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Abstract. This paper presents a measurement process of body postures operated in a context
of humanoid robot learning. The basic measured quantities are the angle joints of a human
skeleton and the angle joints of a humanoid robot. Due to the differences between the two
mechanical structures, the measurement results are expressed into a common representation
space by the way of fuzzy scales. This paper shows how the common representation space can be
defined, and presents a method to match weakly defined postures with uncertain measurements
of a human posture.

1. Introduction
The era of humanoid robots now enters into a new step with the introduction of products for non-
professional users. The set of applications of such robots is quickly growing and the conventional
systems for the configuration and the robot programming stay dedicated to specific users. A
solution to extend the set of potential robot programmers is to map education techniques on the
context of robots. In particular, we suppose that it is possible to teach postures and gestures to
a humanoid robot with a sample-based teaching method. The chosen process to perform such
method is given:

• a human called teacher performs a posture,

• this posture is measured then interpreted,

• following the interpretation, the robot tries to perform the same posture.

• the robot posture is measured and compared to the teacher posture.

In order to be compared, the postures of the teacher and of the robot need to be expressed in a
common space. Unfortunately, the numerical space in which the angles of the human joints are
expressed cannot be the same than the numerical space used to represent the angles of the robots
joints. This difference mainly comes from the distribution of the DOF (degrees of freedom) that
differs between the teacher and the robot.

The solution we propose is to perform measurements with fuzzy scales [1][2]. This allows
to represent a measurement indication as a fuzzy lexical set with dimension 6, each dimension
leading to a part of the body : legs, torso, arms and head. For each dimension, i.e. for each
body part, the posture of this part is represented with a usual Lexical Fuzzy Subset (LFS). A
LFS is then a fuzzy subset of lexical terms, each lexical term being associated to a characteristic
posture of this body part. The indication given by the measurement of the full body is then
defined as a 6 components vector of LFSs.



The main advantage of this approach is that the same set of lexical terms can be used
to characterise a part-posture of the teacher or the equivalent part-posture of the robot. This
means that the measurements of full body postures of the teacher and of the robot are expressed
into the same representation space and can be compared. It has been shown before that fuzzy
scales are metrical scales and restrict the set of relations between measurement results to the
comparisons of distances. But these relations are enough to perform the comparisons we need
and to manage the measurement uncertainty.

Figure 1. 2D representation of the
body perceived by the depth sensor
and of the measured joints.

Figure 2. Robot used for the
study. The joint states are acquired
with proprioceptive sensors.

2. Numerical measurements
The body posture measurements of the teacher and of the robot are performed with 2 different
systems. The body of the teacher is acquired with an image depth sensor (a Azuz Xtion pro in
our case) [3]. A middle-ware extracts the body shape and computes the 3D coordinates of the
joints to give a skeleton approximation as for [4][5]. Each joint is either a 1DOF joint or a 3DOF
joint. Each 1DOF joint is characterized by a single angle. Each 3DOF joint is characterized by a
normal rotation axe and an angle. The robot used for this study is a Nao robot from Aldebaran
Robotics. It holds 13 joints with a total of 25DOF. Each rotation axe has a proprioceptive
sensor that is used for the measurement of the body posture.

The teacher body and the robot body are decomposed into 6 parts that are the left and right
arms, the left and right legs, the torso, the head. For each part, the information entities used
to express indications and measurement results are vectors of numerical data.

Thanks to the proprioceptive sensors, the measurement uncertainty is negligible for the robot
posture, but needs to be managed for the teacher posture. Actually the measurement process
with an image depth sensor induces two kind of uncertainties. The first uncertainty is an ontic
uncertainty [6] and comes from the common statistical dispersion of the 3D coordinates of joints
and can be estimated with a type A evaluation [7][8]. The second uncertainty comes from the
fact that a joint can be hidden by another part of the body or can simply be confused with
another object (see figure 1). A third source of uncertainty named epistemic uncertainty [6] is
not directly linked to the measurement but depends on the definition of postures that can be



imprecise. In this case a posture is no more defined with a value (actually a vector), but with a
set of values. Such set doesn’t define a probability distribution but a possibility distribution. As
the simultaneous management of the measurement uncertainty and the epistemic uncertainty is
not simply performed within a pure probabilistic approach, we use the Dempster-Shafer evidence
theory that allows to handle in the same approach probabilities and possibilities [9].

3. The transferable belief model
The Dempster-Shafer evidence theory, also named the transferable belief model (TBM) is a
general approach for uncertainty management based on the assignment of belief to sets. In this
section, we present a short introduction to this theory.

The main element of the TBM is the frame of discernment denoted Ω and presented as a set
of elementary events, or as a discourse set for the expression of the belief in a piece of evidence.
The belief in a piece of evidence E is then expressed with a mapping m[E] (or simply m) called
belief function, or basic belief assignment (BBA). This mapping is defined from the set of subsets
of Ω, denoted 2Ω, to the set [0, 1]. It represents the distribution of a weight of belief over the
event sets. A non null amount of belief assigned to an event set means that the occurrence of
the given events are compatible with the piece of evidence.

Any belief function verifies: ∑
A∈2Ω

m(A) = 1 (1)

The set {A | m(A) > 0} is called the set of focal elements of m, and the couple ({A | m(A) >
0},m) is called a body of evidence of a variable with values on Ω. The link with the probability
theory is performed with the body of evidences of the form (A ∈ Ω,m). In this case the focal
sets are singletons and the BBA m, qualified as a Bayesian BBA, is a probability distribution
over Ω. The other categories of BBA used in our studies are the consonant BBAs which focal
sets are nested sets. These last BBAs lead to possibility distributions.

The belief in two pieces of evidence E1 and E2 issued from 2 independent sources can be
computed with a conjunctive combination operator:

m[E1 ∩ E2](A) =
∑

B∩C=A

m[E1](B)m[E2](C), ∀A ⊆ Ω (2)

This operator can be used if both sources are reliable. In this case, it concentrates the amount of
belief on events that are compatible with both pieces of evidence. This operator has the property
to assign some belief on the empty set. The value m[E1 ∩ E2](∅) is actually representative of
the degree of conflict between sources. In order to moderate the degree of conflict it is possible
to weaken the confidence into a source with a transfer of belief to the set Ω.

4. The fuzzy linguistic representation of the measured values
The method used to build a linguistic representation of measured postures is similar to
the method previously used for hand posture measurement in [10]. In the initial study,
only measurement indications were considered as measurement results. If we apply this
approach to our case, each posture indication is represented by a LFS (Lexical Fuzzy Subset)
defined on the cross product Ω of 6 lexical sets, each one corresponding to a body part.
Within the scope of evidence theory used in this paper, Ω is interpreted as the exhaustive
set of mutually exclusive representations of a posture. As an example, the item ω =
(vertical, front, down.open, down.open, behind.open, down.open) is a synthetic definition of a
posture used to check hand. A posture indication is then a fuzzy subset {µi/ωi} where the
membership degree µi to each item ωi is directly interpreted as a Bayesian basic belief function
in Ω.

Ω = LBody.LHead.LRightLeg.LLeftLeg.LRightArm.LLeftArm (3)



LBody = {vertical, bent, left, right} (4)

LHead = {front, left, right, up, down, leftbent, rightbent} (5)

LRightLeg = LLeftLeg = {down, up, behind, outside}.{open, square, closed} (6)

LRightArm = LLeftArm = {down, up, behind, outside, bodyside}.{open, square, closed} (7)

5. Building the epistemic knowledge
The first step before any measurement is to define the universe of discourse on which any
measurement is expressed. In our approach, the universe of discourse is made of labels that
identify postures. So each posture is identified by a unique label but a label fits with a set of
postures. For example, the label chekingHand identifies several postures with several left arm
locations.

According that, the sets of postures are learned with examples, we propose to model the
knowledge on postures with belief functions. Indeed, this knowledge is acquired from various
sources and cannot be simply limited to the definition of the labels. It also hold an epistemic
uncertainty. The process is the following:

First the meaning of each lexical set Li is defined as a fuzzy partition of the numerical set
such that:

• An observation of the posture is performed and gives an indication expressed as a LFS on
each lexical set.

• An aggregation is performed to compute a LFS on the general lexical set Ω.

The membership of the observation to each lexical term is interpreted as a Bayesian basic
belief assignment m1 on Ω2. The definition of postures can be interpreted as a classification
building problem. The idea is to build a BBA that includes the knowledge related to a posture.
We suppose that for a given posture to learn, we have a set of samples given by a teacher and
represented by LFSs. One possibility is to consider all samples as independent sources and
use the conjunctive combination to build a BBA consistent with all samples. This approach is
consistent if the samples are close from each other but cannot be used in our case because a
posture is imprecisely defined. In [11] Denoeux proposed to weaken the confidence into samples
that are not similar with the previous learned samples. But this option stays unsuitable in our
case where two dissimilar samples can be strongly representative of the same posture. Another
possibility is to aggregate the Bayesian BBA associated to each sample with a simple mean
operator. The resulting Bayesian BBA is then translated into a consonant BBA using the
discrete version of the Yamada’s algorithm [12].

Step 1: Let m1 be the Bayesian basic belief assignment to translate. Let j = 1 be an iterator.
Notice that all focal sets are singletons.

Step 2: Let A = {ωi | mj({ωi}) 6= 0} be the set of focal sets of mj that are singleton. Let a
be the smallest belief assignment on a singleton in A.

Step 3: Transfer the amount a of belief assignment from each singleton in A to the set A.

∀ω ∈ A,mj+1(ω) = mj(ω)− a (8)

mj+1(A) =
∑
ω∈A

a = a | A | (9)

Step 4: If mj+1 has at least one singleton as focal set, increment the iterator j and go to step
2.

At the end of this process, each archetype posture P is weakly defined by a BBA m[P ]. These
BBAs are consonant BBAs and are therefore considered as possibility distributions (see figure
3).



Figure 3. Example of a transformation of a Bayesian BBA into a consonant BBA on a frame
of discernment Ω made of 5 symbols. The figure gives for each BBA the focal sets and their
belief assignment.

6. measurement of postures
Each observation gives an indication I in the form of a LFS. Such LFS is directly interpreted
as a Bayesian BBA m[I] on Ω. For each defined posture P we have a consonant BBA and the
conjunctive combination of the 2 BBAs gives the simultaneous belief into the indication value
and a posture definition.

The result is a BBA where the focal sets are singletons and the emty set. The amount of
belief assigned to the empty set after the combination m[I ∩ P ](∅) gives the degree of conflict
between the indication and the interpretation of the measurement with P . This last information
is representative of the impossibility to believe into the assertion the posture P represents the
indication I.

Figure 4. Conjunctive combina-
tion of an indication and a pos-
ture definition where the indication
globally fits with the posture.

Figure 5. Conjunctive combina-
tion of an indication and a posture
definition where the indication par-
tially fits with the posture. The
empty set holds the majority of the
belief assignment.

Conclusion
As for psycho-physical scales, the scale built for human posture recognition depends on a
knowledge on the posture definitions: an epistemic knowledge. Thus, the definitional uncertainty
known as the epistemic uncertainty is more related to the consistency of the knowledge than



related to statistical events. Such uncertainty is then preferably modeled in the frame of
possibility theory that allows to model unknown events. The management of ontic uncertainty
issued from measurements is based on statistical approaches and are preferably modelled in the
frame of the probability theory that gives a large set of mathematical tools. In this paper ontic
and epistemic uncertainties interact at two steps. First when the epistemic knowledge is built
with a set a measured samples. Then when a measurement indication is compared with the
epistemic knowledge. We see in this paper that the immersion of these two kind of uncertainties
into the transferable belief model allows to manage them together.

References
[1] Benoit E and Foulloy L 2003 Measurement 34 49–55
[2] Benoit E and Foulloy L 2013 Measurement 46 2921–2926
[3] Bing-ru L, qian S S, min L R, dong Z Z and Yang L 2010 Automatic measurement of scanned human

body in fixed posture Computer-Aided Industrial Design Conceptual Design (CAIDCD), 2010 IEEE 11th
International Conference on vol 1 pp 575–578

[4] Handrich S and Al-Hamadi A 2013 A robust method for human pose estimation based on geodesic distance
features Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on pp 906–911

[5] Xie F, Xu G, Cheng Y and Tian Y 2011 Image Processing, IET 5 420–428 ISSN 1751-9659
[6] Dubois D 2011 Ontic vs. epistemic fuzzy sets in modeling and data processing tasks. IJCCI (NCTA) p 13
[7] Dutta T 2012 Applied ergonomics 43 645–649
[8] Clark R A, Pua Y H, Fortin K, Ritchie C, Webster K E, Denehy L and Bryant A L 2012 Gait Posture 36

372 – 377 ISSN 0966-6362
[9] Smets P 2000 Data fusion in the transferable belief model Proc. of the 3rd conf. on Information Fusion,

FUSION2000 vol 1 pp 21–33
[10] Allevard T, Benoit E and Foulloy L 2005 Measurement 38 pp. 303–312
[11] Denoeux T 1995 IEEE Transactions on Systems, Man and Cybernetics 25 804–813
[12] Yamada K 2001 Probability-possibility transformation based on evidence theory IFSA World Congress and

20th NAFIPS International Conference, 2001. Joint 9th vol 1 (IEEE) pp 70–75


