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Optimal insurance for catastrophic risk: theory
and application to nuclear corporate liability

Alexis Louaas and Pierre Picard∗

19 December 2014

Abstract
We analyze the optimal insurance coverage for high severity-low

probability accidents, both from theoretical and applied standpoints.
Such accidents qualify as catastrophic when their risk premium is a
non-negligible proportion of the victims’ wealth, although the prob-
ability of occurrence is very small. We show that this may be the
case when the individual’s absolute risk aversion is very large in the
accident case. We characterize the optimal insurance contract firstly
for an individual, and secondly for a firm that may be at the origin
of an accident that affects the whole population. The optimal indem-
nity schedule converges to a limit when the probability of the accident
tends to zero. In the case of corporate civil liability, this limit schedule
is a straight deductible contract that corresponds to an indemnifica-
tion of victims ranked in order of priority according to the severity of
their losses. We also show that the size of the deductible depends on
the individuals’ risk aversion and also on the cost of contingent risk
capital that is required to sustain the indemnity payment, should an
accident occur. The empirical part of the paper is an application of
these general principles to the case of nuclear accidents. Large scale
nuclear accidents are typical examples of high severity-low probability
risks. We calibrate a model on French data in order to estimate the
optimal liability ceiling of an electricity producer in the nuclear energy
sector. We use data drawn from the cat-bond markets to estimate the
cost of contingent capital for low probability events, and we show that
the minimal corporate liability adopted in 2004 through the revision
of the Paris Convention is probably lower than the level that would
correspond to an optimal risk coverage of the population.

∗Ecole Polytechnique, France.
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1 Introduction
The increasing demand of societies for protection against disasters has several
roots.

On one hand, part of the world population is more vulnerable today than
it has ever been. High population densities, the always increasing intercon-
nection between people and the enormous destructive power that societies
have acquired, create dependence between the risks borne individually. This
correlation explains how large-scale accidents can hit so many victims in a
single occurrence. However, it is certainly not the only characteristic of a
disaster. In order to qualify as disasters, large scale accidents have to gener-
ate heavy losses for impacted individuals. The Arrow-Lind theorem (1970)
illustrates the importance of this second criterion for public decision making
under risk. If a large-scale accident caused by a State-controlled activity im-
pacts marginally a large number of individuals, then the social cost of the risk
associated with this activity should be considered as negligible. By contrast,
an accident that impacts severely a limited number of individuals may gen-
erate a high cost of risk even when its probability is very small. While the
correlation aspect of disaster risk, and the difficulty it generates to set-up
efficient insurance mechanisms, have received some attention in the litera-
ture, little has been written about the low probability-large severity aspect
of disaster risk.

On the other hand, the responsibility of the individual trajectories have
been somewhat shifted from the individuals to societies. The recognition that
people are not in control of all aspects of their lives provides a moral and
economic argument for an ex-post solidarity that can be enforced through
various insurance mechanisms. This is particularly true for large industrial
projects, which may be beneficial to communities but nevertheless entail risks
supported by different subsets of these communities, hence the importance
of corporate liability law in the case of risky industrial activities potentially
at the origin of large-scale accidents.

What qualifies a low-probability high severity accident as a disaster? How
should individuals and societies cover these risks? The present paper pro-
poses to approach these questions from both a theoretical and an applied
perspective. Our motivation and ultimate objective is to analyze the case of
nuclear accident risk.

The paper is organized as follows. Section 2 aims at characterizing the
conditions that qualify a low probability-large severity accident as a disas-
ter from an individual standpoint. In particular, we derive conditions on
preferences under which the normalized risk premium (i.e., the risk premium
per unit of variance) remains significant even when the loss probability con-
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verges to zero. We then investigate the optimal insurance choice when the
probability of the accident converges to zero. Our first finding is that the
normalized risk premium has a lower bound which is a weighted average of
the indices of absolute risk aversion at the different levels of final wealth.
Concerning the optimal insurance coverage, we find that it converges to a
limit when the accident probability goes to zero. This limit value depends
on the usual determinants of insurance demand: the insurance pricing rule
and the individual’s wealth and degree of risk aversion.

Section 3 considers the risk of an accident that is caused by a firm and
that may affect the entire population. Nuclear risk is a typical instance of
such a risk. In the case of an accident, the firm has to indemnify the victims
according to liability law and it purchases insurance to prevent any insol-
vency. Liability law caps the corporate liability (as in the case of nuclear
risks ruled by Governments in the framework of international conventions).
The corporate insurance coverage reflects this ceiling on the firm’s liabil-
ity. We characterize the corporate liability and the indemnification rule that
should be implemented by a utilitarian regulator. We show that these opti-
mal choices converge toward a straight deductible indemnity schedule when
the accident probability goes to zero. In particular, this optimal coverage
depends on the cost of contingent capital that is necessary to sustain the
indemnification mechanism.

Section 4 is an application through a calibrated version of the model that
corresponds to the case of a nuclear reactor in France. Using studies realized
by experts in nuclear safety, we try to understand what is the optimal level
of coverage that the French State should set-up in prevention of a nuclear
disaster. The results from the theoretical sections find their application here
and we find that, if there is a risk and ambiguity neutral investor, willing
to provide contingent capital to insure nuclear accident risk on the French
territory, the optimal coverage does not depend on the probability of accident.
This result is important as the nuclear safety literature has not settled a clear
consensus about this issue. The prevailing ambiguity about the probability
of a major nuclear accident is therefore not relevant to the question of the
optimal coverage in this case.

However, we use recent data from the Insurance Linked Security market to
show that it is unlikely that the French government will be able to find such a
risk and ambiguity neutral investor. Setting-up an insurance deal for nuclear
accidents would probably involve paying an ambiguity premium to investors,
which will after all, impact the choice of optimal coverage. Our simulations
suggest that the French nuclear liability law could be more ambitious than
it currently is by raising the amount of coverage available to compensate the
potential victims of an accident.
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Section 5 concludes and section 6 gathers proofs, tables and figures.

2 Risk premium and insurance demand for

catastrophic risks

2.1 The risk premium of small probability-large sever-
ity risks

Consider an expected utility risk averse individual with von Neumann-Morgenstern
utility function u(x) such that u′ > 0 and u′′ < 0, where x is the individ-
ual’s wealth. Let A(x) = −u′′(x)/u′(x) and T (x) = 1/A(x) be her indices
of absolute risk aversion and of risk tolerance, respectively. She holds an
initial wealth w and she is facing the risk of a loss L with probability p.
Thus m(p, L) = pL and σ2(p, L) = p(1− p)L2 are the expected loss and the
variance of the loss, respectively. The certainty equivalent C(p, L) of this
lottery is defined by

u(w − C) = (1− p)u(w) + pu(w − L).

We also denote
θ(p, L) ≡ C(p, L)−m(p, L)

σ2(p, L)
the normalized risk premium, that is the risk premium per unit of variance
of the risk. Straightforward calculations give

C ′p(p, L) = u(w − L)− u(w)
u′(w − C) > 0, (1)

C ′′p2(p, L) = −C ′p(p, L)2A(w − C) < 0. (2)

Thus, C(p, L) is increasing and concave, and of course we have C(L, 0) = 0.
Put informally, the risk (p, L) may be considered as catastrophic for the

individual if C(p, L) is non-negligible, for instance as a proportion of her
initial wealth w, although p is small or even very small. Obviously, this may
occur if C ′p(0, L) is large. We have

C ′p(L, 0) = u(w)− u(w − L)
u′(w) . (3)

Using l’Hôpital’s Rule gives

θ(0, L) ≡ lim
p−→0

θ(p, L) =
C ′p(0, L)− L

L2 (4)
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Thus, for L given, the larger C ′p(0, L), the larger the normalized risk premium
when p goes to zero.

We know from the Arrow-Pratt approximation that the risk premium
of small severity risks per unit of variance is proportional to the index of
absolute risk aversion. Indeed, we have

lim
L−→0

θ(p, L) = A(w)
2 for all p ∈ (0, 1),

which of course also holds when p goes to 0, that is

lim
L−→0

θ(0, L) = A(w)
2 .

When L is large, it is intuitive that the size of the risk premium depends
on function A(x) not only in the neighbourhood of x = w, but over the
whole interval [w − L,L]. Proposition 1 confirms this intuition by providing
a lower bound for θ(0, L) which is a weighted average of A(x)/2 when x is
in [w − L,w]. Corollary 1 considers the case where L = w and the index of
relative risk aversion R(x) is larger or equal to one.1 In that case, the lower
bound of θ(0, L) is the (non-weighted) average of A(x) when x ∈ [0, w].

Proposition 1 For all L > 0, we have

θ(0, L) >
1
2

∫ w

w−L
h(x, L)A(x)dx,

h(x, L) = h0
2[x− (w − L)]

L2 × u′(x)
u′(w) ,

where h0 is less than 1 and such that∫ w

w−L
h(x, L)dx = 1.

Corollary 1 If L = w and R(x) ≡ xA(x) ≥ 1 for all x, then

θ(0, L) > 1
2w

∫ w

0
A(x)dx.

1Empirical studies usually lead to values of R(x) that are larger (and sometimes much
larger) than one, and thus the assumption made in the Corollary does not seem to be very
restrictive in practice.
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Proposition 1 suggests that θ(0, L) may be large if A(x) is large when
x goes to w − L. A simple example, illustrated in Figure 1, is as follows.
Assume L = w and

u(x) =
{

1− exp(−ax) if x ≤ x̂
b+ cx if x > x̂

where b = 1 − w exp(−ax̂)/(w − x̂) and c = exp(−ax̂)/(w − x̂), and x̂ is a
fixed parameter such that 0 < x̂ < w. Thus u(0) = 0, u(w) = 1 and A(x) = a
if x ≤ x̂ and A(x) = 0 if x > x̂.2 When a is increasing (with a given value of
x̂), the individual becomes more risk averse in the neighbourhood of the bad
outcome x = 0, with unchanged normalisation u(0) = 0, u(w) = 1. We then
have C ′p(0, L) = 1/c = (w− x̂) exp(ax̂) and thus C ′p(0, L) is increasing with a
and it goes to infinity when a goes to infinity. Since x̂ is arbitrarily small, we
learn from this example that C ′p(0, L) may be large if the individual is highly
risk averse in the neighbourhood of the loss state x = w−L, or equivalently
if her risk tolerance is very small around this state.

CRRA preferences are an instance of such a case with T (x) = γx, where γ
is the index of relative risk aversion. We then have T (x) −→ 0 and A(x) −→
∞ when x −→ 0. However, although CRRA preferences are quite useful
for calculation tractability and calibration issues (see Section 4), they are
not very satisfactory from a theoretical standpoint since the utility is not
defined when wealth is nil. This corresponds to discontinuous preferences in
which any lottery with zero probability for the zero wealth state is preferred
to any lottery with a positive probability for this state. If preferences are
of the HARA type, then risk tolerance is a linear function of wealth, and
we may write T (x) = a + bx, with a > 0 and 0 < b < 1. In such a
case, we have A′(x) < 0, A(0) = 1/a and R(x) > 1. In particular, the
individual’s absolute risk aversion index is decreasing but upper bounded. A
straightforward calculation then gives

1
2w

∫ w

0
A(x)dx = 1

2bw ln
(

1 + bw

a

)
,

and thus, Corollary 1 shows that for all M > 0, we have θ(0, L) > M if

a <
bw

exp(2bwM)− 1 .

The right-hand-side of the previous inequality is positive and decreasing in b
and M . Thus, θ(0, L) is arbitrarily large if a = T (0) is small enough and/or

2u(x) is not strictly concave since u′′(x) = 0 if x > x̂, but this is just for simplicity.
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Figure 1: x̂ = 30, w = 100

if b = T ′(x) is small enough. In words, the risk tolerance should be low in
the neighbourhood of the catastrophic state x = 0 for the normalized risk
premium θ(0, L) to be large3. Proposition 2 establishes another sufficient
condition under which θ(0, L) is (arbitrarily) large when the individual is
sufficiently risk averse (or, equivalently, when her risk tolerance is sufficiently
low) in the catastrophic loss state.

Proposition 2 Assume T (x) ≡ Tε(x) = ε + t(x), with ε > 0, t(w − L) =
t′(w − L) = t′′(w − L) = 0, t′(x) > 0 for x close to w − L. Then for all
M > 0, there exists ε > 0 such that θ(0, L) > M if ε is small enough.

In Proposition 2, it is assumed that the risk tolerance increases slowly (less
than degree-two polynomials) when wealth x increases in the neighbourhood
of w−L. In such a setting, the normalized risk premium may be arbitrarily
large if the risk tolerance in the loss state ε is small enough.

3We know that continuity of preferences among lotteries is one of the axioms that
sustain the representation of preferences by the expected utility criterion.
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2.2 Insurance demand for catastrophic risks
We now assume that the individual can purchase insurance for a small
probability-large severity risk (p, L). Insurance contracts specify the indem-
nity I in the case of an accident, i.e., when the individual suffers the loss L,
and the premium P to be paid to the insurer, with P = (1 + σ)pI, where
σ > 0 is the loading factor such that p(1+σ) < 1. The policyholder then faces
the lottery (w1, w2), with corresponding probabilities (1 − p) and p, where
w1 and w2 denote the wealth in the no-loss and loss states respectively, with
w1 = w − P and w2 = w − P − L + I. A straightforward calculation shows
that feasible lotteries are defined by

[1− p(1 + σ)]w1 + (1 + σ)pw2 = w − (1 + σ)pL, (5)

with in addition
w2 − w1 + L ≥ 0, (6)

for the sign condition I ≥ 0 to be satisfied. The optimal lottery maximizes
the individual’s expected utility

(1− p)u(w1) + pu(w2),

in the set of feasible lotteries. It is such that the marginal rate of substitution
−dw2/dw1|Eu=ct. = (1 − p)u′(w1)/pu′(w2) is equal to the slope (in absolute
value) of the feasible lotteries lines, that is

(1− p)(1 + σ)u′(w1) = [1− (1 + σ)p]u′(w2). (7)

Figure 2 shows the locus of optimal lotteries in the (w1, w2) plane when
p changes. Point A represents the situation with no insurance and point B
the represents the optimal lottery when p goes to zero.

Equations (5) and (7) define the optimal state-contingent wealth levels
w1(p, L), w2(p, L), when I > 0, that is when σ is not too large. Let us denote

w∗1(L) ≡ lim
p−→0

w1(p, L) = w,

w∗2(L) ≡ lim
p−→0

w2(p, L),

with
u′(w∗2(L)) = (1 + σ)u′(w). (8)

which implies w∗2(L) < w = w∗1(L). Thus, when p goes to 0, the optimal
insurance contract (P, I) goes to a limit (P ∗, I∗), with P ∗ = 0 and I∗ =
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Figure 2: w = 10000, L = 5000, u(x) = −x−3

3

w∗2(L) + L − w∗1(L) < L. When p is positive but close to 0, we still have
I < L and P = (1 + σ)pI ' (1 + σ)pI∗. Since w∗2(L) = w−L+ I∗, (7) gives

u′(w − L+ I∗) = (1 + σ)u′(w),

or
I∗ = u′−1((1 + σ)u′(w))− w + L,

and thus I∗ is decreasing with σ. Finally, we may characterize the effect of a
change in L and/or w on optimal insurance coverage. An increase dL > 0, for
w given, induces an equivalent increase dI∗ = dL. A simultaneous increase
dw = dL > 0 induces an increase dI∗ > 0 in coverage, while an increase
in wealth with unchanged loss dw > 0, dL = 0 entails a decrease in optimal
coverage dI∗ < 0 under DARA references, i.e., when A′ < 0. Of course, there
is nothing astonishing here. These are standard comparative statics results,
which are extended here to the asymptotic characterization of catastrophic
risk optimal insurance. They are summarized in Proposition 3.
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Proposition 3 When p goes to 0, the optimal insurance coverage I goes to
a limit I∗ and when p is close to 0, coverage I and premium P are close to
I∗ and (1 + σ)pI∗, respectively. I∗ is lower than L and it is decreasing with
σ. A simultaneous uniform increase in L and w induces an increase in I and
P . Under DARA, an increase in w, with L unchanged, induces a decrease
in I and P .

3 Optimal catastrophic risk coverage for a
population

With the case of nuclear accident risk in mind, we now consider a population
of individuals who face the risk of a catastrophic event (called "the accident")
caused by a firm. Such an accident may affect them differently, according
to their risk exposure and also to their good or bad luck. The population
has unit mass and it is composed of n groups or types indexed by i = 1, ..., n
and a proportion αi of the population belongs to group i, with α1 + α2 +
... + αn = 1. In the case of a nuclear accident caused by a given reactor,
the groups correspond to various locations that may be more or less distant
from the nuclear power plant. The accident occurs with probability π. In
the case of an accident, a proportion qi ∈ [0, 1] of type i individuals suffer
damages, with financial damages x̃i for each individual in this subgroup of
victims. x̃i is a random variable, whose realization is denoted xi, and which
is distributed over the interval [0, xi] with c.d.f. F (xi) and density f(xi) =
F ′(xi). The random variables x̃i are independently distributed among type
i individuals. Thus we assume that in group i, the victims are randomly
drawn with probability qi and thus, because of the Law of Large Numbers,
the proportion of affected individuals is equal to qi, while their damages are
independently distributed. The total cost of an accident is equal to

n∑
i=1

αiqi

[∫ xi

0
xif(xi)dxi

]
=

n∑
i=1

αiqiEx̃i.

Under our assumptions, this total cost is given, but the distribution of loss
between members of each group is random.

Each type i individual is covered from the risk of an accident by an
insurance contract that specifies an indemnity Ii(xi) ≥ 0 for all xi in [0, xi].
This insurance coverage is taken out by the firm at price P . Once again with
the nuclear liability law in mind, we assume that the firm has to indemnify
the victims according to the legal rule Ii(xi) and also - in order to prevent
any bankruptcy risk - that it has to purchase insurance to cover its liability.
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Thus Ii(xi) is at the same time the payment by the firm to type i individuals
and the transfer from the insurer to the firm. The firm pays a premium P per
individual, and this premium is passed on to the prices of the firm’s product
(say, on to the consumers’ electricity bill). We assume that all consumers
purchase the same quantity of the firm’s products, and thus it is as if the
insurance premium were paid by the individuals themselves.

For the time being, P is defined as the firm’s expected liability cost,
loaded at rate σ > 0. A more realistic formulation, with explicit capital cost,
will be considered in a second stage. Thus, we have

P = (1 + σ)π
n∑
i=1

αiqi

[∫ xi

0
Ii(xi)f(xi)dxi

]
. (9)

Let w1 and w2i(xi) the wealth of a type i individual if she is not affected
by an accident (which occurs with probability 1− πqi), and if she is affected
with loss xi (which occurs with probability πqi and conditional loss density
f(xi)) respectively. We have

w1 = w − P,
w2(xi) = w − P − xi + Ii(xi).

All individuals have the same initial wealth w and the same risk preferences
represented by utility function u, with u′ > 0, u′′ < 0. The certainty equiva-
lent loss incurred by type i individuals is denoted by Ci. It is given by

u(w − Ci) = (1− πqi)u(w1)

+πqi
∫ xi

0
u(w2(xi))f(xi)dxi. (10)

The set of feasible lotteries {w1, w21(x1), ..., w2n(xn)} is defined by

w1

[
1− (1 + σ)π

n∑
i=1

αiqi

]
+ (1 + σ)π

n∑
i=1

αiqi

[∫ xi

0
w2(xi)f(xi)dxi

]

= w − (1 + σ)π
n∑
i=1

αiqi

[∫ xi

0
xif(xi)dxi

]
, (11)

and
w2i(xi)− w1 + xi ≥ 0 for all i = 1, ..., n. (12)

(11) and (12) can be derived as (5) and (6) in the simple one loss-one indi-
vidual model. In particular, (12) corresponds to the positivity constraints
Ii(xi) ≥ 0.
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We consider a utilitarian regulator that designs the risk coverage mecha-
nism in order to minimize the social cost of an accident, which is the weighted
sum of certainty equivalent individuals’ losses. This may be written as min-
imizing

n∑
i=1

αiCi,

with respect to {w1, w21(x1), ..., w2n(xn);C1, C2, ..., Cn} subject to conditions
(10),(11) and (12). Proposition 4 characterizes the optimal solution of this
problem when π goes to 0.

Proposition 4 When π goes to 0, all the optimal indemnity schedules Ii(xi)
converge towards a unique straight deductible schedule I∗(xi) = max{xi −
d∗, 0}, where the deductible d∗ is given by u′(w−d∗) = (1+σ)u′(w) with d∗ >
0. For π close to 0, we have P ≡ P (π) ' (1+σ)π

n∑
i=1

αiqi
[∫ xi

0 (xi − d∗)fi(xi)dxi
]
.

Proposition 4 shows that the optimal indemnity schedule for π small
involves full coverage of the victims above a straight deductible d∗ (the same
for all individuals whatever their type).4 This amounts to saying that the
victims should be ranked in order of priority on the basis of their losses: the
victims with loss xi should receive an indemnity only if the victims with loss
x′i larger than xi receive at least x′i − xi. This simple characterization of
optimal indemnification will be used in the simulation conducted in Section
4. As in the simple model of Section 2.1, we may derive comparative statics
properties about the asymptotic deductible d∗. In particular, it is increasing
in σ and, under DARA preferences, it is increasing in wealth.

The previous model goes through a very sketchy representation of the
insurer’s costs: as usual for insurance pricing, we assumed that these costs
where equal to the expected value of indemnities, marked up through the
loading factor σ in order to take claims handling costs and various operating
costs into account. In particular, the cost of capital allocation was not taken
into account. In the case of low probability-high severity risks, capital allo-
cation plays a major role and we should make it explicit in the definition of
insurance costs.

Assume that the insurer allocates an amount of capital per individual K
in order to pay indemnities, should an accident occur. This is a contingent

4The fact that the deductible does not depend on type i is true only asymptotically
when π −→ 0. Otherwise, the optimal indemnity schedule involves type dependent de-
ductibles di, with Ii(xi) = max{xi− di, 0}. This is because lower deductibles would allow
the regulator to transfer wealth from more risky types to less risky types (say from the
groups with qi high to the groups with qi low if the conditional distribution of losses Fi(xi)
is the same for all groups). This compensatory effect vanishes when π goes to 0.
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capital, i.e., an amount of resource brought by investors, held in a liquid form
and that will be attributed to the insurer with probability π. A simple case
(at least from a conceptual standpoint) is when the insurer issues a catbond
with par value K. The catbond will pay some return (a spread above the
risk-free rate of return) and it will be reimbursed to investors only if no
accident occurs. Otherwise, the catbond will default and its proceeds will be
used by the insurer to indemnify the victims.

We know from the Law of large Numbers that the average indemnity paid
to type i victims in the case of an accident is∫ xi

0
Ii(xi)f(xi)dxi,

and thus for the total indemnity payment to be financed through contingent
capital, we need to have

K =
n∑
i=1

αiqi

∫ xi

0
Ii(xi)f(xi)dxi,

with capital cost c(π,K), with c′K > 0, c′K2 ≥ 0, c′π > 0.5 Equivalently, we
have

K =
n∑
i=1

αiqi

∫ xi

0
[w2i(xi)− w1 + xi]f(xi)dxi. (13)

Adding the cost of capital in the insurer’s cost gives

P = (1 + σ)π
n∑
i=1

αiqi

[∫ xi

0
Ii(xi)f(xi)dxi

]
+ c(π,K).

Under these assumptions, the previous problem is modified by inserting
c(π,K) as a supplementary component of insurance cost in the left-hand-side
of equation (11) and by adding (13) as a new constraint, with K as a new
variable.

Proposition 5 Under costly capital resources, when π goes to 0, all the
optimal indemnity schedules Ii(xi) converge towards I∗(xi) = max{xi−d∗, 0}.
The deductible d∗ and the contingent capital K are jointly defined by

u′(w − d∗) = [(1 + σ) + c′K(0, K)]u′(w),

and
K =

n∑
i=1

αiqi

[∫ xi

d∗
(xi − d∗)f(xi)dxi

]
.

5If contingent capital were levied through a catbond, then c(K,π)/K would the spread,
i.e., the compensation per $ required by investors for running the risk of losing their capital
with probability π. See Section 4 for further developments.
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As previously, d∗ and K depends on σ and w, but now they are also
affected by the marginal cost of capital. If the investors were risk neu-
tral and perfectly aware of the probability of an accident, we would have
c(π,K) = πK, i.e., the cost of contingent capital would just be equal to the
risk premium that compensates the expected loss due to the default. We
would have c′K(π,K) = π and thus c′K(0, K) = 0. In such a case, the cost
of contingent capital would not affect the optimal indemnity schedule. How-
ever, as we will see in more details in Section 4 by looking at the example of
the catbond market for low probability triggers, because of the aversion of
investors towards risk or towards ambiguity, or for other reasons, it is much
more realistic to write the cost of capital as

c(π,K) = µ(π)πK,

with µ(π) > 1. In particular, if µ(π) −→ ∞ when π −→ 0, we may have
c′K(0, K) > 0. In that case, and that will be illustrated in Section 4, the cost
of capital affects the optimal indemnity schedule.

4 Nuclear catastrophe coverage
In practice, the nuclear liability is regulated by the Paris (1960) and Brussels
(1963) conventions in Europe and by the Price-Anderson act (1957) in the
US. The liability is entirely channeled to the operator of the power plants
but limited to a given amount. The Price-Anderson act forces the nuclear
industry to secure a coverage of approximately 10 billion US dollars, while
the Paris and Brussels conventions have recently been revised to bring the
coverage to a minimum of 700 million euros.

Our objective in this Section is to characterize the optimal level of cover-
age K, that the Government should provide for large scale nuclear accidents.
The probability of a nuclear disaster is difficult to assess because we only
have few data about it. This scarcity is of course a blessing for societies,
but it prevents us from using the usual data analysis techniques. Neither the
probabilities nor the extent of economic damages can be inferred with a rea-
sonable degree of accuracy from past events. Instead, we have to rely on the
analysis developed by nuclear safety specialists. In particular, the Probabilis-
tic Safety Assessment (PSA) studies aim at understanding the odds and the
stakes of a major accident along several dimensions: sanitary, environmental,
economic, etc. Designed to improve prevention and the ex-post management
of a crisis situation, they deliver as a by-product, useful information about
the probabilities of different scenarios, analyzed in details in Dreicer et al.
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(1995) and Markandya (1995). Additional studies from international agen-
cies, such as the French Institute for Radioprotection and Nuclear Safety
(IRSN,2013) and the Nuclear Energy Agency (NEA,2000) also develop the
methodology for estimating the costs associated with the various accident
scenarios predicted by the PSA.

As in Eeckhoudt, Schieber and Schneider (2000), we make use of the
aggregate information on costs and probabilities drawn from the PSA studies
to construct individual lotteries. These lotteries are subsequently used to
estimate the social cost of a nuclear accident and the optimal coverage.

4.1 The nuclear risk model
We consider the risk associated with a particular nuclear reactor. A large
scale accident occurs with a probability π and the overall French population
(60 million individuals) is divided into two groups, indexed by i = 1, 2. The
most exposed individuals (i = 1) live within a radius smaller than 100km
away from the power plant. These people, who form a group of 2 million,
support a higher risk of sanitary consequences and also face the risk of loosing
their properties in the midst of a large-scale accident. Group i = 2 therefore
comprises 58 million people.

In the case of an accident, a type i agent can face S different situations,
each state s = 1, ..., S being characterized by a probability fis, with fi1+fi2+
... + fiS = 1. Losses can be either economic, environmental or sanitary. We
monetize all of them by assuming that individuals dispose of an initial global
wealth w, that incorporates health and wealth components. This wealth is
multiplicatively impacted by a financial factor xfs as well as a health factor
xhs

6.
Although the liability of a nuclear accident is supported by the operator

of the power plant, we assume that the latter passes on the costs of coverage
to the consumers of electricity. The total level of coverage K is the control
variable for the social planner and a parameter for the consumers. It entitles
the agent to receive an indemnity I(s,K) in state s. The indemnity schedule
is determined so as to match the optimal insurance contract, which consists
in a straight deductible as shown in Section 3. In a given state, claims
are ranked in terms of severity and repaid layer by layer, so that the most
impacted individuals are paid first and that all indemnified individuals end
up with the same final wealth.

6This is a crude but simple way to express the complementarity between health and
wealth: the welfare gain of an increase in wealth is negatively affected if health worsens,
and vice versa. See Finkelstein, Luttmer and Notowidigdo (2013) on this complementarity.
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The insurance premium P (K) per individual is written as:

P (K) = (1 + λ)π
(

1
30

n1∑
s=1

f1sI1(s,K) + 29
30

n2∑
s=1

f2sI2(s,K)
)

+ µπK

where λ is a standard loading factor associated with claim handling cost and
µπK is the cost of contingent capital levied by the insurer to sustain the
indemnity payment should an accident occur. We would have µ = 1 if the
investors who provide contingent capital were risk neutral and if there were
no ambiguity about the probability of an accident. The example of catbond
markets shows that the providers of contingent capital for catastrophic risk
require spreads that are much larger than what should be expected from risk
neutral investors. Beyond risk aversion, contingent capital providers may
not be fully confident about the accident probability. Ambiguity aversion
has been indeed put forward as an explanation of high equilibrium returns
required by investors in catbond markets. Either because of risk aversion or
ambiguity aversion, we expect that µ is much larger than one7.

Final wealth is then defined as:

wfs (K) = wθ(1− xfs )(1− xhs ) + w(1− θ) + I(s,K)− P (K)

1− θ is the fraction of wealth that cannot be altered by the accident 8.
The optimal coverage minimizes the weighted sum of the certainty equiv-

alent of the losses of the two groups, C1(K) and C2(K) respectively with:

u(w − Ci(K)) = (1− π)u(w − P (K)) + π
n∑
s=1

fisu(wfis(K)) (14)

For the sake of numerical tractability, we specify a Constant Relative Risk
Aversion (CRRA) utility function:

u(w) = w1−γ

1− γ

where γ is the index of relative risk aversion and γ = 0 characterizes a
risk neutral individual. The literature has not settled a clear consensus on

7Bantwal and Kunreuther (2000) suggest that ambiguity aversion, loss aversion, uncer-
tainty avoidance as well as transaction costs due to legal and technical complexities may
account for the reluctance of investment managers to invest in the catbond market, and
thus for high expected returns in this market.

8The worst case scenario is a fatal outcome. Even when this worst state materializes,
we assume that the agent is able to retain a small fraction of her global wealth. We think
of this as a general form of bequest. Perhaps legacy would be the appropriate term, since
the global wealth w is not purely financial.
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the value of this parameter. However, micro studies such as Levy (1994)
and Szpiro (1986) have isolated a plausible range between 1 and 5, while
macroeconomic studies such as Mehra and Prescott (1985) tend to find much
higher values. We will therefore let this parameter vary within this plausible
range and we will include γ = 0 as a consistency check.

4.2 Recovering the individual lotteries
The analysis we conduct is based on the PSA study realized for the power
plant of Tricastin (France) by Dreicer et al. (1995). We use figures similar to
Eeckhoudt et al. (2000) to calibrate our baseline scenario. Along the health
dimension, a person can potentially be in three different states: dead, severe
health effect, no health effect. Along the financial dimension, a person can
be in only two states: either she is relocated and suffers the worst possible fi-
nancial damage or she is not relocated and she shares the indirect costs with
the entire society. The most serious consequences of the baseline scenario
(scenario 1) are summarized in table 1. For the alternative scenarios, the
losses remain the same but the probabilities being impacted by a severe ad-
verse outcome increases. To these consequences, one must add a more diffuse

Group Population Relocated Death Sanitary effects
h = 1 2 million 10,000 500 1000
h = 2 58 million 0 3000 6000

Table 1: scenario 1

economic cost that is more difficult to attribute to a particular individual.
Such costs are qualified as indirect costs in Schneider (1998) and subsequent
works, they are difficult to quantify and to attribute to a given individual.
Examples of such costs are : loss of attractiveness of an impacted territory,
loss in terms of image for the industrial sector, etc9. The assumption that is
made in the PSA study is that these costs are more or less already shared
by all individuals in the economy.

In the case of an accident, each person can potentially be in 6 distinct
states however, individuals from group 2 are never relocated, so they can
only be in three different states. The lotteries associated with the base-line
scenario are given in tables 2 and 3

9It may also be argued that there exist some gains, as the reconstruction activities
may produce spillover effects on the entire economy. It is likely that these gains do not
compensate the indirect losses but no study has been realized for the nuclear accident
case. See Gignoux and Menéndez (2014) for the case of earthquake in India
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State xfs xhs f1s
s = 1 1 1 1.2500e-06
s = 2 z 1 2.4875e-04
s = 3 1 0.2 2.5000e-06
s = 4 z 0.2 4.9750e-04
s = 5 1 0 4.9963e-03
s = 6 z 0 9.9425e-02

Table 2: lotteries for type h = 1

State xfs xhs f2s
s = 1 z 1 5.3571e-05
s = 2 z 0.2 1.0714e-04
s = 3 z 0 9.9984e-02

Table 3: lotteries for type h = 2

We consider alternative scenarios (2,3,4,5) by multiplying all the figures
in table 1 by 2,3,4 and 5, keeping the total cost fixed at 200 billion euros.
This is obtained by reducing the cost of minor financial losses (denoted by z
in Tables 2 and 3) in such a way that the total losses remain unchanged10.

In order to calibrate the parameter θ, we follow Eeckhoudt et al. (2000)
and set θ = 0.9775.

4.3 Optimal coverage under a constant cost of capital
Assessing the premium P (K) requires a calibration of the parameter µ, which
reflects the cost of the capital needed to secure the available coverage K.
One way to sustain this coverage is to issue a cat-bond, that defaults with
a probability π. The principal is therefore lost by the investor when the
accident occurs and is used to pay the claims.

To the best of our knowledge, no cat-bond with an attachment probability
as low as 10−5 has ever been issued, so it is difficult to know what price would
be required by the markets in order to provide capital contingent on the
occurrence of a large-scale nuclear accident. We therefore need to extrapolate
such a price from our current understanding of contingent capital pricing.

Suppose that a risk neutral investor is interested in buying a cat-bond. He
agrees to provide a capital K. With a probability π, also called attachment
probability, a contractually defined event occurs and triggers a loss of capital

10For instance, type 1 individuals are in state s=3 when they suffer severe financial
losses and minor health problems.
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for the investor. Conditionally on the occurrence of the event, the fraction
of the capital that is lost is distributed according to a probability density
function g(t) = G′(t). The expected percentage loss of the principal in case
of accident is therefore

∫ 1
0 tg(t)dt ∈ [0, 1]. When the trigger is not activated,

the cat-bond pays a return R and the capital is returned to the investor.
Provided that investors are risk neutral or if the cat-bond risk is fully

diversifiable, absence of arbitrage opportunity should guarantee that:

πK[1−
∫ 1

0
tg(t)dt] + (1− π)K(1 +R) = (1 + r)K

where r is the market risk-free rate of return. For a small enough attachment
probability π, the spread s := R−r, required by the investor for the cat-bond,
is well approximated by:

s = π
∫ 1

0
tg(t)dt (15)

The spread is therefore determined by the attachment probability and the
conditional expected loss. Notice that a cat bond specifying that the capital
is entirely lost whenever the trigger is activated has a conditional expected
loss

∫ 1
0 xg(x)dx = 1 and therefore yields a spread:

s = π (16)

Which would imply a constant parameter µ = 1. In this case, reinsurance
through contingent capital becomes really interesting for the insured. Instead
of paying a liquidity premium of the order of magnitude of a few percent-
ages, she pays a return that has the same magnitude than the attachment
probability. Let us assume that µ is a positive constant so that the spread s
is a linear function of the attachment probability.

Using equation (14), we are now able to simulate the risk premiums for
individuals of both types i = 1 and i = 2. The social cost of nuclear risk is
calculated as:

SC(K) = 1
30C1(K) + 29

30C2(K)

The optimal coverage K∗ is simply the coverage that minimizes C(K).
Each of the three figures 3a, 3b and 3c display function SC(K) for the

five different scenarios and for two different hypothesis on the cost of con-
tingent capital. The first set of curves, that flatten on the south-east part of
the figures, represent the social cost under the assumption that there exist
investors willing to provide contingent capital, for a spread equal to the at-
tachment probability so µπ = 1. The highest of these five curves corresponds
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to the most serious accident of scenario 5 and the lowest corresponds to the
base-line scenario 1. The set of curves that increases on the right part of
the graphs represent the social costs, under the assumption that the required
spread is 20. We see clearly that an increase in K involves a trade-off be-
tween a more efficient risk coverage and higher insurance costs, particularly
capital costs. We can also remark that the optimal coverage is much lower
when the required spread is higher. This result is qualitatively obvious but
the amplitude of the change suggests that µ is indeed a key parameter for
the choice of a coverage level.

(a) µ = 1, 20 π = 10−4 (b) µ = 1, 20 π = 10−5 (c) µ = 1, 20 π = 10−6

Figure 3

The most interesting result is the following:

Result 1 Ceteris paribus, a change in the attachment probability does not
impact the choice of coverage, provided that the probability is small enough
and that there exist an uncertainty-neutral investor willing to provide contin-
gent capital.

This result echoes proposition 4 from Section 3: when π goes to zero, the
optimal indemnity schedule converges to a limit. Thus, it is not astonishing
that the optimal coverage does not substantially change when π goes from
10−4 to 10−6. It is of practical importance because the small amount of data
available makes it difficult for experts to settle the debate about what is the
right probability of a large scale accident. Our result underlies the fact that
this should not matter for the choice of an optimal coverage, at least as long
as the probability is small and that there exist investors willing to provide
contingent capital for a spread that is linear in the attachment probability.

The simulations reported on the figures correspond to a level of relative
risk aversion of 2. The optimal values of coverage for the entire economy
(K*60 million) for γ = 1, ..., 5 are given in tables 5 and 6. For a risk neutral
individual γ = 0, the coverage choice is zero, whatever scenario is considered.
This is what we expect since there is a positive factor loading.
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4.4 Optimal coverage under a variable cost of capital
In order to asses empirically the link between attachment probability, ex-
pected loss and the spread of a cat-bond, we use data from the specialized
information website Artemis11, that lists the main catastrophe and Insurance
Linked Securities (ILS) transactions realized since the inception of the ILS
market in the mid-nineties. The database contains more than two-hundreds
issues, some of which are decomposed in several tranches characterized by
different levels of risk and therefore by different spreads. We only have com-
plete information for 97 of the most recent tranches, that span a short interval
of two years (2013-2014). This period of time is sufficiently short to avoid
complications due to the variations of prices generated by the underwriting
cycle. For these issues, we have information about both the attachment prob-
ability and the expected loss π

∫ 1
0 tf(t)dt = πE(l), expressed as a fraction of

the principal K.
We estimate a model12 of the form:

log(si) = β0 + β1 log(πE(l)i) + εi

A simple OLS procedure delivers the results in Table 4. Both parameters

Estimates
constant −1.1970∗∗∗

(−6.3434)
log(πE(l)i) 0.3912∗∗∗

(9.2760)
R2 0.4727

µ̂(10−4) 82.2702
µ̂(10−5) 334.2048
µ̂(10−6) 1357.6

Table 4: OLS estimates

are significant1314 at the usual levels so the estimation can be useful to ex-
trapolate the expected spread for a cat-bond with a very low attachment

11http://www.artemis.bm/
12Lane and Mahul (2008) use a similar data set to estimate a linear relation. The issue

with their model is that the positive intercept they find implies that a cat-bond with a
null attachment probability delivers a positive spread, which prevents their model from
being used to derive expected spreads for low attachment probabilities.

13The t-statistics are reported in parenthesis below the estimates.
14∗∗∗ : significant at 1% level.
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probability. If we consider a simple cat-bond, for which the capital is en-
tirely transferred to the sponsor if the trigger is activated, then the expected
loss conditional occurrence of the accident is one: E(l) = 1. The expected
spread ŝ is therefore:

ŝ(π) = exp(β0)πβ1 (17)

The fit of this predicted spread is shown in Figure 4.

Figure 4

We can now compute the expected parameter ˆµ(π) of our model as:

µ̂(π) = ŝ(π)
π

= exp(β0)πβ1−1 (18)

which is a decreasing function of π15.
15We saw earlier that the optimal coverage for a nuclear accident relies importantly on

the value of this cost of capital. Indeed, if investors were neutral toward risk and ambiguity,
we would expect the cost of coverage µ to be independent from the attachment probability
π (equation 15). So when the probability π becomes small, the price of coverage becomes
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We now use (18), to derive the the social cost. From left to right, figures
5a, 5b, 5c represent the social costs for π = 10−4, 10−5, 10−6. We see that
the optimal coverage K∗ now depends on the attachment probability that
is considered. Everything else held constant, an increase in the attachment
probability increases the optimal coverage because µ, the spread per unit of
probability decreases with π.

(a) π = 10−4 (b) π = 10−5 (c) π = 10−6

Figure 5

Result 2 The optimal choice of coverage K∗ is a decreasing function of π
if the investor requires a spread per unit of attachment probability that is
decreasing in the probability.

So π does matter after all. But the reason why it does is that the price of
contingent capital per unit of probability varies with the attachment proba-
bility, probably because of some kind of ambiguity aversion from the provider
of capital. The fact that optimal coverage decreases with the probability of
occurrence of the accident is due to the pricing behavior of the provider of
capital, not to the behavior of the individual with respect to risk.

Additionally, it is worthy of interest that ambiguity affects the investor
and the insured asymmetrically. The low probability of an accident guar-
antees that for a given cost µ, ambiguity does not affect coverage choices.
Insured are affected by ambiguity only to the extent that it affects the price
of their policies.

Finally, let us discuss the numerical results obtained for the optimal cov-
erage in the more realistic case where µ is a function of K. It is clear that
these results depend a lot on the assumptions that are made about the co-
efficient of relative risk aversion and about the scenario that is considered.
very small as well, making it worthy for the society to choose a fairly high level of coverage.
It is likely however, that investors are not neutral toward ambiguity, and require a higher
spread for events that have very low attachment probabilities because these events are the
ones for which the attachment probability is the most uncertain. With this respect, it is
not surprising that µ̂ is decreasing in π.
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We have assumed that the most serious accidents are characterized by more
severe losses incurred by the victims (deaths, diseases and relocation), keep-
ing constant the aggregate cost of the accident. To know what what scenario
reflects best the risk of a nuclear accident is a technical question but the
economic insight is the following:

Result 3 Ceteris paribus, a collective risk should have a higher coverage
when its consequences are more concentrated on a subset of individuals.

This result is particularly salient because we have chosen a CRRA function
that reflects the individual’s supposed extreme aversion to losses that bring
her global wealth close to zero. It is an interesting empirical question whether
this extreme aversion indeed reflects the true preferences of people, but sim-
ilar results would hold for any concave function since for a given aggregate
cost, a risk that only affects lightly the majority of people is associated with
higher individual losses for a small but increasing number of individuals. Of
course, this reasoning is only valid as long as the most exposed individuals
receive a weakly higher weight in the social welfare function.

After these important disclaimers about the sensitivity of our analysis to
the parameters of the underlying model, we can safely state the following:

Result 4 The central scenarios (π = 10−5) are characterized by optimal
levels of coverages higher than the 700 million euros provided for by the 2004
revision of the Paris convention.

For example, Table 8 shows thatK∗ should be equal to 1.12 billion euros if we
consider scenario 1, an index of relative risk aversion γ = 2 and a probability
of occurrence π = 10−5. Higher values of γ and/or a more pessimistic loss
scenario would lead to much higher values of K∗.

5 Conclusion
This paper develops a theory of optimal insurance for high severity-low prob-
ability events. Starting with a characterization of what is a catastrophic risk
for an individual, we have then analyzed the optimal insurance scheme for
a risk of catastrophic accident, generated by a productive activity, that can
potentially affect a full population. This has lead us to apply this approach
to the case of nuclear accident risk. We have shown that two parameters are
key in the determination of the optimal coverage: the degree of risk aversion
and the cost of the contingent capital used to insure the catastrophic risk.

Our results suggest that the nuclear liability law could be more ambitious
than what it currently is in France. Of course, insuring a large catastrophe
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such as a nuclear accident without resorting to innovative tools that provide
additional international diversification possibilities turns out to be too costly.
This is mainly due to the high spatial correlation of individual risks, that
forces the insurance system to immobilize large and costly amounts of reserves
to provide for the thankfully unlikely catastrophe, where all agents are hit at
the same time. Nevertheless, innovative and cheaper solutions can be worked
out with the actors of the Insurance Linked Securities and Cat-bond markets.
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6 Appendix

6.1 Proofs

Proof of Proposition 1
For notational simplicity, and without loss of generality, the proof is writ-

ten in the case L = w. We have

C ′p(w, 0) = u(w)− u(0)
u′(w) =

∫ w

0

u′(x)
u′(w)dx.

Since
u′(x) = u′(w)−

∫ w

x
u′′(t)dt

for all x ∈ [0, w], we may write

C ′p(w, 0) = w −
∫ w

0

u′(x)
u′(w)dx

= w −
∫ w

0

[∫ w

x

u′′(t)
u′(w)dt

]
dx

= w +
∫ w

0

[∫ w

x
A(t) u

′(t)
u′(w)dt

]
dx,

and thus

θ(0, L) = 1
w2

∫ w

0

[∫ w

x
A(t) u

′(t)
u′(w)dt

]
dx.

Integrating by parts gives

θ(0, L) = 1
2

∫ w

0
k(x)A(x) u

′(x)
u′(w)dx

where k(x) = 2x/W 2, with ∫ w

0
k(x)dx = 1.

Thus there exists h0 less than 1 such that

h0

∫ w

0
k(x) u

′(x)
u′(w)dx = 1,
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and we have

θ(0, L) = 1
2h0

∫ w

0
h(x)A(x)dx

>
1
2

∫ w

0
h(x)A(x)dx.

where h(x) ≡ h0k(x) u
′(x)

u′(w) , with∫ w

0
h(x)dx = 1.

Proof of Corollary 1
When L = w, we have

θ(0, L) > 1
w

∫ w

0

xu′(x)
wu′(w)A(x)dx,

from Proposition 1. Furthermore, we have

d[xu′(x)]
dx

= xu′′(x) + u′(x)

= −u′(x)[R(x)− 1],

and thus
d[xu′(x)]

dx
≤ 0 if R(x) ≥ 1.

We deduce
θ(0, L) > 1

w

∫ w

0
A(x)dx if R(x) ≥ 1.

Proof of Proposition 2
For the sake of notational simplicity, the proof is written in the case

L = w. Assume T (x) ≡ Tε(x) = ε + t(x), with ε > 0, t(0) = t′(0) = t′′(0) =
0, t′(x) > 0 for x > 0. Let M > 0. Then, for ε small enough, there exists
x0(M, ε) and x1(M, ε) such that

0 < x0(M, ε) < x1(M, ε),
Tε(x0(M, ε)) = x2

0(M, ε)/w2M ,

Tε(x1(M, ε)) ≤ x2
1(M, ε)/w2M

Tε(x) < x2/w2M if x0(M) < x < x1(M),
x0(M, ε) −→ 0 when ε −→ 0,
x1(M, ε) −→ x∗1(M) > 0 when ε −→ 0.
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Thus, we have
Tε(x) ≤ x1(M, ε)x

w2M
,

or equivalently
A(x) > w2M

x1(M, ε)x,

if x0(M, ε) < x < x1(M, ε). Hence, we may write

θ(0, L) >
1
2

∫ w

0
k(x)A(x)dx

>
1
2

∫ x1(M,ε)

x0(M,ε)

(
2x
w2 ×

w2M

x1(M, ε)x

)
dx

= M × x1(M, ε)− x0(M, ε)
x1(M, ε) .

Since x0(M, ε) −→ 0 and x1(M, ε) −→ x∗1(M) when ε −→ 0, the right-hand-
side of the previous inequality goes to M when ε −→ 0, and we deduce that
θ(0, L) is larger than M for ε small enough.

Proof of Proposition 4
Let γi, ξ and ϕi(xi) be Kuhn-Tucker multipliers associated with (10),(11)

and (12), respectively. First-order optimality conditions are written as

αi − γiu′(w − Ci) = 0 for all i, (19)
γiπqiu

′(w2(xi))fi(xi)− ξ(1 + σ)παiqifi(xi) + ϕi(xi) = 0 for all i, (20)
n∑
i=1

γi(1− πqi)u′(w1)− ξ
[
1− (1 + σ)π

n∑
i=1

αiqi

]

−
n∑
i=1

∫ xi

0
ϕi(xi)dxi = 0 (21)

ϕi(xi) ≥ 0 and ϕi(xi) = 0 if w2(xi)− w1 + xi > 0 for all i. (22)

Let xi such that w2(xi) − w1 + xi > 0. Thus, we have ϕi(xi) = 0 from
(22) and then (20) gives

γiu
′(w2(xi)) = ξ(1 + σ)αi. (23)

(19) and (23) yield

u′(w2(xi)) = ξ(1 + σ)u′(w − Ci). (24)
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Hence, if there exist x0
i , x

1
i ∈ [0, xi] such that w2(x0

i ) − w1 + x0
i > 0 and

w2(x1
i )− w1 + x1

i > 0, then we have

u′(w2(x0
i )) = u′(w2(x1

i )),

and thus, using u′′ < 0 we deduce

w2(x0
i ) = w2(x1

i ).

Consequently, w2(xi) is constant in the set of xi such that w2(xi)−w1+xi > 0,
and we may write

w2(xi) = w1 − di,

with di < xi for all xi in this set, with

u′(w1 − di) = ξ(1 + σ)u′(w − Ci). (25)

Now, let xi such that w2(xi)− w1 + xi = 0. Using (19),(20) and (23) allows
us to write

u′(w2(xi)) = u′(w1 − xi) ≤ ξ(1 + σ)u′(w − Ci),

and using (24) and u′′ < 0 we deduce xi ≤ di.
Thus, we have established that there exists di that satisfies (25) and such

that

w2(xi) = w1 − di if xi > di, (26)
w2(xi) = w1 − xi if xi ≤ di. (27)

When π −→ 0, we have w1 −→ w and Ci −→ 0 from (11) and (10),
respectively. (25) then gives di −→ d∗ for all i when π −→ 0, with

u′(w − d∗) = ξ(1 + σ)u′(w). (28)

(19) and (21) then imply

lim
π−→0

{
1− ξ −

n∑
i=1

∫ xi

0
ϕi(xi)dxi

}
= 0. (29)

If di ≤ 0 we have w2(xi) − w1 + xi > 0 and thus ϕi(xi) = 0 for all xi > 0,
and thus ∫ xi

0
ϕi(xi)dxi = 0.
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If di > 0, we have ϕi(xi) = 0 for xi > di, and thus using (19),(20) and (27)
gives ∫ xi

0
ϕi(xi)dxi =

∫ di

0
ϕi(xi)dxi

= −πqiαi
∫ di

0

[
u′(w1 − xi)
u′(w − Ci)

− ξ(1 + σ)
]
fi(xi)dxi. (30)

Observe that ξπ does no go to infinity when π −→ 0. Indeed, in such a case
we would have ξ −→∞ when π −→ 0, which would contradict (29) because
ϕi(xi) ≥ 0. Since Ci −→ 0 when π −→ 0, (30) allows us to write

lim
π−→0

∫ xi

0
ϕi(xi)dxi = lim

π−→0
− πqiαi

∫ di

0

[
u′(w1 − xi)
u′(w) − ξ(1 + σ)

]
fi(xi)dxi

= 0.

(29) then gives ξ −→ 1 when π −→ 0 and (30) yields

u′(w − d∗) = (1 + σ)u′(w)
> u′(w),

which implies d∗ > 0. Since Ii(xi) = w2(xi) + xi − w1, we deduce that
Ii(xi) −→ I∗(xi) = max{xi − d∗, 0} when π −→ 0.

Proof of Proposition 5
Let η ≥ 0 be a Kuhn-Tucker multiplier associated with constraint (13).

The notations are unchanged for other multipliers. Now, (20) should be
replaced by

γiπqiu
′(w2(xi))fi(xi)− [ξ(1 + σ) + η]παiqifi(xi) + ϕi(xi) = 0,

for all i = 1, ..., n, and we also have

η − ξc′K(π,K) = 0. (31)

A straightforward adaptation of the proof of Proposition 4 shows that the
optimal indemnity schedule still converges to a deductible contract I∗(xi) =
max{xi − d∗, 0} when π goes to 0, but now d∗ is given by

u′(w − d∗) = [(1 + σ) + c′K(0, K)]u′(w),

and (20) gives

K =
n∑
i=1

αiqi

∫ xi

d∗
(xi − d∗)f(xi)dxi.
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6.2 Figures
6.2.1 µ as a constant

Figure 6: µ = 1, 20 π = 10−4
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Figure 7: µ = 1, 20 π = 10−5

Figure 8: µ = 1, 20 π = 10−6
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6.2.2 µ as a function of π

Figure 9: π = 10−4

Figure 10: π = 10−5
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Figure 11: π = 10−6
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6.3 Tables
The following tables summarize the numerical results of section 4. Each
table presents the optimal coverage for a given set of hypothesis on the costs
λ, µ of the insurance scheme, and on the probability of occurrence π of the
accident. Within each table, we let the degree of risk aversion vary through
the columns. The scenarios that are considered vary across lines. All results
are expressed in euros.

6.3.1 µ as a constant

γ = 0 γ = 1 γ = 2 γ = 3 γ = 4 γ = 5
Scenario 1 0.000e+00 2.685e+10 3.210e+10 3.420e+10 3.525e+10 3.600e+10
Scenario 2 0.000e+00 5.385e+10 6.285e+10 6.630e+10 6.825e+10 6.930e+10
Scenario 3 0.000e+00 8.070e+10 9.360e+10 9.855e+10 1.011e+11 1.028e+11
Scenario 4 0.000e+00 1.076e+11 1.244e+11 1.307e+11 1.340e+11 1.361e+11
Scenario 5 0.000e+00 1.344e+11 1.500e+11 1.500e+11 1.500e+11 1.500e+11

Table 5: µπ = 1, λ = 0.3, π = 10−4, 10−5, 10−6

γ = 0 γ = 1 γ = 2 γ = 3 γ = 4 γ = 5
Scenario 1 0.000e+00 9.000e+08 7.050e+09 1.215e+10 1.590e+10 1.875e+10
Scenario 2 0.000e+00 1.800e+09 1.395e+10 2.445e+10 3.195e+10 3.750e+10
Scenario 3 0.000e+00 2.700e+09 2.100e+10 3.660e+10 4.785e+10 5.625e+10
Scenario 4 0.000e+00 3.450e+09 2.805e+10 4.875e+10 6.390e+10 7.500e+10
Scenario 5 0.000e+00 4.350e+09 3.495e+10 6.090e+10 7.980e+10 9.375e+10

Table 6: µπ = 20, λ = 0.3, π = 10−4, 10−5, 10−6
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6.3.2 µ as a function of π

In the following tables, equation (18) is used to derive the cost of contingent
capital from the probability of occurrence π. The assumption λ = 0.3 is
maintained, but this assumption affects only marginally the numerical re-
sults.

γ = 0 γ = 1 γ = 2 γ = 3 γ = 4 γ = 5
Scenario 1 0.000e+00 0.000e+00 3.120e+09 7.440e+09 1.112e+10 1.408e+10
Scenario 2 0.000e+00 0.000e+00 6.240e+09 1.488e+10 2.224e+10 2.816e+10
Scenario 3 0.000e+00 0.000e+00 9.360e+09 2.232e+10 3.336e+10 4.216e+10
Scenario 4 0.000e+00 0.000e+00 1.256e+10 2.976e+10 4.448e+10 5.624e+10
Scenario 5 0.000e+00 0.000e+00 1.568e+10 3.720e+10 5.552e+10 7.032e+10

Table 7: λ = 0.3,π = 10−4

γ = 0 γ = 1 γ = 2 γ = 3 γ = 4 γ = 5
Scenario 1 0.000e+00 0.000e+00 1.120e+09 4.400e+09 7.600e+09 1.048e+10
Scenario 2 0.000e+00 0.000e+00 2.320e+09 8.720e+09 1.520e+10 2.088e+10
Scenario 3 0.000e+00 0.000e+00 3.440e+09 1.312e+10 2.280e+10 3.136e+10
Scenario 4 0.000e+00 0.000e+00 4.640e+09 1.752e+10 3.048e+10 4.184e+10
Scenario 5 0.000e+00 0.000e+00 5.760e+09 2.184e+10 3.808e+10 5.224e+10

Table 8: λ = 0.3,π = 10−5

γ = 0 γ = 1 γ = 2 γ = 3 γ = 4 γ = 5
Scenario 1 0.00e+000 0.00e+000 1.600e+08 2.480e+09 5.120e+09 7.680e+09
Scenario 2 0.00e+000 0.00e+000 3.200e+08 4.880e+09 1.024e+10 1.544e+10
Scenario 3 0.00e+000 0.00e+000 4.800e+08 7.360e+09 1.536e+10 2.312e+10
Scenario 4 0.00e+000 0.00e+000 6.400e+08 9.760e+09 2.048e+10 3.080e+10
Scenario 5 0.00e+000 0.00e+000 8.000e+08 1.224e+10 2.560e+10 3.856e+10

Table 9: λ = 0.3,π = 10−6
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