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Introduction

The following Hamilton-Jacobi initial value problem ∂v(x,t) ∂t

+ 1 2 |∇ x v(x, t)| 2 x = 0 (x, t) ∈ M × (0, ∞) v(x, 0) = f (x) x ∈ M, (1.1) 
where (M, g) is a smooth Riemannian manifold and | • | x is the norm on T x M associated to the metric g at point x, together with its explicit solution, given by the celebrated Hopf-Lax formula,

Q t f (x) = inf y∈M f (y) + 1 2t d(x, y) 2 , t > 0, x ∈ M (1.2)
where d denotes the geodesic distance on M (with e.g. f : M → R Lipschitz) are very classical and have a lot of applications in Analysis, Physics and Probability Theory (let us mention applications in large deviations theory, statistical mechanics, mean eld games, optimal control, optimal transport, functional inequalities, they also have deep connections with geometry (Ricci curvature) etc.). We refer to the books by Evans [START_REF] Evans | Partial dierential equations[END_REF], Barbu and Da Prato [START_REF] Barbu | Hamilton-Jacobi equations in Hilbert spaces[END_REF] and Villani [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften[END_REF] for an introduction and for related topics.

An important eort has been made recently to generalize such a classical theory to more general situations, for example by replacing the Riemannian manifold M by a general metric space (see e.g. [START_REF] Ambrosio | Calculus and heat ow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF][START_REF] Gozlan | Hamilton Jacobi equations on metric spaces and transport entropy inequalities[END_REF]). We refer to the introduction of [START_REF] Gangbo | Metric viscosity solutions of hamilton-jacobi equations[END_REF] for a review of the literature and in particular on the various notions of viscosity solution introduced in the metric spaces setting. One non trivial issue is to give a proper denition of gradient in order for Equation (1.1) to make sense, and, with that respect, an important ingredient is that the space needs to be continuous. In particular, the known theories fail to directly generalize to discrete structures such as graphs.

The aim of the present paper is precisely to introduce a notion of gradient and to use an inf-convolution operator that extend, in some sense, (1.1) and (1.2), to graphs, with a specic focus for applications on functional inequalities. It turns out that our approach, originally devised to deal with the graph setting, works also for general metric spaces.

We introduce now the notion of gradient and the inf-convolution operator we shall deal with through the paper. Let (X, d) be a complete, separable metric space such that balls are compact.

The (length of the) gradient we shall consider is dened as

| ∇f |(x) := sup y∈X [f (y) -f (x)] - d(x, y)
where [a] -= max(0, -a) is the negative part of a ∈ R (by convention 0/0 = 0). We observe that, in discrete setting, one usually deals with quantity involving |f (y) -f (x)|, with y a neighbour of x (a property we denote by x ∼ y), which is usually less than | ∇f |(x). However, if f is assumed to be a convex function, then | ∇f |(x) = sup y∼x [f (y) -f (x)] -. Also, in R n equipped with the usual Euclidean distance, if f is a smooth convex function, | ∇f | coincides with the usual length of the gradient |∇f |(x) = i ∂ i f 2 (x) (and it always holds | ∇f | |∇f |). As for the inf-convolution operator, we observe that there is at least one important dierence with respect to the continuous setting. Indeed, as we shall explain in detail later, under very mild assumptions, there is no hope of nding a family of mappings (D t ) t>0 such that Q t f (x) := inf y∈V {f (y) + D t (x, y)} (where x, y belong to the vertex set V of a graph G = (V, E)) satises the usual semi-group property

Q t+s = Q t (Q s ).
To overcome this problem, we may use the following weak inf-convolution operator,

Q t f (x) = inf p∈P(X) f dp + 1 2t d(x, y) p(dy) 2 , t > 0,
dened for all bounded measurable functions f , where P(X) denotes the set of Borel probability measures on X. This weak inf-convolution operator is naturally linked (via some variant of the Kantorovich duality theorem proved in [START_REF] Gozlan | Kantorovich duality for general transport costs and applications[END_REF]) to the following weak optimal transport-cost introduced by Marton [START_REF] Marton | Bounding d-distance by informational divergence: a method to prove measure concentration[END_REF]:

T 2 (ν|µ) := inf d(x, y) p x (dy) 2 µ(dx) , (1.3) 
where µ, ν are probability measures on X and where the inmum is running over all couplings π(dx, dy) = p x (dy)µ(dx) of µ and ν (i.e. π is a probability measure on X × X with rst marginal µ and second marginal ν and (p x ) x∈X denotes the regular conditional probability of the second marginal knowing the rst). Note that integrals stand for sums in the discrete setting. Such a transport-cost appeared in the literature as an intermediate tool to obtain concentration results, see Marton [START_REF] Marton | A simple proof of the blowing-up lemma[END_REF][START_REF] Marton | A measure concentration inequality for contracting Markov chains[END_REF][START_REF] Marton | Bounding d-distance by informational divergence: a method to prove measure concentration[END_REF], Dembo [START_REF] Dembo | Information inequalities and concentration of measure[END_REF], Samson [START_REF] Samson | Concentration of measure inequalities for Markov chains and Φ-mixing processes[END_REF][START_REF] Samson | Concentration inequalities for convex functions on product spaces[END_REF][START_REF] Samson | Inmum-convolution description of concentration properties of product probability measures, with applications[END_REF], Wintemberger [START_REF] Wintenberger | Weak transport inequalities and applications to exponential and oracle inequalities[END_REF], and as a discrete counterpart of the usual W 2 -Kantorovitch-Wasserstein distance in some displacement convexity property of the entropy along interpolating paths on graphs, see Gozlan-Roberto-Samson-Tetali [START_REF] Gozlan | Displacement convexity of entropy and related inequalities on graphs[END_REF][START_REF] Gozlan | Kantorovich duality for general transport costs and applications[END_REF].

Our main theorem is the following counterpart of (1.1).

Theorem 1.4. Let f : X → R be a lower semi-continuous function bounded from below. Then, for all x ∈ X, it holds

∂ ∂t Q t f (x) + 1 2 | ∇ Q t f | 2 (x) 0 ∀t > 0 ∂ ∂t Q t f (x)| t=0 + 1 2 | ∇f | 2 (x) = 0 t = 0.
With such a result in hand, we can then follow the work by Bobkov, Gentil and Ledoux [START_REF] Bobkov | Hypercontractivity of hamilton-jacobi equations[END_REF] to prove a result analogous to the celebrated Otto and Villani Theorem [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF]. Namely we shall prove that some log-Sobolev type inequality is equivalent to an hypercontractivity property of the semi-group Q t , which in turn, by a duality argument due to Gozlan et al. [START_REF] Gozlan | Kantorovich duality for general transport costs and applications[END_REF], implies some Talagrand type transport-entropy inequality. To state this result one needs to introduce some additional notations. Consider the usual q-norm of a function g on X dened by g q = ( |g| q dµ) 1/q , q ∈ R, with, when this makes sense, g 0 := lim q→0 g q = exp{ log g dµ}, and when g 0, consider also the entropy functional dened by Ent µ (g) = g log g dµ -g dµ log g dµ.

Corollary 1.5. Let µ be a probability measure on X and C > 0. Then (i) If for all bounded measurable function f : X → R it holds,

Ent µ (e f ) C | ∇f | 2 e f dµ, (1.6) 
then for every ρ 0, every t 0 and every bounded measurable function f ,

e Qtf ρ+ 2t C e f ρ . (1.7) 
Conversely, if (1.7) holds for some ρ > 0 and for all t 0, then (1.6) holds.

(ii) If for all bounded measurable function f : X → R it holds,

Ent µ (e f ) C | ∇(-f )| 2 e f dµ, (1.8) 
then (1.7) holds for every ρ 0, every t ∈ [0, -ρC/2] and every bounded measurable function f . Conversely, if (1.7) holds for some ρ < 0 for all t ∈ [0, -ρC/2), then (1.8) holds.

In particular, (1.6) implies that for all probability measure ν on X, it holds

T 2 (µ|ν) C 2 H(ν|µ).
(1.9)

Respectively, (1.8) implies that for all probability measure ν on X, it holds

T 2 (ν|µ) C 2 H(ν|µ) (1.10)
where H(ν|µ) is the relative entropy of ν with respect to µ, i.e. H(ν|µ) = Ent µ (g) if ν µ and g := dν/dµ, and H(ν|µ) = +∞ otherwise.

The log-Sobolev-type inequality (1.6) is implied by the usual Gross' inequality [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF] in the continuous setting (since | ∇f | |∇f |). In discrete, there exist a lot of dierent versions of the log-Sobolev inequality that are all equivalent in the continuous, thanks to the chain rule formula each of them having some nice property (connection to the decay to equilibrium of Markov processes, concentration phenomenon etc.). We refer the reader to the paper by Bobkov and Tetali [START_REF] Bobkov | Modied logarithmic sobolev inequalities in discrete settings[END_REF] for an introduction to many of these inequalities and related properties. In particular, in [START_REF] Bobkov | Modied logarithmic sobolev inequalities in discrete settings[END_REF], the log-Sobolev type inequality (1.6) is studied, with some local gradient in place of ∇. As we shall prove below, the usual log-Sobolev inequality in discrete, with transitions given by a Markovian matrix, implies (1.6). In turn, since such an inequality is very well studied in many situations (see e.g. the monographs [START_REF] Giné | Lectures on Probability Theory and Statistics[END_REF][START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF] and [START_REF] Martinelli | Lectures on Glauber dynamics for discrete spin models[END_REF][START_REF] Guionnet | Lectures on logarithmic Sobolev inequalities[END_REF] for results on general graphs and examples coming from physics) this provides a lot of examples of non trivial measures (on graphs) that satisfy the Talagrand-type transport-entropy inequality (1.9). Inequality (1.9) is related to the concentration phenomenon and was studied by the authors listed above (Dembo, Gozlan, Marton, Roberto, Samson, Tetali, Wintenberger). However, proving directly (1.9) for non-trivial measures is not an easy task and, to the best of our knowledge, there exist very few examples of measures satisfying (1.9). In fact, Corollary 1.5 above, together with the important literature on the log-Sobolev inequality provide at once new examples.

That (1.6) implies (1.9) is known, in the continuous setting, as Otto-Villani's Theorem [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF]. Such a theorem was proved using Otto calculus in the original paper [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] in the Riemannian setting. Soon after, Bobkov, Gentil and Ledoux [START_REF] Bobkov | Hypercontractivity of hamilton-jacobi equations[END_REF] gave an alternative proof based on Hamilton-Jacobi equation. Then, it was generalized to compact measured geodesic spaces by Lott and Villani [START_REF] Lott | Hamilton-Jacobi semigroup on length spaces and applications[END_REF][START_REF] Lott | Ricci curvature for metric-measure spaces via optimal transport[END_REF] (see also [START_REF] Balogh | Functional inequalities and HamiltonJacobi equations in geodesic spaces[END_REF]), and to general metric spaces by Gozlan [START_REF] Gozlan | A characterization of dimension free concentration in terms of transportation inequalities[END_REF], see also Gozlan, Roberto and Samson [START_REF] Gozlan | Hamilton Jacobi equations on metric spaces and transport entropy inequalities[END_REF] and for an approach based on the Hamilton-Jacobi Semi-group. Later on, the original ingredients of Otto-Villani's paper were successfully adapted to the general metric space framework by Gigli and Ledoux [START_REF] Gigli | From log Sobolev to Talagrand: a quick proof[END_REF]. Our proof follows the Hamilton-Jacobi approach of [START_REF] Bobkov | Hypercontractivity of hamilton-jacobi equations[END_REF].

We conclude this introduction with some more comments and a short roadmap of the paper.

In the next section, we introduce various notations and derive some technical and useful facts on the operator Q t that might be of independent interests. We also prove that Q t f (x) := inf y∈V {f (y) + D t (x, y)} usually does not satisfy any semigroup property. In Section 3 we prove Theorem 1.4. Section 4 is dedicated to the applications to functional inequalities, while Section 5 collects some examples that will illustrate our main theorems. Finally, in the Appendix we prove a technical result.

We mention that the results above can be proved in a more general situation, namely by replacing the cost x 2 /2 by a general convex function α (with the Fenchel-Legendre dual function α * appearing in the corresponding Hamilton-Jacobi equation), see below. Finally we observe that there exist other papers dealing with Hamilton-Jacobi equation on graphs, but with very dierent perspectives (approximation scheme, viscosity solution, etc.). We refer to [START_REF] Camilli | A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks[END_REF] and references therein for an account on these topics.

Preliminaries

In this section, we introduce some notations and prove some properties on the operator Q t and on the gradient ∇ that will be useful later on.

Notations Space

In all the paper (X, d) stands for a polish space (i.e. complete and separable), such that closed balls are compact. In the discrete case, X = G = (V, E) will denote a (simple) connected graph with vertex set V and edge set E (given (x, y) ∈ E, we may write x ∼ y). We assume that all vertices have nite degree. The graph distance will be denoted by d. Next, P(X) stands for the set of all probability measure on X, and, in order to emphasize the discrete character, when X = G = (V, E) is a graph, we may use instead P(V ).

Inf-convolution operator

Throughout the paper, α : R + → R + denotes a convex function, of class C 1 , such that α(0) = α (0) = 0 (so that α is non-decreasing). Its Fenchel-Legendre transform is denoted by α * and dened by α * (x) := sup y∈R + {xy -α(y)}, x ∈ R + .

A typical example of such a function is given by α(x) = x 2 /2, and more generally by α(x) = x p /p for which α * (x) = x q /q with p -1 + q -1 = 1, p, q > 1. Another example (related to the Poincaré inequality, see Section 4.4) is the following, called quadratic-linear cost, α h a (x) := ax 2 if x ∈ [0, a] and α h a (x) = 2ax -ah 2 if x a, with a, h > 0 two parameters.

Given f : X → R, we denote by f Lip := sup x,y,x =y

f (y)-f (x) d(x,y)
the Lipschitz norm of f .

Next we dene the (inf-convolution) operators Q t f , Q t and Qt . Given f : X → R bounded from below, x ∈ X and t > 0, let

Q t f (x) := inf y∈X f (y) + tα d(x, y) t , Q t f (x) := inf p∈P(X) f dp + tα d(x, y) p(dy) t ,
Restricting the inmum to the set of Dirac masses, we observe that necessarily Q t f Q t f . As we shall see on the example of the two points space, the latter inequalities are strict in general. However, in specic cases (if f is convex and X = R n equipped with a norm • ) equality holds. We illustrate this in the following proposition. Proposition 2.1. Assume that X = R n equipped with a distance d coming from a norm • . Then, for all f : R n → R convex and bounded from below,

Q t f = Q t f .
Proof. By convexity of f and of the norm, Jensen's Inequality and the monotonicity of α imply that, for all p ∈ P(R n ) such that x p(dx) is nite, it holds f (y) p(dy) + tα x -y p(dy) t f y p(dy) + tα 1 t x -y p(dy) .

Hence, setting z := y p(dy) ∈ R n and optimizing we get

Q t f (x) = inf p s.t.
x p(dx)<∞ f dp + tα x -y p(dy) t

inf z∈R n f (z) + tα x -z t = Q t f (x)
which leads to the desired result.

Properties of the operator Q t

In all what follows, f : X → R is a lower semicontinuous function bounded from below. Let

m f (t, x) := p ∈ P(X) : Q t f (x) = f dp + tα d(x, y) p(dy) t (2.2)
be the set (possibly empty) of probability measures p realizing the inmum in the denition of Qf . The following lemma shows that this set is not empty.

Lemma 2.3. If f : X → R is lower semicontinuous and bounded from below, then m f (t, x) = ∅ for all t > 0 and x ∈ X.

We postpone the proof of the lemma at the end of the section.

In order to state the main theorem of this section we need to introduce some additional notations. Given x ∈ X, let I x := {d(x, y), y ∈ X} ⊂ R + be the image of the function X y → d(x, y). Since (X, d) is a polish space such that all closed balls are compact, I x is a closed subset of R. Then, dene f x :

I x → R as f x (u) := min y∈X:d(x,y)=u {f (y)}
and notice that f x (0) = f (x). We will sometime consider that f x is dened on [0, ∞) by setting f x (u) = +∞ when x is outside I x . Let I x be the convex hull of I x (since closed balls are assumed to be compact, I x is one of the following intervals [0, sup

I x ] (if I x is bounded) or [0, +∞) (if I x is unbounded)). Let f x : R + → R ∪ {+∞} be the convex hull of f x ,
that is to say the greatest convex function g : R → R ∪ {+∞} such that g(u) f x (u) for all u ∈ I x . The function f x takes nite values on I x and is +∞ outside I x . Another way to dene f x on I x is given in the following lemma whose proof is postponed at the end of the section. Let P u (I x ) be the set of probability measures on I x with expectation u, i.e. Ix y p(dy) = u. Lemma 2.4. Let f : X → R be a lower semicontinuous function and dene f x and f x as above. Then, for all u ∈ I x , f x (u) = inf Ix f x (w) q(dw) : q ∈ P u (I x ) charging at most two points . (2.5) Moreover, the function f x is continuous on I x and lower semicontinuous on R.

The following lemma illustrate when the latter inmum could be achieved. This lemma seems classical and it might be found in some convex analyses document. Lemma 2.6. Let f be a lower semi-continuous function bounded from below dene on a close set I ⊂ R. Let g be the largest convex function such that g f on I. Then for all ane function h, dene I h := [a, b] be the maximum interval such that g -h reaches its minimum, if a = ∞, then a ∈ I and f (a) = g(a), the same conclusion holds for b if b = ∞.

Proof. Without loss of generality, we can suppose that I h = [a, b] with a = ±∞. It is enough to show that f (a) = g(a), the other cases are similar. The denition of g implies directly that g(a) f (a), so we now turn to prove the inverse inequality. Changing h into h + constant, we can suppose that g -h = 0 on I h and g -h > 0 on R \ I h . Let h n the ane function such that h n (a -

1/n) = g(a -1/n) and h n (a + 1/n) = g(a + 1/n). By denition of I h , h n (a -1/n) > h(a -1/n) and h n (a + 1/n) h(a + 1/n). It follows that h n (a) > h(a) = g(a)
. Thus, if we dene g n : x → max{g(x), h n (x)}, then g n is a convex function greater than g. Thus, the denition of g implies that the existence of

z n ∈ I such that f (z n ) < g n (z n ). Notice that g n = g on R \ [a -1/n, a + 1/n], so z n ∈ [a -1/n, a + 1/n]. Hence, lim n→∞ z n = a and it holds g(a) = h(a) = lim n→∞ h(z n ) lim n→∞ f (z n ) lim n→∞ g n (z n ) lim n→∞ max{g(a -1/n), g(a + 1/n)} = g(a)
Thus, by lower semi-continuity of f , we have g(a

) = lim n→∞ f (z n ) f (lim n→∞ z n ) = f (a). The proof is completed.
As a consequence of the latter lemma, suppose that the largest ane part contains (u,

f x (u)) is ([a u , b u ], f x ([a u , b u ])), if b u < ∞, then we have a u , b u ∈ I x and f x (a u ) = f x (a u ), f x (b u ) = f x (b u ). Hence, f x (u) = Ix f x (w) q(dw), where q = λδ au + (1 -λ)δ bu with λ satises u = λa u + (1 -λb u ).
Finally, let

m f (t, x) := u ∈ R + : Q t f x (0) = f x (u) + tα u t . (2.7)
This set is easily seen to be non-empty using the lower semicontinuity of f x (see also Item (ii) of the following result.)

Theorem 2.8. Set β(x) := xα (x) -α(x), x 0. Let f : X → R be bounded from below and lower semi-continuous. Then,

(i) For all t > 0, all x ∈ X, it holds Q t f (x) = Q t f x (0);
(ii) Assume that the cost function α is strictly increasing, then for all t > 0 and all x ∈ X, it holds

d(x, y) p(dy) : p ∈ m f (t, x) = m f (t, x). (2.9)
more generally for all cost function α, it holds

d(x, y) p(dy) : p ∈ m f (t, x) ⊂ m f (t, x)
and

m f (t, x) ⊂ ε>0 d(x, y) p(dy) : p ∈ m ε f (t, x) ,
where

m ε f (t, x) = p ∈ P(X) : f dp + tα d(x,y) p(dy) t Q t f (x) + ε .
In particular, when X is compact, (2.9) holds for all α.

(iii) For all x ∈ X and all t > 0, the function

u → β(u/t) is constant on m f (t, x).
In particular, the function p → β d(x, y) p(dy)/t is constant on m f (t, x).

(iv) For all t > 0, x ∈ X and p ∈ m f (t, x), it holds

∂ ∂t Q t f (x) = -β d(x, y) p(dy) t ; (2.10)
Proof of Theorem 2.8. Let us prove Item (i). Fix f : X → R bounded from below and lower semi-continuous, and x ∈ X. It holds

Q t f (x) = inf p∈P(X) f dp + tα d(x, y) p(dy) t = inf u∈R + g x (u) + tα u t ,
where

g x (u) = inf f dp : p ∈ P(X) : d(x, y) p(dy) = u , u ∈ R + .
Let us show that g x (u) = f x (u) u ∈ R + . If u is outside I x , then both functions are equal to +∞ and there is nothing to prove. Let us show that g x = f x on I x . First choosing, in the denition of g x , p = δ y for some y ∈ X such that d(x, y) = u ∈ I x , one gets that g x (u) f (y). Optimizing over all y such that d(x, y) = u, one concludes that g x (u) f x (u) for all u ∈ I x . Moreover the function g x is easily seen to be convex. By denition of the convex hull of f x , it follows that g x (u) f x (u) for all u ∈ I x . Now let us show that g x f x . For all y ∈ X, it holds f (y) f x (d(x, y)). Therefore, if p is such that d(x, y) p(dy) = u ∈ I x , then denoting by p ∈ P u (I x ) the image of p under the map y → d(x, y), it holds

f (y) p(dy) f x (d(x, y)) p(dy) = f x (v) p(dv) f x (v) p(dv) f x (u),
(2.11) where the last inequality follows from Jensen inequality. Optimizing over p, yields to g x f x on I x and so g x = f x and this completes the proof. Now, we prove Item (ii). Let p ∈ m f (t, x) and u = d(x, y) p(dy). Then, according to (2.11), one has f x (u) f dp. Hence, using the very denition of m f (t, x), Item (i) and the denition of

Q t f x (0), it holds f x (u) + tα u t f dp + tα d(x, y) p(dy) t = Q t f (x) = Q t f x (0) f x (u) + tα u t It follows that Q t f x (0) = f x (u) + tα u t and thus that u ∈ m f (t, x) which, in turn, guarantees that d(x, y) p(dy) : p ∈ m f (t, x) ⊂ m f (t, x). Conversely, let u ∈ m f (t, x).
Firstly assume that the cost function α is strictly increasing. If u = 0, then it suce to take p = δ 0 and it is easy to see that

p ∈ m f (t, x). Now suppose that u > 0. Let ([a u , b u ], f x ([a u , b u ])) be the largest ane part of the graph f x which contains (u, f x (u)). If b u < ∞, then thanks to lemma2.6 f x (a u ) = f x (a u ) and f x (b u ) = f x (b u ). As a consequence, there exist y 1 and y 2 such that f x (a u ) = f (y 1 ) and f x (b u ) = f (y 2 ), d(x, y 1 ) = a u , d(x, y 2 ) = b u . It is suce to dene p := λδ y 1 + (1 -λ)δ y 2 where λ satises λa u + (1 -λ)b u = u.
Moreover, by Item (i) and by denition of m f (t, x) we have

Q t f (x) = Q t f x (0) = f x (u) + tα u t = f dp + tα d(x, y) p(dy) t Qf (x)
which proves that p ∈ m f (t, x) and thus that u ∈ d(x, y) p(dy) : p ∈ m f (t, x) . Now we turn to the case b u = ∞. Let h be the ane function which is coincide with

f x on [a u , ∞). Since f x is bounded from below, so is h. It follows that h 0. Hence, z → f x (z) + tα(z/t) is strictly increasing on [a u , ∞). On the other hand, u ∈ m f (t, x) implies that u achieves the minimum of function z → f x (z) + tα(z/t).
Thus u = a u and there exists y ∈ X such that d(x, y) = u and f (y) = f x (u) = f x (u) by lemma 2.6. Again by Item (i) and by denition of m f (t, x) we deduce that the probability p := δ y ∈ m f (t, x) and u ∈ d(x, y) p(dy) : p ∈ m f (t, x) . Now we turn to prove the general case: According to (2.5), for all ε > 0, there exists q ε ∈ P u (I x ) charging at most two points such that f x (v) q ε (dv) f x (u) + ε. For any v in the support of q ε , there exists y v ∈ X such that d(x, y v ) = v and f (y v ) = f x (v) (here we use the facts that f is lower-semicontinuous and balls are compact). Dene p ε = v∈Supp(q ε ) q ε ({v})δ yv . By construction, it holds d(x, y) p ε (dy) = v q ε (dv) = u and f (y) p ε (dy) = f x (v) q ε (dv). Moreover, by Item (i) and by denition of m f (t, x) we have

Q t f (x) = Q t f x (0) = f x (u)+tα u t = f dp ε +tα d(x, y) p ε (dy) t -ε Qf (x)-ε which proves that p ∈ m ε f (t, x) and thus that u ∈ d(x, y) p(dy) : p ∈ m ε f (t, x) . So it holds m f (t, x) ⊂ ε>0 { d(x, y) p(dy) : p ∈ m ε f (t, x)} := A(t, x
). Now, let us assume that X is compact, and let us show that the set

A(t, x) = { d(x, y) p(dy) : p ∈ m f (t, x)}. Let u ∈ A(t, x
) and ε n be a sequence of positive numbers tending to 0 ; then there exists a sequence p n ∈ m εn f (t, x) such that u = d(x, y) p n (dy). According to Prokhorov Theorem, P(X) is compact, therefore one can assume without loss of generality that p n converges weakly to some p * . Since X is compact, the function y → d(x, y) is bounded and continuous and therefore the functional p → d(x, y) p(dy) is continuous. One concludes that d(x, y) p * (dy

) = u. Now let us show that p * ∈ m f (t, x). Since f is lower semi- continuous lim inf n→∞ f dp n f dp * . Since p n ∈ m εn f (t, x), letting n → ∞, one concludes that f dp * + tα d(x,y) p * (dy) t Q t f (x)
and so p * ∈ m f (t, x). This ends the proof of Item (ii).

Let us prove Item (iii). By denition, m f (t, x) is the set where the convex function

F (v) = f x (v)+tα(v/t) attains its minimum on R + . Therefore m f (t, x) is an interval. Suppose that u 1 < u 2 are in m f (t, x), then F is constant on [u 1 , u 2 ]
. Since both functions f x and tα( • /t) are convex, this easily implies that these functions f x and tα(

• /t) are both ane on [u 1 , u 2 ]. In particular, α (u/t) is constant on [u 1 , u 2 ]. It follows that β(u 2 /t) = (u 2 /t)α (u 2 /t) -α(u 2 /t) = (u 2 /t)α (u 1 /t) -α(u 1 /t) - α (u 1 /t)(u 2 -u 1 )/t = β(u 1 /t). This shows that β( • /t) is constant on m f (t, x).
Let us turn to the proof of Item (iv). According to [16, Theorem 1.10] (which applies since f x : R → R ∪ {+∞} is bounded from below and, according to Lemma 2.4, lower-semicontinuous), it holds

dQ t f x (0) dt + = -β max m f (t, x) t ,
and

dQ t f x (0) dt - = -β min m f (t, x) t ,
where d/dt ± stands for the right and left derivatives. According to Item (iii) the function β( • /t) is constant on m f (t, x). Therefore, the left and the right derivatives of t → Q t f x (0) are equal, and so the function is actually dierentiable in t. According to Item (i),

Q t f (x) = Q t f x (0) and, according to Item (ii), { d(x, y) p(dy) : p ∈ m f (t, x)} ⊂ m f (t, x) which proves (2.10).
Let us mention an interesting consequence of the proof of Item (ii). Let us denote by P 2 (X) the set of probability measures on X charging at most two points:

P 2 (X) := {(1 -s)δ x + sδ y : s ∈ [0, 1], x, y ∈ X} .
Proposition 2.12. Let f : X → R be a lower semicontinuous function bounded from below. Then

Q t f (x) = inf f dp + tα d(x, y) p(dy) t : p ∈ P 2 (X) .
Proof. It is enough to show that for all ε > 0, m ε f (t, x) ∩ P 2 (X) = ∅ (recall the denition of m ε (t, x) given in Item (ii) of Theorem 2.8). Actually, this follows immediately from the argument given in the proof of Item (ii). Indeed, we showed there that for all u ∈ m f (t, x) there exists p ∈ P 2 (X) ∩ m ε f (t, x) such that d(x, y) p(dy) = u. Now let us prove Lemmas 2.3 and 2.4.

Proof of Lemma 2.3. Since f is lower semicontinuous and bounded from below, the function p → f dp is lower semicontinuous with respect to the weak convergence topology of P(X). For the same reason p → d(x, y) dp is also lower semicontinuous. Therefore, the function

F (p) = f dp + tα d(x,y) p(dy) t
is lower semi continuous on P(X). The function F is also bounded from below by m = inf X f . Moreover its sub-level sets are compact. Indeed, for all r m, it holds

{F r} ⊂ p ∈ P(X) : d(x, y) p(dy) C t,r , with C t,r = tα -1 r -m t .
In particular, if p ∈ {F r}, then p(B(x, R) c ) C t,r R -1 , for all R > 0. Since balls in X are assumed to be compact, the compactness of {F r} follows from Prokhorov theorem. Since F is lower semicontinuous, bounded from below and has compact sub-level sets, F attains its minimum and so m f (t, x) is not empty.

Proof of Lemma 2.4. Fix f : X → R bounded from below and lower semicontinuous, x ∈ X and u ∈ R + . According to e.g. [START_REF] Hiriart-Urruty | Fundamentals of convex analysis[END_REF][Proposition B.2.5.1],

f x (u) = inf Ix f x (w) q(dw) : q ∈ P u (I x ) with nite support .
Applying Caratheodory's Theorem (see e.g. [START_REF] Hiriart-Urruty | Fundamentals of convex analysis[END_REF][Theorem A.1.3.6]), ones sees that one can assume that the inmum is over probability measures q charging at most three points. Let us explain how to reduce to two points. Fix ε > 0 ; there exist w 1 , w 2 , w 3 ∈ I x , and

λ 1 , λ 2 , λ 3 ∈ [0, 1] with i λ i = 1 such that u = λ 1 w 1 + λ 2 w 2 + λ 3 w 3 and f x (u) λ 1 f x (w 1 ) + λ 2 f x (w 2 ) + λ 3 f x (w 3 ) -ε
Without loss of generality we can assume that w 1 < w 2 < w 3 , and for example that w 1 u w 2 (the other case is similar). Then there exist a, b

∈ [0, 1] such that u = aw 1 +(1-a)w 2 = bw 1 +(1-b)w 3 . Then it is not dicult to check that there is a unique λ ∈ [0, 1] such that λ 1 = λa + (1 -λ)b, λ 2 = λ(1 -a) and λ 3 = (1 -λ)(1 -b). Therefore it holds u = (λa + (1 -λ)b)w 1 + λ(1 -a)w 2 + (1 -λ)(1 -b)w 3 and f x (u) (λa + (1 -λ)b)f x (w 1 ) + λ(1 -a)f x (w 2 ) + (1 -λ)(1 -b)f x (w 3 ) -ε.
By denition of f x (u), necessarily,

f x (u) min s∈[0,1] {(sa + (1 -s)b)f x (w 1 ) + s(1 -a)f x (w 2 ) + (1 -s)(1 -b)f x (w 3 )}.
Since, in the right hand side of the latter, the function of s that needs to be minimized is an ane function, the minimum is reached at s = 0 or s = 1. Therefore

f x (u) min{af x (w 1 ) + (1 -a)f x (w 2 ), bf x (w 1 ) + (1 -b)f x (w 3 )} -ε
which proves that, for all ε > 0, there exists q ∈ P 2 (I x ) such that v q(dv) = u and f x (v) q(dv) f x (u) Ix f x (v) q(dv) -ε. Since ε > 0, this completes the proof. Now let us prove that f x is continuous on I x . By denition, f x is a convex function on the closed interval I x , thus it is continuous on the interior of I x . Hence it only remains to prove that f x is continuous at 0 and, in case I x is bounded, at b = max I x . We only give the proof of the continuity at 0, the other case is similar.

Take

x o ∈ X \ {x} and let u o = d(x, x o ) ∈ I x \ {0}. Since f x is convex, on I x , it holds, for all 0 u u o f x (u) = f x u u o .u o + (1 - u u o ).0 u u o f x (u o ) + 1 - u u o f x (0).
Thus letting u → 0 + , one gets that lim sup u→0 + f x (u) f x (0). Now, we prove that lim inf u→0 + f x (u) f x (0). Thanks to the lower semicontinuity of f , for all ε ∈ (0, 1), there exists η, for all y ∈ B(x, η), f (y) f (x) -ε. Thus, from the denition of f x , it follows that for all u ∈ [0, η),

f x (u) f x (0) -ε.
On the other hand, if m is a lower bound for f , then f x (u) m for all u ∈ [0, ∞). Therefore, it holds

f x (u) (f x (0) -ε)1 [0,η) (u) + m1 [η,∞) := g ε (u), ∀u ∈ [0, ∞),
(here we use that by denition f x (u) = +∞ when u / ∈ I x ). Taking a smaller m if necessary, one can assume that f x (0) -ε > m for all ε ∈ (0, 1). Now consider, the ane function h ε joining (0, f x (0) -ε) to (η, m). It is clear that g ε h ε on [0, ∞). Therefore, by denition of f x as the greatest convex function below f x , it holds f x h ε on [0, ∞). In particular, lim inf

u→0 + f x (u) lim inf u→0 + h ε (u) = f x (0) -ε. Since ε is arbitrary, one concludes that lim inf u→0 + f x (u) f x (0) f x (0). In conclusion, lim u→0 + f x (u) = f x (0) = f x (0)
, which completes the proof.

Properties of the gradient ∇

In this section we collect some useful facts on the gradient ∇. Our rst result is some sort of chain rule formula for ∇. Proof. Fix x ∈ X and assume that G is non-decreasing. Let y ∈ X be such that

Proposition 2.13. Let f : X → R and G : f (X) → R. (i) If G is non-decreasing then | ∇G • f |(x) | ∇f |(x)| ∇G| (f (x)), x ∈ X. (ii) If G is non-increasing then | ∇G • f |(x) | ∇(-f )|(x)| ∇G| (f (x)), x ∈ X.
f (x) > f (y) (if {y ∈ X : f (x) > f (y)} = ∅ then | ∇G • f |(x) = | ∇f |(x) = 0 and there is nothing to prove). Since G is non-decreasing G(f (x)) G(f (y)) so that G (f (x)) -G (f (y)) d(x, y) f (x) -f (y) d(x, y) G (f (x)) -G (f (y)) f (x) -f (y) | ∇f |(x)| ∇G| (f (x)) .
Taking the supremum over all y such that f (x) > f (y) leads to the desired conclusion of Item (i).

The proof of Item (ii) is similar. Let y ∈ X be such that f (y

) > f (x), then G(f (y)) G(f (x)) (since G is non-increasing) so that G (f (x)) -G (f (y)) d(x, y) = (-f )(x) -(-f )(y) d(x, y) G (f (x)) -G (f (y)) |f (y) -f (x)| | ∇(-f )|(x)| ∇G| (f (x)) .
The result follows by taking the supremum over all y ∈ X such that f (y) > f (x). The next proposition gives some results on the action of the gradient ∇ onto the operator Q t and relates the gradient of f to the usual derivative of f . Proposition 2.15. Let f be a lower semi-continuous function bounded from below.

(i) For all x ∈ X, all t > 0 and all p ∈ m f (t, x), it holds

| ∇ Q t f |(x) α d(x, y) p(dy) t . (2.16) 
(ii) Assume that f reaches its minimum at a unique point x o ∈ X, then for all x ∈ X \ {x o }, it holds

| ∇f |(x) = | f x (0)|, (2.17) 
and | ∇f |(x o ) = 0. Moreover, if f reaches its minimum in two or more points, or if f does not reach its minimum, then (2.17) holds for all x ∈ X. Remark 2.18. Observe that, if f reaches its minimum at a unique point x o , then it could be that f xo (0) = 0. For example consider, on X = R + , f (x) = x that reaches its minimum at x o = 0. Trivially f x 0 (x) = x for all x ∈ X so that f xo (0) = 1. Hence, there is no hope for (2.17) to be true at x o in general.

Proof. First let us prove item

(i). Consider y such that Q t f (y) < Q t f (x) (if there is no such y, then | ∇ Q t f |(x) = 0
and there is nothing to prove). By Lemma 2.3, there exist p o ∈ m f (t, x), p 1 ∈ m f (t, y) and according to Item (ii) of Theorem 2.8,

u o = d(x, z) p 0 (dz) ∈ m f (t, x) and u 1 = d(y, z) p 1 (dz) ∈ m f (t, y) and it holds Q t f (x) = f dp o + tα(u o /t) and Q t f (y) = f dp 1 + tα(u 1 /t). (2.19) Now, set p λ := (1 -λ)p o + λp 1 , λ ∈ [0, 1], u := d(x, z) p 1 (dz) and observe that, by denition of Q t , Q t f (x) f dp λ + tα d(x, z) p λ (dz) t = f dp λ + tα λu + (1 -λ)u o t .
Since the latter holds for all λ ∈ [0, 1] the function

g : λ → f dp λ + tα λu + (1 -λ)u o t -Q t f (x)
is always non-negative. Therefore, since g(0 

) = 0, g (0) = ( f dp 1 -f dp o ) + (u - u o )α (u o /t) 0 which ensures that f dp o -f dp 1 (u -u o )α (u o /t). ( 2 
t f (x) > Q t f (y), it holds [ Q t f (y) -Q t f (x)] -= Q t f (x) -Q t f (y) = f dp o -f dp 1 + t α u o t -α u 1 t (u -u o )α ( u o t ) + t α u o t -α u 1 t d(x, y)α u o t + (u 1 -u o )α u o t + t α u o t -α u 1 t .
Therefore, by convexity of α, we conclude that (u 1 -u o )α ( uo t )+t(α( uo t )-α( u 1 t )) 0 and in turn that for all x, y ∈ X, [ Q t f (y) -Q t f (x)] -d(x, y)α ( uo t ) which leads to the expected result by taking the supremum over y = x. Now we turn to the proof of Item (ii). Fix x ∈ X. The proof relies on the existence of a point y = x such that f (y) f (x). Such an existence is guaranteed for all x ∈ X (resp. for all x ∈ X \ {x o }) when f does not reach its minimum or reaches its minimum in more than two points (resp. when f reaches its minimum at a unique point x o ). Given such a point y, by denition of f x , we have f x (0) = f (x) f (y) f x (d(x, y)). Thanks to the convexity of f x , the slope function

u → fx(u)-fx(0) u is non-decreasing. It follows that f x (0) = lim u→0 + f x (u) -f x (0) u = inf u>0 f x (u) -f x (0) u f x (d(x, y)) -f x (0) d(x, y) 0.
Taking the absolute value, we get

| f x (0)| = sup u>0 f x (0) -f x (u) u .
Observe that, according to Lemma 2.4, for all u > 0, f x (u) = inf f dp where the inmum is running over all p ∈ P 2 (X) such that d(x, • ) dp = u. Hence, setting

p = λδ y 1 + (1 -λ)δ y 2 , y 1 , y 2 ∈ X, λ ∈ [0, 1], we have (recall that f x (0) = f (x)) | f x (0)| = sup u>0 f x (0) -f x (u) u . = sup u>0 sup y 1 ,y 2 ∈X,λ∈[0,1]s.t λd(x,y 1 )+(1-λ)d(x,y 2 )=u f (x) -(λf (y 1 ) + (1 -λ)f (y 2 )) u = sup y 1 ,y 2 ∈X,λ∈[0,1] λ(f (x) -f (y 1 )) + (1 -λ)(f (x) -f (y 2 )) λd(x, y 1 ) + (1 -λ)d(x, y 2 ) = sup y =x f (x) -f (y) d(x, y) = | ∇f |(x),
where the last equality comes from the fact that the function λ → λa+(1-λ)b λc+(1-λ)d (with c, d > 0 and a, b ∈ R) is monotone on [0, 1]. This proves (2.17). That | ∇f |(x o ) = 0 is a direct consequence of the denition of the gradient.

Obstruction to the semi-group property of the usual infconvolution operator Q t , on graphs

In this section we prove that, on a graph and under very mild assumptions, there is no hope of nding a family of mappings (D t ) t>0 such that Q t f (x) := inf y∈V {f (y) + D t (y, x)} satises the usual semi-group property

Q t+s = Q t (Q s ).
More precisely, we have the following result.

Proposition 2.22. Let G = (V, E) be a nite graph. Assume we are given a family of mappings D t : V × V → R + , t > 0 that satises D t (x, x) = 0 for all x ∈ V and all t > 0. Assume furthermore that for any f : V → R and any x ∈ V , Q t f (x) := inf y∈V {f (y) + D t (y, x)} → f (x) when t → 0. Then, there exists f , x ∈ V and t, s > 0 such that

Q t+s f (x) = Q t (Q s f )(x).
Proof. By contradiction assume that for all f bounded on V , all x ∈ X and s, t > 0,

it holds Q t Q s f = Q t+s f .
The proof is based on the following claims.

Claim 2.23. For all x, z ∈ V , all s < r ∈ (0, ∞), it holds D r (z, x) = min y∈V {D s (z, y) + D r-s (y, x)}.

Claim 2.24. For all x, z ∈ V , the map (0, ∞) t → D t (z, x) is non-increasing and, if x = z, D t (z, x) → ∞ as t goes to 0.

We postpone the proof of the above claims to end the prove of the proposition. Fix x, z ∈ V , x = z. Then, by Claim 2.23, for all s ∈ (0, 1), it holds

D 1 (z, x) = min y∈V {D s (z, y) + D 1-s (y, x)} = min D 1-s (z, x); min y =z {D s (z, y) + D 1-s (y, x)} .
By Claim 2.24 and since the graph is nite, lim s→0 min y =z {D s (z, y)+D 1-s (y, x)} = ∞. Hence, there exists s o ∈ (0, 1) such that, for s < s o , D 1 (z, x) = D 1-s (z, x) so that u o := sup{u ∈ (0, 1) : D 1-u (z, x) = D 1 (z, x)} is well-dened thanks to Claim 2.24. By a similar argument, there exists

s 1 ∈ (0, 1 -u o ) such that D 1-uo-s (z, x) = D 1-uo (z,
x) for all s < s 1 . This contradicts the denition of u o and ends the proof of the proposition provided that we prove Claim 2.24 and Claim 2. On the other hand, by the semi-group property, similarly (necessarily u = z) it holds

Q r f (x) = Q r-s (Q s f )(x) = min u,y∈V {f (u) + D s (u, y) + D r-s (y, x)} = min y∈V {D s (z, y) + D r-s (y, x)}
which leads to the thesis.

Proof of Claim 2.24. If x = z, the map t → D t (z, x) is constant and so there is nothing to prove. Assume that x = z. By Claim 2.23 we have for s < r (take

y = x), D r (z, x) = inf y∈V {D s (z, y) + D r-s (y, x)} D s (z, x) which proves that t → D t (z, x) is non-increasing and that the limit lim r→0 D r (z, x) exists in [0, ∞]. For M > 0, let f : V → R be dened by f (z) = 0, f (x) = M and f (y) = M + 1 for all y = z, x. Then Q r f (x) = min y∈V {f (y) + D r (y, x)} = min D r (z, x); f (x); min y =z,x {f (y) + D r (y, x)} = min (D r (z, x); M ) 1 2 (D r (z, x) + M ) .
Now, by assumption Q r f (x) → f (x) = M as r goes to 0 so that, taking the limit in the latter guarantees that lim r→0 D r (z, x) M which ends the proof of Claim 2.24 since M is arbitrarily large.

The proof of the proposition is complete.

3 Hamilton-Jacobi equation: Proof of Theorem 1.4

This section is dedicated to the proof of Theorem 1.4. Actually we shall prove a more general result involving a general choice of the function α, not only α(x) = 1 2 x 2 as stated in Theorem 1.4. More precisely, we shall prove the following (recall that α * is the Fenchel-Legendre transform of α dened in Section 2). Theorem 3.1. Let f : X → R be a lower semi-continuous function bounded from below. Then, for all x ∈ X, it holds

(i) For all t > 0, ∂ ∂t Q t f (x) + α * | ∇ Q t f |(x) 0. (ii) Assume that α * is well dene on [0, l), (i.e ∀x ∈ [0, l), α * (l) < ∞.) Then for all x such that | ∇f |(x) ∈ [0, l), lim t→0 Q t f = f and it holds ∂ ∂t Q t f (x)| t=0 + α * | ∇f |(x) = 0.
Remark 3.2. In Item (ii), if lim x→∞ α(x)/x = ∞, we can take l = ∞, then the latter equation holds for almost every x ∈ X.

If f is l -ε-lipschiz then | ∇f |(x) < l and the latter equality holds. Moreover, if there exists h such that α (h) = l, then the latter holds for all x such that

| ∇f |(x) ∈ [0, l].
Proof. We will rst prove Item (i). On the one hand, by Theorem 2.8, for all t > 0,

it holds ∂ ∂t Q t f (x) = -β u o t , x ∈ X
where u o ∈ m f (t, x). On the other hand, since α * is non-decreasing, Proposition 2.15 ensures that

α * | ∇ Q t f |(x) α * α u o t .
In order to conclude, it is enough to observe that, the function G := y → yα uo tα(y) is a concave function and G uo t = 0. Hence,

α * α u o t = sup y∈R yα u o t -α(y) = u o t α u o t -α u o t = β u o t .
Now we turn to the proof of Item (ii).

If x = x o is a minimum of f (if any), then (observe that Q t f (x o ) = f (x o ) for all t > 0) it is easy to see that ∂ ∂t Q t f (x)| t=0 := lim t→0 Qtf (x)-f (x) t = α * | ∇f |(x)
= 0 and the claim follows. For the remaining of the proof we assume that x ∈ X is not a minimum of f . Thanks to Theorem 2.8, for all t > 0, it holds

Q t f (x) -f (x) t = Q t f x (0) -f x (0) t = f x (u) -f x (0) t + α u t ,
where u ∈ m f (t, x).

Let us prove that u > 0. Since x is not a minimum of f , there exists y ∈ X such that f (y) < f (x). Fix t > 0, by the very denition of Q t , for all λ ∈ [0, 1], it holds that

Q t f (x) (1 -λ)f (x) + λf (y) + tα λd(x,y) t (choose p = (1 -λ)δ x + λδ y ). Dene G : [0, 1] λ → (1 -λ)f (x) + λf (y) + tα λd(x,y) t . Then G (0) = α (0)d(x, y) + f (y) -f (x) = f (y) -f (x) < 0. Thus, there exist λ ∈ (0, 1) such that Q t f (x) G(λ) < G(0) = f (x). Hence f x (u) Q t f (x) < f (x) = f x (0) and therefore u > 0.
According to Lemma 2.4, for all x ∈ X, f x is convex and continuous on

I x . It follows that fx(u)-fx(0) u f x (0). Since f x (u) Q t f x (0) f x (0), we have that fx(u)-fx(0) u is non-positive and fx(0)-fx(u) u | f x (0)|. Hence, f (x) -Q t f (x) t = f x (0) -f x (u) t -α u t = f x (0) -f x (u) u u t -α u t α * f x (0) -f x (u) u α * | f x (0)|
where the last inequality comes from the fact that α * is non-decreasing. This leads to

lim inf t→0 Q t f (x) -f (x) t -α * | f x (0)| , (3.3) 
by passing to the limit. Next, we prove that lim sup t→0

Qtf (x)-f (x) t -α * | f x (0)| . By convexity of f x , for all h ∈ (0, u), it holds f x (u) -f x (0) u f x (u) -f x (u -h) h . (3.4)
On the other hand, since (by denition of u)

f x (u) + tα u t f x (u -h) + tα u-h t , we have f x (u) -f x (u -h) h t α u-h t -α u t h . (3.5) 
Let l := lim x→∞ α (x), it is easy to see that α * (x) < ∞ when x l and = ∞ when x > l. By Item (ii) of Proposition 2.15 and convexity of f x and Equation (2.17), there exists h 1 < l such that the following holds:

α u t - d du - f x (u) -f x (0) = | ∇f |(x) α (h 1 )
.

By convexity of α, the latter inequality leads to u t h 1 for all t > 0. We conclude from the above argument that u ∈ m(t, x) goes to 0 as t goes to 0. Now, taking the right derivative of v → f x (v) + tα v t , for all t ∈ R + and all u ∈ m f (t, x), we have

α u t - d du + f x (u).
Since lim u→0 d du + f x (u) = f x (0) and using the monotonicity and the (right) continuity of α * when t goes to 0, we have thanks to 3.6

lim sup t→0 Q t f (x) -f (x) t -α * | f x (0)| (3.7)
This combined with 3.3 and Proposition2.15 leads to the desired result.

Functional inequalities

In this section we shall rst introduce dierent functional inequalities (of Poincaré and log-Sobolev type related to the gradient ∇) and two transport-entropy inequalities. Then, following [START_REF] Bobkov | Hypercontractivity of hamilton-jacobi equations[END_REF] on the one hand, and [START_REF] Bobkov | Poincaré's inequalities and talagrand's concentration phenomenon for the exponential distribution[END_REF] on the other hand, by means of our main result on the Hamilton-Jacobi equation (Theorem 3.1) we shall prove some relations between such inequalities. For simplicity and to avoid unnecessary technical assumptions and proofs, we shall mainly deal with the quadratic or quadratic-linear costs. However, most of the results below can be extended to more general situations.

We start with some denitions. One says that µ ∈ P(X) satises the Poincaré inequality, respectively the modied log-Sobolev inequality1 of type I and type II, respectively the weak transport-entropy inequality of type I and type II, if there exists a constant C ∈ (0, ∞) such that for all f : X → R bounded it holds

Var µ (f ) C | ∇f | 2 dµ (Poincaré Inequality), (4.1) 
respectively

Ent µ (e f ) C α * | ∇f | e f dµ (Modied log-Sob Ineq. of type I), (4.2) 
Ent µ (e f ) C α * | ∇(-f )| e f dµ (Modied log-Sob Ineq. of type II), (4.3) 
respectively for all ν ∈ P(X) it holds T α (µ|ν) CH(ν|µ) (Weak transport-entropy Inequality of type I), (

T α (ν|µ) CH(ν|µ) (Weak transport-entropy Inequality of type II), (

where we recall that Var µ (f ) := f 2 dµ-f dµ 2 is the variance of f with respect to µ, Ent µ (e f ) := f e f dµ -e f dµ log e f dµ is the entropy of e f with respect to µ, H(ν|µ) = Ent µ (e f ) if ν µ and e f = dν/dµ, and H(ν|µ) = ∞ otherwise, while T 2 (µ|ν) is dened in (1.3). For general α, we have

T α (ν|µ) := inf α d(x, y) p x (dy) µ(dx) , µ, ν ∈ P(X) (4.6) 
where the inmum is running over all couplings π(dx, dy) = p x (dy)µ(dx) of µ, ν (i.e. π is a probability measure on X × X with rst marginal µ and second marginal ν).

We stress that T 2 ( • | ) is not symmetric so that (4.4) is in general dierent from (4.5). For further developments on transport-entropy inequalities involving T 2 , we refer to [START_REF] Gozlan | Kantorovich duality for marton's transport costs and applications[END_REF].

Modied log-Sobolev inequality

In this section, we focus on the modied log-Sobolev inequalities (

. As a rst result we shall prove that, in the graph setting, some other (say classical) modied log-Sobolev inequality (which is known to be weaker than the usual log-Sobolev inequality [START_REF] Bobkov | Modied logarithmic sobolev inequalities in discrete settings[END_REF], an inequality deeply studied in the literature) implies (4.2). Then, we may extend to our general setting the approach and some of the results of [START_REF] Bobkov | Hypercontractivity of hamilton-jacobi equations[END_REF] on the hypercontractivity of the Hamilton-Jacobi operator Q t . This will allow us to prove that, in particular, the modied log-Sobolev inequality (4.2) (resp. (4.3)) implies the weak transport-entropy inequality (4.4) (resp. (4.5)).

Connection with some classical inequalities, on graphs

Given a (simple connected) graph G = (V, E), recall that K = (K(x, y)) x,y∈V is a matrix with positive entries if K(x, y) 0 for all x, y ∈ V , and that it is a Markovian matrix if in addition y∈V K(x, y) = 1 for all x ∈ V . Then, the couple (µ, K) satises the (say) classical modied log-Sobolev inequality if there exists a constant C ∈ (0, ∞) such that for all f :

V → R bounded it holds Ent µ (e f ) C x,y∈V (e f (y) -e f (x) )(f (y) -f (x))µ(x)K(x, y). (4.7) 
The latter is known to be a consequence of Gross' Inequality that asserts that Proposition 4.9. Let µ be a probability measure on a (simple connected) graph G = (V, E) and K be a matrix with positive entries. Assume that there exists a constant L such that y∈V d 2 (x, y)K(x, y) L for all x ∈ V and that for all x, y ∈ V , µ(x)K(x, y) = µ(y)K(y, x). Finally, assume that (µ, K) satises the classical modied log-Sobolev inequality (4.7) with constant C, respectively Gross' Inequality (4.8) with constant C . Then, µ satises the modied log-Sobolev inequality (4.2) with α(x) = α * (x) = x 2 /2 and constant 4LC, respectively LC . Remark 4.10. The condition µ(x)K(x, y) = µ(y)K(y, x), x, y ∈ V , is known as the detailed balance condition in the physics literature and means that the operator K, acting on functions, is symmetric in L 2 (µ). Most commonly one deals with a Markovian matrix with nearest neighbor jumps (meaning that K(x, y) = 0 unless d(x, y) = 1), which guarantees that L = 1. In particular the hypotheses of the proposition are very commonly used and correspond to a lot of practical situations [START_REF] Giné | Lectures on Probability Theory and Statistics[END_REF].

Ent µ (f ) C x,y∈V (f (y) -f (x)) 2 µ(x)K(x, y) ∀f : V → R bounded.
Proof. The result involving the Gross' inequality is an immediate consequence of the result involving the classical modied log-Sobolev inequality since the former implies the latter with C C/4. Hence, we only need to show that x,y∈V

(e f (y) -e f (x) )(f (y) -f (x))µ(x)K(x, y) 2L x∈V | ∇f | 2 (x)e f (x) µ(x). Since (a -b)(e a -e b ) (a -b) 2 max{e a , e b }, we have x,y∈V (e f (y) -e f (x) )(f (y) -f (x))µ(x)K(x, y) x,y∈V : f (x) f (y) (f (y) -f (x)) 2 e f (x) µ(x)K(x, y) + x,y∈V : f (y) f (x) (f (x) -f (y)) 2 e f (y) µ(x)K(x, y).

Using the detailed balance condition ensures that

x,y∈V :

f (y) f (x) (f (x) -f (y)) 2 e f (y) µ(x)K(x, y) = x,y∈V : f (y) f (x) (f (x) -f (y)) 2 e f (y) µ(y)K(y, x)
which, after a change of variable, implies that x,y∈V

(e f (y) -e f (x) )(f (y)-f (x))µ(x)K(x, y) = 2 x,y∈V : f (x) f (y) (f (y)-f (x)) 2 e f (x) µ(x)K(x, y).

Now, we observe that

x,y∈V :

f (x) f (y) (f (y) -f (x)) 2 e f (x) µ(x)K(x, y) = x,y∈V : f (x) f (y) [f (y) -f (x)] - d(x, y) 2 e f (x) µ(x)K(x, y)d(x, y) 2 x∈V | ∇f | 2 (x)e f (x) µ(x) y∈V K(x, y)d(x, y) 2
which leads to the desired result since y∈V K(x, y)d(x, y) 2 L. The proof is complete.

Hypercontractivity property of the family of operators

(exp{ Q t }) t 0 : proof of Corollary 1.5

Using our main result on the Hamilton-Jacobi equation, we shall follow the line of proof of [START_REF] Bobkov | Hypercontractivity of hamilton-jacobi equations[END_REF] to prove Corollary 1.5, namely that the family of operator (exp{ Q t }) t 0 enjoys some hypercontractivity property. As a byproduct we shall prove that the modied log-Sobolev inequality (4.2) implies the transport-entropy inequality (4.4), giving rise, thanks to Proposition 4.9 to a variety of non trivial examples satisfying such an inequality, on graphs.

Proof of Corollary 1.5. We shall show that the modied log-Sobolev inequality (1.6) implies the hypercontractivity property (1.7) for positive ρ and the modied log-Sobolev inequality (1.8) implies the hypercontractivity property (1.7) for negative ρ at the same time. To that purpose, x ρ ∈ R and, following [START_REF] Bobkov | Hypercontractivity of hamilton-jacobi equations[END_REF], dene

F (t) := 1 k(t) log e k(t) Qtf dµ , t 0 
with k(t) := ρ + (t/2C). By Theorem 2.8, F is dierentiable at every point t > 0 when ρ 0 and every t ∈ (0, -ρC/2) when ρ 0. For such points, it holds

F (t) = k (t) k(t) 2 1 e k(t) Qtf dµ Ent µ e k(t) Qtf + k(t) 2 k (t) e k(t) Qtf ∂ ∂t Q t f dµ .
According to Theorem 1.4, we have

Ent µ e k(t) Qtf + k(t) 2 k (t) e k(t) Qtf ∂ ∂t Q t f dµ Ent µ e k(t) Qtf - k(t) 2 2k (t) | ∇ Q t f | 2 e k(t) Qtf dµ = Ent µ e k(t) Qtf - 1 2k (t) ∇ |k(t)| Q t f 2 e k(t) Qtf dµ
where the last equality follows from Remark 2.14. Now we have two cases to deal with: (a) If ρ 0 and µ satises (1.6), then |k(t)| = k(t). Hence, applying the modied log-Sobolev inequality (1.6) leads to F (t) 0. (b) If ρ 0 and µ satises (1.8), then |k(t)| = -k(t). Hence applying the modied log-Sobolev inequality (1.8) leads also to F (t) 0. In both cases F (t) 0 implies F (t) F (0) which amounts to (1.7).

Conversely, suppose that (1.7) holds for every t 0 when ρ > 0 (respectively every t ∈ [0, -ρC/2) when ρ < 0) . Then, in the limit, (1.7) implies that F (0) 0 and thus (recall that k

(t) = 1/(2C) > 0) Ent µ e k(0) Q 0 f + k(0) 2 k (0) e k(0) Q 0 f ∂ ∂t Q t f | t=0 dµ 0
where we set Q 0 f := lim t→0 Q t f . By Theorem 3.1, since α(x) = x 2 /2, Q 0 f = f so that the latter is equivalent to

Ent µ e ρf + 2ρ 2 C e ρf ∂ ∂t Q t f | t=0 dµ 0. Now, according to Theorem 3.1, ∂ ∂t Q t f (x)| t=0 = -1 2 | ∇f | 2 (x), x ∈ X so that Ent µ e ρf -C e ρf | ∇(|ρ|f )| 2 dµ 0.
This precisely amounts to proving (1.6) (respectively (1.8)) when ρ 0 (resp. ρ 0).

In order to prove the last part of Corollary 1.5, we need to recall the following generalization of Bobkov-Gotze dual characterization borrowed from [START_REF] Gozlan | Kantorovich duality for marton's transport costs and applications[END_REF]Theorem 5.5 .

(4.12)

Now, (1.7) applied to ρ = 0 and t = 1 precisely amounts to (4.11), since by denition g 0 := exp{ log g dµ} for g 0, while (1.7) applied to ρ = -2/C, and t = 1 implies (4.12). Hence the result, thanks to the dual characterization of [START_REF] Gozlan | Kantorovich duality for marton's transport costs and applications[END_REF].

The proof of Corollary 1.5 is complete.

Remark 4.13. Since | ∇f | 2 (x) 1 for any 1-Lipschitz function, the usual Herbst argument (see e.g. [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF]Chapter 7], [START_REF] Bobkov | Modied logarithmic sobolev inequalities in discrete settings[END_REF]) applies and leads to the following concentration result: if µ satises the modied log-Sobolev inequality (4.2), then any 1-Lipschitz function f : X → R with f dµ = 0 satises µ(f h) e -h 2 /(4C) for all h 0.

Poincaré inequality

In this section, we prove that the Poincaré inequality (4.1) is equivalent to the transport-entropy inequality (4.2) with a quadratic-linear cost, a notion we dene below. This will extend to our setting similar results known in the continuous, see [START_REF] Bobkov | Hypercontractivity of hamilton-jacobi equations[END_REF].

Denition 4.14 (Quadratic-linear cost function). A quadratic-linear cost function

α h a : R + → R, a, h > 0 is such that α h a (x) = ax 2 x h 2ax -ah 2 x > h.
The main theorem of this section is the following. Theorem 4.15. Let µ be a probability measure on X. The following propositions are equivalent.

(i) There exists a constant C 1 > 0 such that µ satises the Poincaré inequality (4.1) with constant C 1 .

(ii) There exist constants C 2 , a, h > 0 such that µ satises the weak transportentropy inequality (4.2) with constant C 2 and cost α h a . More precisely, -(ii) implies (i) with C 1 = aC 2 ;

-(i) implies (ii) with C 2 = K(c)/2, a = 1 4K(c) and h = 2cK(c) for any c < 2/ √ C 1 and K(c) := C 1 2 2 + 2e 2 + c √ C 1 2 -c √ C 1 2 e c √ 5C 1 .
Remark 4.16. As a direct consequence of the above theorem, we observe that the weak transport-entropy inequality (4.4) with cost function α(x) := x 2 2 and constant C implies the Poincaré inequality (4.1) with constant C/2. Indeed, since α(x) = The proof of Theorem (4.15) relies on a characterization of the Poincaré Inequality (4.1) in term of a modied log-Sobolev inequality with quadratic-linear cost, of independent interest. Such a characterization is an extension of a well known result of Bobkov and Ledoux [START_REF] Bobkov | Poincaré's inequalities and talagrand's concentration phenomenon for the exponential distribution[END_REF].

Theorem 4.17. A probability measure µ on X satises the Poincaré Inequality We observe that, with respect to [START_REF] Bobkov | Poincaré's inequalities and talagrand's concentration phenomenon for the exponential distribution[END_REF] there is a loss in the constant K(c). This is technical. Indeed, the proof of Bobkov and Ledoux cannot be extended directly and one has to be careful in many points. Since the proof of Theorem 4.17 deals only with properties of ∇ and not with the Hamilton-Jacobi equation, and because it is long and technical, we decided to postpone it to the appendix.

Proof of Theorem 4.15. We will rst prove that (i) implies (ii). Fix c < 2/

√

C and set C = C 1 , a = 1 4K(c) and h = 2cK(c). Thanks to Theorem 4.17 for all f :

X → R bounded, it holds Ent µ (e f ) K(c) (α h a ) * (| ∇f |)e f dµ.
Arguing as in the proof of Corollary 1.5 (see Section4.3) with k(t) = 2t/K(c), and using the fact 2 that (α h a ) * (λu) λ 2 (α h a ) * (u) as soon as u 2ah, we obtain (details are left to the reader) that the family of operators (exp{ Q t }) t 0 , with Q dened with the cost α h a , is hypercontractive which in turn guarantees that for all bounded function f . The conclusion follows from the dual characterization of [START_REF] Gozlan | Kantorovich duality for marton's transport costs and applications[END_REF] (that we recalled in (4.11)).

exp 2 K(c) Q 1 f dµ exp 2 K(c) f dµ 2 
Next we prove that (ii) ⇒ (i). By an easy argument it is enough to prove (4.1) for all bounded Lipschitz function f on X. According to [START_REF] Gozlan | Kantorovich duality for marton's transport costs and applications[END_REF] (see (4.11)), the transport-entropy inequality (4.2), with cost (α h a ) * , is equivalent to say that for all continuous bounded function ϕ on X it holds

exp 2 C 2 Q 1 ϕ dµ exp 2 C 2 ϕ dµ
where Q is dened with the cost α h a . Fix l > 0, let f be a l-Lipschitz function and set ϕ := tf . The latter inequality reduces to exp An expansion around t = 0 yields that Replacing f by λf with λ ∈ R + , we conclude that the above inequality holds for all Lipschitz function f and thus µ satises the Poincaré inequality with constant aC 2 . This ends the proof of the theorem. Lemma 4.19. Let f be an l-Lipschitz function and Q t be the inf-convolution for a quadratic-linear cost function α h a , a, h > 0. Then, for all x ∈ X and all t < (ah)/l, it holds

1 + 2 C 2 tf + 1 2 t 2 4 C 2 2 f 2 + 4 C 2 ∂ ∂t Q t f | t=0 + o(t 2 ) dµ 1 + t 2 C 2 f dµ + 1 2 t 2 4 C 2 2 f dµ + o(t 2 ).
Q 1 (tf )(x) = t Q t f (x).
Proof. Fix t < ah/l and x ∈ X. For all p ∈ m tf (1, x) (dened in (2.2)) we have by where we used that f (x) -f (y) | ∇f |(x)d(x, y) and the fact that f is l-Lipschitz. Since for quadratic-linear cost α h a (u) ahu if and only if u h, the above inequality implies that d(x, y) p(dy) h and that α h a d(x, y) p(dy) = a d(x, y) p(dy)

Item (i) of Theorem 2.8 tf (y) p(dy) + α h a d(x, y) p(dy) = Q 1 (tf )(x) tf (x).
2 .

Therefore

Q 1 (tf )(x) = inf p∈P(X)
tf dp + a d(x, y) p(dy)

2

.

Similarly for all q ∈ m f (t, x) it holds f (y) q(dy) + tα h a d(x, y) q(dy) t f (x).

Therefore α h a d(x, y) q(dy) t f (x) -f (y) q(dy) | ∇f |(x) d(x, y) q(dy) l d(x, y) p(dy) ah t d(x, y) q(dy).

This (due to the specic shape of the quadratic-linear cost) leads to d(x, y) q(dy)/t h and α h a d(x,y) q(dy) t = a d(x,y) q(dy) t

2

. Therefore,

Q t f (x) = inf p∈P(X) f dp + a t d(x, y) p(dy) 2 .
As a conclusion,

t Q t f (x) = t inf q∈P(X) f dq + a t d(x, y) p(dy) 2 = inf p∈P(X) tf dp + a d(x, y) p(dy) 2 = Q 1 (tf )(x).

Examples

In this section, we give some examples of application. In particular, we shall see that our theorems are optimal in many situations. More precisely the rst two examples deal with equality versus strict inequality in Theorem 3.1. The other examples are more concerned with functional inequalities.

Example of R n , equality case Let α(x) = x 2 /2, x ∈ R + and f : R n → R convex. Then for all t 0,

∂ ∂t Q t f (x) + 1 2 | ∇ Q t f | 2 (x) = 0,
i.e. there is actually equality in Item (i) of Theorem 3.1.

To prove this fact, we observe rst that, since lim h→∞ α (h) = ∞, the thesis follows from Item (ii) of Theorem 3.1 when t = 0. For t > 0, since f is convex, Proposition 2.1 ensures that Q

t f = Q t f . Moreover, for all convex function f , Q t f is a convex function which guarantees that | ∇Q t f | = |∇Q t f | (where |∇ • |
is the Euclidean length of the usual gradient). Hence, the claim follows from the classical Hamilton-Jacobi equation that precisely asserts that for t > 0,

∂ ∂t Q t f (x) + 1 2 |∇Q t f | 2 (x) = 0.
Example of the two points space {0, 1}, strict inequality case Let α(x) = x 2 /2 and X = {0, 1} (the graph consisting of two points). Consider f such that f (0) = 1 and f (1) = 0. It is easy to see that for t ∈ (0, 1),

Q t f (0) = 1 -t 2 and Q t f (1) = 0. It leads to | ∇ Q t f |(0) = 1 -t 2 and ∂ ∂t Q t f (0) = -1 2 . Thus, for all t ∈ (0, 1), ∂ ∂t Q t f (0) + 1 2 | ∇ Q t f | 2 ( 
0) < 0, i.e. the inequality in Item (i) of Theorem 3.1 is strict. We observe that, more generally, the same conclusion holds as soon as X has at least one isolated point x o (take f with f (x o ) = 0 and f (y) = 1 for all y = x o ).

Next we give examples of measures satisfying log-Sobolev/Poincaré/transportentropy type inequalities.

Measures satisfying the log-Sobolev inequality (1.9) and the transportentropy (1.9) As already mentioned, the classical log-Sobolev inequality (4.8) implies the (say) classical modied log-Sobolev inequality (4.7) which, thanks to Proposition 4.9 implies under mild assumptions the modied log-Sobolev inequality (4.2), which nally, thanks to Corollary 1.5, implies the transport-entropy inequality (1.9). The latter is usually hard to obtain directly. The above chain of implication applies to a lot of dierent situations, including highly non-trivial examples. Let us mention random walks on the hypercube, on the symmetric group or the complete graph (see [START_REF] Bobkov | Modied logarithmic sobolev inequalities in discrete settings[END_REF] where optimal (or almost optimal) bounds are given for (4.7)) the optimal bound in (4.8) for the lamplighter graph can be found in [START_REF] Abakumov | The logarithmic Sobolev constant of the lamplighter[END_REF], and in [START_REF] Martinelli | Relaxation times of Markov chains in statistical mechanics and combinatorial structures[END_REF] for the Ising model at high temperature, on the lattice or on trees. Many other examples can be found in [START_REF] Diaconis | Logarithmic Sobolev inequalities for nite Markov chains[END_REF]... Bound on the constant in the tranport-entropy inequality (1.9) are new for all examples listed above, to the best of our knowledge.

As an illustration, consider the uniform measure µ ≡ 1/2 n on the hypercube {0, 1} associated to the Markov chain that jumps from x to anyone of its nearest neighbors (i.e. any string x that diers from x in exactly one coordinate) with equal probability (1/n). Then µ satises Gross' Inequality (4.8) with constant n/2 [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF], the classical modied log-Sobolev inequality (4.7) with constant n/8 [START_REF] Bobkov | Modied logarithmic sobolev inequalities in discrete settings[END_REF], and thus, by Proposition 4.9 (note that L = 1), the modied log-Sobolev inequality (1.9) with constant n/4, and in turn, thanks to Corollary 1.5, the transport-entropy inequality (1.9) holds with constant n/8.

In the case of the symmetric group S n , consisting of n! permutation (of n elements), equipped with the transposition distance (i.e. two permutations are at distance 1 if one is the other composed with a transposition). Each permutation has n(n -1)/2 neighbors and the Markov chain that jumps uniformly at random to any neighbor is reversible with respect to the uniform measure µ ≡ 1/n!. Gross' Observe that |H(x) + 2e -1 | = xe x/2 + 2e -1 , x ∈ R. Hence, using that Var µ (|g|) Var µ (g), it holds Var µ (f e f /2 ) = Var µ (f e f /2 + 2e -1 ) Var µ (H • f + 2e -1 ) = Var µ (H • f ). Now applying the Poincaré Inequality (4.1) and Proposition 2.13 we have

Var µ (H • f ) C | ∇(H • f )| 2 dµ C | ∇f | 2 | ∇H| 2 (f ) dµ.
(5.5)

Since H is increasing, we have As a consequence, we have | ∇H| 2 (u) (1 + u/2) 2 + e 4 e u . Therefore

0 | ∇H|(u) = sup v<u H(u) -H(v) u -v = sup v<u 1 u -v (v,
Var µ (H • f ) C | ∇f | 2 | ∇H| 2 (f ) dµ C | ∇f | 2 1 + e 4 + f + f 2 4 e f dµ.
This ends the proof of the proposition.

Proof of Proposition 5. 

  Here, | ∇G|(u) := sup v∈R [G(v)-G(u)] - |v-u| , u ∈ R, with | • | being the absolute value.

Remark 2 . 14 .

 214 Observe that | ∇(Cf )|(x) = C| ∇f |(x) for C > 0, while | ∇(Cf )|(x) = -C| ∇(-f )|(x) for C < 0.Because of the negative part entering in its denition, in general | ∇(-f )| = | ∇f |.

23 .

 23 Proof of Claim 2.23. Since D t (x, z) is non-negative and D t (x, x) = 0, the claim istrivial if x = z. Assume that x = z. Let s < r and consider f : V → R dened by f (z) = 0 and f (y) = D r (z, x) + 1 for all y = z. Then Q r f (x) = miny∈V {f (y) + D r (y, x)} = min D r (z, x); min y =z {f (y) + D r (y, x)} = D r (z, x).

(4. 8 )

 8 More precisely Gross' Inequality (4.8) with constant C implies the classical modied log-Sobolev inequality (4.7) with constant C C /4, see[START_REF] Bobkov | Modied logarithmic sobolev inequalities in discrete settings[END_REF] Theorem 3.6].

2 (

 2 (x), the weak transport-entropy inequality T 2 (C) implies T α 2 1/C) and the conclusion follows from Item (ii) of Theorem 4.15.

( 4 .

 4 [START_REF] Gozlan | A characterization of dimension free concentration in terms of transportation inequalities[END_REF] with constant C if and only if µ satises the modied log-Sobolev inequality (4.2) with constant C and cost α h a . More precisely -(4.15) implies (4.2) with C = K(c), a = 1 4K(c) and h = 2cK(c) for any c < 2/ √ C with K(c) dened in theorem 4.15; -(4.2) implies (4.15) with C = C .

  For the reader convenience we observe that (α h a ) * (x) = K(c)x 2 if |x| c and (α h a ) * (x) = +∞ otherwise.

(4. 18 )

 18 Therefore (comparing the coecients of t 2 ), it holdsVar µ (f ) -C 2 ∂ ∂t Q t f | t=0dµ. Applying Theorem 3.1 we arrive at Var µ (f ) C 2 α h * a | ∇f | dµ, which in turn, since α h * a | ∇f |(x) = a | ∇f |(x) 2 for l ah, implies that for all ah-Lipschitz function f , it holds Var µ (f ) aC 2 | ∇f | 2 dµ.

  , y) p(dy) t f (x) -f (y) p(dy) t| ∇f |(x) d(x, y) p(dy) tl d(x, y) p(dy) ah d(x, y) p(dy),

3 . 2 g 2 f e f /2 dµ 2 C 2 | 2 1 4 C 2 c 2 b 2 . 2 ,a 2 4 . 2 | ∇f | 2 e f dµ 1 + ca 2 2 + e 4 b 2 .we get that a 2 = f e f /2 dµ 2 + 4 C 2 c 2 b 2 + C b + ca 2 2 + Ce 4 b 2 ., so that f 2 dµ 2 c 2

 3222224224212222422222 Set a 2 = f 2 e f dµ and b 2 = | ∇f | 2 e f dµ. By the Poincaré inequality (4.1), for any two bounded functions g and h on X with g dµ = 0,gh dµ dµ h 2 dµ C | ∇g| 2 dµ C | ∇h| 2 dµ. Therefore, since f dµ = 0, ∇f | 2 dµ | ∇e f /2 | 2 dµ . Set G(u) = e u/2 , u ∈ R. The convexity of G guarantees that | ∇G| = |G |. Thus by Proposition 2.13, it holds | ∇e f /2 | 2 1 4 | ∇f | 2 e f .Hencef e f /2 dµOn the other hand, according to Proposition 5.Var µ (f e f /2 ) C | ∇f | 2 1 + e 4 + f + f 2 4 e f dµ C (1 + e 4 )b 2 + | ∇f | 2 f e f dµ + c 2By Cauchy-Schwarz' Inequality,| ∇f | 2 f e f dµ | ∇f | 2 f 2 e f dµ 1/Var µ (f e f /2 ) C b Then Var µ (f e f /2 ) 1Simplifying this inequality, we end up with follows.Proof of Proposition 5.4. For all u > 0 and all v ∈ R, we have2|v| u + (1/u)v 2 .Hence 2|v| 3 uv 2 + (1/u)v 4 and therefore,2 |f | 3 dµ u f 2 dµ + 1 u f 4 dµ.(5.6)By the Poincaré inequality (4.1) it holdsf 2 dµ C | ∇f | 2 µ(dx) c 2 CC f 2 dµ.On the other hand, set G(t) = t 2 , t 0. The convexity of G guarantees that for all t 0, | ∇G|(t) = |G |(t). Hence, according to Proposition 2.13, it holdsVar µ (f 2 ) = Var µ (|f | 2 ) C | ∇(|f | 2 )| 2 dµ 4C f 2 | ∇|f || 2 dµ 4c 2 C f 2 dµwhere in the last inequality we used that |f | is c-Lipschitz. It follows that f 4 dµ = ( f 2 dµ) 2 + Var µ (f 2 ) 5c 2 C f 2 dµ. Hence, from (5.6), we obtain that for every u > 0,2 |f | 3 dµ u + 5c 2 C u f 2 dµ.Minimizing over u > 0, we get|f | 3 dµ c √ 5C f 2 dµ. (5.7) Consider now the probability measure τ (dx) = f (x) 2 µ(dx)/( f 2 dµ). By Jensen's inequality, f 2 e -|f | dµ = e -|f | dτ |f | 2 dµ e -f dτ |f | 2 dµ. By (5.7) we conclude that |f | dτ = |f | 3 dµ f 2 dµ c √ 5C, from which the result follows.

  2 C 2 Q 1 tf dµ exp

					2 C 2 tf dµ .
	Hence, for t < (ah)/l, by Lemma 4.19 below, we get		
	exp	2 C 2	t Q t f dµ exp	2 C 2	tf dµ .

  After some basic analysis, we have the following factsif u < -4, sup t<u H (t) = |(1 + u/2)e u/2 | since H (t) = |(1 + t/2)e t/2 | is increasing on (-∞, -4]; if u ∈ [-4, 0], sup t<u H (t) 1 e 2 e u/2 ; if u > 0, sup t<u H (t) = |(1 + u/2)e u/2 | since H is increasing on [0, ∞) and H (u) > H(0) = 1 sup t 0 H (t).

	H (t) dt	sup	H (t).
	u)	t<u	

We observe that the terminology here is not optimal since there already exist, in the literature, many dierent inequalities called modied log-Sobolev inequality that have a priori no relation between them, and no relation with our denition.
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According to (3.4) and (3.5), for all h ∈ (0, u), it holds:

Let h goes to 0, we get that

where we recall that β is dened in Section 2.2. Hence, it is enough to prove that lim t→0 α u t = | f x (0)|. Since f x is convex, it is right and left dierentiable at every point. Hence taking the left derivative of v → f x (v) + tα v t , for all t ∈ R + and all u ∈ m f (t, x), we have

Inequality is known to hold with a constant of order n 3 log n [START_REF] Lee | Logarithmic Sobolev inequality for some models of random walks[END_REF], while the classical modied log-Sobolev inequality (4.7) holds with constant C n(n -1) 2 /2 [START_REF] Bobkov | Modied logarithmic sobolev inequalities in discrete settings[END_REF]. Therefore, by Proposition 4.9 (again note that L = 1), µ satises the modied log-Sobolev inequality (1.9) with constant n(n -1) 2 and in turn, thanks to Corollary 1.5, the transport-entropy inequality (1.9) with constant n(n -1) 2 /2.

Poincaré inequality

The next proposition extends a well-known result that asserts that the Poincaré inequality holds on bounded domains. We will then give examples of measures satisfying the Poincaré inequality (4.1) but not the one with the usual gradient. Proof. For all x, y ∈ Supp(µ),

Thus, for all continuous function f on X, it holds

Now, on X = R consider the following probability measure µ = 1 2 δ 0 + 1 2 δ 1 . We claim that µ satises the Poincaré inequality (4.1), but not the (classical) Poincaré inequality with the Euclidean gradient.

Indeed, Proposition 5.1 applies and leads to the Poincaré inequality (4.1) with constant at most 1/2. On the other hand, the mapping f : R

x → 2x 3 -3x 2 + 1 satises f (0) = 1, f (1) = 0 and f (0) = f (1) = 0 so that Var µ (f ) = 1 4 (f (0) -f (1)) 2 = 1 4 and f 2 dµ = 0 which proves the claim. Let us prove now that µ also satises the modied log-Sobolev inequality (1.8). Given f : R → R with f (0) f (1) (the other direction is similar), we have

Thus, to prove that the modied log-Sobolev inequality (1.8) holds, it is enough to prove the existence of a constant C such that

or equivalently

Setting u := f (0) -f (1) 0, the latter is equivalent to prove that ue u -(e u + 1) log e u + 1 2

Cu 2 e u ∀u 0

which is an easy exercise.

Appendix

In this appendix we prove Theorem 4.17. The proof essentially follows [START_REF] Bobkov | Poincaré's inequalities and talagrand's concentration phenomenon for the exponential distribution[END_REF]. However, many points in the original proof of Bobkov and Ledoux need to be adjusted, for technical reasons coming from the gradient ∇.

The proof relies on the following three propositions.

Proposition 5.2. If µ satises the Poincaré inequality (4.1) with constant C > 0, then for all f : X → R, 

Proposition 5.4. If µ satises the Poincaré inequality (4.1) with constant C > 0, then for any bounded function f on X with f Lip c and f dµ = 0, we have

f 2 e -|f | dµ.

We postpone the proof of the above propositions to prove Theorem 4.17.

Proof of Theorem 4.17 Proof of Proposition 5.2. Let G := u → ue u/2 and observe that it is decreasing on (-∞, -2], increasing on (-2, ∞) and its minimum is G(-2) = -2e -1 . Now, starting from G, dene an increasing function H as G when G is increasing and as the symmetric of G with respect to y = G(-2) when G is non-increasing. More precisely,