖22
+

2

E2

∑

i

f0(Xi)b
i
k

4

)

≤ etbk − 1

bk

(
8Mc2k +

2

E2

∑

i

f0(Xi)b
i
k

4

)
.
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Now, we set

E = ε

√∑

j∈Gk

Vj .

So we have:

E2 = ε2
∑

j∈Gk

n∑

i=1

f0(Xi)ϕ
2
j (Xi)

= ε2
n∑

i=1

f0(Xi)
∑

j∈Gk

ϕ2
j (Xi)

= ε2
n∑

i=1

f0(Xi)b
i
k

2
.

Thus, we can finally bound the function hf by the increasing function h defined by

h(t) = Dε
k

etbk − 1

bk
,

with Dε
k = 8Mc2k +

2b2k
ε2 . Therefore,

exp
(
−
∫ x

0

h−1
f (s)ds

)
≤ exp

(
−
∫ x

0

h−1(s)ds
)

= exp

(
x

bk
−
( x
bk

+
Dε

k

b2k

)
log
(
1 +

bkx

Dε
k

))
.

Now,

f(Y − E[Y])− E[f(Y − E[Y])] =
(
‖AT

Gk
(Y − E[Y])‖2 − E

)
+
− E

(
‖AT

Gk
(Y − E[Y])‖2 − E

)
+

≥ ‖AT
Gk

(Y − E[Y])‖2 − E − E‖AT
Gk

(Y − E[Y])‖2.

Furthermore, by Jensen’s inequality, we have

E‖AT
Gk

(Y − E[Y])‖2 ≤
√
E‖AT

Gk
(Y − E[Y])‖22

=

√∑

j∈Gk

E[(AT
j (Y − EY))2]

=

√∑

j∈Gk

Var(AT
j Y)

=

√∑

j∈Gk

Vj .

Recalling that E = ε
√∑

j∈Gk
Vj , we thus have

P

(
f(Y − E[Y])− Ef(Y − E[Y]) ≥ x

)
≥ P

(
‖AT

Gk
(Y − E[Y])‖2 − (1 + ε)

√∑

j∈Gk

Vj ≥ x
)
,
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which concludes the proof. �

We apply Lemma 1 with

ε =
1

2
√
2γ log p

and x = 2
√
γ log pDε

k.

Then,

bkx

Dε
k

=
2bk

√
γ log p√
Dε

k

=
2bk

√
γ log p√

8Mc2k +
2b2

k

ε2

≤ ε
√
2γ log p =

1

2
.

Finally, using the fact that log(1 + u) ≥ u− u2

2 , we have:

exp

(
x

bk
−
( x
bk

+
Dε

k

b2k

)
log
(
1 +

bkx

Dε
k

))
≤ exp

(
x

bk
−
( x
bk

+
Dε

k

b2k

)(bkx
Dε

k

− b2kx
2

2Dε
k
2

))

= exp

(
−x2
2Dε

k

+
bkx

3

2Dε
k
2

)

= exp

(
−x2
2Dε

k

(
1− bkx

Dε
k

))

≤ exp
(−x2
4Dε

k

)
=

1

pγ
.

We obtain

P

(
‖AT

Gk
(Y − E[Y])‖2 ≥ (1 + ε)

√∑

j∈Gk

Vj + 2
√
γ log pDε

k

)
≤ 1

pγ
.

We control Vj as in the proof of Theorem 1, but we take u = γ log p+ log |Gk|. The analog
of (6.3) is

P

(
Vj > Ṽ g

j

)
≤ e−u =

1

|Gk|pγ
and thus

P

(
∃ j ∈ Gk, Vj > Ṽ g

j

)
≤ 1

pγ
.

This concludes the proof of Theorem 2. �

6.3 Proof of Proposition 1

For the first point, we write:

‖AGk
AT

Gk
x‖22 =

n∑

l=1

(
∑

j∈Gk

ϕj(Xl)

n∑

i=1

ϕj(Xi)xi

)2

.
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Then, we apply the Cauchy-Schwarz inequality:

‖AGk
AT

Gk
x‖22 ≤

n∑

l=1

(
∑

j∈Gk

ϕ2
j (Xl)

)(
∑

j∈Gk

( n∑

i=1

ϕj(Xi)xi

)2
)

= ‖AT
Gk

x‖22
n∑

l=1

(
∑

j∈Gk

ϕ2
j (Xl)

)

= ‖AT
Gk

x‖22
n∑

l=1

(blk)
2

≤ nb2k‖AT
Gk

x‖22,

which proves the upper bound of (2.11). For the lower bound, we just observe that for any
i = 1, . . . , n, with ei the vector whose i-th coordinate is equal to 1 and all others to 0,

bik
2

= ‖AT
Gk

ei‖22
= < AT

Gk
ei,A

T
Gk

ei >

= < ei,AGk
AT

Gk
ei >

≤ ‖ei‖2‖AGk
AT

Gk
ei‖2

≤ ck‖AT
Gk

ei‖2
= ckb

i
k,

which obviously entails bk ≤ ck. For the last point, we observe that

‖AT
Gk

x‖22 =
∑

j∈Gk

K2
j ,

where Kj =
∑n

i=1 ϕj(Xi)xi. By expressing ‖AGk
AT

Gk
x‖22 with respect to the Kj ’s, we

obtain:

‖AGk
AT

Gk
x‖22 =

n∑

l=1

(
∑

j∈Gk

ϕj(Xl)
n∑

i=1

ϕj(Xi)xi

)2

=
n∑

l=1

∑

j∈Gk

ϕj(Xl)
n∑

i=1

ϕj(Xi)xi
∑

j′∈Gk

ϕj′(Xl)
n∑

i′=1

ϕj′(Xi′)xi′

=
∑

j∈Gk

∑

j′∈Gk

n∑

l=1

ϕj(Xl)ϕj′(Xl)
n∑

i=1

ϕj(Xi)xi

n∑

i′=1

ϕj′(Xi′)xi′

=
∑

j∈Gk

∑

j′∈Gk

n∑

l=1

ϕj(Xl)ϕj′(Xl)KjKj′

≤ 1

2

∑

j∈Gk

∑

j′∈Gk

∣∣∣
n∑

l=1

ϕj(Xl)ϕj′(Xl)
∣∣∣(K2

j +K2
j′)

=
∑

j∈Gk

∑

j′∈Gk

∣∣∣
n∑

l=1

ϕj(Xl)ϕj′(Xl)
∣∣∣K2

j ,

from which we deduce (2.12). �
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6.4 Proof of Theorem 3

For any β ∈ R
p, we have

K(f0, fβ) =

n∑

i=1

f0(Xi)
(
log f0(Xi)− log fβ(Xi)

)
+ fβ(Xi)− f0(Xi)

=
n∑

i=1

Yi
(
log f0(Xi)− log fβ(Xi)

)
+ fβ(Xi)− f0(Xi)

+

n∑

i=1

(f0(Xi)− Yi)
(
log f0(Xi)− log fβ(Xi)

)

= logL(f0)− logL(fβ) +
n∑

i=1

(f0(Xi)− Yi)
(
log f0(Xi)− log fβ(Xi)

)
.

Therefore, for all β ∈ R
p,

K(f0, f̂
gL)−K(f0, fβ) = l(β)− l(β̂

gL
) +

n∑

i=1

(
f0(Xi)− Yi

)(
log fβ(Xi)− log f̂gL(Xi)

)

= l(β)− l(β̂
gL

) +

n∑

i=1

(
f0(Xi)− Yi

) p∑

j=1

(βj − β̂gL
j )ϕj(Xi)

= l(β)− l(β̂
gL

) +

p∑

j=1

(β̂gL
j − βj)

n∑

i=1

ϕj(Xi)(Yi − f0(Xi)).

Let us write ηj =
∑n

i=1 ϕj(Xi)(Yi − f0(Xi)) = AT
j (Y − E[Y]). We have

K(f0, f̂
gL) = K(f0, fβ) + l(β)− l(β̂

gL
) + (β̂

gL − β)Tη. (6.4)

By definition of β̂
gL

,

−l(β̂gL
) +

K∑

k=1

λgk‖β̂
gL

Gk
‖2 ≤ −l(β) +

K∑

k=1

λgk‖βGk
‖2.

Furthermore, on Ωg,

|(β̂gL − β)Tη| =
∣∣∣

p∑

j=1

(β̂gL
j − βj)(A

T
j (Y − EY))

∣∣∣

≤
K∑

k=1

∑

j∈Gk

|β̂gL
j − βj ||AT

j (Y − EY)|

≤
K∑

k=1

( ∑

j∈Gk

(β̂gL
j − βj)

2
)1/2( ∑

j∈Gk

(AT
j (Y − EY))2

)1/2

=
K∑

k=1

‖β̂gL

Gk
− βGk

‖2‖AT
Gk

(Y − EY)‖2

≤
K∑

k=1

λgk‖β̂
gL

Gk
− βGk

‖2. (6.5)
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Therefore, for all β ∈ R
p,

K(f0, f̂
gL) ≤ K(f0, fβ) +

K∑

k=1

λgk

(
‖β̂gL

Gk
− βGk

‖2 − ‖β̂gL

Gk
‖2 + ‖βGk

‖2
)
,

from which we deduce (3.3). �

6.5 Proof of Theorem 4

We start from Equality (6.4) combined with Inequality (6.5). Then, we have that on Ωg, for
any β,

K(f0, f̂
gL)+(α−1)

K∑

k=1

λgk‖β̂
gL

Gk
−βGk

‖2 ≤ K(f0, fβ)+

K∑

k=1

αλgk

(
‖β̂gL

Gk
−βGk

‖2−‖β̂gL

Gk
‖2+‖βGk

‖2
)
.

On J(β)c, ‖β̂gL

Gk
− βGk

‖2 − ‖β̂gL

Gk
‖2 + ‖βGk

‖2 = 0 and

K(f0, f̂
gL) + (α− 1)

K∑

k=1

λgk‖β̂
gL

Gk
− βGk

‖2 ≤ K(f0, fβ) + 2α
∑

k∈J(β)

λgk‖β̂
gL

Gk
− βGk

‖2. (6.6)

By applying the Cauchy-Schwarz inequality we also have

K(f0, f̂
gL)+(α−1)

K∑

k=1

λgk‖β̂
gL

Gk
−βGk

‖2 ≤ K(f0, fβ)+2α|J(β)|1/2
( ∑

k∈J(β)

(λgk)
2‖β̂gL

Gk
−βGk

‖22
)1/2

.

(6.7)

If we write ∆ = D(β̂
gL − β), where D is a diagonal matrix with Dj,j = λgk if j ∈ Gk, then

we can rewrite (6.6) as

K(f0, f̂
gL) + (α− 1)‖∆‖1,2 ≤ K(f0, fβ) + 2α‖∆J(β)‖1,2 (6.8)

and we deduce from (6.7)

K(f0, f̂
gL) ≤ K(f0, fβ) + 2α(|J(β)|)1/2‖∆J(β)‖2. (6.9)

Now, on the event
{
2α‖∆J(β)‖1,2 ≤ εK(f0, fβ)

}
, the theorem follows immediately from

(6.8). We now assume that εK(f0, fβ) ≤ 2α‖∆J(β)‖1,2. Since K is non-negative, we deduce
from (6.8) that

(α− 1)‖∆‖1,2 ≤ 2α
(
1 +

1

ε

)
‖∆J(β)‖1,2,

(α− 1)‖∆J(β)c‖1,2 ≤
(
2α
(
1 +

1

ε

)
− (α− 1)

)
‖∆J(β)‖1,2

and

‖∆J(β)c‖1,2 ≤
(
α+ 1 + 2α/ε

α− 1

)
‖∆J(β)‖1,2.

This yields the following inequality for the vector D−1∆ = (β̂
gL − β):

‖(β̂gL − β)J(β)c‖1,2 ≤ maxk λ
g
k

mink λ
g
k

α+ 1 + 2α/ε

α− 1
‖(β̂gL − β)J(β)‖1,2.
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From Assumption 2 we have that, if β is such that |J(β)| ≤ s, then

‖(β̂gL − β)J(β)‖2 ≤ 1

κn

(
(β̂

gL − β)TG(β̂
gL − β)

)1/2
.

Since

Gj,j′ =
n∑

i=1

ϕj(Xi)ϕj′(Xi)f0(Xi),

by setting

ui = log fβ(Xi)− log f0(Xi) and ûgLi = log f
β̂

gL(Xi)− log f0(Xi),

we have

(β̂
gL − β)TG(β̂

gL − β) =

p∑

j=1

p∑

j′=1

(β̂gL
j − βj)(β̂

gL
j′ − βj′)Gj,j′

=

n∑

i=1

f0(Xi)
( p∑

j=1

(β̂gL
j − βj)ϕj(Xi)

)2

=

n∑

i=1

f0(Xi)(û
gL
i − ui)

2.

We set h(f0, fβ) =
∑n

i=1 f0(Xi)u
2
i and h(f0, f̂

gL) =
∑n

i=1 f0(Xi)(û
gL
i )2. From (6.9) and

since

‖∆J(β)‖2 ≤ (max
k

λgk)‖(β̂
gL − β)J(β)‖2

≤ maxk λ
g
k

κn

(
(β̂

gL − β)TG(β̂
gL − β)

)1/2
,

we have

K(f0, f̂
gL) ≤ K(f0, fβ) +

2α

κn
|J(β)|1/2(max

k
λgk)
(√

h(f0, f̂gL) +
√
h(f0, fβ)

)
.

To conclude, we use arguments similar to [Lemler, 2013]. We recall them for the safe of
completeness. To connect h(f0, fβ) to K(f0, fβ), we use Lemma 1 of [Bach, 2010] that is
recalled now.

Lemma 2. Let g be a convex three times differentiable function g : R → R such that for all

t ∈ R, |g′′′(t)| ≤ Sg′′(t) for some S ≥ 0. Then, for all t ≥ 0,

g′′(0)

S2
φ(−St) ≤ g(t)− g(0)− g′(0)t ≤ g′′(0)

S2
φ(St),

where φ(x) = ex − x− 1.

Let h be a real function. We set

G(h) =

n∑

i=1

(
eh(Xi) − f0(Xi)h(Xi)

)
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and
g(t) = G(h+ tk),

where h and k are functions and t ∈ R. We have :

g′(t) =

n∑

i=1

(
k(Xi)e

h(Xi)+tk(Xi) − f0(Xi)k(Xi)
)
,

g′′(t) =

n∑

i=1

(
k2(Xi)e

h(Xi)+tk(Xi)
)

and

g′′′(t) =

n∑

i=1

(
k3(Xi)e

h(Xi)+tk(Xi)
)
.

Therefore |g′′′(t)| ≤ Sg′′(t) with S = maxi |k(Xi)|. We choose h(Xi) = log f0(Xi) and
k(Xi) = ui = log fβ(Xi)− log f0(Xi) and we apply Lemma 2 to g with t = 1. Computations
yield that g(1) − g(0) = K(f0, fβ), g

′(0) = 0 and g′′(0) =
∑n

i=1 f0(Xi)u
2
i = h(f0, fβ).

Therefore
φ(−S)
S2

h(f0, fβ) ≤ K(f0, fβ) ≤
φ(S)

S2
h(f0, fβ).

Finally, using Assumption 1, for β ∈ Γ(µ), S = maxi |ui| ≤ µ. Furthermore, x −→ φ(x)
x2 is a

nonnegative increasing function and therefore we have

µ′h(f0, fβ) ≤ K(f0, fβ) ≤ µ′′h(f0, fβ),

where µ′ = φ(−µ)
µ2 and µ′′ = φ(µ)

µ2 . It follows that, for β ∈ Γ(µ),

K(f0, f̂
gL) ≤ K(f0, fβ) +

2α

κn
√
µ′

|J(β)|1/2(max
k

λgk)
(√

K(f0, f̂gL) +
√
K(f0, fβ)

)
.

We use twice the inequality 2uv ≤ bu2+ v2

b for any b > 0, applied to u = α
κn

√
|J(β)|(maxk λ

g
k)

and v being either
√

1
µ′K(f0, f̂gL) or

√
1
µ′K(f0, fβ). We have

(
1− 1

µ′b

)
K(f0, f̂

gL) ≤
(
1 +

1

µ′b

)
K(f0, fβ) + 2b

α2|J(β)|
κ2n

(max
k

λgk)
2.

Finally,

K(f0, f̂
gL) ≤

(µ′b+ 1

µ′b− 1

)
K(f0, fβ) + 2

µ′b2

µ′b− 1

α2|J(β)|
κ2n

(max
k

λgk)
2.

We choose b > 1/µ′ such that µ′b+1
µ′b−1 = 1 + ε and we set B(ε, µ) = 2(1 + ε)−1 µ′b2

µ′b−1 . Finally,

we have, for any β ∈ Γ(µ) such that |J(β)| ≤ s,

K(f0, f̂
gL) ≤ (1 + ε)

(
K(f0, fβ) +B(ε, µ)

α2|J(β)|
κ2n

(max
k

λgk)
2

)
.

This completes the proof of Theorem 4. �
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