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SUMMARY 

The gridless Smoothed Particle Hydrodynamics (SPH) method is now commonly used in CFD (Computational Fluid 

Dynamics) and appears to be promising in predicting complex free-surface flows. However, increasing flow 

complexity requires appropriate approaches for taking account of turbulent effects, whereas some authors are still 

working without any turbulence closure in SPH. A review of recently developed turbulence models adapted to the 

SPH method is presented herein, from the simplistic point of view of a one-equation model involving mixing length 

to more sophisticated (and thus realistic) models like Explicit Algebraic Reynolds Stress Models (EARSM) or Large 

Eddy Simulation (LES). Each proposed model is tested and validated on the basis of schematic cases for which 

laboratory data, theoretical or numerical solutions are available in the general field of turbulent free-surface 

incompressible flows (e.g. open-channel flow and schematic dam break). They give satisfactory results, even though 

some progress should be made in the future in terms of free surface influence and wall conditions. Recommendations 

are given to SPH users to apply this method to the modeling of complex free-surface turbulent flows. 
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1. INTRODUCTION 

At the end of the 70’s, the Smoothed Particle Hydrodynamics (SPH) numerical method was invented to 

simulate astrophysical problems, for which a meshless formalism is helpful, as pointed out by Gingold 

and Monaghan [1]. SPH is a fully Lagrangian method, which means that no computational mesh or grid is 

required. At the beginning of the 80’s, this method was successfully applied to other fields of 

computational physics [2], in particular for rapid dynamic phenomena in solid [3] and fluid dynamics [4]. 

Today, SPH is becoming one of the most popular meshless methods for fluid dynamics and is commonly 

applied to real free-surface flows. The complete standard SPH equations are here presented in section 2 

and an example is presented and validated in section 4 under laminar conditions. 

However, literature regarding turbulence modelling in SPH has been quite scarce until now. Recently, the 

authors successfully applied mixing length [5] [6] and k−ε [7] models to a turbulent free surface channel. 

A 3D Large Eddy Simulation (LES) model was also applied to the collapse of a water column in a tank 

[8], while Shao and Gotoh [9] as well as Dalrymple and Rogers [10] applied a two-dimensional LES 

model to wave propagation and interaction with coastal defence. Given these promising developments, 

we present here a brief overview of the SPH tools and applications in CFD (Computational Fluid 

Dynamics) for turbulent incompressible free-surface flows. We will include in our presentation a review 

of available SPH turbulent models based on transport equations, and try to highlight the advantages and 

drawbacks of each. The natural conservation properties of the SPH method will be presented in section 3, 

and their consequences will be discussed. Staring from these considerations, we will first present 

turbulent closures based on transport equations like the well known k−ε model (sections 5 and 6), with 

validations showing its advantages and limitations in the case of free-surface flows. An Explicit Algebraic 



Reynolds Stress Model (EARSM) is then proposed in section 7, and his benefits are shown, while Large 

Eddy Simulation (LES) is presented in section 8. Advantages and drawbacks of each model will be 

highlighted. 

Our presentation will be supported by applications on schematic cases for which theoretical solutions or 

experimental data are available. For practical reasons related to computational cost, most of the presented 

application cases are 2-dimensional (except on section 8); however, the reader should keep in mind that 

the presented equations are also valid in three dimensions. On a theoretical point of view, emphasis will 

be placed on the conservativity properties of the proposed formulations. 

2. THE SPH GOVERNING EQUATIONS 

In this section, we briefly present the main ideas of SPH considering the specific field of fluid dynamics; 

for more details the reader can refer to Monaghan [2] and Morris et al. [11]. The SPH formalism is based 

on the idea that a flow can be considered as a set of bulk parts of moving fluid referred to as “particles”. 

Each particle a, located at ra, has a constant mass ma and carries a density ρa, a pressure pa, velocity 

vector ua, dynamic (respectively kinematic) viscosity µa (respectively νa = µa / ρa), and more generally 

different physical quantities if it is required (e.g. temperature or energy). All these quantities evolve 

according to governing equations, which are written in terms of fluxes between particles. At the heart of 

SPH, any function A of position r is written as a convolution product with an interpolant kernel function 

wh: 

 ( ) ( ) ( ) ( )2
''' hOdrwAA h +−= ∫Ω rrrr  (1) 

The summation is extended to the entire domain Ω and the parameter h, namely the smoothing length, 

will be discussed later. Note that equation (1) would be mathematically exact if the Dirac distribution δ(r 

– r’) was written in place of wh. The transition to a discrete domain is achieved by approximating (1) with 



a Riemann summation or by using the Monte-Carlo formula: 

 ( ) ( ) ( ) ( )2hOwA
m

A

b

bhb

b

b +−
ρ

=∑ rrrr   (2) 

where b is a dummy subscript referring to each particle present in the domain, the infinitesimal volume 

dr’ being replaced by the volume mb / ρb of particle b. Finally, assuming that the SPH approximation (2) 

is exact (i.e. neglecting the terms of order h
2
) and considering the case of a spherical kernel (i.e. wh only 

depends on the distance between particle pair), we can write the value of A at the location of particle a as 
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=

b

abhb

b

b
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where Ab is the value of A at the location rb of particle b and rab denotes the distance between a and b. 

Equation (3) is called the SPH interpolation. It appears that (3) is differentiable, provided the kernel is 

differentiable too; if  the function A corresponds to a scalar field, the basic form of its gradient at particle 

a can then be obtained by taking the gradient of (3): 
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in which the symbolic expression a∇  denotes the gradient of the kernel taken with respect to the 

coordinates of particle a, while wh(rab)  is written wab for simplicity. However, as in the finite element 

method, the gradient of a scalar field A can here be written in several ways, each one presenting specific 

properties. A common way for writing pressure gradient in SPH, for example, consists of inserting 

density into the gradient operator in the continuous formalism: 
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+
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Then, approximating the right-hand-side of equation (5) with relation (4) yields an SPH form of the 

pressure force experienced by a: 
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In contrast to the gradient form (4), equation (6) is asymmetric with respect to a and b subscripts, which 

provides many advantages (see section 3). 

 

Figure 1. View of the 4
th

 order spline kernel in two dimensions. 
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Figure 2. Left: particle interactions are commonly restricted to a finite neighbourhood bounded by a disc 



(respectively a sphere) in 2D (respectively in 3D). Right: Wall and ghost particles are used to ensure a 

Neumann pressure condition on solid boundaries. 

This can also be done for any differential operator such as the divergence of a vector field. Henceforth, 

the SPH formalism allows the possibility of estimating any differential operator by using the kernel, 

without using any computational grid. A usual kernel example is the 4
th

 order spline, used in most of the 

applications of the present work: 
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where q is defined as the ratio rab / h and d is the problem dimension (generally 2 or 3). Besides, αd = 96 / 

1199π if d = 2 and 1 / 20π if d = 3 to ensure kernel normalization. An important feature of (7) is that wh is 

designed with a compact support proportional to h, as shown on figure 1. The smoothing length h is 

commonly proportional to the initial particle spacing δr, so that each particle interacts with a finite 

number of neighbour particles (see figure 2). In  SPH equations like (6), it means that the summation runs 

over a reduced number of particles b, keeping the number of operations involved in the algorithm 

proportional to the particle number (for a given ratio h / δr). A link table between particles is thus 

established at each time step to keep the algorithm efficient. 

Given these basic tools, the Navier-Stokes equations can be written in SPH formalism. The continuous 

Lagrangian form of these equations for a weakly compressible flow is 

 gu
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where g is the acceleration of gravity (low density variations are assumed to have no effect in the 

momentum equation (8)). Given approximation (6) and applying similar considerations to the divergence 

and Laplace operators lead to a possible SPH form of (8) and (9) as 
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where rab = ra − rb and uab = ua − ub. ΠΠΠΠab is a viscous force presented in the literature in two main forms, 

one proposed by Monaghan [2]: 
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and the second one suggested by Morris et al. [11]: 
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It has been shown in [6] that both model the term ν∇2
u of (8) and have specific properties, as shown in 

section 3. Note that a small parameter is usually added to 2

abr  in order to avoid zero denominators in (12) 

and (13); however, for simplicity it will be skipped in the following. Equation (10) is a momentum 

equation, used to compute particle velocity, while (11) is an SPH form of the continuity equation, giving 

particle density. Both can be integrated in time through traditional explicit numerical schemes (e.g. Euler 

or Runge-Kutta), and particle positions are obtained by velocity integration. Lastly, we need an estimation 

of pressure. For practical applications in the field of weakly compressible flows, Monaghan [4] suggested 

to estimate it from an equation of state:  
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in which ρ0 is a reference density, c0 a numerical speed of sound and γ = 7 for water. Then, if c0 is high 

enough, equation (14) is suitable for a weakly compressible fluid, which can model incompressibility 

with a sufficient accuracy. However, for numerical reasons, the value of c0 in the model is not the true 

speed of sound; indeed, the time step is usually subject to some stability constraints: 
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where γa is the modulus of the acceleration of particle a. The first of these conditions is a Courant 

criterion; the coefficients are based on numerical experiments (see Morris et al. [11]). The speed of sound 

appearing in the first constraint would yield very small time steps if one would set c0 to its physical value; 

therefore, it is usually recommended to set it to an artificial (numerical) value equal to ten times the 

maximum flow speed, keeping the relative density fluctuations less than 1%. With this approximation, 

SPH appears to be a weakly compressible method. It may be mentioned that pressure estimation from 

(14) is sometimes subject to instabilities and show scattered distributions [6]; in order to avoid these 

difficulties, some authors (e.g. Shao and Gotoh [9]) prefer solving a pressure Poisson equation. However, 

this approach implies additional numerical operations while the method based on a state equation remains 

quite simple; all the flows presented below were simulated using this approach, which is, according to 

Monaghan [4], a good balance between accuracy and simplicity for SPH. 

Solid boundaries are often modelled with fixed wall particles and artificial repulsive forces [4], or 

alternatively with mirror particles [11]. We prefer the latter solution, since it keeps conservation laws 

valid (see section 3). The main idea is to model walls with “wall particles” (without any artificial 

repulsive force) and several layers of  “ghost particles” (see figure 2, right picture), density of which is 



prescribed by symmetry when computing particle density through equation (11). This means that when a 

mirror particle b contributes to the density evolution of a fluid particle a through the right-hand-side of 

equation (11), the same term is added to the density evolution of particle b. Thus, equation (14) keeps 

pressure forces symmetric with respect to the wall, ensuring an artificial Neumann condition regarding 

pressure. Note that, in contrast to the method proposed in many SPH papers (e.g. Morris et al. [11]), the 

presented algorithm is based on fixed ghost particles. This new pressure wall condition enables a perfect 

impermeability even in rapid dynamic phenomena such as dam breaking. Besides, contrary to the 

repulsive forces presented in [3], the present formulation does not require any ad hoc coefficient. Under 

laminar conditions, wall and mirror particles have a zero velocity to prescribe a no-slip condtion at the 

wall. In contrast, in our turbulent developments (section 5), we will use the wall particles to prescribe 

Dirichlet or Neumann conditions of the modelled physical quantities. 

All the abovementioned developments show that a strong advantage of the SPH method is the use of a 

Lagrangian formalism, for which advection terms are implicitly included in the particle time derivative 

(left-hand-side of equations (10) and (11)). One may also emphasize the fact that the present model and 

equations are equally valid in two and three dimensions, through the choice of an appropriate 

normalization constant in the kernel definition (7). The next section will examine additional advantages of 

SPH, in terms of conservation laws. 

3. CONSERVATION PROPERTIES 

As suggested in the previous section, the asymmetry of SPH equations with respect to a and b subscripts 

has a strong physical meaning. In this section, we will investigate this point, leading to some conclusions 

of interest for turbulence closures. In equation (10), the quantity 
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is the force exerted by particle b on particle a, showing asymmetry with respect to a and b, regardless of 

the model used for viscous forces ΠΠΠΠab (see equations (12) and (13)). Indeed, the kernel gradient changes 

its sign when permuting a and b subscripts; hence the SPH form of fluid forces satisfies the action-

reaction law: 

 baab →→ −= FF   (17) 

This immediately implies the conservation of total linear momentum for an isolated set of particles. More 

generally, the SPH equations have many interesting properties, among which they are Galilean-invariant. 

The above-mentioned features come from the fact that equation (10) can be partially derived from an 

action principle (see Landau and Lifchitz [12]). It is known that the basic equations of Lagrangian 

mechanics, coming from a variational principle, are the so-called Lagrange equations: 
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for each particle a, L being a Lagrange function relative to the whole particle system, equal to the 

difference between kinetic and potential energies. Therefore, in SPH formalism, one can introduce an 

internal energy ea for each particle, leading to 
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Equation (18) then gives the equation of motion for particle a as 
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An estimation of the last term can be obtained from the SPH interpolation (3): 
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where δab refers to Kronecker’s notation. Thus, using the asymmetry of the kernel gradient, (20) gives 
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Eventually, the laws of thermodynamics show that internal energy (for non-dissipative media) satisfies 

the rule de = −pdV = (p / ρ2
)dρ, so that p / ρ2 

is the derivative of internal energy with respect to the 

density. Changing ρ∂∂ /e  with p / ρ2 
in (22) leads to the momentum equation (10) with pressure forces 

only (i.e. energy-conservative forces). This short demonstration shows that SPH is a very attractive 

method, based on strong physical considerations. One may emphasize the fact that various SPH forms for 

estimating pressure gradient are available, as in traditional mesh-based methods. The above-mentioned 

proof is mainly based on the assumption that the density should be written as in (21); Bonet and Lok [13] 

show that different approaches lead to various pressure gradient forms, all of them being asymmetric, thus 

conserving linear momentum and energy. 

Shear (viscous) forces can also be accounted for by this approach, considering that fluid shear is a linear 

function of velocities (see Landau and Lifchitz [14]), like in the Navier-Stokes momentum equation (8). 

The most general form of such a linear dependency for the viscous force experienced by a particle a can 

be written as 

 ∑−=
b

abab

visc

a uAF   (23) 

in which the Aab’s are second-order positive definite tensors, symmetric in a and b (which are not 

denoting tensor indices but particle labels). Equation (23) is a general SPH form of viscous forces; 

contrary to pressure forces, they do not appear as the derivative of a lagrangian function L with respect to 

positions ra, but as the derivative of a certain function F with respect to velocities ua. Indeed, one could 

possibly include them in the momentum equation (18) to yield 
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in which F is defined by the following quadratic form: 
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The physical meaning of F will appear further. Coming back to the forms given in equation (10), we now 

see that abababba mm uAΠ −= . Furthermore, as a consequence of A’s symmetry, the conservation of total 

linear momentum is preserved, as mentioned earlier. Let us show this result more properly. The time 

derivative of total momentum can be written as 
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where pres

ab→F  represents the part of forces from equation (16) corresponding to pressure only. Thus, the 

properties of asymmetry of pres

ab→F  and uab, together with the symmetry of Aab, show that the right-hand-

side of (26) vanishes. However, conservation of angular momentum turns differently. Using the 

asymmetry properties of the given variables, one finds 
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Thus, it appears that the conservation of angular momentum of pressure forces is due to the fact that 

pres

ab→F , like aba w∇ , is co-linear with rab (see e.g. the right-hand-side of equation (22)). On the other hand, 



viscous forces conserve angular momentum only if ( ) 0uAr =× ababab , which occurs if Aab takes the 

general form 

 ababab βrA ⊗=   (28) 

where ββββab is a vector field satisfying ββββab = −ββββba. In this case, shear forces (23) can then be rewritten as 
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The form written in (12) is then relevant, with the following choice: 
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In contrast, the form (13) does not satisfy angular momentum conservation but has another property. Let 

us have a look at the general viscous term (23) in the particular case of a rigid body rotation: 
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where ω is an angular velocity and e the unit vector perpendicular to the plane in which the rotation takes 

place. It is then easy to show that these shear forces vanish (as required) if and only if 

 IA abab α=  (32) 

where I is the unit tensor. Equation (13) is a particular form of (32) with 
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In the following, we will prefer the latter choice, given that angular momentum conservation is not 

essential for our applications. Finally, we now take a look at energy conservation in Lagrangian models: 

equations (23) and (24) can be used to show (see [14]) that the time derivative of the total energy E of a 

set of particles is given by 
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Hence, F is simply the energy dissipation rate. This shows that energy loss in SPH is only due to viscous 

forces, as in continuous equations. Equation (34) will be of great interest in the context of turbulence 

modelling (see section 5). 

To end with conservation properties and in the perspective of turbulent closure models, let us consider the 

possibility of modelling a transport and diffusion of a scalar in SPH. Viscous forces (13) suggest a similar 

form for general diffusion processes, so that the advection-diffusion equation for a scalar field C could be 

written in SPH form as 
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where Ca and Ka are respectively scalar concentration and dynamic diffusion coefficient corresponding to 

particle a, while Cab = Ca − Cb and SC is a source term. Many authors proposed  similar models (see e.g. 

Cleary and Monaghan [15] for temperature conductivity). Again, the asymmetry of equation (35) can be 

interpreted in terms of conservation: forgetting the source term, it comes that the quantity 
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is the C−flux from b to a (if C is measured by unit mass). Then, the total amount of scalar is exactly 

conserved. These considerations will be of great interest for turbulent closure (see section 5). Note that 

the C-flux vanishes between two particles carrying the same concentration. 

4. APPLICATION TO A LAMINAR FLOW 

Before coming to turbulent flows, it appears interesting to test the ability of SPH to simulate 

incompressible laminar flows, although it was presented by many authors (see e.g. [11]). The test case 



presented here is a 2D periodic hill flow designed within an Ercoftac workshop [16]. It involves about 

20,000 fluid particles driven by a horizontal propelling force updated in time to prescribe the correct flow 

rate. The Reynolds number, based on the hill height and the bulk velocity, is equal to 50, and there is no 

free surface, the upper boundary being a solid wall (hence, gravity is not considered here). The results, 

compared with finite volume simulations [16], show an excellent agreement in terms of velocities (see 

figures 3 and 4). One of the key challenges of such a simulation is the recirculation pattern given in figure 

4. One may mention the fact that numerical fluctuations due to the SPH scheme occur in this case (in 

particular in the vicinity of the upper wall); thus the velocity fields presented on figures 3 and 4 were 

obtained after time-averaging. Further information and data regarding the modelling of laminar flows 

with SPH are presented in [6] and [17]. 

 

Figure 3. 2D laminar periodic hill flow simulated with a finite volume method (top) and with present SPH 

model (bottom). Axial (left) and vertical (right) velocities. The SPH velocity fields were time-averaged to 

reduce numerical fluctuations. 



 

Figure 4. 2D laminar periodic hill flow simulated with a finite volume method (top left) and with present 

SPH model (bottom left). Velocity vectors in the recirculating area. Axial velocity profiles are presented 

on the right part; solid lines = finite volume method, symbols = present SPH model. 

5. TRADITIONAL TURBULENT CLOSURES 

When considering turbulent flows, all physical quantities like pressures and velocities can be Reynolds-

averaged, which is referred to by overstrike bars in the following. The Reynolds-averaged Navier-Stokes 

(RANS) momentum equation then takes the following form: 
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(from now on, terms like d/dt refer to the Lagrangian derivative following the mean motion). If velocity 

turbulent fluctuations are denoted by a vector u′ , one can first assume that the Reynolds stress tensor R = 



uu ′⊗′ is modelled through the traditional Boussinesq eddy viscosity assumption, we write 
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where νT is an eddy viscosity, ( ) 2/tr2/ R=′′= iiuuk  the turbulent kinetic energy and 
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are the components of the mean rate-of-strain tensor S (in contrast to indices a and b referring to particles, 

letters i and j here denote spatial co-ordinates). It is known that introducing (38) into (37) yields a 

momentum equation similar to the laminar one (8), the molecular viscosity being increased by the eddy 

viscosity. Considering formula (13) for modelling eddy viscous terms, the SPH momentum and continuity 

equations (10) and (11) can thus be rewritten as 
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with µe,a = µa + µT,a. Therefore, each particle a is affected by a dynamic eddy viscosity, referred to as µT,a 

= ρaνT,a. Since we deal here with nearly incompressible flows, we assume that aa ρ≈ρ . The Reynolds-

averaged pressure is still estimated using the previous equation of state (14). One may also add to the 

pressure the quantity 2ρk / 3, to be consistent with (37); although this new term is generally dominated by 

the pressure itself, it is recommended to keep it when k can be estimated, as in the developments 

presented herein. One may also note that the conservation laws presented in section 3 remain valid with 

the new momentum equation (40), since the mathematical form is unchanged in comparison to the 

laminar equation (10). 



The idea of Reynolds-averaging the SPH equations was presented by Violeau et al. [5] and Shao and 

Gotoh [9], using a mixing length turbulent closure. We present here a more sophisticated approach (see 

Violeau [7]) based on the traditional k−ε model developed in the context of Eulerian numerical methods. 

Firstly, one defines for each particle a a turbulent kinetic energy ka and an energy dissipation rate εa, and 

assumes the classical dimensional relation: 
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in which Cµ is an empirical constant (Launder and Spalding [18]). Then, additional equations are required 

to calculate ka and εa at each time step. The usual Lagrangian transport equation for turbulent kinetic 

energy takes the following continuous form 
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which is a scalar advection-diffusion equation similar to (35) (but in a continuous form), the production of 

kinetic energy P acting as a source term while the dissipation ε is a sink one [18]. Thus, in SPH 

formalism, a transport equation for k can be written in the following form: 
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where µk,a = µa + µT,a / σk is k’s dynamic diffusivity. Equation (44) involves particle production Pa, 

turbulent diffusion (in which kab = ka − kb) and particle dissipation εa. As in usual turbulent diffusion 

models, the parameter σk is a Schmidt number defined as the ratio between the eddy viscosity and kinetic 

energy diffusivity. In continuous notations, the production term is defined by P = –R : S = –RijSij (with 

Einstein’s notation regarding i and j subscripts), giving together with (38) 

 2SP Tν=  (45) 



with 

 SS :2=S  (46) 

referred to as the scalar mean rate-of-strain. However, in order to avoid any overestimation of k in case of 

large scalar rate-of-strain (as for instance in the case of impinging jet of breaking wave), one should keep 

in mind that turbulence anisotropy is always bounded by 2/1

µC  (see e.g. Guimet and Laurence [19]). 

Hence, we consider here a linear dependency on the rate-of-strain for large deformations, writing the 

production of particle a as 
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In order to estimate the scalar rate-of-strain Sa relative to particle a, velocity gradients appearing in (39) 

can be written in an SPH tensorial form as 
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where ei is the unit vector corresponding to the i-th co-ordinate. Then, Sa can easily be computed from 

(46). However, this method implies an SPH interpolation in the form (48) for each pair of subscripts i and 

j, i.e. 9 interpolations in 3D, which is not computationally efficient. Alternatively, one can come back to 

the continuous definition of energy dissipation for a viscous fluid, writing: 

 ∫Ω Ωρν−= ds
dt

dE 2  (49) 

in which s is the scalar rate-of-strain based on true velocities (instead of averaged ones). Thus, coming 

back to (25), (32) and (34) and approximating the integral appearing in (49) with the SPH interpolant (2), 

one obtains 
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This equation suggests an SPH form for sa: 
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Eventually, considering the definition (33) for the αab’s and coming back to averaged notations, we get 
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where ababu u= . Equation (52), based on a single interpolation, will be preferably used in the following. 

Note that the right-hand-side of (52) is always positive, since ababa w r⋅∇  is negative. 

In the SPH k–ε model, (44) is integrated in time to calculate ka using a temporal numerical scheme as for 

equation (10). The dissipation rate ε can be similarly calculated, solving a new equation written in SPH 

language as 
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with µε,a = µa + µT,a / σε. and εab = εa − εb. (53) is an SPH form of the traditional advection-diffusion 

equation for the dissipation rate [18]. Alternatively, the dissipation can be estimated from a dimensional 

relation like 
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where Lm,a is a mixing length attached to particle a, which can be proportional to the particle size, or 

alternatively defined as a function of particle position for simple shear flows. In contrast to equation (53), 

model (54) (here referred to as k–Lm) does not need any numerical scheme for ε; on the other hand it 



requires the definition of a mixing length. Moreover, it has been shown in the past that the use of a 

differential equation for estimating ε gives much better results, and this is also true in the SPH context 

(see section 7). 

Both k and ε equations in SPH forms (44) and (53) satisfy the conservation properties mentioned in 

section 3; in other terms, the diffusion terms are not responsible for any artificial energy loss, only 

contributing to the spatial re-distribution of k and ε in time through appropriate fluxes between particles. 

We use here the set of constant values recommended by Launder and Spalding [18]: Cµ = 0.09, σk = 1.0, 

σε = 1.3, Cε,1 = 1.44 and Cε,2 = 1.92. Dirichlet wall boundary conditions for kinetic energy and mean 

velocity are specified as 
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for all particles located on solid boundaries (wall particles only). In the traditional log-law appearing in 

(55), κ = 0.41 is von Karman’s constant, while u*,a is the shear velocity relative to wall particle a and νa 

its molecular kinematic viscosity. δ is a distance arbitrarily chosen small enough in comparison to the 

particle size, but larger than the viscous sub-layer thickness. Note that a rough log-law for near-wall 

velocities can be easily programmed as a wall function in place of the smooth one (55). Eventually, the 

value of shear velocity attached to a wall particle can be estimated from the wall velocity gradient given 

by (48). In the k–ε SPH model, a Neumann wall condition for ε is enforced by setting the diffusion term 

appearing in (53) as 
24

*
/ δσ εu  for all wall particles. However, this specific wall condition breaks 

conservativity for ε diffusion; indeed, prescribing a consistent Neumann boundary condition seems 



difficult, since ε presents a very high gradient near the wall. The use of symmetry based on mirror 

particles as we presented in section 2 for density and pressure is thus unefficient in the case of ε. 

Specific free surface boundary conditions are not considered here, provided the lack of particles in the 

vicinity of a free surface makes all quantities rapidly decreasing when approaching the surface (as for 

pressure), which is enough for numerical stability and physical meaning. In particular, pressure, eddy 

viscosity and turbulent kinetic energy vanish near the free surface. A more accurate approach would 

require further investigation; however, since SPH was designed to treat complicated flows, identifying the 

particles located on the free surface seems not always straightforward. 
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Figure 5. Sketch of the open-channel. 

An example of SPH turbulent computation in a 2D steady periodic (i.e. “infinite”) open-channel flow 

using the above-mentioned equations, is briefly presented in figure 5. The water depth is H = 0.4 m and 

the computation involves 40 × 40 fluid particles driven by a horizontal force playing the role of the 

pressure gradient resulting from a bed slope. We consider here a wall with roughness of 0.01 m. The bulk 

velocity is 0.753 m/s, giving a Reynolds number of 301,200 and a shear velocity of 0.05 m/s. Following 

Nezu and Nakagawa [20], the mixing length was defined as 
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where za is the particle distance to the bed level. For this particular case, where the water depth is constant 

and thus the free surface steady, a free surface condition for energy dissipation was prescribed following 

[20], as Hkaa α=ε /2/3 with α = 0.18. Turbulent kinetic energy, dissipation rate, eddy viscosity and 

horizontal Reynolds-averaged velocities are compared to experimental and numerical data from Nezu and 

Nakagawa [20] and Warner et al. [21], showing a fairly good agreement (figure 6). In particular, the well-

known velocity log-profile is correctly reproduced by the model. However, the wall Neumann condition 

regarding ε sometimes leads to underestimations of the eddy viscosity in the k−ε case. The reader can 

refer to [6] and [7] for more details about this test case. Despite its simplicity, it shows the ability of the 

proposed SPH k−ε model to predict the flow and averaged turbulent characteristic near a wall under 

permanent conditions. It also proves that the wall boundary conditions are correctly specified. 

 



 

Figure 6. Open-channel turbulent steady flow. Distributions of k / 2

*u  (a), εH / 3

*u  (b), νT / *Hu (c) and 

axial velocity in m/s (d) versus non-dimensional distance to the bed z / H (on vertical axis). Present SPH 

method with � k−Lm model and � k−ε model; −− semi-empirical [20]; × experimental [20]; + finite 

elements k−ε [21]. 

6. COLLAPSE OF A WATER COLUMN 

Equations corresponding to the k−ε SPH model presented in the previous section are solved here in the 

case of a collapse of a 2 m high 2D water column in a tank, due to the gravity. The complete description 

of the experimental case is given by Koshizuka and Oka [22], and a brief sketch is given on figure 7. The 

initial width of the column is a = 1 m and its height 2a, while the tank is 4 m long, and the flow involves 

20,000 fluid particles. Figure 8 presents distributions of velocity amplitude at different stages during this 



flow, showing a wave breaking. It must be emphasized that the k−ε turbulent closure, by providing a 

physical distribution of eddy viscosity in space, gives much smoother velocity and pressure fields than 

traditional SPH viscous models based on a constant (and sometimes artificial) viscosity, and thus 

increases the numerical stability of the method. Numerical tests have shown that a constant viscosity can 

even reach to numerical breakdown in the presented case. 
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Figure 7. Sketch of the initial configuration of the water column. 

 



    

Figure 8. Collapse of a water column in a tank simulated with the present SPH k−ε model. Velocity 

magnitude distribution at various stages (the legend applies to all the snapshots). To clarify the 

visualisation, the fields were interpolated on a spatial grid (not involved in the SPH computation). 

Distances are in meters. 



From a qualitative point of view, the flow appears realistic; in particular, the treatment of solid walls 

seems satisfactory, although the particles positions are slightly scattered in the vicinity of the lower wall 

(see figure 9). Figure 10 provides a quantitative validation of the model, showing the maximum x-position 

of the front and water depth on the left vertical wall. Comparison with experiments conducted in [22] 

reveal a satisfactory agreement. 

 

Figure 9. Collapse of a water column in a tank simulated with the present SPH k−ε model. Zoom on the 

particle positions near the wave front at t = 0.5 s (axis are labelled in meters). 

The present example shows that the proposed SPH k−ε model can treat complex flows involving highly 

disturbed free-surfaces and rapid motion. However, no validation can be done in terms of shape of the 

free-surface, which is of a great interest for all possible applications in environmental fluid mechanics. 

For example, estimating wave breaking is of major importance in coastal engineering, and the design of 

sea defence requires the prediction of wave run-up and overtopping. Both phenomena cannot be properly 

modelled without an appropriate prediction of the free-surface in space and time. The next section will 

clarify this point and show that a more complicated approach is necessary for such a purpose. 



 

Figure 10. Collapse of a water column in a tank simulated with the present SPH k−ε model (solid lines). 

Non-dimensional maximum x-position X
*
 = X /a and water depth H

*
 = H / (2a) versus non-dimensional 

time t
*
 = t (a/2g)

1/2
 (a is the initial column width). Validation with experiments (circles) from [22]. 

7. EXPLICIT ALGREBRAIC REYNOLDS STRESS MODELS 

Despite its ability to correctly simulate complex flows, the k−ε model was proved to be inaccurate when 

modelling violent distortions, or more generally non isotropic flows, in which the largest turbulent eddies 

can exhibit a complex behaviour involving non-linear dependency on boundary conditions (see e.g. Pope 

[23]). A more accurate approach, still based on a Reynolds-averaging idea, was first proposed by Pope 

[24] for two-dimensional flows, then extended by Gatski and Speziale [25] to three dimensions. However, 

in the following we will refer to Wallin and Johansson [26]. Referred to as “Explicit Algebraic Reynolds 

Stress Models (EARSM)”, these closure forms consist of setting Reynolds stresses through an explicit 

dependency upon the rate-of-strain and vorticity tensors components as 
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where S’s components are defined by (39), while the components of the vorticity (or rotation rate) tensor 

ΩΩΩΩ are 
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One should emphasize the fact that model (57) is only valid in two dimensions; we will then reduce our 

considerations to this case in the present section. If the constant C2 was zero, the above equation would 

simply give Boussinesq’s model (38) with an eddy viscosity specified by (42), in which there is no 

dependency on ΩΩΩΩ. The additional terms presented in (57) hence model the possible effects of mean flow 

rotation, but also non-linear strain dependency. In the form presented here, the coefficients Cµ and C2 are 

defined by 
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where P
*
 = P / ε is the production-to-dissipation ratio and Ω*

 = kΩ / ε, where Ω2
 = 2ΩΩΩΩ : ΩΩΩΩ  is the scalar 

mean rotation rate (squared). The model constants are B0 = 0.8, B2 = 4 / 9 and B3 = 8 / 15. One can see 

that Cµ  is no longer a constant but depends on the production (among other variables). The production 

rate, as defined by P = –R : S, is thus more complicated than the simple formulae (45) and (47) used in 

traditional Boussinesq-type models, and also depends on Ω. The explicit dependency is given by the 

following third-order polynomial equation: 
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with S
*
 = kS / ε. Solution to (60), discussed in [26], becomes linear in S

*
 for large strain in the particular 

case of a shear flow (i.e. Ω = S), as previously suggested by equation (47). A second consequence of the 



variability of Cµ should be the explicit dependency of the eddy viscosity on production through (42). 

However, it is known that accounting for such a dependency often yields numerical instabilities [27]; 

therefore we considered in (42) – and thus in (57) – a traditional constant value of 0.09 for Cµ. 

Modelling turbulence with the EARSM then consists of solving the RANS momentum equation (37) with 

Reynolds stresses defined by (57). A possible SPH form for the stress divergence applied to particle a is 
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It should be used in place of the SPH turbulent viscous term in (40). In the form (61), SPH Reynolds 

forces present the linear momentum conservation property already mentioned in part 3; however, 

conservation of angular momentum is generally broken. Although some authors (see e.g. Speith and 

Riffert [28]) use a form like (61) to model viscous forces, it is known to be rather sensitive to particle 

disorder. Hence, in the present work we suggest to replace (61) with an additional SPH-viscous term in 

the momentum equation, to yield 
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The new viscous term abΠ
~

 is an SPH approximation of the divergence of the non-linear term involving 

SΩΩΩΩ – ΩΩΩΩS in (57), and is defined as 
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aT ,

~µ  being a non-linear eddy viscosity given by  
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(one should keep in mind that C2, defined by (59), is not a constant and thus should be calculated for each 



particle), and ωωωω a 2-D constant second-order tensor playing the role of a “rotation unit tensor”: 
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With the model presented above, the total viscous SPH force (involving abab ΠΠ
~

+ ) is in the generic 

form (24) – except that we now have averaged velocities, with 

 ( )ba

ab

abaab

ba

ba

ab
r

wmm
MM

r
A +

∇⋅

ρρ
−=

2
  (66) 

an eddy viscosity tensor Ma being now defined for all particles as 

 ωIM aTaea ,,
~µ−µ=  (67) 

The non-linear viscous term (67) no longer vanishes for a rigid body rotation, because of the ωωωω tensor. 

However, the definition of ωωωω, together with (25) and (34), shows that it does not generate any additional 

mean-flow energy dissipation; the new viscous term thus redistributes kinetic energy in a different 

manner. Note that, although we refer to the linear model (24), model (63) contains a non-linearity in the 

terms like abaT u,

~µ , thus involving aba uΩ  through the definition (64) of the non-linear viscosity. 

Equations (44) and (53) are still needed to calculate ka and εa, both required in (57) and (59). The rotation 

rate Ωa of particle a may be estimated from its definition (58) through equation (48) for the calculation of 

the rate-of-strain components. An interesting feature of EARSM, particularly in the SPH context, is that 

no wall boundary condition is required for Rij, Reynolds stresses being prescribed everywhere from (57). 

Boundary conditions regarding k and ε are unchanged. 



 

Figure 11. Open-channel turbulent steady flow. Vertical distributions of k / 2

*u  (a), εH / 3

*u  (b), νT 

/ *Hu (c) and axial velocity in m/s (d) versus non-dimensional distance to the bed. Present SPH method 

with � EARSM and � linear k−ε model; −− semi-empirical [20]; × experimental [20]; + finite elements 

k−ε [21]. 

An EARSM seems not particularly interesting in the simple case of shear flows like the open-channel 

presented at the end of section 5, since the presented model is designed to provide the same results as k–ε 

for simple shear flows. However, even in such an elementary flow, EARSM provide better results, as it 

can be seen on figure 11; in particular, the vertical distribution of turbulent kinetic energy is improved in 

comparison to the k–ε results presented on figure 6. Numerical tests have shown that, in this particular 

case, the progress is mainly due to the corrected definition of production rate by equation (60). Indeed, in 

the vicinity of the channel bed, the non-dimensional strain S
*
 is slightly smaller than the equilibrium value 



of 2/1−
µC  = 3.33 predicted by the standard theory of log-layers; as a consequence the ratio of production to 

dissipation P
*
 is slightly underestimated with traditional models (45) and (47), while (60) provides the 

correct amount of turbulent kinetic energy near the bed, which then diffuses into the water column. As a 

consequence, eddy viscosity is also slightly better predicted near the bed. 

  

 k–Lm 
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Figure 12. Collapse of a water column simulated with present SPH model and observed in a real tank at 

two stages (left column: t = 1.02 s; right column: t = 1.10 s). From top to bottom: k−Lm, linear k−ε and 

EARSM SPH models, experiments. The shape of the experimental free surface (projected on the front 

glass) is approximately shown with solid lines; one should not consider three-dimensional perspective for 

this comparison with the 2D-model. 



The collapse of a water column shown in section 6 is so complex that traditional models like linear k–ε 

should be insufficient for an accurate description of velocity fields and free surface shape. At the wave 

breaking point, strain is rather high and vorticity appears, involving non-linear terms in Reynolds stresses. 

A smaller water column was simulated with k−Lm, linear k−ε and EARSM, then compared with a 

laboratory experiment. Even with such an elementary comparison, figure 12 shows that increasing the 

turbulence closure complexity significantly improves the accuracy of the free surface prediction, as 

required. In particular, it can be seen that the non-linear viscosity, increasing diffusion, is capable of 

predicting the correct behaviour of wave breaking. Hence, we suspect that a correct modeling of complex 

wave motion (breaking, overtopping of a coastal dyke) could not be done without a sophisticated 

turbulence closure. However, the free surface location from experimental pictures is too rough to draw 

out solid conclusions about the real accuracy of the model. Thus, despite these encouraging features, the 

present model would require a more accurate and systematic validation; the EARSM SPH model will be 

presented in further details in a later publication. 

8. 3D LARGE EDDY SIMULATION 

Despite its accuracy, the EARSM described in the previous section is somewhat complex and is still 

based on Reynolds-averaged values. Alternatively, Large Eddy Simulation (LES), now recognized as a 

key tool for turbulence modeling (see e.g. Pope [23]), provides much more detailed information on the 

turbulence itself and is more suitable for far-from-equilibrium flows, while considering reasonable 

computational costs (whereas in the particular of the SPH method, the coast can be high; this will be 

discussed later). The main idea of LES is to simulate the large scales of turbulent motions while modeling 

the dissipative effect of smaller ones. This is justified by the fact that large scales carry the main part of 

turbulent kinetic energy and are most likely anisotropic whereas small scales are believed to be almost 

isotropic. It is hence essential to define modified fields that only contain the large scale components of 



instantaneous fields. In the context of Eulerian methods, each true flow variable A is thus decomposed 

into a large scale component A
~

 and a small scale (or subgrid scale) component A′  such as AAA ′+=
~

, 

where A
~

 is defined by the following filtering operator: 
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where G∆ is a filter function depending on the separation between spatial locations. Coming back to SPH, 

one can firstly notice that equation (68), from a formalistic point of view, is very similar to the basic SPH 

relation (1): the kernel function is analogous to the filter function and the smoothing length h is equivalent 

to the filter size ∆. Thus, one can define an SPH filtered quantity A
~

 as 
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When filtering the continuous Navier-Stokes equations, one obtains a set of equations very similar in 

form to the RANS equations, with averaged values replaced by filtered ones and the Reynolds stress 

tensor changed with a subgrid (here, sub-particle) scale one, representing the contribution of small scales 

(i.e. turbulent structures smaller than the particle size) on larger scales. When modelling this tensor 

through a sub-particle eddy viscosity assumption, the filtered Navier-Stokes equations are identical to the 

eddy-viscosity RANS equations, from a formalistic point of view. In SPH formalism, according to the 

abovementioned similarity between the Reynolds-averaged and filtered Navier-Stokes equations, they are 

hence written as 
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in analogy with (58), with aa ρ≈ρ ~ (since the fluid is nearly incompressible) and baab uuu ~~~ −= . The 

filtered pressure ap~  is once again calculated from the density by the state equation (14). The sub-particle 

eddy viscosity of particle a µS,a = ρaνS,a can be modelled by the following SPH Smagorinsky model: 

 ( ) aaSaS hC ss ~:~2
2

, =ν  (72) 

where
a

s~ denotes the filtered rate-of-strain tensor associated to particle a, thus defined from equation (39) 

with filtered velocities in place of Reynolds-averaged ones; hence a formula like (52) can still be used in 

this context. CS is the Smagorinsky constant usually close to 0.15 [23], and h is the smoothing length (or 

alternatively initial particle spacing), playing here the role of a constant numerical mixing scale. 

        

Figure 13. 3D turbulent open-channel flow simulated with the present SPH LES model. Left: 3D 

turbulent velocities. Right: vertical profile of averaged axial velocity; � present SPH method with LES 

model; −− smooth bed log-law. 

Despite its apparent simplicity, in contrast to traditional RANS models presented in previous sections, 

LES must always be done in three dimensions (since turbulent structures are essentially three-

dimensional) and results need to be averaged for industrial use, which requires substantially more 



computational time. This SPH Smagorinski model was implemented in a 3D SPH code and tested in a 

turbulent open-channel flow similar to the case described in section 5, with different size and flow 

features. The canal is 1.2 m long, 0.2 m wide and 0.4 m high and contains 100,000 fluid particles. The 

bulk velocity is 1.345 m/s, leading to a Reynolds number of 538,000. The left picture of figure 13 

presents an instantaneous field of velocity magnitude; one can notice that it is typically turbulent, with 

velocity fluctuations in all directions. However, the numerical fluctuating motion inherent to the 

Lagrangian basis of SPH, which behaves like a Monte-Carlo method even in laminar flows, raises new 

challenges in terms of separating this numerical noise from real turbulent fluctuations, which needs 

further investigation. Nevertheless, the averaged axial velocity profile is consistent with the log-law, as 

shown on the right side of figure 13 (time-averaging velocities can here be done since the mean flow is 

steady). 

    



Figure 14. Collapse of a water column: comparison between present 3D SPH LES method and laboratory 

experiments [6] at two different stages: t = 0.485 s (left) and t = 0.890 s (right). 

The model was also applied to a 3D collapse of water column similar to those presented in section 7, with 

120,000 fluid particles. The initial water box is 0.3 m high, 0.3 m long and 0.6 m wide, while the tank 

length is 0.9 m. Figure 14 shows instantaneous free surface evolution, revealing a realistic breaking wave 

when compared to the experimental produced at the Technical University of Delft [6]. Further 

investigation is currently carried out to get information relative to turbulent parameters and average fields 

for the presented cases. More details about the presented SPH LES model can be found in [6] and [8]. 

Finally, one should mention that the 3-dimensional SPH approach together with the LES model reaches to 

high computational costs, due to the numerous filtering operations like equation (69). This makes detailed 

numerical investigation uneasy; further work on this subject will certainly need parallel algorithms. Thus, 

no definitive conclusions can be drawn regarding the possible use of LES in SPH for industrial or 

environmental applications. 

9. CONCLUSIONS AND FUTURE WORK 

From the abovementioned applications, it appears that Smoothed Particle Hydrodynamics is a very 

promising method for the simulation of complex turbulent flows involving distorted free surfaces in two 

or three dimensions. It may be emphasized that the developments presented herein do not cover all the 

possibilities of SPH in CFD: in particular, the method allows the modelling of floating bodies, fluid-

structure interactions and two-phase flows. The developments made in section 5 also tend to suggest that 

modelling turbulent scalar transport in SPH is a possible task. However, some drawbacks of the SPH 

method can easily be pointed out. The Courant condition appearing in (15) leads to rather small time 

steps, and the high number of particles required in 3D makes SPH a very computationally demanding 

method. The presented explicit weakly compressible scheme could also be criticized since it generally 



predicts scattered pressure fields. Some authors like Shao and Gotoh [9] have demonstrated the possibility 

of modelling truly incompressible flows with SPH, which is an alternative choice to increase the time step 

and provide smooth pressure fields under all circumstances. 

The presented turbulence closure models, although not yet deeply validated in the case of complex free-

surface flows, have shown to be attractive. Some of them (e.g. k−ε or LES), today considered as 

traditional in the context of Eulerian methods, have been proved to be adapted to the particular context of 

SPH and were applied with success on validated test cases. The merits of each model, in terms of 

accuracy and / or simplicity, partly appear from the presented simulations. For practical applications in 

CFD with SPH, it appears that the standard k−ε provides satisfactory results, while it can be inappropriate 

in the particular field of free-surface flows. The modelling of complex surfaces should be more 

successfully predicted with Explicit Algebraic Reynolds Stress Models (EARSM), to take account of 

strong distorsion and rotation effects. By highlighting the weaknesses of those turbulence closures in 

regards of the modelled flows, this work also suggests possible ways of improvements. Hence, future 

developments should be done around the problem of free-surface and wall effects as well as associated 

boundary conditions. 

Large Eddy Simulation (LES) was too briefly investigated here to draw definite conclusions. The high 3D 

computational time makes this approach especially cumbersome with SPH. Indeed, the use of SPH as an 

operational tool for three dimensional applications will require a parallelized code. Among other key 

points, further work will focus on this development. One may also mention that other appropriate and 

specific turbulent methods, like stochastic (pdf) models (see [23]) were also tried in the context of SPH 

[5] [29] and may constitute a suitable alternative to LES to keep computational time reasonable. 

In conclusions, the standard k−ε equations, here applied to SPH, are recommended for practical 

applications in industrial or environmental CFD with SPH. However, under specific circumstances, they 

should be inappropriate, in particular when modelling very complex free surface, where more advanced 



models should be used, like the proposed EARSM. 
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