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1 Abstract

An Explicit Algebraic Model for Reynolds stresses and active scalar turbu-
lent fluxes is proposed for simply-stratified, stable shear flows like atmospheric
boundary layers of estuaries, including buoyant effects due to density variations
(temperature, salinity). Under equilibrium assumptions, this models leads to
explicit functions of the gradient Richardson number Ri that model the damp-
ing of the eddy viscosity and eddy diffusivity coefficients. The present model is
compared to other existing theoretical approaches, as well as experimental ob-
servations, with satisfactory agreement. The evolution of the turbulent Prandtl
number as a function of Ri is correctly predicted and its neutral value is consis-
tent with existing values in the literature. The behaviour of the model predicts
that internal waves are responsible for momentum diffusion at large Ri, con-
sitently with recent publications. The properties of turbulence anisotropy are
briefly investigated.

2 Introduction

The question of modelling the turbulent fluxes of momentum together with
active scalars is at the heart of engineering and computational fluid dynamics.
In particular, many attempts have been made to modify the traditional eddy-
viscosity and eddy-diffusivity models, i.e. to derive damping functions allowing
the correct estimation of diffusion parameters under stable density stratification
in the atmopsheric boundary layer, rivers and estuaries. Since the measurements
by Munk and Anderson,1 the most consistent developments have been achieved
by Mellor and Yamada2 on theoretical backgrounds. However, this model and
similar ones present some drawbacks; in particular they predict a critical value
of the Richardson number above which turbulence is destroyed by buoyancy,
while the most recents observations and simulations3 lead to the conclusion that
turbulent diffusion survives at high Richardson numbers through the mechanism
of internal waves. On the other hand, since Pope,4 Explicit Algebraic Reynolds
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Stress Models (EARSM) have improved the theoretical basis of our knowledge on
turbulent momentum fluxes, while several authors have extended this approach
to scalar fluxes5. These models, however, often suffer from a lack of consistency
in the modelling of buoyant terms. We propose here a more rigorous approach,
based on a relevant decomposition of flux components on appropriate basis.

In the first section, the governing equations of the considered closure models
for Reynolds stresses and scalar fluxes with buoyancy forces are presented. In
the second section, we focus on 2-D flows, i.e. invariant along a (spanwise)
direction, and we derive a subsequent linear system of five equations and five
unknowns to estimate the turbulent fluxes; an exact solution is given for passive
scalars. In the particular case of simple, stably stratified shear flows, we also give
an exact solution and show how the latter turns into a set of analytical damping
functions. In the third and last section, the performances of the proposed model
are examined from other published models and experimental data. We extend
our model to take account of internal waves for highly stratified flows. The
properties of our model in terms of anisotropy and realizability are finally briefly
investigated.

3 Basic governing equations

3.1 Reynolds stresses

In this section, we summarize the set of model equations on the basis of which
we will establish our model in the subsequent sections; we also introduce our
notation. We refer here to well-known models widely mentioned in the literature.
We consider the general case of a turbulent flow with temperature, salinity, or
any other active scalar, i.e. modifying the fluid density. However, we assume
that the temperature (or scalar concentration), hereafter denoted by T , is small
enough to yield moderate density variation, so that Boussinesq’s approximation
stands, i.e. the density variations δρ only affect the gravity term, leading to
buoyancy forces proportional to δρ. For a flow with slighly variable density,
the Reynolds-averaged forms of the Navier-Stokes momentum equation and the
scalar equation then read

Du

Dt
= −1

ρ
∇p+ ν∆u−∇ ·R + βTTg (1)

DT

Dt
= K∆T −∇ ·QT

where u and p denote the velocity and the pressure fields while the over-
bars refer to Reynolds-averaging and the D/Dt to a lagrangian derivative (i.e.
including advection) following the Reynolds-averaged (or ”mean”) velocity u.
Besides, the constants ρ, ν, K and βT are the reference fluid density and molec-
ular kinematic viscosity and the scalar molecular diffusivity and expansion co-
efficient, respectively. The latter is defined from the density variation due to
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the presence of the active scalar by

βT = − δρ
ρT

(2)

βT is thus positive for temperature, negative for salt. Finally, g is the gravity
vector, while the Reynolds stress tensor and the turbulent scalar flux vector are
defined by

R = u′ ⊗ u′ (3)

QT = T ′u′

where u′ = u−u and T ′ = T −T are the turbulent fluctuating velocity and
scalar fields (we call these quantities ’fluxes’ although this role is assumed by
−ρR and −ρQT , respectively). R represents a stress tensor, in other terms a
turbulent flux of mean linear momentum. Still under the Boussinesq assump-
tion, the Reynolds-averaged continuity equation reads

∇ · u = 0 (4)

The above equations would form a closed system if we knew an exact an-
alytical form for R, which is known to be impossible from pure mathematical
considerations, due to the non-linearity of Navier-Stokes equations. It is known
that any attempt of deriving exact equations for statistical momenta of order n
raises to new terms, in particular momenta of immediately higher order. Thus,
closure assumptions based on heuristic models are needed to close the system
of equations. Such a closure model is the standard Boussinesq eddy-viscosity
based model (see section 5.1), which is a first order model in that sense that it
closes the system at the level of the second order statistical momenta, namely
R. In the following, we focus on a more general approach, referred to as Ex-
plicit Algebraic Reynolds Stress Models (EARSM). EARSM are also first order
closure models, but they stem from approximate solutions of a second order
closure model. Before coming to the construction of a solution (section 4), we
now describe the second order model used for this purpose. We first consider
the equation governing R, which requires closure assumptions, according to the
abovementioned considerations. In a general form, this tensorial equation reads

DR

Dt
= PR + GR + DR + ΦR − εR (5)

where PR, GR, DR, ΦR and εR are respectively production, buoyancy,
diffusion, pressure-strain correlation and dissipation tensors. In this section, we
will describe these terms and the models considered here to close equation (5).
However, we will not examine the diffusion DR, for reasons which will appear
in section 4.1; this will remain true for all diffusion terms in this work, as we
will see below. The first two terms of the right-hand-side of (5) can be written
exactly (i.e. from the Navier-Stokes equations, without any closure model). The
production is explicitely given by

PR = −RΓTu − ΓuR (6)
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where the gradient of the mean velocity field is denoted by

Γu = ∇u =
∂ui
∂xj

ei ⊗ ej (7)

(here and in the following, Einstein’s summation convention on repeated
labels occurs). Equation (6) may be rewritten after introducing the following
notations. We first define the mean rate-of-strain and vorticity tensors by

S =
1

2

(
Γu + ΓTu

)
= ΓSu (8)

Ω =
1

2

(
Γu − ΓTu

)
where the superscript S refers to the symetric part of a tensor. Note that

(4) can now be rewritten
trS = 0 (9)

We also define the turbulent kinetic energy by

k =
1

2
trR (10)

In most of the turbulent closure models, k is given by a governing equa-
tion (see later), so that the remaining unknown in the Reynolds stresses is the
(dimensionless) anisotropy tensor, defined by

a =
1

k
RD =

1

k
R− 2

3
I (11)

where the superscript D refers to the deviatoric part of a tensor. With these
notations, (6) reads

PR = −k
(

aS + Sa− aΩ + Ωa +
4

3
S

)
(12)

The buoyancy tensor is also an explicit term :

GR = −2βT (g ⊗QT )
S

(13)

However, like R, QT remains unknown and will require a closure model.
Thus the buoyancy tensor is not totally explicit, but will be so given an appro-
priate model for QT (see section 3.2). Coming back to equation (5), contrary
to R, the pressure-strain correlation tensor ΦR now requires a closure form (its
exact analytical expression in terms of turbulent fluctuating components will
not be given here6). We will consider herein the LRR-QI model:7

ΦR = −CRR
ε

k
RD − CRPPD

R − CRQQD − CRGGD
R − CRSkS (14)
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In the above equation, Q is a new tensor defined by

Q = −RΓu − ΓTuR (15)

= −k
(

aS + Sa + aΩ−Ωa +
4

3
S

)
while CRR, CRP , CRQ, CRG and CRS are model constants. Three of them

are related to another constant C by

CRP =
C + 8

11
(16)

CRQ =
8C − 2

11

CRS =
60C − 4

55

The constant C depends on authors. Table 1 gives two sets of values for
the model constants, taken from Launder et al.7 and Wallin and Johansson8,
hereinafter referred to as the LRR and WJ models, respectively. The constants
CRR and CRG are taken from Rodi9.

We must now focus on the turbulent kinetic energy k, which appears neces-
sary to close (12), (14) and (15). Taking the trace of (5) gives

Dk

Dt
= Pk +Gk +Dk − ε (17)

where Pk, Gk, Dk and ε are scalar quantities respectively representing pro-
duction, buoyancy, diffusion and dissipation rate. The first two are explicitely
given by

Pk =
1

2
trPR = −ktr (aS) (18)

Gk =
1

2
trGR = −βTg ·QT

while the dissipation ε requires a model. This is generally achieved through
a governing equation similar to (17):

Dε

Dt
= Pε +Gε +Dε − εε (19)

Contrary to (17) however, this equation is purely heuristic (although at-
tempts have been made to derive it on a mathematical background with RNG
models10). The production, buoyancy and dissipation of ε are given by

Pε = Cε1
ε

k
Pk (20)

Gε = Cε3
ε

k
Gk

εε = Cε2
ε2

k
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with model constants Cε1, Cε2 and Cε3 given by Table 2, from Launder and
Spalding11 (as mentioned before, the diffusion term Dε will not be used in the
present work).

To finish with the description of equation (5), the dissipation tensor is mod-
elled from an isotropy assumption regarding the smallest (dissipative) turbulent
structures. Relating the trace of (5) to (19) thus gives

εR =
2

3
εI (21)

With (12), (13), (14) and (15) and (21), we may now rewrite (5) in an explicit
form. After a few algebra (in particular, using (9) and (18)), we get

DR

Dt
−DR = −CRRεa−Ba1k (aS + Sa) +Ba2k (aΩ−Ωa) (22)

−Ba3kS +

[
2

3
(Pk +Gk − ε) +Ba4ktr (aS)

]
I

−Ba5βT

[
(g ⊗QT )

S − 1

3
(g ·QT ) I

]
where

Ba1 = 1− CRP − CRQ =
5− 9C

11
(23)

Ba2 = 1− CRP + CRQ =
7C + 1

11

Ba3 = CRS +
4

3
(1− CRP − CRQ) =

8

15

Ba4 =
2

3
(1− CRP − CRQ) =

2

3
Ba1 =

10− 18C

33
Ba5 = 2 (1− CRG)

The value of these coefficients for the LRR and WJ models are given in Table
3. In section 4, we will construct an approximate solution to (22). However, a
model is now required to model the scalar flux QT , a work which will be done
in the coming section.

3.2 Scalar fluxes

The governing equation for QT can be written as

DQT

Dt
= PT + GT + DT + ΦT − εT (24)

where PT , GT , DT , ΦT and εT are respectively production, buoyancy, dif-
fusion, pressure-scalar gradient correlation and dissipation vectors. As we did
for Reynolds stresses in the previous section, we will now describe the models
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used here. The production is written exactly (from the Navier-Stokes and scalar
equations) as

PT = −RΓT − ΓuQT (25)

with the mean scalar gradient

ΓT = ∇T =
∂T

∂xi
ei (26)

The buoyancy is explicitely written as

GT = −βT θg (27)

where
θ = T ′2 (28)

is the scalar turbulent fluctuation variance. The pressure-scalar gradient cor-
relation is usually approximated together with the dissipation by the following
model:5,9

ΦT −εT = −CTQ
ε

k
QT +CTΓΓuQT +C ′TΓΓTuQT +CTRRΓT +CTGβT θg (29)

where CTQ, CTΓ, C ′TΓ, CTR and CTG are model constants given by Table 4.
Two sets of constants are given here, from Högström et al.12 and Wikström et
al.,5 respectively referred to as HWJ and WWJ models. Note that in the WWJ
model, one of the ”constants” depends on quantities are τ and τθ, defined as
the characteristic timescales of turbulence corresponding to momentum and and
scalar, respectively. We now give a definition of these two parameters. First, as
we did for k, we can write an equation governing θ:

Dθ

Dt
= Pθ +Dθ − εθ (30)

where Pθ, Dθ and εθ are scalar quantities respectively representing produc-
tion, diffusion and dissipation. In principle, equation (30) requires a closure
equation for εθ. However, it will not be used in the final EARSM established
herein, since we will build a simplified model for θ in section 4.1. However, it is
useful to give the explicit form of the first term of (30):

Pθ = −2QT · ΓT (31)

We will also use in the following the timescales τ and τθ, defined by

τ =
k

ε
(32)

τθ =
θ

εθ

As many authors did before, we will assume that the ratio between the two
timescales is a constant:

τθ
τ

= R (33)
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The value R = 1.1 was recommended by Rodi9 and is close to the values
obtained by DNS by Schwertfirm and Manhart13 for passive scalars (although
the question of how long this value keeps valid for buoyant flows could raise
some difficulties). From these premises, we now estimate the coefficient CTQ of
the WWJ model (see Table 4):

CTQ = 1.6

(
1 +

1

R

)
= 3.05 (34)

Note that the timescale τ is also governed by an advection-diffusion equation
derived from (17) and (19):

Dτ

Dt
= (1− Cε1)P ∗k + (1− Cε3)G∗k − 1 + Cε2 +Dτ (35)

with an appropriate diffusion term Dτ , and

P ∗k =
Pk
ε

(36)

G∗k =
Gk
ε

Let us come now back to the clusore of the scalar flux equation. With (25),
(27) and (29), equation (24) now reads

2

(
DQT

Dt
−DT

)
= −2CTQ

ε

k
QT −BT1SQT −BT2ΩQT −BT3RΓT −BT4βT θg

(37)
where

BT1 = 2 (1− CTΓ − C ′TΓ) (38)

BT2 = 2 (1− CTΓ + C ′TΓ)

BT3 = 2 (1− CTR)

BT4 = 2 (1− CTG)

The value of these coefficients for the HWJ and WWJ models are given in
Table 5.

In the coming sections, we will make assumptions in order to transform the
set of equations (22) and (37) into a linear system, which will allow us to derive
explicit analytical solutions.

4 Explicit algebraic models

4.1 Weak equilibrium and subsequent linear system

At the heart of EARSM is the assumption of weak equilibrium, which stands
that under some conditions6 the advection and diffusion terms of turbulent
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fluxes like R can be related to those of simpler quantities such as k. We will
first assume two laws of weak equilibrium:(

DR

Dt
−DR

)
k =

(
Dk

Dt
−Dk

)
R (39)(

DQT

Dt
−DT

)
k =

1

2

(
Dk

Dt
−Dk

)
QT (40)

These equations were first stated by Pope4 and Rodi9 respectively and re-
main very classical in the theory of EARSM (with a few variants14,15 which
would not affect the considerations presented below). As these authors explain,
they come from the idea that dimensionless fluxes are in equilibrium. Equation
(39), for example, is equivalent to assume

Da

Dt
−Da = 0 (41)

where Da is the diffusion of a obtained from (5). Similarly, one assumes here
that the ratio of turbulent kinetic energy to scalar variance satisfies the same
equilibrium:

D (θ/k)

Dt
−Dθ/k = 0 (42)

This immediately leads to the following additional weak equilibrium equa-
tion: (

Dθ

Dt
−Dθ

)
k =

(
Dk

Dt
−Dk

)
θ (43)

Let us consider now (39) and (40). Together with (17), they give

DR

Dt
−DR =

Pk +Gk − ε
k

R (44)

2

(
DQT

Dt
−DT

)
=

Pk +Gk − ε
k

QT

Before constructing our EARSM, we will now write our variables in a di-
mensionless form. We first introduce dimensionless gradients and fluxes:

S∗ = τS (45)

Ω∗ = τΩ

Γ∗T = βT gτ
2ΓT

Q∗T =
βT g

ε
QT

θ∗ = (βT gτ)
2 θ

k

(the stars will always refer to non-dimensional quantities in the following).
Then (36) becomes

P ∗k = −tr (aS∗) (46)

G∗k = ez ·Q∗T
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where ez is the vertical upwards unit vector. Next, with relations (44) and
using (11), (22) and (37) can be rewritten as linear algebraic equations, i.e.
containing no time or spatial derivative of the unknowns a and QT :

a = Ca1 (aS∗ + S∗a) + Ca2 (aΩ∗ −Ω∗a) + Ca3S
∗ (47)

+ Ca4tr (aS∗) I + Ca5

[
(ez ⊗Q∗T )

S − 1

3
(ez ·Q∗T ) I

]
Q∗T = CT1S

∗Q∗T + CT2Ω
∗Q∗T + CT3aΓ∗T +

2

3
CT3Γ

∗
T − CT4θ

∗ez

We have used here a slightly different set of coefficients, defined by

Ca1 = −Ba1Ca0 (48)

Ca2 = Ba2Ca0

Ca3 = −Ba3Ca0

Ca4 = Ba4Ca0

Ca5 = Ba5Ca0

and

CT1 = −BT1CT0 (49)

CT2 = −BT2CT0

CT3 = −BT3CT0

CT4 = −BT4CT0

where

Ca0 =
1

P ∗k +G∗k + CRR − 1
(50)

CT0 =
1

P ∗k +G∗k + 2CTQ − 1

By giving algebraic equations, the approximation made presents the advan-
tage to avoid the use of boundary conditions for a and Q∗T in a numerical model.
In order to search solutions (a,Q∗T ) of (47), we will now restrict our consider-
ations to 2-D vertical flows, i.e. flows which are (statistically) invariant along
an axis called y (spanwise), with zero mean velocities along y. Under these as-
sumtions, the spatial derivative ∂/∂y play no role. Therefore, the dimensionless
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gradients may be written as

S∗ =

 S∗xx 0 S∗xz
0 0 0
S∗xz 0 −S∗xx

 (51)

Ω∗ = Ω∗xz

 0 0 1
0 0 0
−1 0 0


Γ∗T =

 Γ∗T,x
0

Γ∗T,z


In the Reynolds-averaged Navier-Stokes momentum equation (first equation

of (1)), the term ∇ ·R then shows that only the components axx, axz and azz
are required to close the momentum equation, while some terms are identically
null by symmetry6. Indeed, a is symmetric and traceless, thus it can be written

a =

 axx 0 axz
0 −axx − azz 0
axz 0 azz

 (52)

It should be noted that although the central term −axx − azz play no role
on the 2-D equations, it is non-zero. Indeed, although we made assumptions
of two-dimensionality, turbulent fluctuations exist on the y-axis. We write it
explicitely in (52) to insist on the fact that a is traceless. Therefore, we see
that a has three degrees of freedom and thus must be searched in a three-
dimensional space. Hence, following Pope,4 we consider the following basis of
the 2-D symmetric traceless tensors:

T(1) = S∗ (53)

T(2) = S∗Ω∗ −Ω∗S∗ = 2S∗Ω∗

T(3) =
(
S∗2
)D

(the property S∗Ω∗ = −Ω∗S∗ only stands in 2-D). We will then search a as
a linear combination of the tensors

{
T(i)

}
:

a = αS∗ + 2βS∗Ω∗ + γ
(
S∗2
)D

(54)

where α, β and γ are unknown coefficients. In the right-hand-side of (54),
the first term corresponds to Boussinesq’s (linear) eddy viscosity model (see
section 4.2), while the other two are non-linear. Note that the first term will
appear later as slightly non-linear two, since α, β and γ are functions on the
scalar invariants of S∗ and Ω∗. Similarly, we note that Q∗T has now two required
degrees of freedom:

Q∗T =

 Q∗T,x
0

Q∗T,z

 (55)
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and must then be searched in a two-dimensional space of vectors. A straight-
forward basis of this space is

V(1) = Γ∗T (56)

V(2) = Ω∗Γ∗T

Then we will write
Q∗T = ξΓ∗T + ζΩ∗Γ∗T (57)

where ξ and ζ are unknowns. The first term of the right-hand-side of (57)
is the traditional law of Fourier for scalar fluxes (see section 4.2). With these
notations, we can first propose a model to estimate θ∗ (similarly to Galperin et
al.16). From (17), (30) and (43), we can write

Pk +Gk − εk
k

θ = Pθ − εθ (58)

Then, with (33) and (45) we get

θ∗ = R (βT gτ)
2 εθ
ε

(59)

Combining the last two equations gives

θ∗ = −2R′ξΓ∗T
2 (60)

with

R′ =
R

1 +R (P ∗k +G∗k − 1)
(61)

We observe that, according to (60) and noting that θ∗ is positive by defini-
tion, ξ must be negative. This is consistent with (57), since Q∗T · Γ∗T must be
negative according to Fourier’s law.

The next step is to find the set of five parameters (α, β, γ, ξ, ζ). This is
achieved by introducing (54) and (57) into the system (47); this is the key idea
of EARSM. This has been done by many authors in 2-D4 and 3-D17 for non-
buoyant flows. However, in most of the publications concerning active scalars,
this work is not performed in the right way. Hattori et al.15, for example, added
a fourth tensor to the basis (53), namely GD. This seems to be justified by
the presence of the buoyant tensor ez ⊗ Q∗T in the momentum equation and
the terms involving Q∗T in the scalar equation, but as we already mentioned,
this approach is wrong since a is to be found in a three-dimensional space. The
correct method thus consists of developing the buoyant terms of (47) on the
respective basis (53) and (56). To achieve this purpose, we first note that the
basis (56) is orthogonal. Hence, the decomposition of an arbitrary vector A on
a basis of vectors

{
V(i)

}
is simply given by

A =
∑
i

A ·V(i)∥∥V(i)
∥∥2 V(i) (62)
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Similarly, the basis (53) is orthogonal in the sense that for i 6= j we have

T(i) : T(j) = T
(i)
kl T

(j)
lk = 0. Thus, the decomposition of a tensor A on the basis{

T(i)
}

is

A =
∑
i

A : T(i)∥∥T(i)
∥∥2 T(i) (63)

In the above two formulae, we used scalar products and norms of vectors A
and B, naturally defined by

A ·B = AiBi (64)

‖A‖2 = A ·A =AiAi

and for tensors:

A : B = tr (AB) = AijBji (65)

‖A‖2 = A : A = AijAji

As an example, we may define the (dimensionless) mean scalar rate-of-strain
S∗ and mean scalar vorticity Ω∗, as well as the (dimensionless) mean active
scalar gradient Γ∗T by

S∗ =
√

2 ‖S∗‖ (66)

Ω∗ =
√

2 ‖Ω∗‖ = 2 |Ω∗xz|
Γ∗T = ‖Γ∗T ‖

Introducing (57) into (47) then leads to four new vectors, whose decompo-
sitions are given through (62), after a few algebra, by

S∗Γ∗T = S1V
(1) +

4S2

Ω∗2
V(2) (67)

S∗Ω∗Γ∗T = S2V
(1) − S1V

(2)

Ω∗2Γ∗T = −Ω∗2

4
V(1)

Γ∗T
2ez = Γ1V

(1) +
4Γ2

Ω∗2
V(2)

(see Appendix 1 for the detailed derivation of the second term, as an exam-
ple). In equation (67) appear four new scalar quantities defined by

S1 =
Γ∗TT S∗Γ∗T

Γ∗T
2

=
Γ∗T,iS

∗
ijΓ
∗
T,j

Γ∗T,mm
(68)

S2 =
Γ∗TT S∗Ω∗Γ∗T

Γ∗T
2

=
Γ∗T,iS

∗
ijΩ
∗
jkΓ∗T,k

Γ∗T,mm

Γ1 = ez · Γ∗T = Γ∗T,z

Γ2 = eTz Ω∗Γ∗T =
1

2
Ω∗Γ∗T,x
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Next, introducing (54) into (47) lead to other (tensorial) unkonwns, whose
decomposition is similarly performed using (63). We will not detail here the
numerous steps of algebra needed to achieve these decomposition (see Appendix
2, where an example is given). The results are all based on the scalar quantities
(66) and (68), and lead to a system of five linear equations in (α, β, γ, ξ, ζ),
which may be summarized as

MA = B (69)

with the following two five-dimensional vectors:

A = (α, β, γ, ξ, ζ)
T

(70)

B =

(
−Ca3, 0, 0,−

2CT3

3
, 0

)T
and the 5×5 following matrix:

M =


−1 −Ca2Ω∗2 Ca1S

∗2

6
2Ca5
S∗2

(
S1Γ1 + 4S2Γ2

Ω∗2

)
2Ca5
S∗2 (S2Γ1 − S1Γ2)

Ca2 −1 0 4Ca5
S∗2Ω∗2 (S2Γ1 − S1Γ2) −Ca5S∗2

(
S1Γ1 + 4S2Γ2

Ω∗2

)
2Ca1 0 −1 2Ca5Γ1

S∗2
2Ca5Γ2

S∗2

CT3S1 2CT3S2
CT3S

∗2

12 −1 + CT1S1 + 2R′CT4Γ1 CT1S2 − CT2Ω∗2

4
4CT3S2

Ω∗2 −2CT3S1 0 CT2 + 4CT1S2

Ω∗2 + 8R′CT4Γ2

Ω∗2 − (1 + CT1S1)


(71)

We may note that the scalar gradient appears in (71) through the four di-
mensionless numbers S1, S2, Γ1 and Γ2 defined by (76). Thus, the traditional
approach consisting of modelling the stratification effects with one single di-
mensionless number, namely the Richardson number (see next section), is not
correct for the general case of 2-D flows.

The system (69)-(71) could be exactly solved, but the algebraic solution
would certainly be too complicated to be used with benefit in a numerical code.
However, particular cases can be treated more easily. Let us first consider the
case of a passive scalar (i.e. βT = 0, or Ca5 = CT4 = 0). With model WJ for
Reynolds stresses (i.e. Ca1 = 0, according to Table 3 and definition (48)) and
model WWJ for scalar fluxes (see Table 2 and (49)), the matrix turns to

M =


−1 −Ca2Ω∗2 0 0 0
Ca2 −1 0 0 0
0 0 −1 0 0

−2CT0S1 −4CT0S2 −CT0

6 S∗2 −1− 2CT0S1 −2CT0S2 + CT0

2 Ω∗2

− 8CT0

Ω∗2 S2 4CT0S1 0 −2CT0 − 8CT0

Ω∗2 S2 −1 + 2CT0S1


(72)

and

B =

(
−Ca3, 0, 0,

4CT0

3
, 0

)T
(73)

The scalar is thus completely separated from the flow, as required. The
buoyancy G∗k is null; according to (50) the coefficients Ca0 and CT0 are thus
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now defined by

Ca0 =
1

P ∗k + CRR − 1
(74)

CT0 =
1

P ∗k + 2CTQ − 1

The solution to (69) now reads

α =
Ca3

H1
(75)

β =
Ca2Ca3

H1

γ = 0

ξ = − 2CT0

3H1H2
(H3S1 + 2H4S2 + 2H1 −H5)

ζ =
2CT0

3H1H2

(
2H4S1 −

4

Ω∗2
H3S2 + 2Ca2H5 + 4CT0H1

)
with

H1 = 1 + C2
a2Ω∗2 (76)

H2 = 1 + C2
T0

(
Ω∗2 − S∗2

)
H3 = 3Ca3 − 4CT0 − Ca2CT0 (4Ca2 + 3Ca3) Ω∗2

H4 = 3Ca3 (Ca2 + CT0)

H5 =
3

2
Ca3CT0S

∗2

The first three equations of (75) correspond to the EARSM proposed by
Wallin and Johansson8 for clear flow (i.e. without density variation due to
active scalar). Their model is closed by estimating the production P ∗k from the
first equation of (46), giving with (54), (66), (75) and (76):

P ∗k = −α
2
S∗2 = −Ca3

2

S∗2

1 + C2
a2Ω∗2

(77)

Since Ca2 and Ca3 are related to P ∗k through (48) and (74), the formula
(77) yields a more complex (implicit) relation for P ∗k , taking the form of a third
order polynomial equation, the solution of which is given by Girimaji18. We see
that our model turns back to a well-known model in the particular case of clear
flows. The last two equations of (75), together with (57), also give an algebraic
expression of the turbulent fluxes for the passive scalar. Other attempts have
been made to derive explicit algebraic turbulent flux models for passive scalars
in the past. In particular, Wikström et al.5 give a more complex model with
validations in several standard cases; it can be shown that our model given by
(75) and (76) is mathematically equivalent. However, it is not on the purpose
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of this work to investigate in details the model obtained here for passive scalar
(this will be the purpose of a future paper); on the contrary we will now focus
on the active scalar case for shear flows (see next section). However, it should
be emphasized that the approach proposed here looks more rational than the
method proposed by Wallin and Johansson, since the linear system (47) is solved
for Reynolds stresses and turbulent scalar fluxes together. The present approach
could be called an Explicit Algebraic Reynolds Stress and Scalar Flux Model
(EARSSFM).

4.2 Solution for simply stratified flows

From now on (except at the beginning of section 5.3) we focus on the case
of simple shear flows, i.e. flows following one direction (herein denoted by x)
and varying along the other direction z (we still consider 2-D flows only). In
particular, we limit our considerations to stable stratifications, so that natu-
ral convection do not exist (no vertical mean velocities). Many flows showing
such properties are encountered in industrial and environmental fluid dynam-
ics: heated pipe flow, atmospheric boundary layer, estuaries, etc. With this
additional assumption, the quantities appearing in the matrix (71) simplify to:

Ω∗ = S∗ = τ

∣∣∣∣∂u∂z
∣∣∣∣ (78)

Γ∗T = βT gτ
2

∣∣∣∣∂T∂z
∣∣∣∣

S1 = 0

S2 =
S∗2

4
Γ1 = Γ∗T

Γ2 = 0

where u is the mean velocity component along x. Moreover, the gradients
now appear in the matrix through a single dimensionless parameter, namely
Γ1/S2. We may thus introduce the gradient Richardson number, measuring the
degree of density stratification:

Ri =
Γ∗T
S∗2

=
βT g

∣∣∣∂T∂z ∣∣∣(
∂u
∂z

)2 (79)

(with our assomption of stable stratification, Ri is non-negative). This no-
tation allows us to write M in the simplified form

M =


−1 −Ca2S

∗2 Ca1
6 S∗2 0 Ca5

2 S∗2Ri
Ca2 −1 0 Ca5Ri 0
2Ca1 0 −1 2Ca5Ri 0

0 CT3

2 S∗2 CT3

12 S
∗2 −1 + 2R′CT4S

∗2Ri CT1−CT2

4 S∗2

CT3 0 0 CT1 + CT2 −1


(80)
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With model WJ for stresses and model WWJ for scalar fluxes (both prefered
from now on), it turns into

M =


−1 −Ca2S

∗2 0 0 Ca5
2 S∗2Ri

Ca2 −1 0 Ca5Ri 0
0 0 −1 2Ca5Ri 0
0 −CT0S

∗2 −CT0

6 S∗2 −1− 2R′CT0S
∗2Ri 0

−2CT0 0 0 −4CT0 −1


(81)

The solution to the linear system (69) is now given by

α =
K1

D
(82)

β =
1

D
(Ca2K1 − Ca5K2Ri)

γ = −2Ca5K2

D
Ri

ξ = −K2

D

ζ =
2CT0

D
(2K2 −K1)

with

D =
1

4

[(
3

CT0
+ 2R′′Γ∗T

)
K2 − 3Ca2K1S

∗2
]

(83)

and

K1 = 3Ca3 + 2CT0 [2Ca5 (Ca2 + 2CT0) + Ca3R
′′] Γ∗T (84)

K2 = CT0

[
(4Ca2 + 3Ca3)Ca2S

∗2 + 4 (Ca5CT0Γ∗T + 1)
]

R′′ = 2Ca5 − 3R′

It can be easily verified that equations (82) to (84) give, for a passive scalar
(Ca5 = R′ = 0), the following particular solution:

α =
Ca3

H ′1
(85)

β =
Ca2Ca3

H ′1
γ = 0

ξ = − H ′3
3H ′1

ζ =
2CT0

3H ′1
(2H ′3 − 3Ca3)

with

H ′1 = 1 + C2
a2S
∗2 (86)

H ′3 = CT0

[
Ca2 (4Ca2 + 3Ca3)S∗2 + 4

]
17



which can also be obtained from the general passive scalar solution (75) and
(76) with conditions (78). Equations (82) to (84) could be used in a CFD code
without any changes. However, one should keep in mind that the coefficients
Ca2, Ca3, etc. depend on P ∗k +G∗k through (50). We have seen before that P ∗k
is given by (77); similarly the second equation of (46), together with (57) and
(66), gives

G∗k = ξΓ∗T (87)

With (77), (82), (83) and (84), (87) would give an implicit relation in P ∗k +G∗k
to close model. Unfortunately, this process leads to a five order polynomial
equation, which is known to have no analytical solution. In a numerical code,
it is thus certainly simpler to use (77) and (87) in order to estimate P ∗k and G∗k
from the values of α and ξ obtained at the previous time step.

For practical applications, the model should be simplified through an as-
sumption giving P ∗k + G∗k explicitely, together with S∗ and Γ∗T , both implicit
functions of Ri through the governing equations (1). This can be achieved by
assuming16 that advection and diffusion of k can be neglected in (17), leading
to the well-known equilibrium

P ∗k +G∗k = 1 (88)

Note that this approximation, together with (17), makes the right-hand-sides
of (39) to (??) vanish. Then the coefficients Ca0, CT0 and R′ defined by (50)
and (61) reduce to constants:

Ca0 =
1

CRR
(89)

CT0 =
1

2CTQ

R′ = R

and thus
R′′ = 2Ca5 − 3R (90)

Using (23), (33), (48) and Table 1, the numerical constants of the model
(82)-(84) are now given in Table 6.

Using (77), (79) and (87), (88) gives the mean gradients as

S∗2 =
2

2ξRi− α
(91)

Γ∗T =
2Ri

2ξRi− α

The formulae (91) can be introduced into (82). This gives two non-linear
equations with unknowns α and ξ, giving the following solution:

α =
A

D′
(Aα2A+ 2Aα1Ri) (92)

ξ =
A

D′
(Aξ3A+ 2Aξ1 + 2Aξ2Ri)
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where

D′ = (2Aξ3Ri−Aα2)A+ 2 (2Aξ2Ri−Aα1 + 2Aξ1)Ri (93)

A = BA1Ri+BA2 +
√
BA3Ri2 +BA4Ri+B2

A2

The constants appearing in (92) and (93) are given by

Aα1 = −CT0 [4Ca5 (2CT0 + Ca2 + 2Ca3)− 2Ca3R
′′] (94)

Aα2 = −3Ca3

Aξ1 = Ca2CT0 (4Ca2 + 3Ca3)

Aξ2 = 4Ca5C
2
T0

Aξ3 = 4CT0

and

BA1 = −1

3
(AD4 +Aξ3) (95)

BA2 =
1

6
(Aα2 − 2AD2)

BA3 = B2
A1 −

4

3
(AD3 +Aξ2)

BA4 = 2BA1BA2 −
2

3
(2AD1 −Aα1 + 2Aξ1)

with

AD1 = Ca2CT0 [Ca5 (5Ca2 − 6CT0)− 2Ca2R
′′] (96)

AD2 = 3C2
a2

AD3 = 2Ca5C
2
T0 (4Ca5 −R′′)

AD4 = CT0 (11Ca5 − 2R′′)

The numerical values of these new coefficients are shown in Table 7.
The quantity A appearing in (93) has the following physical meaning:

A =
2

S∗2
(97)

and thus must be positive (note that the argument in the squareroot of (93)
is always positive). This leads to the following condition:

Ri ≤ −2AD1 −Aα1 + 2Aξ1
2 (AD3 +Aξ2)

= 0.284 = Ric (98)

(reminding that Ri is positive in our model). Thus, the present model ex-
hibits a critical value Ric above which the critical Richardson number cannot
stand. For Ri = Ric, it is found that A = 0, so that α = ξ = 0 according to (92);
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the turbulent diffusion is thus stopped. This phenomenon, already adressed in
many publications, is known as turbulence destruction by buoyancy. In princi-
ple, it means that when the density stratification is high enough, the damping
of turbulence is so strong that turbulence locally dissapears. Many works have
been attempted in order to determine Ric from theoretical considerations, and
most of them reached the value Ric = 0.25 (see e.g. Miles and Howard19), while
Mellor and Yamada2 give Ric = 0.21 and Yamada20 Ric = 0.27. However,
the question of the existence of a critical Richardson number is not completely
solved, and recent publications suggest that it does not exist. We will investigate
that point in section 5.2.

The present model (92) to (96) is very similar to those of Mellor and Yamada21

and Galperin et al.16, although it was derived from slightly different consider-
ations. In particular, it is intersting to see how this solution arises from an
EARSSFM. The coefficients β, γ, and ζ can easily be written from (82); how-
ever, for simplicity we will not give here their analytical expressions. However, it
is easy to give the values of all coefficients for Ri = 0 (passive scalar). Referring
to α0 as α (Ri = 0), etc., we find

α0 = 2C2
a2 + Ca3 (99)

β0 = Ca2

(
2C2

a2 + Ca3

)
γ0 = 0

ξ0 =
2CT0

3
(3Ca2 − 2)

ζ0 =
2CT0

3

[
4CT0 (2− 3Ca2)− 3

(
2C2

a2 + Ca3

)]
in accordance to (85) and (86) with (91).

5 Performances of the model

5.1 Damping functions

The most famous first order closure models are the Boussinesq eddy-viscosity
model (for Reynolds stresses) and the Fourier model (for scalar flux), which
read

R =
2

3
kI− 2νTS (100)

QT = −KTΓT

where νT and KT are the eddy viscosity and the scalar eddy diffusivity,
respectively. From dimensionless considerations, it is known that both quantities
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may be written as

νT = Cµ
k2

ε
(101)

KT = Cν
k2

ε
=

νT
PrT

where Cµ and Cν are empirical constants. The quantity PrT , defined by the
second equation of (101), is the turbulent Prandtl number. As pointed out in
section 4.1, our models (54) and (57) contain the models (101) and a bit more.
From these equations it appears that Cµ, Cν and PrT are no longer constants
but vary according to

Cµ = −α
2

(102)

Cν = −ξ

Pr T =
Cµ
Cν

=
α

2ξ

For a passive scalar (Ri = 0), the quantity A of equation (93) take the
following value:

A0 = A (Ri = 0) = −
(
2C2

a2 + Ca3

)
= 0.181 (103)

and, from (99):

Cµ,0 = Cµ (Ri = 0) = −2C2
a2 + Ca3

2
(104)

Cν,0 = Cν (Ri = 0) = −2CT0

3
(3Ca2 − 2)

Pr T,0 = Pr T (Ri = 0) =
Cµ,0
Cν,0

=
3

4CT0

2C2
a2 + Ca3

3Ca2 − 2

Numerically, with the values of Table 6, we find

Cµ,0 = 0.090 (105)

Cν,0 = 0.121

Pr T,0 = 0.743

Wallin and Johansson8 had already reported that their EARSM correctly
predicts the value of Cµ for simple shear flows without scalar, together with
the equality P ∗k = 1 (similar to (88)), and it is not surprising to come to the
same conclusion since our model turns back to their for a passive scalar, as
already mentioned at the end of section 4.1. We also find that the neutral
turbulent Prandtl number is very close to the values proposed by various au-
thors on experimental, theoretical or numerical basis: PrT,0 = 0.71 (Turner,22

experimental), PrT,0 = 0.72 (Sukoriansky et al.,23 theoretical), PrT,0 = 0.75
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(Mellor and Yamada,2 theoretical), PrT,0 = 0.74 (Galland,24 numerical model
with second-order turbulent closure).

We then define the damping functions as

fCµ (Ri) =
Cµ
Cµ,0

(106)

fCν (Ri) =
Cν
Cν,0

The effect of stratification is to reduce (stable) turbulent diffusion, thus
these functions must be less than unity and satisfy fCµ (0) = fCν (0) = 1. It
also follows from the observation made in section 4.1 that these function are
positive. To avoid any kind of confusion, let us now insist on the point that
these functions concern the variation of the coefficients (102) with Ri. They
should be clearly distinguished from the usual damping functions used by some
authors to characterise the damping of the total eddy viscosity and diffusivity,
defined by

fνT (Ri) =
νT
νT,0

(107)

fKT (Ri) =
KT

KT,0

where νT,0 = νT (Ri = 0) and KT,0 = KT (Ri = 0) (obviously, PrT,0 =
νT,0/KT,0). The reason of this difference is that the formulae (101) are some-
what confusing by the fact that k and ε are also (implicitely) damped by buoy-
ancy forces acting in (17) and (19). Hence, in principle fνT < fCµ and fKT <
fCν ; however, for small Ri we may assume that fνT ≈ fCµ and fKT ≈ fCν . One
also defines the turbulent Prandtl number damping function by

fPrT (Ri) =
PrT

PrT,0
=
fCµ (Ri)

fCν (Ri)
=

fνT (Ri)

fKT (Ri)
(108)

Finally, it is interesting to consider the flux Richardson number Rf , defined
by

Rf = −Gk
Pk

=
Ri

PrT
(109)

The question of damping functions has been deeply investigated by a number
of authors, and recent studies based on extensive analysis of experiments did not
yield any firm conclusion25. Equations (92) and (93), together with Table 7 and
values (105), yield theoretical expressions for fCµ (Ri), fCν (Ri) and fPrT (Ri).
We may compare these to three other propositions available in the literature.
We first consider the traditional experimental damping functions proposed by
Munk and Anderson:1

fνT (Ri) = (1 + 10Ri)−1/2 (110)

fKT (Ri) = (1 +
10

3
Ri)−3/2
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This does not provide a complete set of data, since they do not give PrT,0.
Thus we will use (110) together with the value of PrT,0 = 0.75 given by Mellor
and Yamada2. As a second reference model, we consider Mellor and Yamada’s,
stating:2

fνT (Ri) = 4.36
(0.213−Rf) (0.269−Rf)

(1−Rf) (0.25−Rf)
(111)

fKT (Ri) = 4.69
0.213−Rf

1−Rf
Rf = 0.725(Ri+ 0.186−

√
Ri2 − 0.316Ri+ 0.0346)

consistently with their value of PrT,0. Lastly, we will compare our model to
Sukoriansky et al.’s,23 based on a theoretical spectral closure of stably stratified
turbulence. These authors do not provide any explicit formulae; their results
will be graphically plotted for comparison. In addition to these three models,
we will also pay attention to two models for PrT only, firstly Ellison’s model:26

Pr T =
(1−Rf)

2

1−Rf/Rfc
(112)

with

Rf =
2

3
+

(√
b2

4
+
a3

27
− b

2

)1/3

−

(√
b2

4
+
a3

27
+
b

2

)1/3

(113)

a =
Ri

PrT,0Rfc
− 1

3

b =

(
2

3Rfc
− 1

)
Ri

PrT,0
+

2

27

We will use this model with Rfc = 0.27, according to Yamada,20 and the
value of PrT,0 = 0.75 given by Mellor and Yamada.2 Secondly, we consider the
model proposed by Zilitinkevich et al.:27

Pr T =
(1 + 19Ri)

2.7

(1 + 36Ri)
1.7 (114)

with PrT,0 = 0.80 to estimate Rf from (109).
Figure 1 shows the damping functions and flux Richardson number versus

gradient Richarsdon number for the present model (92) to (96) and the five
reference models mentioned above. Generally speaking, all the models exhibit
similar behaviour, although Munk and Anderson’s predicts less damping than
the others. As required, fCµ (Ri) and fCν (Ri) are positive. The present model
is very close to those of Mellor and Yamada for damping functions and to
Zilitinkevich et al.’s for flux Richardson number. It is noticeable that the critical
value of Ri does not affect the continuity of the turbulent Prandtl number,
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while fCµ (Ri) and fCν (Ri) vanish at Ri = Ric. However, Sukorianski et al.’s
model doesn’t predict any turbulence destruction at large Ri, contrary to our
model and Mellor and Yamada’s. On the contrary, fCµ (Ri) tends to a constant
while fCν (Ri) decreases gently to zero. This behaviour is also predicted by
Zilitinkevich et al. As mentioned in the last section, it has been pointed out
in many recent papers16 that under strong stratification, the vertical diffusion
is not destructed. The reason is that at large Ri, the density gradient tends
to increase until a discontinuity appears, but this density interface is subject
to oscillations (internal waves) which cause a flux of momentum (but still no
scalar flux). In the next section, we will try to modify our model in order to
take account of this phenomenon.

5.2 Internal waves

Zilitinkevich et al.27 suggest that the effect of internal waves could be accounted
for by writting Rotta’s coefficient CRR as a linear function of Ri in the return-to-
isotropy term −CRRεa of (22). However, this approach is subject to discussion
since the action of internal waves is characterized by a time scale 1/N rather
than ε/k, where N = S

√
Ri is the Brünt-Väissälä frequency. Thus it would

be more relevant to write CRR as a linear function of
√
Ri, which leads to new

problems in deriving an algebraic model. We propose here another method.
At high Ri, the presence of internal waves makes fCµ tending to a constant,
as predicted by Sukoriansky et al.23 Thus, it turns as if Ri was a constant in
the buoyancy term of the Reynolds stress equation (47). It is then possible to
account for this effect by writting the model ”constant” Ca5 as a function of Ri:

Ca5 (Ri) =
Ca6

1 + Ca7Ri
(115)

Ca6 having the value of Ca5 in the model without internal waves. For small
Richardson numbers, one recovers the original model (Ca5 (Ri) = Ca6), while at
high Richardson numbers the buoyancy term of Reynolds stresses, which reads
Ca5Ri in the final system (81), now tends to a constant C ′a6, as required:

Ca5 (Ri)Ri −→ Ca6

Ca7
= C ′a6 (116)

Under the same condition (large Ri), some of the model coefficients are
modified:

R′′ −→ −3R (117)

Aα1 −→ Aα1,∞ = −6Ca3CT0R = 0.385

Aξ2 ∼
4C ′a6C

2
T0

Ri

AD1 −→ 6C2
a2CT0R

AD3 ∼
6C ′a6C

2
T0R

Ri
AD4 −→ 6CT0R
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and

BA1 −→ BA1,∞ = −1

3
(6CT0R+Aξ3) = −0.579 (118)

BA3 ∼ B2
A1,∞ −

8C ′a6C
2
T0 (3R+ 2)

3Ri

BA4 −→ BA4,∞ = 2BA1,∞BA2 −
2

3

(
12C2

a2CT0R−Aα1,∞ + 2Aξ1
)

= 0.0177

(here and in the following, BA1,∞ is written for the limit of BA1 at large Ri
(Ri −→ +∞), etc.). Thus:

A −→ A∞ = BA2 +
8C ′a6C

2
T0 (3R+ 2)− 3BA4,∞

6BA1,∞
(119)

and

α −→ α∞ =
Aα1,∞A∞

8C ′a6C
2
T0 +Aξ3A∞ + 2Aξ1 −Aα1,∞

(120)

ξ ∼
A∞

(
8C ′a6C

2
T0 +Aξ3A∞ + 2Aξ1

)
2 (8C ′a6C

2
T0 +Aξ3A∞ + 2Aξ1 −Aα1,∞)Ri

As expected, α tends to a constant (and so will do fCµ , through (102) and
(106)). It also appears that ξ (and thus fCν ) tends to zero as Ri−1. The
value of C ′a6 can be chosen from the asymptotic value fCµ,∞ = 0.228 given by
Sukoriansky et al.,23 writing

− α∞
2Cµ,0

= fCµ,∞ (121)

From (119) and (120), we obtain

C ′a6 =

(
BA4,∞
2BA1,∞

−BA2

)
B − 2Aξ1 +Aα1,∞

4C2
T0

(
2 + 3R+2

3BA1,∞
B
) (122)

where

B =
Aα1,∞

2Cµ,0fCµ,∞
+Aξ3 (123)

Numerically, we find C ′a6 = 0.224, and finally, from (116) and Table 6:

Ca7 = 2.68 (124)

Introducing (115) into our model (90) and (92) to (96) and re-arranging
would lead to complicated formulae; thus we prefer keeping the previous set of
formulae with a variable coefficient Ca5 (Ri) according to (115). The values of
model constants from Table 6 must then be modified according to (94) to (96),
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leading to Table 8. Figure 2 shows our modified model together with the models
already presented in Figure 1. The expected behaviour at large Ri is now in a
good agreement with Sukoriansky et al.’s predictions, particularly for fCν . We
also show on the same figure experimental28,29,30,31,32,33,34,35 and numerical27,36

data. The agreement is generally satisfactory, particularly for fCν . Note that
some of the data (experimental,28,32 but also numerical36) are in favour of the
old-fashioned model of Munk and Anderson for the prediction of the turbulent
Prandtl number and the flux Richardson number.

5.3 Anisotropy and realizability

The question of realizability is of fundamental importance for the theoretical
prediction of turbulent fluxes. This complicated issue will be briefly treated
here, focusing on Reynolds stresses. It has been known for a long time37 that the
realizability of R is based on the second and third invariants of the anisotropy
tensor a. With the general 2-D model (54), they read

A2 = tr
(
a2
)

=

(
α2 + β2Ω∗2 + γ2S

∗2

12

)
S∗2

2
(125)

A3 = tr
(
a3
)

=

(
α2 + β2Ω∗2 − γ2S

∗2

36

)
γ
S∗4

8

Alternatively, one can consider the quantities:6

ηa =

(
A2

24

)1/2

(126)

ξa =

(
A3

48

)1/3

Then, realizability is achieved provided the following two inequalities are
fulfilled:

|ξa| ≤ ηa ≤
(

1

27
+ 2ξ3

a

)1/2

(127)

or, identically:

6A2
3 ≤ A3

2 ≤
(

8

9
+A3

)3

(128)

From (125), it can be shown that the following inequality holds:

A3
2 − 6A2

3 =
(
α2 + β2Ω∗2

)(
α2 + β2Ω∗2 − γ2S

∗2

4

)2
S∗6

8
≥ 0 (129)

Hence, the first of the two inequalities (128) is always satisfied. However,
there is no evidence about the second one. With the present model (90) and (92)
to (96), with and without effect of internal waves, the evolution of ηa versus ξa in
Lumley’s triangle is presented on Figure 3 (top left) as a function of the gradient
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Richardson number (although the model without internal waves is less physical
than the other one, we will still examine both models in this section). It appears
that our models satisfies realizability except the model without internal waves
when Ri reaches the critical value Ric given by (98), where the turbulence is
supposed to be destroyed. Beyond this point, the realizability is broken because
the model is supposed to predict a negative value of S∗2, according to (97).
The fact that at Ri = Ric realizability fails from the first inequality of (128) is
noticeable, because at this point the turbulence is almost isotropic instead of
being two-dimensional. This means that for this model, while buoyancy affects
turbulence, the ratio of vertical to horizontal velocity fluctuations remains finite.
This state corresponds to an axisymmetric turbulence with a prolate Reynolds
ellipsoid. On the other hand, internal waves keep ξa (or, equivalently, A3)
almost constant with Ri. However, one should keep in mind that the model
with internal waves remains closer to the reality.

With the general assumption of simply stratified flows (section 4.2), the
Reynolds stresses and scalar fluxes can be written in developed forms from (51)
and (54) (with S∗xx = Γ∗T,x = 0), to give

R

k
=

 2
3 +

(
γ
6 − β

)
S∗2

2 0 αS
∗

2

0 2
3 −

γS∗2

6 0

αS
∗

2 0 2
3 +

(
γ
6 + β

)
S∗2

2

 (130)

and

Q∗T = Γ∗T

 1
2ζS

∗

0
ξ

 (131)

Next, one defines the dimensionless mean fluctuation components u+, v+

and w+ along the x, y and z axis as

u+ =

√
Rxx
k
, etc. (132)

A relevant scalar measure of vertical anisotropy is then given by the ratio of
vertical to horizontal kinetic energy:

σa =
w+2

u+2 + v+2
=

24

16− (6β + γ)S∗2
− 1 (133)

With the assumption (91), it simplifies to

σa =
12α

8α+ 6β + γ
− 1 (134)

We may compare our model to Zilitinkevich et al.,27 who suggest

σa =
1 + cZRf

4 (1−Rf)

[
1−

(
1 +

1

1 + cZRf

)
Rf

]
(135)
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with cZ = −2.25. This formula must be used together with (109) and (114).
Figure 3 (top right) shows σa versus Ri with the present models (with and
without internal waves) as well as (135) and experimental and numerical data.
It appears that these data sets are two scattered to draw firm conclusions about
the model quality. However, our models stand within the range of available
data. As already mentioned by Zilitinkevich et al., we observe that σa rapidly
decreases in a narrow band of Richardson numbers around Ric (indicated on
the figure, although it is no longer a critical value). At high Ri however, σa
remains finite. As previously mentioned, even the model without internal waves
keeps a finite value of vertical-to-horizontal energy at high Ri.

We finally examine the following two anisotropy parameters:

ca = − axz

w+
√
u+2 + v+2

(136)

cT = −
Q∗T,z

w+
√
θ∗

which are always positive. Mauritsen and Svensson38 propose empirical de-
pendency on Ri as

ca =
0.278

1 + 4Ri
+ 0.0925 (137)

cT =
0.3

1 + 4Ri

Figure 3 (bottom) shows the functions ca (Ri) and cT (Ri) according to our
model (with effect of internal waves) and (137). As σa does, those two param-
eters decrease rapidly around Ric, without any abrupt transition, to reach a
constant value. According to the conclusions of Figure 2, this high-Ri limit is
zero for cT (scalar anisotropy) while it is non-zero for ca (stress anisotropy).
The present model globally shows the same shape as the empirical model, but
give significantly different values of ca at large Ri and cT at small Ri. However,
it must be noticed that Mauritsen and Svensson’s model (137) is based on ob-
servations showing large uncertainties. A careful attention at Figures 2 and 4
of Mauritsen and Svensson show that the predictions of our model stand within
the range of their observations.

The values of anisotropy parameters at small and large Ri can be calculated
from (99):

A2,0 = −Ca3 = 0.356 (138)

A3,0 = 0

σa,0 =
6

4 + 3Ca2
− 1 = 0.227

ca,0 = 3

√
2C2

a2 + Ca3

2 (3Ca2 − 2) (3Ca2 + 4)
= 0.387

cT,0 =

√
CT0

R
= 0.386
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The behaviour of these quantities at large Ri (Ri −→ +∞) can also be
theoretically written from the model constants, leading to complicated formulae
that we will not write here. Numerically, we obtain

α∞ = −0.0413 (139)

β∞ = −0.0122

γ∞ ∼ −
0.00194

Ri

ξ∞ ∼ −
0.00436

Ri

and

A2,∞ = 0.333 (140)

A3,∞ ∼ −0.00989

Ri
σa,∞ = 0.171

ca,∞ = 0.289

cT,∞ ∼ 0.0821√
Ri

One may mention, for comparison, Zilitinkevich et al.,27 who give σa,0 = 0.25
and σa,∞ = 0.075, according to Figure 3.

6 Conclusions

An Explicit Algebraic Reynolds Stress and Scalar Flux Model (EARSSFM)
has been presented with buoyancy effects through slight density variations, for
simply-stratified turbulence (i.e. flows varying along the vertical direction).
This model is gives algebraic formulae for the Reynolds stress tensor anisotropy
a along with the active scalar flux vector Q∗T . It is summarized by equations
(54), (57) and (92) to (96), together with (90), (115) and model constants given
by Table 8. The model proved to predict the damping of turbulent diffusion
satisfactorily when compared to recent models and available exeprimental data.
In particular, it predicts a correct value of the neutral turbulent Prandtl number
(i.e. with no density stratification), and recovers the effect of internal waves at
high Richardson numbers. The variation of turbulent Prandtl number versus
gradient Richardson number Ri is also correctly predicted, as well as turbulence
anisotropy. In comparaison to other existing models of theoretical or numerical
damping functions, the present model presents the avantage of resulting directly
from a consistent derivation of algebraic fluxes from governing equations. In
particular, our model does not require any ad hoc constants.

One should temperate the conclusions of the above developments by mak-
ing the following remark. All the Explicit Algebraic models available in the
literature hold on the knowledge of local data, namely the mean velocity and
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scalar gradients S and ΓT (resulting from the governing equations (1)), as well
as the turbulent parameters k, ε (obtained from equations (17) and (19), where
the gradients play a prominent role through production and buoyancy). The
performance of such a model in a numerical code is thus always dependent on
the accuracy of the prediction of local gradients. Moreover, according to the
comments made at the end of section 3.1, the equation (19) governing ε is sub-
ject to many theoretical discussions. The ability of EARSSFM to provide good
predictions is thus directly connected to the capabilities of the standard two-
equation turbulence closure models and of the numerical schemes used to solve
the latter. In this context, another question is the validity of the standard k− ε
model coefficients (Table 2) under variable Ri.

Further work should consist of quantitative validations of the present model
for passive and active scalars, based on DNS data of S, ΓT , k and ε on a set
of typical flows. The question of internal waves whould also be more deeply
investigated from another viewpoint based on the dynamics of water waves.
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8 Appendices: examples of algebraic decompo-
sitions

8.1 Appendix 1: example of vector decomposition

We give here an example of the decomposition of unknown vectors on the basis
(56). Considering the case of the vector S∗Ω∗Γ∗T , we use (62) to write

S∗Ω∗Γ∗T =
(S∗Ω∗Γ∗T ) · Γ∗T
‖Γ∗T ‖

2 V(1) +
(S∗Ω∗Γ∗T ) · (Ω∗Γ∗T )

‖Ω∗Γ∗T ‖
2 V(2) (141)

=
1

Γ∗T
2

[(
Γ∗TT S∗Ω∗Γ∗T

)
V(1) +

4

Ω∗2
(
Γ∗TT Ω∗S∗Ω∗Γ∗T

)
V(2)

]
We used the relations (AB) ·C = CTAB for any tensor A and vectors B

and C, Ω∗T = −Ω∗ (Ω∗ is antisymmetric), and ‖Ω∗Γ∗T ‖ = Ω∗2 ‖Γ∗T ‖ /4 (Ω∗ is
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a rotation tensor) together with (66). Then, we can write (in 2-D), from (51):

Ω∗S∗Ω∗ = Ω∗xz
2

 0 0 1
0 0 0
−1 0 0

 −S∗xz 0 S∗xx
0 0 0
S∗xx 0 S∗xz

 (142)

= Ω∗xz
2

 S∗xx 0 S∗xz
0 0 0
S∗xz 0 −S∗xx

 =
Ω∗2

4
S∗

so that, immediately, with the definitions (68):

S∗Ω∗Γ∗T = S2V
(1) − S1V

(2) (143)

which is readily the second equation of (67).

8.2 Appendix 2: example of a tensor decomposition

Similarly to the algebraic calculations made in Appendix 1, we give an example
of tensor decomposition on the basis (53). We first note that for any symmetric
traceless tensor B, the following identity holds:[

AS − 1

3
(trA) I

]
: B = A : B (144)

(reminding that AS is the symmetric part of the tensor A). Next, as an

example we consider the tensor C = (ez ⊗Q∗T )
S − 1

3 (ez ·Q∗T ) I appearing in
(47). We first write the first component of C’s decomposition, according to
(57), (63), (66) and (144), as

C : T(1)∥∥T(1)
∥∥2 =

(ez ⊗Q∗T ) : S∗

‖S∗‖2
(145)

=
2

S∗2
(ξez ⊗ Γ∗T + ζez ⊗Ω∗Γ∗T ) : S∗

=
2

S∗2
(
ξeTz S∗Γ∗T + ζeTz S∗Ω∗Γ∗T

)
We used the relation (A⊗B) : C = ATCB for any tensor C and vectors A

and B. Next, from (56) and (67) we can write

C : T(1)∥∥T(1)
∥∥2 =

2

S∗2

(
ξS1ez ·V(1) + ξ

4S2

Ω∗2
ez ·V(2) + ζS2ez ·V(1) − ζS1ez ·V(2)

)
(146)

=
2

S∗2

[
ξ

(
S1Γ1 +

4

Ω∗2
S2Γ2

)
+ ζ (S2Γ1 − S1Γ2)

]
The two other components of C along the axis corresponding to the tensors

T(2) and T(3) are calculated similarly. In the subsequent algebra required to
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treat the second (tensorial) equation of the system (47), we use the following
two identities:

S2
1 +

4

Ω∗2
S2

2 =
S∗2

4

Γ2
1 +

4

Ω∗2
Γ2

2 = Γ∗T
2

which simply result from the orthogonality of the basis
{
T(i)

}
and

{
V(i)

}
.
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Model C CRR CRP CRQ CRG CRS

LRR 0.4 1.5 0.76 0.11 0.55 0.36
WJ 5

9 1.8 0.78 0.22 0.55 0.53
Table 1 - Model constants for the LRR-QI model, according to Launder,

Reece and Rodi (LRR)7 and Wallin and Johansson (WJ)8.

Cε1 Cε2 Cε3

1.44 1.92 1.0

Table 2 - Model constants11 of the equation governing ε.

Model Ba1 Ba2 Ba3 Ba4 Ba5

LRR 0.13 0.35 8
15 0.085 0.90

WJ 0 0.44 8
15 0 0.90

Table 3 - Model constants for the final Reynolds stress model (22).

Model CTQ CTΓ C ′TΓ CTR CTG

HWJ 4.51 −0.47 0.02 0.08 0.5

WWJ 1.6
(

1 + τ
τθ

)
0 0 0 0.5

Table 4 - Model constants for pressure-scalar gradient correlation model,
according to Högström et al. (HWJ)12 and Wikström et al. (WWJ).5

Model BT1 BT2 BT3 BT4

HWJ 2.90 2.98 1.84 1.0
WWJ 2 2 2 1.0
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Table 5 - Model constants of the final scalar flux model (37).

Ca2 Ca3 Ca5 CT0 R′′

0.296 −0.356 0.6 0.164 −2.1

Table 6 - Model constants with assumption (88).

Aα1 Aα2 Aξ1 Aξ2 Aξ3 BA1 BA2 BA3 BA4

0.280 1.07 0.00563 0.0646 0.656 −0.809 0.0907 0.375 −0.0673

Table 7 - Constants of the model (92) to (96).

Ca2 Ca3 Ca6 Ca7 CT0 R

0.296 −0.356 0.6 2.68 0.164 1.1
Table 8 - Model constants of the final model with internal waves, given by

equations (90), (92) to (96) and (115).
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Figure 1: Damping functions fCµ (Ri) (top left), fCν (Ri) (top right) and
fPrt (Ri) (bottom left) and flux Richardson number Rf (bottom right) versus
gradient Richardson number Ri. Bold solid line: present model without ac-
counting for internal waves; solid thin line: Sukoriansky et al.;23 dashed line:
Mellor and Yamada;2 dotted line: Munk and Anderson;1 bold dashed line: Zil-
itinkevich et al.27
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Figure 2: Same as Figure 1, the present model (bold solid line) account-
ing now for internal waves. The symbols are experimental and numerical data:
empty circles: Ohya;28 empty squares: Mahrt and Vickers;29 empty diamonds:
Poulos et al.;30 empty triangles: Uttal et al.;31 black overturned triangles:
Strang and Fernando;32 black squares: Rehmann and Koseff;33 black triangles:
Bertin et al.;34 black diamonds: Kondo et al.;35 crosses: LES by Zilitinkevitch
et al.;27 slanting crosses: DNS by Stretch et al.36
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Figure 3: Top left: the Lumley triangle (ξa,ηa) (the rectangle is a zoom);
top right: σa versus Ri; bottom left: ca versus Ri; bottom right: cT versus
Ri. Solid lines: present model with internal waves; dashed lines: present model
without internal waves; dotted line: Zilitinkevich et al.;27 dashed-dotted line:
Mauritsen and Svensson.38 The symbols are experimental and numerical data,
with nomenclature identical as in Figure 2.
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