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Gradient discretization of Hybrid Dimensional Darcy
Flows in Fractured Porous Media

K. Brenner∗, M. Groza†, C. Guichard‡, G. Lebeau§, R. Masson¶

September 1, 2015

Abstract

This article deals with the discretization of hybrid dimensional Darcy flows in fractured
porous media. These models couple the flow in the fractures represented as surfaces of
codimension one with the flow in the surrounding matrix. The convergence analysis
is carried out in the framework of gradient schemes which accounts for a large family of
conforming and nonconforming discretizations. The Vertex Approximate Gradient (VAG)
scheme and the Hybrid Finite Volume (HFV) scheme are extended to such models and
are shown to verify the gradient scheme framework. Our theoretical results are confirmed
by numerical experiments performed on tetrahedral, Cartesian and hexahedral meshes in
heterogeneous isotropic and anisotropic porous media.

1 Introduction

This article deals with the discretization of Darcy flows in fractured porous media for which
the fractures are modelized as interfaces of codimension one. In this framework, the d − 1
dimensional flow in the fractures is coupled with the d dimensional flow in the matrix leading
to the so called hybrid dimensional Darcy flow model. We focus on the particular case where the
pressure is continuous at the interfaces between the fractures and the matrix domain. This type
of Darcy flow model introduced in [3] corresponds physically to pervious fractures for which
the ratio of the transversal permeability of the fracture to the width of the fracture is large
compared with the ratio of the permeability of the matrix to the size of the domain. Note that
it does not cover the case of fractures acting as barriers for which the pressure is discontinuous
at the matrix fracture interfaces (see [17], [21], [4] for discontinuous pressure models). It is
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also assumed in our model that the pressure is continuous at the fracture intersections. It
corresponds to a high ratio assumption between the permeability at the fracture intersections
and the width of the fracture compared with the ratio between the tangential permeability of
each fracture and its length. We refer to [20] for a more general reduced model taking into
account discontinuous pressures at fracture intersections in dimension d = 2.

The discretization of the hybrid dimensional Darcy flow model with continuous pressures
has been the object of several works. In [19] a cell-centered Finite Volume scheme using a Two
Point Flux Approximation (TPFA) is proposed assuming the orthogonality of the mesh and
isotropic permeability fields. Cell-centered Finite Volume schemes can be extended to general
meshes and anisotropic permeability fields using MultiPoint Flux Approximations (MPFA)
following the ideas introduced in [30], [28], and [2] for discontinuous pressure models. In [3], a
Mixed Finite Element (MFE) method is proposed, and Control Volume Finite Element Methods
(CVFE) using nodal unknowns have been introduced for such models in [25] and [24]. A MFE
discretization adapted to non-matching fracture and matrix grids is also studied in [10].

The main goal of this paper is to extend the gradient scheme framework to the case of
hybrid dimensional Darcy flow models. This framework has been introduced in [14], [16],
[11] to analyse the convergence of numerical methods for linear and nonlinear second order
diffusion problems. As shown in [16], this framework accounts for various conforming and non
conforming discretizations such as Finite Element methods, Mixed and Mixed Hybrid Finite
Element methods, and some Finite Volume schemes like symmetric MPFA, Vertex Approximate
Gradient (VAG) schemes [14], and Hybrid Finite Volume (HFV) schemes [13].

The extension of the gradient scheme framework to the hybrid dimensional Darcy flow
model is defined by a vector space of degrees of freedom, two discrete gradient reconstruction
operators and two discrete function reconstruction operators in the matrix and the fracture
domains. The gradient discretization of the hybrid dimensional Darcy flow model is then based
on a primal non conforming variational formulation using the previous operators. In the spirit
of [14],[16] the well posedness and convergence of the gradient scheme is obtained assuming that
the gradient discretization satisfies the so-called coercivity, consistency, and limit conformity
assumptions.

Two examples of gradient discretization are given, namely we extend the VAG and HFV
schemes defined in [14] and [13] to the hybrid dimensional Darcy flow model. In both cases, it
is assumed that the fracture network is conforming to the mesh in the sense that it is defined
as a collection of faces of the mesh. The VAG scheme uses nodal and fracture face unknowns in
addition to the cell unknowns which can be eliminated without any fill-in. It leads to a sparse
discretization on tetrahedral or mainly tetrahedral meshes. It has the advantage, compared
with CVFE approaches to avoid the mixing of the control volumes at the fracture matrix
interfaces, which is a key feature for its application to multiphase Darcy flows (see [6]). It will
be compared to the HFV discretization using face and fracture edge unknowns in addition to
the cell unknowns which can be as well eliminated without any fill-in.

The proof that both the VAG and HFV schemes satisfy the coercivity, consistency, and limit
conformity assumptions of the gradient scheme framework is based on a key result providing
the density of smooth functions subspaces in both the variational space and in the flux space
of the model. These density results are shown to hold for a general 3D network of possibly
intersecting, immersed or non immersed planar fractures.

The outline of the paper is the following, in Section 2 we introduce the general 3D network
of planar fractures, the function spaces, as well as the primal variational formulation of the
hybrid dimensional Darcy flow model. Section 3 defines the gradient discretization framework
stating the coercivity, consistency, limit conformity, and compactness assumptions. Then, the
gradient scheme is introduced for the hybrid dimensional model and its well posedness and
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convergence is shown to hold under the coercivity, consistency, and limit conformity assump-
tions. Section 4 extends the VAG and HFV schemes to our model and prove that each of them
satisfies the gradient scheme assumptions. Section 5 proves the density of smooth functions
subspaces in both the variational space and in the flux space which is the key ingredient to
show that the VAG and HFV schemes satisfy the gradient scheme assumptions. Section 6 pro-
vides a numerical comparison of the VAG and HFV schemes on 3D analytical solutions using
Cartesian, hexahedral and tetrahedral meshes. Both heterogeneous and anisotropic test cases
are considered.

2 Hybrid dimensional Darcy Flow Model in Fractured

Porous Media

2.1 Discrete Fracture Network and functional setting

Let Ω denote a bounded domain of Rd, d = 2, 3 assumed to be polyhedral for d = 3 and
polygonal for d = 2. To fix ideas the dimension will be fixed to d = 3 when it needs to be
specified, for instance in the naming of the geometrical objects or for the space discretization
in the next section. The adaptations to the case d = 2 are straightforward.

We consider the asymptotic model introduced in [3] where fractures are represented as
interfaces of codimension 1. Let I be a finite set and let Γ =

⋃
i∈I Γi and its interior Γ = Γ\∂Γ

denote the network of fractures Γi ⊂ Ω, i ∈ I, such that each Γi is a planar polygonal simply
connected open domain included in an oriented plane Pi of Rd. It is assumed that the angles
of Γi are strictly smaller than 2π and that Γi ∩ Γj = ∅ for all i 6= j. For all i ∈ I, let us set
Σi = ∂Γi, Σi,j = Σi ∩Σj, j ∈ I \ {i}, Σi,0 = Σi ∩ ∂Ω, Σi,N = Σi \ (

⋃
j∈I\{i}Σi,j ∪Σi,0), and Σ =⋃

(i,j)∈I×I,i 6=j Σi,j. It is assumed that Σi,0 = Γi ∩ ∂Ω. Let us define the following trace operator

Figure 1: Example of a 2D domain with 3 intersecting fractures Γ1,Γ2,Γ3 and 2 connected
components Ω1, Ω2.

γΣi : H1(Γi)→ L2(Σi). We will denote by dτ(x) the d− 1 dimensional Lebesgue measure on Γ.
On the fracture network Γ, we define the function space L2(Γ) = {v = (vi)i∈I , vi ∈ L2(Γi), i ∈
I}, endowed with the norm ‖v‖L2(Γ) = (

∑
i∈I ‖vi‖2

L2(Γi)
)

1
2 . Its subspace H1(Γ) is defined as

the space of functions v = (vi)i∈I such that vi ∈ H1(Γi), i ∈ I with continuous traces at the
fracture intersections i.e. γΣivi = γΣjvj on Σi,j for all i 6= j such that Σi,j has a non zero d− 2

Lebesgue measure. The space H1(Γ) is endowed with the norm ‖v‖H1(Γ) = (
∑

i∈I ‖vi‖2
H1(Γi)

)
1
2

and its subspace with vanishing traces on Σ0 =
⋃
i∈I Σi,0 is denoted by H1

Σ0
(Γ).

Let us also consider the trace operator γi from H1(Ω) to L2(Γi) as well as the trace operator
γ from H1(Ω) to L2(Γ) such that (γv)i = γi(v) for all i ∈ I.
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On Ω, the gradient operator from H1(Ω) to L2(Ω)d is denoted by ∇. On the fracture
network Γ, the tangential gradient ∇τ acting from H1(Γ) to L2(Γ)d−1 is defined by

∇τv = (∇τivi)i∈I ,

where, for each i ∈ I, the tangential gradient ∇τi is defined from H1(Γi) to L2(Γi)
d−1 by fixing

a reference Cartesian coordinate system of the plane Pi containing Γi. We also denote by divτi
the divergence operator from Hdiv(Γi) to L2(Γi).

The function spaces arising in the variational formulation of the hybrid dimensional Darcy
flow model are

V = {v ∈ H1(Ω) such that γv ∈ H1(Γ)},

and its subspace
V 0 = {v ∈ H1

0 (Ω) such that γv ∈ H1
Σ0

(Γ)}.

From Poincaré inequality on H1
0 (Ω) and the continuity of the trace operator γ, we deduce the

following inequality.

Proposition 2.1 There exists CP > 0 such that for all v ∈ V 0 one has

‖v‖L2(Ω) + ‖γv‖L2(Γ) ≤ CP‖∇v‖L2(Ω)d .

Thus, the space V 0 is endowed with the Hilbertian norm

‖v‖V 0 =
(
‖∇v‖2

L2(Ω)d + ‖∇τγv‖2
L2(Γ)d−1

)1/2

,

and the space V with the Hilbertian norm ‖v‖V =
(
‖v‖2

V 0 + ‖v‖2
L2(Ω) + ‖γv‖2

L2(Γ)

)1/2

.

The following density result is proved in Subsection 5.1.

Proposition 2.2 The spaces C∞(Ω) and C∞c (Ω) are dense subspaces of respectively V and V 0.

Let Ωα, α ∈ A denote the connected components of Ω \ Γ, and let us define the space
Hdiv(Ω \ Γ) = {qm = (qm,α)α∈A |qm,α ∈ Hdiv(Ωα)}. For all i ∈ I, we can define the two
sides ± of the fracture Γi and the corresponding unit normal vector n±i at Γi outward to
the sides ±. Each side ± corresponds to the subdomain α±i ∈ A with possibly α+

i = α−i .
For all qm ∈ Hdiv(Ω \ Γ), let qm,α±i · n

±
i |Γi denote the two normal traces at the fracture Γi

and let us define the jump operator Hdiv(Ω \ Γ) → D′(Γi) in the sense of distributions by
[[qm · ni]] = qm,α+

i
· n+

i |Γi + qm,α−i · n
−
i |Γi .

For all i ∈ I, we denote by nΣi the unit vector normal to Σi outward (and tangent) to Γi.
Let us define the function space H(Ω,Γ) by

H(Ω,Γ) =

{
qm = (qm,α)α∈A, qf = (qf,i)i∈I |qm ∈ Hdiv(Ω \ Γ),
qf,i ∈ L2(Γi)

d−1, divτi(qf,i)− [[qm · ni]] ∈ L2(Γi), i ∈ I

}
.

It is an Hilbert space endowed with the scalar product

〈(pm,pf ), (qm,qf )〉H =
∑
α∈A

∫
Ωα

(pm,α · qm,α + div(pm,α)div(qm,α))dx

+
∑
i∈I

∫
Γi

(pf,i · qf,i +
(

divτi(pf,i)−[[pm · ni]]
)(

divτi(qf,i)−[[qm · ni]])
)
dτ(x).
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and the norm
‖(qm,qf )‖H = 〈(qm,qf ), (qm,qf )〉1/2H .

On H(Ω,Γ)×
(
L2(Ω)× L2(Γ)× L2(Ω)d × L2(Γ)d−1

)
we define the continuous bilinear form

aΣ

(
(qm,qf ), (vm, vf ,gm,gf )

)
=
∑
α∈A

∫
Ωα

(qm,α · gm + div(qm,α)vm)dx

+
∑
i∈I

∫
Γi

(qf,i · gf + (divτi(qf,i)− [[qm · ni]])vf )dτ(x).
(1)

For all α ∈ A let us denote by C∞b (Ωα) the set of functions ϕ such that for all x ∈ Ωα, there
exists r > 0 such that for all connected component ω of the domain {x ∈ Rd | |x| < r} ∩ Ωα,
one has ϕ|ω ∈ C∞(ω)d.

For all (qm,qf ) ∈ H(Ω,Γ) with qm,α ∈ C∞b (Ωα), α ∈ A, and qf,i ∈ C∞(Γi)
d−1, i ∈ I, and

for all v ∈ V 0, it is readily checked that

aΣ

(
(qm,qf ), (v, γv,∇v,∇τγv

)
=

∫
Σ\Σ0

γv(
∑
i∈I

qf,i · nΣi)dl(x)

+
∑
i∈I

∫
Σi,N

γv(qf,i · nΣi)dl(x).

This lead us to the definition of the following closed Hilbert subspace of H(Ω,Γ)

HΣ(Ω,Γ)=

{
(qm,qf ) ∈ H(Ω,Γ) |
aΣ

(
(qm,qf ), (v, γv,∇v,∇τγv

)
= 0 for all v ∈ V 0

}
(2)

corresponding to impose in a weak sense the conditions
∑

i∈I qf,i · nΣi = 0 on Σ \ Σ0 and
qf,i · nΣi = 0 on Σi,N , i ∈ I.

Finally let us define a subspace of smooth functions in HΣ(Ω,Γ) by

C∞HΣ
(Ω,Γ)=

 (qm,α)α∈A, (qf,i)i∈I |qm,α ∈ C∞b (Ωα),qf,i ∈ C∞(Γi)
d−1,∑

i∈I

qf,i · nΣi = 0 on Σ \ Σ0, qf,i · nΣi = 0 on Σi,N , i ∈ I

 . (3)

The proof of the following density result is given in Subsection 5.2.

Proposition 2.3 The space C∞HΣ
(Ω,Γ) is a dense subspace of HΣ(Ω,Γ).

2.2 Hybrid dimensional Darcy Flow Model

In the matrix domain Ω \Γ (resp. in the fracture network Γ), let us denote by Λm ∈ L∞(Ω)d×d

(resp. Λf ∈ L∞(Γ)(d−1)×(d−1)) the permeability tensor such that there exist λm ≥ λm > 0 (resp.
λf ≥ λf > 0) with

λm|ξ|2 ≤ (Λm(x)ξ, ξ) ≤ λm|ξ|2 for all ξ ∈ Rd,x ∈ Ω,

(resp. λf |ξ|2 ≤ (Λf (x)ξ, ξ) ≤ λf |ξ|2 for all ξ ∈ Rd−1,x ∈ Γ).
We also denote by df ∈ L∞(Γ) the width of the fractures assumed to be such that there

exist df ≥ df > 0 with df ≤ df (x) ≤ df for all x ∈ Γ. Let us define the weighted Lebesgue d−1
dimensional measure on Γ by dτf (x) = df (x)dτ(x). We consider the source terms hm ∈ L2(Ω)
(resp. hf ∈ L2(Γ)) in the matrix domain Ω \ Γ (resp. in the fracture network Γ).
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The strong formulation of the hybrid dimensional Darcy flow model amounts to find u ∈ V 0

and (qm,qf ) ∈ HΣ(Ω,Γ) such that:
div(qm,α) = hm on Ωα, α ∈ A,

qm,α = −Λm∇u on Ωα, α ∈ A,
divτi(qf,i)− [[qm · ni]] = dfhf on Γi, i ∈ I,

qf,i = −df Λf∇τiγiu on Γi, i ∈ I.

(4)

The weak formulation of (4) amounts to find u ∈ V 0 satisfying the following variational
equality for all v ∈ V 0:

∫
Ω

Λm(x)∇u(x) · ∇v(x)dx +

∫
Γ

Λf (x)∇τγu(x) · ∇τγv(x)dτf (x)

−
∫

Ω

hm(x)v(x)dx−
∫

Γ

hf (x)γv(x)dτf (x) = 0.
(5)

The following proposition is a direct application of the Lax-Milgram theorem and Proposi-
tion 2.1.

Proposition 2.4 The variational problem (5) has a unique solution u ∈ V 0 which satisfies the
a priori estimate

‖u‖V 0 ≤ CP
min(λm, λfdf )

(
‖hm‖L2(Ω) + ‖dfhf‖L2(Γ)

)
.

In addition (qm,qf ) = (−Λm∇u,−dfΛf∇τγu) belongs to HΣ(Ω,Γ).

3 Gradient discretization of the hybrid dimensional model

In this section we extend the gradient scheme framework introduced in [14], [16] for elliptic and
parabolic problems to our hybrid dimensional Darcy flow model.

3.1 Gradient discretization

A gradient discretization D of (5) is defined by a vector space of degrees of freedom XD, its
subspace associated with homogeneous Dirichlet boundary conditions X0

D, and the following
set of linear operators:

• Two discrete gradient operators on the matrix and fracture domains:
∇Dm : XD → L2(Ω)d and ∇Df : XD → L2(Γ)d−1.

• Two function reconstruction operators on the matrix and fracture domains:
ΠDm : XD → L2(Ω) and ΠDf : XD → L2(Γ).

The vector space XD is endowed with the semi-norm

‖vD‖D =
(
‖∇DmvD‖2

L2(Ω)d + ‖∇DfvD‖2
L2(Γ)d−1

) 1
2
,

which is assumed to define a norm on X0
D.

In the following, the gradient discretization of the hybrid dimensional model with homoge-
neous Dirichlet boundary conditions will be denoted by the quintuplet

D =
(
X0
D,ΠDm ,ΠDf ,∇Dm ,∇Df

)
.

6



Next, we define the coercivity, consistency, limit conformity and compactness properties for
sequences of gradient discretizations. Note that the compactness property is useful for the con-
vergence analysis of nonlinear models and hence will not be used for the convergence analysis
of our model. Nevertheless, for the sake of completeness, it is stated in this section and will be
proved to be verified for the VAG and HFV schemes in section 4.

Coercivity: Let CD > 0 be defined by

CD = max
0 6=vD∈X0

D

‖ΠDmvD‖L2(Ω) + ‖ΠDfvD‖L2(Γ)

‖vD‖D
. (6)

Then, a sequence of gradient discretizations (Dl)l∈N is said to be coercive if there exist CP > 0
such that CDl ≤ CP for all l ∈ N.

Consistency: For all u ∈ V 0 and vD ∈ X0
D let us define

SD(u, vD) = ‖∇DmvD −∇u‖L2(Ω)d + ‖∇DfvD −∇τγu‖L2(Γ)d−1

+ ‖ΠDmvD − u‖L2(Ω) + ‖ΠDfvD − γu‖L2(Γ),
(7)

and
SD(u) = min

vD∈X0
D

SD(u, vD). (8)

Then, a sequence of gradient discretizations (Dl)l∈N is said to be consistent if for all u ∈ V 0

one has liml→+∞ SDl(u) = 0.

Limit Conformity: For all (qm,qf ) ∈ HΣ(Ω,Γ) and vD ∈ X0
D, let us define

WD(qm,qf , vD) = aΣ

(
(qm,qf ), (ΠDmvD,ΠDfvD,∇DmvD,∇DfvD)

)
(9)

and

WD(qm,qf ) = max
0 6=vD∈X0

D

|WD(qm,qf , vD)|
‖vD‖D

. (10)

Then, a sequence of gradient discretizations (Dl)l∈N is said to be limit conforming if for all
(qm,qf ) ∈ HΣ(Ω,Γ) one has liml→+∞WDl(qm,qf ) = 0.

Compactness: A sequence of gradient discretizations (Dl)l∈N is said to be compact if for all
sequences (vDl)l∈N with vDl ∈ X0

Dl for all l ∈ N such that there exists C > 0 with ‖vDl‖Dl ≤ C
for all l ∈ N, then there exist um ∈ L2(Ω) and uf ∈ L2(Γ) such that one has up to a subsequence

lim
l→+∞

‖ΠDlmvDl − um‖L2(Ω) = 0 and lim
l→+∞

‖ΠDlfvDl − uf‖L2(Γ) = 0.

The following proposition states a property of limit conforming and coercive sequences of
gradient discretizations.

Proposition 3.1 Regularity at the limit. Let (Dl)l∈N be a family of discretizations assumed
to be limit conforming and coercive. Let (vDl)l∈N with vDl ∈ X0

Dl for all l ∈ N be a bounded
sequence in the sense that there exists C such that ‖vDl‖Dl ≤ C for all l ∈ N. Then, there exist
v ∈ V 0 and a subsequence still denoted by (vDl)l∈N such that

ΠDlmvDl ⇀ v weakly in L2(Ω),
∇DlmvDl ⇀ ∇v weakly in L2(Ω)d,
ΠDlfvDl ⇀ γv weakly in L2(Γ),

∇DfvDl ⇀ ∇τγv weakly in L2(Γ)d−1.
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Proof: From the boundedness of the sequence ‖vDl‖Dl , l ∈ N and the coercivity assumption,
there exist vm ∈ L2(Ω), vf ∈ L2(Γ), gm ∈ L2(Ω)d, and gf ∈ L2(Γ)d−1 such that ΠDlmvDl weakly
converges to vm in L2(Ω), ΠDlfvDl weakly converges to vf in L2(Γ), ∇DlmvDl weakly converges

to gm in L2(Ω)d, and ∇DlfvDl weakly converges to gf in L2(Γ)d−1. From the limit conformity it

follows that aΣ

(
(qm,qf ), (vm, vf ,gm,gf )

)
= 0 for all (qm,qf ) ∈ HΣ(Ω,Γ). From Lemma 5.5,

we deduce that v = vm ∈ V 0, vf = γv, gm = ∇v and gf = ∇τγv. �

The following Lemma will be used in the next sections to prove the coercivity, consistency,
limit conformity and compactness of sequences of families of gradient discretizations.

Lemma 3.1 Let (Dl)l∈N be a sequence of gradient discretizations with

Dl = (X0
Dl ,ΠDlm ,ΠDlf ,∇Dlm ,∇Dlf ),

and let for all l ∈ N, Π̃Dlm , Π̃Dlf be a couple of linear mappings from X0
Dl to L2(Ω) and L2(Γ)

respectively such that there exists a real sequence (ξDl)l∈N satisfying liml→∞ ξDl = 0 and

‖ΠDlmvDl − Π̃DlmvDl‖L2(Ω) + ‖ΠDlfvDl − Π̃DlfvDl‖L2(Γ) ≤ ξDl‖vDl‖Dl

for all vDl ∈ X0
Dl and all l ∈ N. Let us define the following new sequence of gradient dis-

cretizations (D̃l)l∈N with D̃l = (X0
Dl , Π̃Dlm , Π̃Dlf ,∇Dlm ,∇Dlf ). Then, each property (coercivity or

consistency or limit conformity or compactness) for the sequence (Dl)l∈N is equivalent to the

same property for the sequence (D̃l)l∈N.

Proof: By symmetry it suffices to show that each property for the sequence (Dl)l∈N implies

the same property for the sequence (D̃l)l∈N. Assuming the coercivity of (Dl)l∈N, the coercivity

property of the sequence (D̃l)l∈N derives from ‖vDl‖Dl = ‖vDl‖D̃l for all vDl ∈ X0
Dl and from the

estimate
‖Π̃DlmvDl‖L2(Ω) + ‖Π̃DlfvDl‖L2(Γ) ≤

(
CDl + ξDl

)
‖vDl‖Dl .

Let u ∈ V 0, for all vDl ∈ X0
Dl one has the estimates

‖vDl‖Dl ≤ ‖∇u‖L2(Ω)d + ‖∇τγu‖L2(Γ)d−1 + SDl(u, vDl),

and
SD̃l(u, vDl) ≤ ξDl‖vDl‖Dl + SDl(u, vDl).

We deduce that

SD̃l(u, vDl) ≤ ξDl(‖∇u‖L2(Ω)d + ‖∇τγu‖L2(Γ)d−1) + (1 + ξDl)SDl(u, vDl)

and hence the consistency of the sequence D̃l, l ∈ N derives from the consistency of the sequence
(Dl)l∈N.

For all (qm,qf ) ∈ HΣ(Ω,Γ) and all vDl ∈ X0
Dl , it follows from (9) that

WD̃l(qm,qf , vDl) ≤ WDl(qm,qf , vDl) + ξDl‖(qm,qf )‖H‖vDl‖Dl ,

from which we deduce that the limit conformity of the sequence (D̃l)l∈N derives from the limit
conformity of the sequence (Dl)l∈N.

Finally, using the following estimates

‖Π̃DlmvDl − um‖L2(Ω) ≤ ‖ΠDlmvDl − um‖L2(Ω) + ξDl‖vDl‖Dl ,

‖Π̃DlfvDl − uf‖L2(Γ) ≤ ‖ΠDlfvDl − uf‖L2(Γ) + ξDl‖vDl‖Dl ,

it is clear that the compactness of the sequence of gradient discretizations (Dl)l∈N implies the

compactness of the sequence of gradient discretizations (D̃l)l∈N. �
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3.2 Application to the hybrid dimensional model

The gradient discretization of the hybrid dimensional model (4) is based on the primal varia-
tional formulation (5). It is defined by: find uD ∈ X0

D such that for all vD ∈ X0
D:∫

Ω

Λm(x)∇DmuD(x) · ∇DmvD(x)dx +

∫
Γ

Λf (x)∇DfuD(x) · ∇DfvD(x)dτf (x)

−
∫

Ω

hm(x)ΠDmvD(x)dx−
∫

Γ

hf (x)ΠDfvD(x)dτf (x) = 0.
(11)

Proposition 3.2 Let D be a gradient discretization of (5). Then (11) has a unique solution
uD ∈ X0

D satisfying the a priori estimate

‖uD‖D ≤
CD

min(λm, λfdf )

(
‖hm‖L2(Ω) + ‖dfhf‖L2(Γ)

)
.

Proof: For any solution uD ∈ X0
D of (11), setting vD = uD in (11), and using the Cauchy

Schwarz inequality, the definition (6) of CD, and the assumption that ‖.‖D defines a norm on
X0
D, we obtain the estimates

min(λm, λfdf )‖uD‖2
D ≤

∫
Ω

hm(x)ΠDmuD(x)dx +

∫
Γ

hf (x)ΠDfuD(x)dτf (x)

≤ CD

(
‖hm‖L2(Ω) + ‖dfhf‖L2(Γ)

)
‖uD‖D,

from which we deduce the a priori estimate and hence the uniqueness and existence of a solution.
�

Proposition 3.3 Error estimates. Let u ∈ V 0 be the solution of (5) and let us set (qm,qf ) =
(−Λm∇u,−dfΛf∇τγu) ∈ HΣ(Ω,Γ). Let D be a gradient discretization of (5), and let uD ∈ X0

D
be the solution of (11). Then, there exist C1, C2 depending only on λm, λm, λf , λf , df , df ,

and C3, C4 depending only on CD, λm, λm, λf , λf , df , df such that one has the following error
estimates:

‖∇u−∇DmuD‖L2(Ω)d + ‖∇τγu−∇DfuD‖L2(Γ)d−1

≤ C1SD(u) + C2WD(qm,qf ),

‖ΠDmuD − u‖L2(Ω) + ‖ΠDfuD − γu‖L2(Γ) ≤ C3SD(u) + C4WD(qm,qf ).

Proof: Using the definition of WD and the definitions of the solution uD of (11) and of the
solution u, (qm,qf ) of (4), we obtain that for all vD ∈ X0

D

|
∫

Ω

(
Λm∇DmvD · (∇u−∇DmuD)

)
dx +∫

Γ

(
Λf∇DfvD · (∇τγu−∇DfuD)

)
dτf (x)| ≤ ‖vD‖DWD(qm,qf ).

Let us introduce wD ∈ X0
D defined as

wD = argminvD∈X0
D
SD(u, vD),

and let us set in the previous estimate vD = wD−uD. Applying the Cauchy Schwarz inequality,
we obtain the first estimate. In addition, from the definition of CD, we have that

‖ΠDmwD − ΠDmuD‖L2(Ω) + ‖ΠDfwD − ΠDfuD‖L2(Γ) ≤ CD‖wD − uD‖D,
which proves the second estimate using the definition of wD. �

9



4 Two examples of Gradient Discretizations

Following [14], we consider generalised polyhedral meshes of Ω which allow for non planar faces.
Let us stress that this general definition is used for the VAG scheme introduced in subsection
4.1 while the HFV scheme described in subsection 4.2 requires in addition that the faces are
planar and that the face center xσ is the center of gravity of the face σ.

Definition 4.1 (Polyhedral mesh) LetM be the set of cells that are disjoint open polyhedral
subsets of Ω such that

⋃
K∈MK = Ω. For all K ∈M, xK denotes the so-called “center” of the

cell K under the assumption that K is star-shaped with respect to xK. We then denote by FK
the set of interfaces of non zero d − 1 dimensional measure among the interior faces K ∩ L,
L ∈ M \ {K}, and the boundary interface K ∩ ∂Ω, which possibly splits in several boundary
faces. Let us denote by

F =
⋃
K∈M

FK

the set of all faces of the mesh. Remark that the faces are not assumed to be planar, hence the
term “generalised polyhedral mesh”. For σ ∈ F , let Eσ be the set of interfaces of non zero d− 2
dimensional measure among the interfaces σ ∩ σ′, σ′ ∈ F \ {σ}. Then, we denote by

E =
⋃
σ∈F

Eσ

the set of all edges of the mesh. Let Vσ =
⋃
e,e′∈Eσ ,e 6=e′

(
e ∩ e′

)
be the set of vertices of σ. For

each K ∈M we define VK =
⋃
σ∈FK Vσ, and we also denote by

V =
⋃
K∈M

VK

the set of all vertices of the mesh. It is then assumed that for each face σ ∈ F , there exists a so-
called “center” of the face xσ ∈ σ \

⋃
e∈Eσ e such that xσ =

∑
s∈Vσ βσ,s xs, with

∑
s∈Vσ βσ,s = 1,

and βσ,s ≥ 0 for all s ∈ Vσ; moreover the face σ is assumed to be defined by the union of the
triangles Tσ,e defined by the face center xσ and each edge e ∈ Eσ.

The mesh is also supposed to be conforming w.r.t. the fracture network Γ in the sense that
for each i ∈ I there exists a subset FΓi of F such that Γi =

⋃
σ∈FΓi

σ. We will denote by FΓ the

set of fracture faces
⋃
i∈I FΓi, and by EΓ the set of fracture edges

⋃
σ∈FΓ

Eσ.

A tetrahedral sub-mesh of M is defined by

T = {TK,σ,e, e ∈ Eσ, σ ∈ FK , K ∈M},

where TK,σ,e is the tetrahedron joining the cell center xK to the triangle Tσ,e (see Figure 2 for
examples of such tetrahedra).

Let ρT denote the insphere diameter of a given tetrahedron T , hT its diameter, and hT =
maxT∈T hT . We will assume in the convergence analysis that the family of tetrahedral sub-
meshes T is shape regular. Hence let us set

θT = max
T∈T

hT
ρT
.
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4.1 Vertex Approximate Gradient Discretization

The VAG discretization has been introduced in [14] for diffusive problems on heterogeneous
anisotropic media. Its extension to the hybrid dimensional Darcy model is based on the follow-
ing vector space of degrees of freedom:

XD = {vK , vs, vσ ∈ R, K ∈M, s ∈ V , σ ∈ FΓ}, (12)

and its subspace with homogeneous Dirichlet boundary conditions on ∂Ω:

X0
D = {vD ∈ XD | vs = 0 for s ∈ Vext}. (13)

where Vext = V ∩ ∂Ω denotes the set of boundary vertices, and Vint = V \ ∂Ω denotes the set
of interior vertices.

Figure 2: Degrees of freedom of the VAG scheme: cell unknowns vK , vL, fracture face unknown
vσ, and node unknowns vs, vs1 , vs2 , vs3 , vs4 . The fracture faces of FΓ are in bold. The value of
vσ′ is obtained by interpolation of the node unknowns vs1 , vs2 , vs3 , vs4 of the face σ′ ∈ F \ FΓ

while vσ is kept as an unknown for σ ∈ FΓ.

A P1 finite element discretization of V is built using the tetrahedral sub-mesh T of M
and a second order interpolation at the face centers xσ, σ ∈ F \ FΓ defined by the operator
Iσ : XD → R such that

Iσ(vD) =
∑
s∈Vσ

βσ,svs.

For a given vD ∈ XD, we define the function ΠT vD ∈ V as the continuous piecewise affine
function on each tetrahedron of T such that ΠT vD(xK) = vK , ΠT vD(xs) = vs, ΠT vD(xσ) = vσ,
and ΠT vD(xσ′) = Iσ′(vD) for all K ∈M, s ∈ V , σ ∈ FΓ, and σ′ ∈ F \FΓ. The discrete gradient
operators are obtained from this finite element discretization of V , setting

∇Dm = ∇ΠT and ∇Df = ∇τγΠT . (14)

In addition to this conforming finite element discretization of V , the VAG discretization uses
two non conforming piecewise constant reconstructions of functions from XD into respectively
L2(Ω) and L2(Γ) based on a partition of the cells and of the fracture faces. These partitions
are respectively denoted, for all K ∈M, by

K = ωK ∪
( ⋃
s∈VK∩Vint

ωK,s

)
∪
( ⋃
σ∈FK∩FΓ

ωK,σ

)
,
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and, for all σ ∈ FΓ, by

σ = ωσ ∪
( ⋃
s∈Vσ∩Vint

ωσ,s

)
.

Then, the function reconstruction operators are defined by

ΠDmvD(x) =


vK for all x ∈ ωK , K ∈M,
vs for all x ∈ ωK,s, s ∈ VK ∩ Vint, K ∈M,
vσ for all x ∈ ωK,σ, σ ∈ FK ∩ FΓ, K ∈M,

(15)

and

ΠDfvD(x) =

{
vσ for all x ∈ ωσ, σ ∈ FΓ,
vs for all x ∈ ωσ,s, s ∈ Vσ ∩ Vint, σ ∈ FΓ.

(16)

It is shown below that the above VAG discretization defines a coercive, consistent, limit
conforming and compact gradient discretization whatever the choice of these partitions.

Properties of VAG discretization: we state without proof two results that can be readily
adapted from [5] Lemmas 3.4 and 3.7 noticing that the shape regularity of T implies the shape
regularity of the triangular submesh of Γ defined by T ∩ Γ.

Lemma 4.1 There exists C > 0 depending only on θT such that, for all vD ∈ XD, one has the
estimates

‖ΠDmvD − ΠT vD‖L2(Ω) ≤ ChT ‖∇DmvD‖L2(Ω)d ,
‖ΠDfvD − γΠT vD‖L2(Γ) ≤ ChT ‖∇DfvD‖L2(Γ)d−1 .

For any continuous function ϕ ∈ C0(Ω), let us introduce the operator PD : C0(Ω) → XD
such that

(PDϕ)K = ϕ(xK), (PDϕ)s = ϕ(xs), (PDϕ)σ = ϕ(xσ)

for all K ∈M, s ∈ V and σ ∈ FΓ.
We have the following classical finite element approximation result for the finite element

interpolation operator ΠT PD.

Proposition 4.1 For all ϕ ∈ C∞(Ω), there exists Cϕ > 0 depending only on ϕ, θT such that
one has the error estimates

‖ϕ− ΠT PDϕ‖L2(Ω) + ‖γϕ− γΠT PDϕ‖L2(Γ) ≤ h2
T Cϕ,

and
‖∇ϕ−∇ΠT PDϕ‖L2(Ω)d + ‖∇γϕ−∇τγΠT PDϕ‖L2(Γ)d−1 ≤ hT Cϕ.

Let us now state our main result concerning the VAG discretization.

Proposition 4.2 (Main result on VAG) Let us consider a family of meshes (Ml)l∈N as
defined above. It is assumed that the family of tetrahedral submeshes T l of Ml is shape regular
in the sense that there exists θ > 0 such that θT l ≤ θ for all l ∈ N. It is also assumed that
hT l tends to zero when l → +∞. Then, the sequence of VAG discretizations (Dl)l∈N with
Dl = (X0

Dl ,ΠDlm ,ΠDlf ,∇Dlm ,∇Dlf ) defined by (13), (15), (16), (14) is coercive, consistent, limit

conforming and compact.
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Proof: Let us denote by
DFE = (X0

D,ΠT , γΠT ,∇Dm ,∇Df ),

the conforming P1 finite element VAG discretization. It results from Lemma 2.1 that

‖ΠT vD‖L2(Ω) + ‖γΠT vD‖L2(Γ) ≤ CP‖∇DmvD‖L2(Ω)d (17)

for all vD ∈ X0
D. On the other hand for all (qm,qf ) ∈ HΣ(Ω,Γ) and all vD ∈ X0

D one has

WDFE(qm,qf , vD) = 0. (18)

We deduce from (17) and (18) that the sequence of conforming gradient discretizations (DlFE)l∈N
is coercive and limit conforming. The consistency of (DlFE)l∈N results from Proposition 4.1 and
from the density of C∞c (Ω) in V 0 given by Proposition 2.2. The following estimates

‖ΠT vD‖H1(Ω) ≤ C1‖∇ΠT vD‖L2(Ω)d ,

and
‖γiΠT vD‖H1(Γi) ≤ C2

(
‖∇ΠT vD‖L2(Ω)d + ‖∇τγΠT vD‖L2(Γ)d−1

)
for constants C1 and C2 independent on the mesh and on vD ∈ X0

D are deduced from the
Poincaré inequality and the Trace theorem. Then, thanks to the Rellich Compactness Theorem,
one obtains the compactness of (DlFE)l∈N. From Lemma 3.1 and Lemma 4.1 we deduce that
the sequence (Dl)l∈N is also coercive, consistent, limit conforming and compact. �

4.2 Hybrid Finite Volume Discretization

In this subsection, the HFV scheme introduced in [13] is extended to the hybrid dimensional
Darcy flow model. Let us recall that the HFV scheme of [13] has been generalised in [12] as
the family of Hybrid Mimetic Mixed methods which encompasses the family of Mimetic Finite
Difference schemes [8]. In the following, we focus on the particular case presented in [13] for
the sake of simplicity.

Let us recall that, for the HFV scheme, the faces σ ∈ F are assumed to be planar and xσ is
assumed to be the center of gravity of the face σ. We also denote by xe the center of the edge
e ∈ E . Let Fint ⊂ F (resp. Eint ⊂ E) denote the subset of interior faces (resp. interior edges).
The vector space of degrees of freedom XD is defined by

XD = {uK ∈ R, uσ ∈ R, ue ∈ R for all K ∈M, σ ∈ F , e ∈ EΓ}, (19)

and its subspace X0
D is defined by

X0
D = {uD ∈ XD |uσ = 0, ue = 0 for all σ ∈ F \ Fint and e ∈ EΓ \ Eint}. (20)

For any continuous function ϕ ∈ C0(Ω), let us define its projection PDϕ onto XD such that
(PDϕ)K = ϕ(xK), (PDϕ)σ = ϕ(xσ), (PDϕ)e = ϕ(xe) for K ∈M, σ ∈ F , e ∈ EΓ.
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Figure 3: Degrees of freedom of the HFV scheme: cell unknowns uK , uL, fracture face unknown
uσ, matrix face unknown uσ′ and fracture edge unknown ue.

For each cell K and uD ∈ XD, let us define

∇KuD =
1

|K|
∑
σ∈FK

|σ|(uσ − uK)nK,σ,

where |K| is the volume of the cell K, |σ| is the surface of the face σ, and nK,σ is the unit
normal vector of the face σ ∈ FK outward to the cell K. We recall from [13] that ∇KuD is exact
on affine functions ϕ in the sense that ∇KPDϕ = ∇ϕ. Also note that ∇KuD does not depend
on uK since

∑
σ∈FK |σ|nK,σ = 0. Hence a stabilised discrete gradient is defined as follows:

∇K,σuD = ∇KuD +RK,σ(uD)nK,σ, σ ∈ FK ,

with

RK,σ(uD) =

√
d

dK,σ

(
uσ − uK −∇KuD · (xσ − xK)

)
,

setting dK,σ = nK,σ · (xσ − xK) which leads to the definition of the matrix discrete gradient

∇DmuD(x) = ∇K,σuD on Kσ for all K ∈M, σ ∈ FK , (21)

where Kσ is the cone joining the face σ to the cell center xK . The fracture discrete gradient is
defined similarly by

∇DfuD(x) = ∇σ,euD on σe for all σ ∈ FΓ, e ∈ Eσ, (22)

with
∇σ,euD = ∇σuD +Rσ,e(uD)nσ,e,

and

∇σuD =
1

|σ|
∑
e∈Eσ

|e|(ue − uσ)nσ,e,

Rσ,e(uD) =

√
d− 1

dσ,e

(
ue − uσ −∇σuD · (xe − xσ)

)
,

where nσ,e is the unit normal vector to the edge e in the tangent plane of the face σ and outward
to the face σ, dσ,e = nσ,e · (xe − xσ), and σe is the triangle of base e and vertex xσ.

The matrix and fracture discrete gradients are both consistent in the sense that for any
affine function ϕ ∈ C0(Ω) one has ∇DmPDϕ = ∇ϕ, and for any function ϕ ∈ C0(Ω) affine on
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the fracture Γi one has ∇DfPDϕ = ∇τiϕ on Γi. We recall also from [13] that for all uD ∈ XD
one has ∑

σ∈FK

|σ|dK,σRK,σ(uD)nK,σ = 0 and
∑
e∈Eσ

|e|dσ,eRσ,e(uD)nσ,e = 0. (23)

The function reconstruction operators are piecewise constant on a partition of the cells and of
the fracture faces. These partitions are respectively denoted, for all K ∈M, by

K = ωK ∪
( ⋃
σ∈FK∩Fint

ωK,σ

)
,

and, for all σ ∈ FΓ, by

σ = ωσ ∪
( ⋃
e∈Eσ∩Eint

ωσ,e

)
.

Then, the function reconstruction operators are defined for all vD ∈ XD by

ΠDmvD(x) =

{
vK for all x ∈ ωK , K ∈M,
vσ for all x ∈ ωK,σ, σ ∈ FK ∩ Fint, K ∈M,

(24)

and

ΠDfvD(x) =

{
vσ for all x ∈ ωσ, σ ∈ FΓ,
ve for all x ∈ ωσ,e, e ∈ Eσ ∩ Eint, σ ∈ FΓ.

(25)

As for the VAG scheme, it is shown below that the above HFV discretization defines a coercive,
consistent, limit conforming and compact gradient discretization whatever the choice of these
partitions.

Let us define the two piecewise constant mappings ΠM (resp. ΠF) from XD to L2(Ω) (resp.
L2(Γ)) such that for all vD ∈ XD

ΠMvD|K = vK for all K ∈M (resp ΠFvD|σ = vσ for all σ ∈ FΓ). (26)

Following the proof of Lemma 4.1 from [13], one can obtain the following Lemma.

Lemma 4.2 There exists C > 0 depending only on θT such that for all uD ∈ XD one has

‖ΠDmuD − ΠMuD‖L2(Ω) + ‖ΠDfuD − ΠFuD‖L2(Ω) ≤ ChT ‖uD‖D.

Properties of HFV discretizations: Let us first consider the HFV discretization

D =
(
X0
D,ΠM,ΠF ,∇Dm ,∇Df

)
,

defined by the vector space X0
D from (20), the discrete gradient operators ∇Dm from (21) and

∇Df from (22), and the function reconstruction operators ΠM, ΠF from (26). From Lemma
5.3 and Lemma 4.1 of [13] and Lemma 1.51 of [11], one has the following discrete Poincaré
estimates

‖ΠMuD‖L2(Ω) ≤ CD,m‖∇DmuD‖L2(Ω)d ,

‖ΠFuD‖L2(Γ) ≤ CD,f

(
‖∇DmuD‖L2(Ω)d + ‖∇DfuD‖L2(Γ)d−1

)
,

(27)

for all uD ∈ X0
D with CD,m and CD,f depending only on θT .

It follows from Lemma 4.3 of [13] that for all ϕ ∈ C∞(Ω) there exists C > 0 depending only
on θT and ϕ such that

‖∇DmPDϕ−∇ϕ‖L2(Ω) + ‖∇DfPDϕ−∇ϕ‖L2(Γ) ≤ ChT (28)
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It is easy to show that for all ϕ ∈ C∞(Ω), there exists C > 0, depending only on ϕ and θT such
that

‖ΠMPDϕ− ϕ‖L2(Ω) + ‖ΠFPDϕ− ϕ‖L2(Γ) ≤ ChT . (29)

Proposition 4.3 Let (ϕm,ϕf ) ∈ C∞HΣ
(Ω,Γ), there exist C depending only on (ϕm,ϕf ) and θT

such that for all uD ∈ X0
D

WD(ϕm,ϕf , uD) ≤ ChT ‖uD‖D.

Proof: Let us define ϕK = 1
|K|

∫
K
ϕmdx for all K ∈ M, and ϕK,σ = lim

ε→0+

1

|σ|

∫
σ

ϕm(x −

nK,σε)dτ(x) for all σ ∈ FK .

Let us define

AD1 = AD11 + AD12 =

∫
Ω

∇DmuD ·ϕmdx,

with
AD11 =

∑
K∈M

∑
σ∈FK

|σ|(uσ − uK)ϕK · nK,σ,

and

AD12 =
∑
K∈M

∑
σ∈FK

RK,σ(uD)nK,σ ·
∫
Kσ

ϕmdx.

Using (23), one has

AD12 =
∑
K∈M

∑
σ∈FK

RK,σ(uD)nK,σ ·
∫
Kσ

(ϕm −ϕK)dx.

We can deduce as in Lemma 4.2 from [13] that there exists C depending only on ϕm, θT such
that

|AD12| ≤ ChT ‖∇DmuD‖L2(Ω)d . (30)

Let us consider the term AD2 defined by

AD2 =
∑
α∈A

∫
Ωα

(ΠMuD)div(ϕm,α)dx =
∑
K∈M

∑
σ∈FK

|σ|uKϕK,σ · nK,σ.

Adding and subtracting
∑
K∈M

∑
σ∈FK

|σ|uσϕK,σ ·nK,σ to AD2 and using that
∑

K∈Mσ

|σ|ϕK,σ ·nK,σ = 0

for all σ ∈ F \ FΓ, leads to

AD2 =
∑
K∈M

∑
σ∈FK

|σ|(uK − uσ)ϕK,σ · nK,σ +
∑
σ∈FΓ

∑
K∈Mσ

|σ|uσϕK,σ · nK,σ.

It results that

AD11 + AD2 −
∑
i∈I

∫
Γi

(ΠFuD)[[ϕm · ni]]dτ(x)

=
∑
K∈M

∑
σ∈FK

|σ|(uK − uσ)(ϕK,σ −ϕK) · nK,σ
(31)
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Therefore, applying Cauchy-Schwartz inequality to (31), using the regularity of ϕm, and the
estimate (30), we deduce that there exists C depending only on ϕm, θT such that∣∣∣∣∣∑

α∈A

∫
Ωα

(∇DmuD ·ϕm,α + (ΠMuD)div(ϕm,α))dx−

∑
i∈I

∫
Γi

(ΠFuD)[[ϕm · ni]]dτ(x)

∣∣∣∣∣ ≤ ChT ‖∇DmuD‖L2(Ω)d .

(32)

Next, we define for all σ ∈ FΓ and e ∈ Eσ

ϕσ =
1

|σ|

∫
σ

ϕfdτ(x) and ϕσ,e = lim
ε→0+

1

|e|

∫
e

ϕf (x− nσ,eε)dl(x).

Let us set

BD1 = BD11 +BD12 =
∑
i∈I

∫
Γi

∇DfuD ·ϕf,idτ(x),

with
BD11 =

∑
σ∈FΓ

∑
e∈Eσ

|e|(ue − uσ)ϕσ · nσ,e,

and

BD12 =
∑
σ∈FΓ

∑
e∈Eσ

Rσ,e(uD)nσ,e ·
∫
σe

ϕfdτ(x).

Using (23), one has

BD12 =
∑
σ∈FΓ

∑
e∈Eσ

Rσ,e(uD)nσ,e ·
∫
σe

(ϕf −ϕσ)dτ(x).

We can deduce as in [13] that there exists C depending only on ϕf , θT such that

|BD12| ≤ ChT ‖∇DfuD‖L2(Γ)d−1 . (33)

Let us consider the term BD2 defined by

BD2 =
∑
i∈I

∫
Γi

(ΠFuD)div(ϕf,i)dτ(x) =
∑
σ∈FΓ

∑
e∈Eσ

|e|uσϕσ,e · nσ,e.

Adding and subtracting
∑
σ∈FΓ

∑
e∈Eσ

|e|ueϕσ,e · nσ,e to BD2 we obtain that

BD2 =
∑
σ∈FΓ

∑
e∈Eσ

|e|(uσ − ue)ϕσ,e · nσ,e +
∑
σ∈FΓ

∑
e∈Eσ

|e|ueϕσ,e · nσ,e

Taking into account the definition of ϕf,i and the fact that ue = 0 for all e ∈ EΓ \ Eint we
conclude that ∑

σ∈FΓ

∑
e∈Eσ

|e|ueϕσ,e · nσ,e = 0.

It results that
BD11 +BD2 =

∑
σ∈FΓ

∑
e∈Eσ

|e|(uσ − ue)(ϕσ,e −ϕσ) · nσ,e,
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from which we can deduce as in [13] and using (33) that there exists C depending only on ϕf
and θT such that∣∣∣∣∣∑

i∈I

∫
Γi

(
∇DfuD ·ϕf,i + (ΠFuD)div(ϕf,i)

)
dτ(x)

∣∣∣∣∣ ≤ ChT ‖∇DfuD‖L2(Γ)d−1 . (34)

Combining the estimates (32) and (34) concludes the proof of Proposition 4.3. �

Proposition 4.4 (Main result on HFV) Let us consider a family of meshes (Ml)l∈N as
defined above. It is assumed that the family of tetrahedral submeshes T l of Ml is shape regular
in the sense that there exist a positive constant θ such that θT l < θ for all l ∈ N. It is
also assumed that hT l tends to zero when l→ +∞. Then, the sequence of HFV discretizations
(Dl)l∈N with Dl = (X0

Dl ,ΠDlm ,ΠDlf ,∇Dlm ,∇Dlf ) defined by (20), (24), (25), (21), (22) is coercive,

consistent, limit conforming and compact.

Proof: The coercivity of the sequence of HFV discretizations(
X0
Dl ,ΠMl ,ΠF l ,∇Dlm ,∇Dlf

)
l∈N
,

results from (27). Its consistency is obtained using (28), (29) and the density of C∞c (Ω) in V 0

given by Proposition 2.2. Its limit conformity is obtained by Proposition 4.3 and the density of
C∞HΣ

(Ω,Γ) in HΣ(Ω,Γ) given by Proposition 2.3. Its compactness results from Lemma 5.6 of [13]
and Lemma 1.57 of [11]. Then, the coercivity, consistency, limit conformity and compactness
of the sequence of HFV discretizations (Dl)l∈N results from Lemma 3.1 and Lemma 4.2. �

Remark 4.1 The proofs of Propositions 4.2, 4.4 and of Lemma 3.1 show that for solutions
u ∈ V 0 and (qm,qf ) ∈ HΣ(Ω,Γ) of (4) such that u ∈ C2(K), qm ∈ (C1(K))d, qf ∈ (C1(σ))d−1

for all K ∈M and all σ ∈ FΓ, the VAG and HFV schemes are consistent and limit conforming
of order 1, and therefore convergent of order 1.

4.3 Finite Volume Formulation of the VAG and HFV schemes

Both the VAG and HFV schemes can be formulated as finite volume schemes. Moreover, the
definition of the fluxes and of the conservation equations for both schemes can be unified using
the following data structure which has been used in the practical implementation of the code.
Let us define the set of degrees of freedom (d.o.f.)

dofD =

{
M∪V ∪ FΓ for VAG
M∪F ∪ EΓ for HFV

The subset of d.o.f. located at the boundary of Ω where Dirichlet boundary conditions are
imposed is denoted by dofDir such that

dofDir =

{
Vext for VAG
(F \ Fint) ∪ (EΓ \ Eint) for HFV

For each cell K ∈ M let us also define the subset dof∂K of d.o.f. located at the boundary of
K with

dof∂K =

{
VK ∪ (FK ∩ FΓ) for VAG
FK for HFV
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Similarly, we define for each fracture face σ ∈ FΓ the subset dof∂σ of d.o.f. located at the
boundary of σ

dof∂σ =

{
Vσ for VAG
Eσ for HFV

Finally, the vector space XD is identified to RdofD and its subspace X0
D to RdofD\dofDir and we

denote by (eν , ν ∈ dofD) the canonical basis of XD.
Using these unified notations and following [6] Section 4 for the VAG scheme and [13]

Remark 2.7 for the HFV scheme, we can define for both schemes the matrix and fracture fluxes
which are exhibited in Figure 4 inside a cell K with a fracture face σ. The matrix fluxes connect
a cell K ∈M to its boundary d.o.f. ν ∈ dof∂K and are defined for all uD ∈ XD by

FK,ν(uD) = −
∫
K

Λm∇DmuD · ∇Dmeνdx =
∑

ν′∈dof∂K

T ν
′

K,ν(uK − uν′),

with

T ν
′

K,ν =

∫
K

Λm∇Dmeν′ · ∇Dmeνdx.

Similarly, the fracture fluxes connect a fracture face σ ∈ FΓ to its boundary d.o.f. ν ∈ dof∂σ
and are defined for all uD ∈ XD by

Fσ,ν(uD) = −
∫
σ

dfΛf∇DfuD · ∇Df eνdτ(x) =
∑

ν′∈dof∂σ

T ν
′

σ,ν(uK − uν′),

with

T ν
′

σ,ν =

∫
σ

dfΛf∇Df eν′ · ∇Df eνdτ(x).

These fluxes are such that for all (uD, vD) ∈ XD ×XD one has∫
Ω

Λm(x)∇DmuD(x) · ∇DmvD(x)dx +

∫
Γ

Λf (x)∇DfuD(x) · ∇DfvD(x)dτf (x)

=
∑
K∈M

∑
ν∈dof∂K

FK,ν(uD)(vK − vν) +
∑
σ∈FΓ

∑
ν∈dof∂σ

Fσ,ν(uD)(vσ − vν).

It follows that the variational formulation (11) is equivalent to the following finite volume
formulation: Find uD ∈ XD such that

∑
ν∈dof∂K

FK,ν(uD) =

∫
ωK

hm(x)dx, for all K ∈M,∑
ν∈dof∂σ

Fσ,ν(uD) +
∑

K∈Mσ

−FK,σ(uD)

=
∑

K∈Mσ

∫
ωK,σ

hm(x)dx +

∫
ωσ

hf (x)dτf (x), for all σ ∈ FΓ,∑
K∈Mν

−FK,ν(uD) +
∑
σ∈FΓ,ν

−Fσ,ν(uD) =
∑
K∈Mν

∫
ωK,ν

hm(x)dx

+
∑
σ∈FΓ,ν

∫
ωσ,ν

hf (x)dτf (x), for all ν ∈ dofD \ (M∪FΓ ∪ dofDir),

uν = 0, for all ν ∈ dofDir,

(35)
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Figure 4: Matrix (in blue) and fracture (in red) fluxes inside a cell K with a fracture face σ
(in bold) for the VAG (left) and HFV (right) schemes. The matrix fluxes FK,ν connect the cell
K to the d.o.f. ν ∈ dof∂K located at the boundary of K. The fracture fluxes Fσ,ν connect the
face σ to the d.o.f. ν ∈ dof∂σ located at the boundary of σ.

with Mν = {K ∈ M| ν ∈ dof∂K} and FΓ,ν = {σ ∈ FΓ | ν ∈ dof∂σ}. Following [6], when
applying the VAG or HFV discretization to two phase Darcy flow models or to the coupling
of the Darcy flow equation with a tracer equation, the choice of the cells and fracture faces
partitioning defining the control volumes is done in order to avoid the mixture of heterogeneous
properties inside each control volume. In particular, at the matrix fracture interfaces, one
simply need to set ωK,ν = ∅ for all ν such that xν ∈ Γ. Note also that, in practice for such
models, one does not need to build the partitions but only to choose the volume distribution

ratios αK,ν =

∫
ωK,ν

dx

|K| , ν ∈ dof∂K \ dofDir, and ασ,ν =

∫
ωσ,ν

dτf (x)

|σ| , ν ∈ dof∂σ \ dofDir.

5 Density results for pressure and flux spaces

This section proves the density results stated in Propositions 2.2 and 2.3.

5.1 Proof of Proposition 2.2

We prove in this subsection that the space C∞(Ω) is a dense subspace of V . The density of
C∞c (Ω) in V 0 can be proved in the same way. We begin with technical lemmas concerning the
fractional Sobolev spaces.

Let s be a non-negative real number, for an non-empty open set Ω ⊆ Rd we denote by
Hs(Ω) the standard Sobolev space W s,p(Ω) with exponent p = 2. Note that for 0 ≤ s1 ≤ s2

one has Hs2(Ω) ⊂ Hs1(Ω), where H0(Ω) stands for L2(Ω). We also define the spaces Hs
0(Ω) =

C∞c (Ω)
Hs(Ω)

and H̃s(Ω) = C∞c (Ω)
Hs(Rd)

.
If Ω is a Lipschitz domain, then the trace operator γ∂Ω : C∞(Ω)→ C∞(∂Ω) can be contin-

uously extended to γ∂Ω : Hs(Ω) → Hs−1/2(∂Ω) for all 1
2
< s < 3

2
; moreover the trace operator

is surjective and has a continuous right inverse [9, Lemma 3.6]. For s > 1
2

we define

Hs
∂Ω(Ω) = {u ∈ Hs(Ω) such that γ∂Ωu = 0}.

The following lemma summarizes some relations between the spaces Hs(Ω), Hs
0(Ω), H̃s(Ω) and

Hs
∂Ω(Ω) for Lipschitz domains.
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Lemma 5.1 If Ω is a Lipschitz domain, then

(i) If s ≥ 0, then H̃s(Ω) ⊂ Hs
0(Ω); moreover if s− 1

2
/∈ Z, then H̃s(Ω) = Hs

0(Ω).

(ii) If 0 ≤ s ≤ 1

2
, then Hs

0(Ω) = Hs(Ω).

(iii) If
1

2
< s <

3

2
, then Hs

0(Ω) = Hs
∂Ω(Ω).

Proof: See [18, Theorems 1.4.4.5 and 1.4.2.4] for the proof of (i) and (ii). The proof of (iii)

for
1

2
< s ≤ 1 is also given in [22, Theorem 3.40], for 1 < s < 3

2
see [23]. �

Lemma 5.1 implies in particular that for 1
2
< s < 3

2
one has Hs

0(Ω) = H̃s(Ω) = Hs
∂Ω(Ω) and

that for any u ∈ Hs
0(Ω) its extension by zero belongs to Hs(Rn).

Let Ω be a Lipschitz domain, let l ∈ N and let
(

Ωi ⊂ Ω
)
i∈{1,...,l}

be a family of Lipschitz

domains satisfying
⋃

i∈{1,...,l}

Ωi = Ω and Ωi∩Ωj = ∅ for all i, j ∈ {1, . . . , l} with i 6= j. Let
(
ui ∈

H1(Ωi)
)
i∈{1,...,l}

be a set of functions such that for all i, j ∈ {1, . . . , l} satisfying ∂Ωi ∩ ∂Ωj 6= ∅,

then
(
γ∂Ωiui

)
|∂Ωi∩∂Ωj =

(
γ∂Ωjuj

)
|∂Ωi∩∂Ωj . For all i ∈ {1, . . . , l} we denote by χΩi the indicator

function of the domain Ωi, it is classical that the function u =
∑

i∈{1,...,l}

uiχΩi belongs to H1(Ω).

The following lemma gives a similar result for functions in Hs(Ω), with 1
2
< s < 1 and Ω being

the boundary of a polyhedral domain.

Lemma 5.2 Let K be a bounded polyhedral domain in R3, let FK be the set of its polygonal
faces and EK the set of its edges. For all σ ∈ FK we denote by Eσ the set of edges of σ and for
all e ∈ EK by FK,e ⊂ FK the two faces containing e. Let 1

2
< s < 1, for all σ ∈ FK and e ∈ Eσ

we denote by γσ,e the trace operator from Hs(σ) to Hs− 1
2 (e).

Let u ∈ L2(∂K) such that u|σ ∈ Hs(σ) for all σ ∈ FK and such that for all e ∈ EK with
FK,e = {σ, σ′} one has γσ,e(u|σ) = γσ′,e(u|σ′). Then, u ∈ Hs(∂K).

Proof: Let e ∈ EK and FK,e = {σ, σ′}, we associate with e a couple of Lipschitz domains
(Dσ

e )σ∈FK,e such that Dσ
e ⊂ σ and ∂Dσ

e ∩ ∂σ = e for all σ ∈ FK,e, and such that Dσ′
e is obtained

by a rotation of Dσ
e around e. We denote De = D

σ

e ∪ D
σ′

e and De = De \ ∂De. The function

γσ,eu
σ
e is in Hs− 1

2 (e), implying in view of statements (i) and (ii) of Lemma 5.1 that its extension

by zero on ∂Dσ
e belongs to Hs− 1

2 (∂Dσ
e ). The trace operator γ∂Dσe : Hs(Dσ

e ) → Hs− 1
2 (∂Dσ

e ) is
surjective, therefore there exists uσe ∈ Hs(Dσ

e ) such that

γ∂Dσe u
σ
e =

{
γσ,euσ on e,
0 on ∂Dσ

e \ e.

We denote by ue the extension by symmetry of uσe to De. One can show that ue ∈ Hs
0(De),

implying that its extension by zero to the whole ∂K, denoted by ue, belongs to Hs(∂K). Let
us consider the function

vσ = u|σ −
∑
e∈Eσ

ue|σ.
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Since vσ ∈ Hs
0(σ) it can be extended by zero to the whole ∂K; we denote this extension by vσ.

To complete the proof we remark that

u =
∑
σ∈FK

vσ +
∑
e∈EK

ue ∈ Hs(∂K).

�

Lemma 5.3 The trace operator γ is onto from V to H1(Γ).

Proof: Given u ∈ H1(Γ) we prove that there exists U ∈ V such that γU = u. We focus on
the case d = 3, the adaptation to the bidimensional setting is straightforward. The proof relies
on the definition of a polyhedral mesh which is slightly different from Definition 4.1. More
precisely in addition to Definition 4.1 it is assumed that all the mesh faces σ ∈ F are planar.
On the other hand the existence of cell (and face) “centers” is not required. Such polyhedral
partitioning of Ω \ Γ always exists. For example we can define the set of cells M as the set of
connected components of Ω \

⋃
i∈I Pi. In addition to the previous notations, we will denote by

Fe the set of faces sharing a given edge e ∈ E .
For all e ∈ EΓ we denote by γe the trace operator acting from H1(Γ) to H

1
2 (e), and for all

e ∈ E we define

ue =

{
γeu if e ∈ EΓ,
0 else.

Let σ ∈ F \ FΓ and let us denote by χe, e ∈ Eσ the indicator function of e defined on ∂σ. In
view of statements (i) and (ii) of Lemma 5.1 the function u∂σ =

∑
e∈Eσ χeue belongs to Hs(∂σ)

for any 0 < s <
1

2
.

For all σ ∈ F \FΓ there exists a function uσ ∈ Hs+ 1
2 (σ) having the trace on ∂σ equal to u∂σ.

For σ ∈ FΓ we denote by uσ ∈ H1(σ) the restriction of u on σ. Let χσ be the indicator function
of σ defined on

⋃
σ∈F σ, we set u∗ =

∑
σ∈F χσuσ. Lemma 5.2 implies that for all K ∈ M the

restriction of u∗ on ∂K belongs Hs+ 1
2 (∂K)

Finally, for all K ∈ M we denote by UK some lifting of u∗|∂K in Hs+1(K) and we de-

fine U =
∑
K∈M

χKUK , where χK is the indicator function of a cell K. Then, it follows that

U ∈ H1(Ω) and that γU = u. �

Let us recall (see e.g. [7] Proposition 1.9) that the density of a linear subspace M of V is
equivalent to the fact that any linear form of V ′ vanishing on M is vanishing on V .

The caracterization of V ′ can be obtained from the Riesz theorem, implying that any con-
tinuous linear form ζ on V writes ζ = ξ + γtτ where ξ ∈ (H1(Ω))′ and τ ∈ (H1(Γ))′. Then,
assuming that 〈ζ, ϕ〉 = 0 for all ϕ ∈ C∞(Ω) it results from Lemma 5.4 stated and proved below
that ζ = 0. Therefore the space C∞(Ω) is dense in V .

Lemma 5.4 Let ζ = ξ + γtτ where ξ ∈ (H1(Ω))′ and τ ∈ (H1(Γ))′ be such that 〈ζ, ϕ〉 = 0 for
all ϕ ∈ C∞(Ω), then ζ = 0.

Proof: It is known that C∞c (Ω \ Γ), defined as the space of C∞(Ω) functions vanishing in
a neighbourhood of Γ, is a dense subspace of H1

Γ(Ω \ Γ) defined as the space of H1(Ω \ Γ)
functions vanishing on Γ. From the surjectivity and continuity of the trace operator γ from
V to H1(Γ), there exists a continuous lifting operator denoted by rΓ from H1(Γ) to V . Using
< ξ, ϕ >= 0 for all ϕ ∈ C∞c (Ω \Γ), and the density of C∞c (Ω \Γ) in H1

Γ(Ω \Γ), we deduce that
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< ξ, v >=< ξ, rΓ(γ(v)) > for all v ∈ V . It results that τ̃ = rtΓξ ∈ (H1(Γ))′ is such that ξ = γtτ̃ .
Hence, we can assume in the remaining of the proof that ξ = 0.

Let us set E =
⋃
i∈I ∂Γi. We have E =

⋃
e∈EΓ ē where EΓ is the set of edges of Γ in the

mesh defined above. Let γE the trace operator from H1(Γ) to L2(E) and let us define the space

H
1
2 (E) as γE(H1(Γ)). We also define the space H

1
2 (∂Γi) as the set of traces on ∂Γi of functions

in H1(Γi). Then, it is easy to show that a function v ∈ L2(E) belongs to H
1
2 (E) iff for all i ∈ I,

the restriction vi of v to ∂Γi belongs to H
1
2 (∂Γi). The function space H

1
2 (E) is endowed with

the Hilbertian norm

‖v‖
H

1
2 (E)

=
∑
i∈I

(
‖vi‖2

H
1
2 (∂Γi)

) 1
2
.

From the continuity and surjectivity of the trace operator γE from H1(Γ) to H
1
2 (E), we deduce

that there exists a continuous lifting operator denoted by rE from H
1
2 (E) to H1(Γ). Let us

denote by H1
E(Γ \ E) the subspace of functions in H1(Γ) with a vanishing trace on E. From

the known density of C∞c (Γ \E) in H1(Γ \E), we deduce as above that l = rtEτ ∈ (H
1
2 (E))′ is

such that τ = γtEl
Let us denote by VE the set of the vertices of E. For all φ ∈ C∞c (E \ VE), there exists

ϕ ∈ C∞(Ω) such that φ = ϕ|E. Hence, l ∈ (H
1
2 (E))′ is such that < l, φ >= 0 for all

φ ∈ C∞c (E \ VE). Since C∞c (e) is dense in H
1
2 (e) for any edge e ([18] Theorem 1.4.2.4), we can

deduce that C∞c (E \ VE) is dense in H
1
2 (E) and hence that l = 0, and then that ζ = 0. �.

5.2 Proof of Proposition 2.3

We prove in this subsection that the space C∞HΣ
(Ω,Γ) is a dense subspace of HΣ(Ω,Γ).

Let us start by the following technical lemma.

Lemma 5.5 Let vm ∈ L2(Ω), gm ∈ L2(Ω)d, and vf ∈ L2(Γ), gf ∈ L2(Γ)d−1 be such that

aΣ

(
(qm,qf ), (vm, vf ,gm,gf )

)
= 0 for all (qm,qf ) ∈ C∞HΣ

(Ω,Γ), (36)

then vm ∈ V 0, vf = γvm, gm = ∇vm and gf = ∇τγvm.

Proof: It follows from (36) that
∑
α∈A

∫
Ωα

(vmdiv(qm,α)+qm,α·gm)dx = 0, for all qm ∈ C∞c (Ω\Γ)d,

we classically deduce that vm ∈ H1(Ω \ Γ) and that gm = ∇vm. Next, let us denote by
γ±i : H1(Ω \ Γ) → L2(Γi) the trace operators on Γi from the sides ± of Ω \ Γ. For any given
i ∈ I, let us denote by ωΓi any open ball of Γi. For any ϕi ∈ C∞c (ωΓi), one can build a function
qm,α+

i
∈ C∞b (Ωα+

i
) such that qm,α+

i
· n+

i = ϕi on ωΓi and qm,α−i · n
−
i = 0 on ωΓi if α+

i = α−i ,

qm,α+
i
· n = 0 on ∂Ωα+

i
∩ ∂Ω, and qm,α±j · n

±
j = 0 on the sides ± of the fractures i 6= j ∈ I such

that α±j = α+
i . It follows from (36) that∫

ωΓi

(γ+
i vm − vf )ϕidτ(x) = 0.

which implies that γ+
i vm = vf |Γi in L2(Γi) for all i ∈ I. Similarly, we can show that γ−i vm = vf |Γi

in L2(Γi) for all i ∈ I, and vm = 0 on ∂Ω. Hence we deduce that vm ∈ H1
0 (Ω) with vf = γvm.

Next, for all i ∈ I and for all qf,i ∈ C∞c (Γi)
d−1, one has∫

Γi

(vfdivτi(qf,i) + gf · qf,i)dτ(x) = 0,
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which implies that vf |Γi ∈ H1(Γi) with gf |Γi = ∇τivf |Γi . Next, for all (i, j) ∈ I × I, i 6= j,
such that Σi,j \ Σ0 is of codimension 2 non zero measure, let us consider any open segment
Li,j ⊂ Σi,j \Σ0, ri,j ∈ C∞c (Li,j) and its extension ri (resp. rj) by zero outside of Li,j on Σi (resp.
Σj). Then, one can build (0,qf ) ∈ C∞HΣ

(Ω,Γ) such that qf,i · nΣi = ri, and qf,j · nΣj = −rj and
qf,l = 0 for all l ∈ I \ {i, j}. It follows from (36) that∫

Li,j

(
(qf,i · nΣi)γΣivf |Γi + (qf,j · nΣj)γΣjvf |Γj

)
dl(x)

=

∫
Li,j

ri,j(γΣivf |Γi − γΣjvf |Γj)dl(x) = 0,

and hence that γΣivf |Γi = γΣjvf |Γj on Li,j. Also, for all i ∈ I such that Σi,0 has a non vanishing
codimension 2 measure, let us consider any open segment Li,0 ⊂ Σi,0, ri,0 ∈ C∞c (Li,0) and its
extension ri by zero outside of Li,0 on Σi. Then, one can build (0,qf ) ∈ C∞HΣ

(Ω,Γ) such that
qf,i · nΣi = ri and qf,l = 0 for all l ∈ I \ {i}. It results from (36) that∫

Li,0

(qf,i · nΣi)γΣivf |Γi dl(x) =

∫
Li,0

(γΣivf |Γi)ri,0 dl(x) = 0,

and hence that γΣivf |Γi = 0 on Li,0 which implies together with the previous properties that
vf ∈ H1

Σ0
(Γ) and concludes the proof. �

Let us now prove the density of C∞HΣ
(Ω,Γ) in HΣ(Ω,Γ). Similarly as in the previous subsec-

tion, it is equivalent to prove that any linear form in HΣ(Ω,Γ)′ which vanishes on the subspace
C∞HΣ

(Ω,Γ), vanishes on the whole space HΣ(Ω,Γ).
Since HΣ(Ω,Γ) is a closed Hilbert subspace of H(Ω,Γ), any continuous linear form on

HΣ(Ω,Γ) can be continuously extended to H(Ω,Γ). From the Riez representation theorem, a
continuous linear form ξ on H(Ω,Γ) writes for all (qm,qf ) ∈ H(Ω,Γ)

〈ξ, (qm,qf )〉 = aΣ

(
(qm,qf ), (vm, vf ,gm,gf )

)
with vm ∈ L2(Ω), gm ∈ L2(Ω)d, and vf ∈ L2(Γ), gf ∈ L2(Γ)d−1. It is assumed that ξ vanishes
on C∞HΣ

(Ω,Γ). Then, it results from Lemma 5.5 that vm ∈ V 0, vf = γvm, gm = ∇vm and
gf = ∇τγvm. From the definition (2) of HΣ(Ω,Γ), we conclude that ξ vanishes on HΣ(Ω,Γ)
which proves the density of C∞HΣ

(Ω,Γ) in HΣ(Ω,Γ).

6 Numerical experiments

Let Ω denote a bounded domain in Rd, d = 3, and let us consider four non immersed planar
fractures splitting the domain Ω into four subdomains Ωα, α = 1, · · · , 4. Dirichlet boundary
conditions are imposed on both the boundary of the domain ∂Ω and on the boundary of the
fracture network ∂Γ = ∂Ω ∩ Γ = Σ0. The permeability of the fractures is defined by Λf (x) =
100 Id and their width by df (x) = 0.01. In the matrix, the permeability tensor Λm(x) is fixed
to Λm,α on each subdomain Ωα, α = 1, · · · , 4 with two choices of the subdomain permeabilities.
The first choice considers isotropic heterogeneous permeabilities setting Λm,α = λα Id with
λ1 = 1, λ2 = 0.1, λ3 = 0.01, λ4 = 10. The second choice corresponds to the anisotropic
heterogeneous permeabilities defined by

Λm,1 =

a1 b1 0
b1 c1 0
0 0 λ

,Λm,2 =

a2 0 b2

0 λ 0
b2 0 c2

,Λm,3 =

a3 b3 0
b3 c3 0
0 0 λ

,Λm,4 =

λ 0 0
0 a4 b4

0 b4 c4

,
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with aα=cos2 βα+ω sin2 βα, bα=(1− ω)cos βα sin βα, cα=ω cos2 βα+sin2 βα, λ = 0.01, β1 = π
6
,

β2 = −π
6
, β3 = 0, β4 = π

6
and ω = 0.01.

Next, let us describe the two families of test cases that will be presented in this section.

Test cases: For the first test case Ω = (0, 1)3, the fracture network is defined by the union of the
two rectangles {(x, y, z) ∈ Ω |x = 0.5} and {(x, y, z) ∈ Ω | y = 0.5}, and the four subdomains
correspond to Ω1 = {(x, y, z) ∈ Ω |x < 0.5, y < 0.5}, Ω2 = {(x, y, z) ∈ Ω |x > 0.5, y < 0.5},
Ω3 = {(x, y, z) ∈ Ω |x > 0.5, y > 0.5} and Ω4 = {(x, y, z) ∈ Ω |x < 0.5, y > 0.5} (see the left
picture of Figure 5). Let us define the functions t1(x) = y − x + z, t2(x) = x + y + z − 1,
t3(x) = x− y+ z and t4(x) = 1− x− y+ z. One can check that the function u(x) = ecos(tα(x)),
x ∈ Ωα, α = 1, · · · , 4, belongs to V , and that the fluxes (qm,qf ) = (−Λm∇u,−dfΛf∇τγu)
belongs to HΣ(Ω,Γ) since it satisfies

∑
i∈I qf,i · nΣi = 0 on Σ \ Σ0.

Figure 5: (Left): domain Ω = (0, 1)3 and fracture network for the first test case. (Right):
domain Ω = (−1.5, 1.5)× (−2, 2)× (0, 5) and fracture network for the second test case.

For the numerical solutions using both the VAG and HFV schemes, three different families
of meshes are considered. The first family is defined by uniform Cartesian grid of size n×n×n
with n = 4, 8, 16, 32, 64, 128 (see Table 1). The second family of meshes is obtained from the
previous one by a perturbation of its nodes excluding the nodes on the boundary of Ω and on
the boundary of each fracture Γi, i ∈ I. The perturbation is chosen randomly inside the ball of
radius 1

4n
and of center the Cartesian mesh node. The perturbation of a fracture node is done

in the fracture plane. Note that it leads to hexahedral cells with non planar faces and hence
the HFV scheme is no longer consistent on this family of meshes. Finally we consider a family
of uniformly refined tetrahedral meshes generated by TetGen[29] (see Table 2). Tables 1 and 2
provide respectively for the Cartesian or randomly perturbated Cartesian meshes, and for the
tetrahedral meshes, as well as for both schemes, the number of degrees of freedom (d.o.f.), the
number of d.o.f. after elimination of the cell and Dirichlet unknowns (Reduced d.o.f.), and the
number of nonzero element in the linear system after elimination without any fill-in of the cell
and Dirichlet unknowns (Nonzero elts).
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Vertex Approximate Gradient Discretization
Nb d.o.f. Reduced d.o.f Nonzero elts

1 221 59 839
2 1 369 471 9 403
3 9 521 3 887 90 947
4 70 753 31 839 802 003
5 544 961 258 239 6 738 419
6 4 276 609 2 081 151 55 247 923

Hybrid Finite Volume Discretization
Nb d.o.f. Reduced d.o.f. Nonzero elts

1 380 188 1 644
2 2 520 1 560 15 336
3 18 224 12 464 129 600
4 138 336 99 168 1 060 464
5 1 077 440 790 208 8 570 064
6 8 503 680 6 307 200 68 888 976

Table 1: For the first test case, the VAG and HFV schemes and the six Cartesian and ran-
domly perturbated Cartesian meshes: mesh number, number of d.o.f., number of d.o.f. after
elimination of the cell and Dirichlet unknowns, number of nonzero elements in the matrix after
elimination.

Vertex Approximate Gradient Discretization
Nb d.o.f. Reduced d.o.f. Nonzero elts

1 1 888 294 2 660
2 13 593 1 924 23 148
3 121 818 16 780 233 978
4 263 391 36 214 519 694
5 509 038 69 762 1 021 940
6 939 007 128 324 1 904 390
7 1 386 833 189 300 2 830 880
8 1 874 186 255 370 3 840 778
9 2 383 038 324 682 4 901 360

10 4 813 285 654 670 9 979 004

Hybrid Finite Volume Discretization
Nb d.o.f. Reduced d.o.f. Nonzero elts

1 4 569 2 661 17 677
2 34 150 21 409 146 147
3 311 261 201 748 1 395 908
4 675 298 440 798 3 058 868
5 1308 518 858 252 5 967 626
6 2 417 392 1 589 624 11 064 478
7 3 573 654 2 354 004 16 396 536
8 4 832 987 3 187 229 22 210 505
9 6 147 875 4 058 104 28 290 370

10 12 432 788 8 223 946 57 382 094

Table 2: For the first test case, the VAG and HFV schemes and the ten tetrahedral meshes:
mesh number, number of d.o.f., number of d.o.f. after elimination of the cell and Dirichlet
unknowns, number of nonzero elements in the matrix after elimination.

The second test case considers the domain Ω = (−1.5, 1.5)×(−2, 2)×(0, 5) and the fracture
network defined by the union of two rectangles {(x, y, z) ∈ Ω | y = mx} and {(x, y, z) ∈ Ω | y =
−mx} with m = 8 (see the right picture of Figure 5). The domain Ω is splitted into the following
four subdomains: Ω1 = {(x, y, z) ∈ Ω |mx < y,mx < −y}, Ω2 = {(x, y, z) ∈ Ω |mx > y,mx <
−y}, Ω3 = {(x, y, z) ∈ Ω |mx > y,mx > −y} and Ω4 = {(x, y, z) ∈ Ω |mx < y,mx > −y}.
In this test we set t1(x) = 2y + z, t2(x) = 2mx + z, t3(x) = −2y + z and t4(x) = −2mx + z.
It can be verified that the function u(x) = ecos(tα(x)), x ∈ Ωα, α = 1, · · · , 4, belongs to V ,
and that the fluxes (qm,qf ) = (−Λm∇u,−dfΛf∇τγu) belong to HΣ(Ω,Γ). For the numerical
solutions using the VAG and HFV schemes, a family of ten tetrahedral uniformly refined meshes
is generated by TetGen [29]. Table 3 gives for both schemes, the number of degrees of freedom
(d.o.f.), the number of d.o.f. after elimination of the cell and Dirichlet unknowns (Reduced
d.o.f.), and the number of nonzero element in the linear system after elimination without any
fill-in of the cell and Dirichlet unknowns (Nonzero elts).

Vertex Approximate Gradient Discretization
Nb d.o.f. Reduced d.o.f. Nonzero elts

1 12 930 2 081 24 687
2 62 177 9 280 123 096
3 132 712 19 321 265 709
4 251 969 36 103 510 459
5 463 906 65 850 949 882
6 1 002 529 140 712 2 070 638
7 1 366 875 190 979 2 832 163
8 1 934 904 269 381 4 022 379
9 2 342 305 325 513 4 877 093

10 4 542 801 627 526 9 501 798

Hybrid Finite Volume Discretization
Nb d.o.f. Reduced d.o.f. Nonzero elts

1 32 218 20 369 140 055
2 157 522 101 864 705 466
3 337 883 219 755 1 524 503
4 644 056 421 122 2 926 982
5 1 188 904 780 117 5 429 401
6 2 576 269 1 696 321 11 820 151
7 3 516 282 2 318 255 16 161 367
8 4 982 226 3 289 061 22 940 167
9 6 034 003 3 985 462 27 803 112

10 11 719 544 7 754 712 54 132 280

Table 3: For the second test case, the VAG and HFV schemes and the ten tetrahedral meshes:
mesh number, number of d.o.f., number of d.o.f. after elimination of the cell and Dirichlet
unknowns, number of nonzero elements in the matrix after elimination.
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Numerical Results: All test cases are performed using the ΠDm and ΠDf function reconstruction
operators obtained by setting ωK = K for all K ∈ M, and ωσ = σ for all σ ∈ FΓ. To assess
the error estimates of Proposition 3.3, we have computed the following relative errors

Erru =
‖u− ΠDmuD‖L2(Ω)

‖u‖L2(Ω)

+
‖γu− ΠDfuD‖L2(Γ)

‖γu‖L2(Γ)

,

for the function reconstructions in the matrix and in the fractures, and

Errg =
‖∇u−∇DmuD‖L2(Ω)d

‖∇u‖L2(Ω)d
+
‖∇γu−∇DfuD‖L2(Γ)d−1

‖∇γu‖L2(Γ)d−1

for the gradient reconstructions in the matrix and in the fractures. These errors are reported
for both schemes in Figure 6 for the first test case, and in Figure 7 for the second test case
as function of the number of d.o.f. after elimination of the cell and Dirichlet unknowns. The
convergence rate between two successive meshes k and k + 1 is also provided and computed as
follows:

CRk+1
u = d

ln
(
‖Erruk‖
‖Erruk+1‖

)
ln
(

#(Nbk+1
cells)

#(Nbkcells)

) , CRk+1
g = d

ln

(
‖Errgk‖
‖Errg

k+1
grad‖

)
ln
(

#(Nbk+1
cells)

#(Nbkcells)

) .
It is reported for both schemes in tables 4 and 5 for the first test case, and in table 6 for
the second test case. A second order convergence rate is observed on Cartesian meshes for
both the function and gradient reconstructions, which is a typical super convergence behavior
on such meshes. On randomly perturbated Cartesian meshes, the VAG scheme exhibits a
second order convergence rate for the function reconstructions and a first order convergence
rate for the gradient reconstructions. Since on randomly perturbated Cartesian meshes the
faces are no longer planar, the HFV scheme no longer converges as expected, at least for the
gradient reconstructions. On tetrahedral meshes a second order of convergence is also obtained
for the function reconstructions and a first order of convergence is noticed for the gradient
reconstructions for both test cases. This observed second order of convergence for the function
reconstructions is as usual better than the first order estimate given by Remark 4.1, while the
observed first order of convergence for the gradient reconstructions confirms the estimate given
by Remark 4.1. It is also clear on both test cases that the HFV scheme is much less robust
w.r.t. anisotropy than the VAG scheme, especially on tetrahedral meshes.

In all test cases, the linear system obtained after elimination of the cell and Dirichlet un-
knowns is solved using the GMRes iterative solver with the stopping criteria 10−10 and a
maximum Krylov subspace dimension fixed to 1000 (not attained in our tests). The GMRes
solver is preconditioned by ILUT [26], [27] using the thresholding parameter 10−4 chosen small
enough in such a way that all the linear systems can be solved for both schemes and for all
meshes. In tables 4, 5 and 6, we report the number of GMRes iterations It, the fill-in factor
F of the ILUT factorization defined as the ratio between the number of nonzero elements of
the ILUT factorization by the number of nonzero elements of the matrix. We also report the
CPU time taking into account the elimination of the cell and Dirichlet unknowns, the ILUT
factorization, the GMRes iterations, and the computation of the cell values. It can be noticed
that, on topologically Cartesian meshes, the CPU time is roughly speaking 4 times larger for
the HFV scheme than for the VAG scheme. This large difference is not due to the number
of nonzero elements in the matrices which is only slightly larger for the HFV scheme than for
the VAG scheme. As can be checked in table 4, this difference is due to a larger number of
GMRes iterations and to a higher fill-in factor of the ILUT factorization for the HFV scheme
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than for the VAG scheme. On tetrahedral meshes, the CPU time for the computation of the
HFV solution is larger of a factor from 10 to 20 than the CPU time obtained with the VAG
scheme. This is due to a larger number of GMRes iterations, a larger fill-in factor for ILUT
combined with a 5 times larger number of nonzero elements in the matrix.

Figure 6: First test case. For the 3 families of meshes (top: Cartesian meshes, middle: randomly
perturbated Cartesian meshes, and bottom: tetrahedral meshes), and for the isotropic (left)
and anisotropic (right) subcases: sum of L2 norm of the relative error in the matrix and in the
fracture for the function and its gradients reconstruction both for VAG and HFV schemes as
the function of the number of d.o.f. (after elimination of the cell and Dirichlet unknowns).
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Figure 7: Second test case. For the 10 tetrahedral meshes and for the isotropic (left) and
anisotropic (right) subcases: sum of L2 norm of the relative error in the matrix and in the
fracture for the function and its gradients reconstruction both for VAG and HFV schemes as
the function of the number of d.o.f.(after elimination of the cell and Dirichlet unknowns).

Isotropic case, Cartesian Anisotropic case, Cartesian
Vertex Approximate Gradient Discretization
Nb It F Erru Errg CRu CRg CPU It F Erru Errg CRu CRg CPU
1 3 1.2 4.03·10−2 0.11 n/a n/a 9.6·10−4 3 1.2 3.8·10−2 8.5·10−2 n/a n/a 7.7·10−4

2 5 2.1 1.08·10−2 0.03 1.89 1.62 6.9·10−3 5 1.9 8.7·10−3 2.3·10−2 2.12 1.87 6.1·10−3

3 9 2.4 2.9·10−3 1.04·10−2 1.92 1.71 9.9·10−2 9 2.2 2.1·10−3 6.6·10−3 2.06 1.83 8.1·10−2

4 16 2.5 7.4·10−4 3.03·10−3 1.95 1.77 0.89 14 2.1 5.1·10−4 1.9·10−3 2.03 1.81 0.71
5 30 2.5 1.9·10−4 8.5·10−4 1.97 1.82 8.4 20 2.2 1.3·10−4 5.3·10−4 2.02 1.84 5.5
6 56 2.5 4.8·10−5 2.3·10−4 1.89 1.86 90 29 2.2 3.2·10−5 1.4·10−4 2.01 1.87 48

Hybrid Finite Volume Discretization
Nb It F Erru Errg CRu CRg CPU It F Erru Errg CRu CRg CPU
1 6 3.3 1.08·10−2 3.8·10−2 n/a n/a 1.3·10−3 4 2.5 1.3·10−2 0.16 n/a n/a 9.7·10−4

2 10 3.6 2.7·10−3 1.2·10−2 1.98 1.64 1.2·10−2 6 3.1 3.3·10−3 5.8·10−2 1.97 1.23 7.5·10−3

3 17 3.6 6.9·10−4 3.4·10−3 1.99 1.71 0.14 10 3.6 8.2·10−4 1.9·10−2 1.99 1.49 9.4·10−2

4 29 3.6 1.7·10−4 9.6·10−4 1.99 1.77 1.4 18 3.7 2.1·10−4 6.1·10−3 2.01 1.58 1.4
5 59 3.6 4.3·10−5 2.6·10−4 2 1.82 17.7 30 3.8 5.3·10−5 1.8·10−3 1.99 1.68 18
6 122 3.6 1.1·10−5 7.1·10−5 2 1.86 313 65 3.8 1.3·10−5 5.1·10−4 1.99 1.78 303

Isotropic case, Perturbated Cartesian Anisotropic case, Perturbated Cartesian
Vertex Approximate Gradient Discretization
Nb It F Erru Errg CRu CRg CPU It F Erru Errg CRu CRg CPU
1 4 1.2 4.03·10−2 0.11 n/a n/a 7.8·10−4 3 1.2 3.8·10−2 8.6·10−2 n/a n/a 7.8·10−4

2 5 2.1 1.08·10−2 3.4·10−2 1.92 1.34 6.3·10−3 5 1.9 8.7·10−3 2.3·10−2 2.14 1.44 5.8·10−3

3 9 2.4 2.8·10−3 1.03·10−2 1.92 1.69 9.8·10−2 8 2.2 2.1·10−3 6.6·10−3 2.02 1.61 7.6·10−2

4 16 2.5 7.4·10−4 3.02·10−3 2.06 -0.11 0.908 14 2.1 5.1·10−4 1.9·10−3 2.16 -0.43 0.64
5 29 2.5 1.9·10−4 8.5·10−4 1.87 0.91 8.4 20 2.3 1.3·10−4 5.2·10−4 1.85 0.97 5.6
6 56 2.5 4.7·10−5 2.3·10−4 1.96 2.11 85 29 2.3 3.2·10−5 1.4·10−4 1.95 1.81 48

Hybrid Finite Volume Discretization
Nb It F Erru Errg CRu CRg CPU It F Erru Errg CRu CRg CPU
1 5 3.3 1.1·10−2 7.4·10−2 n/a n/a 1.5·10−3 5 2.9 1.5·10−2 0.67 n/a n/a 1.4·10−3

2 9 3.6 2.8·10−3 3.4·10−2 1.99 1.12 1.6·10−2 8 3.4 5.2·10−3 0.48 1.52 0.48 1.7·10−2

3 16 3.6 6.9·10−4 1.1·10−2 2.01 1.58 0.15 11 3.7 1.3·10−3 0.17 2.01 1.47 0.17
4 27 3.6 2.7·10−4 7.3·10−2 1.35 -2.71 1.6 16 3.8 5.7·10−3 1.38 -2.14 -3.01 1.9
5 50 3.6 7.8·10−5 3.8·10−2 1.79 0.96 20 31 3.9 2.2·10−3 0.85 1.39 0.71 33
6 106 3.6 1.3·10−5 9.5·10−3 2.60 1.97 292 57 3.9 1.9·10−4 0.21 3.53 2.03 356

Table 4: First test case. For the isotropic (left) and anisotropic (right) subcases, the VAG and
HFV schemes and the six Cartesian meshes (above) and the six perturbated Cartesian meshes
(below): mesh number Nb, number IT of GMRES iterations preconditioned by ILUT, fill-in
factor F , sum of the L2 relative errors in the matrix and in the fractures for the function (Erru)
and for the gradient reconstruction (Errg), convergence rates for the function (CRu) and for
the gradient (CRg) reconstruction, CPU time in seconds.
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Isotropic case Anisotropic case
Vertex Approximate Gradient Discretization
Nb It F ErrF Errg CRu CRg CPU It F ErrF Errg CRu CRg CPU
1 5 2.1 9.1·10−3 0.22 n/a n/a 3.6·10−3 5 2.1 5.7·10−3 0.21 n/a n/a 3.8·10−3

2 8 2.6 2.3·10−3 0.11 1.96 1.08 4.9·10−2 9 2.6 1.5·10−3 0.11 1.94 1.04 4.5·10−2

3 16 2.8 5.1·10−4 4.6·10−2 2.02 1.05 0.61 15 2.9 3.5·10−4 4.8·10−2 1.91 1.02 0.68
4 20 2.9 3.1·10−4 3.6·10−2 2.02 1.05 1.5 18 2.9 2.1·10−4 3.7·10−2 2.09 1.02 1.7
5 25 2.9 2.1·10−4 2.8·10−2 1.69 1.06 2.9 22 3 1.5·10−4 2.9·10−2 1.39 1.04 3.8
6 29 2.9 1.3·10−4 2.3·10−2 2.37 1.01 5.9 25 3 9.1·10−5 2.4·10−2 2.47 0.99 6.9
7 33 2.9 9.6·10−5 2.1·10−2 2.21 1.02 10 26 3 6.7·10−5 2.1·10−2 2.33 1.01 12
8 37 2.9 7.9·10−5 1.8·10−2 1.81 0.99 14 30 3 5.7·10−5 1.9·10−2 1.66 0.98 16
9 40 2.9 6.9·10−5 1.7·10−2 1.81 1.05 18 30 3 4.9·10−5 1.7·10−2 1.62 1.05 22
10 49 2.9 4.3·10−5 1.3·10−2 2.01 1.01 41 37 3 3.1·10−5 1.4·10−2 1.98 1.01 48

Hybrid Finite Volume Discretization
Nb It F ErrF Errg CRu CRg CPU It F ErrF Errg CRu CRg CPU
1 10 4.4 1.5·10−3 0.12 n/a n/a 1.7·10−2 15 4.6 3.3·10−2 1.7 n/a n/a 2.7·10−2

2 17 4.7 3.9·10−4 6.4·10−2 1.97 0.92 0.23 25 5.1 1.1·10−2 1.1 1.72 0.72 0.49
3 33 4.8 9.8·10−5 3.1·10−2 1.87 0.98 3.3 39 5.2 2.6·10−3 0.56 1.83 0.85 7.2
4 42 4.9 5.7·10−5 2.4·10−2 2.08 0.99 8.9 48 5.2 1.5·10−3 0.44 1.90 0.92 18
5 52 4.9 4.3·10−5 1.9·10−2 1.25 0.97 22 62 5.2 1.1·10−3 0.36 1.86 0.92 40
6 69 4.9 2.5·10−5 1.5·10−2 2.73 1.03 47 82 5.2 6.8·10−4 0.29 2.03 0.98 87
7 78 4.9 1.8·10−5 1.3·10−2 2.42 1.05 74 94 5.2 5.3·10−4 0.25 1.96 0.97 141
8 86 4.9 1.5·10−5 1.2·10−2 1.62 0.92 106 112 5.2 4.3·10−4 0.23 1.94 0.94 203
9 94 4.9 1.3·10−5 1.1·10−2 1.60 0.98 154 125 5.2 3.7·10−4 0.21 1.95 0.97 285
10 122 4.9 8.3·10−6 8.9·10−3 2.03 0.99 346 192 5.2 2.3·10−4 0.17 1.97 0.98 725

Table 5: First test case. For the isotropic (left) and anisotropic (right) subcases, the VAG and
HFV schemes and the ten tetrahedral meshes: mesh number Nb, number IT of GMRES itera-
tions preconditioned by ILUT, fill-in factor F , sum of the L2 relative errors in the matrix and
in the fractures for the function (Erru) and for the gradient reconstruction (Errg), convergence
rates for the function (CRu) and for the gradient (CRg) reconstruction, CPU time in seconds.

Isotropic case Anisotropic case
Vertex Approximate Gradient Discretization
Nb It F ErrF Errg CRu CRg CPU It F ErrF Errg CRu CRg CPU
1 11 2.5 4.1·10−3 0.61 n/a n/a 4.3·10−2 13 2.5 1.6·10−3 0.42 n/a n/a 4.8·10−2

2 32 2.7 1.5·10−3 0.38 1.96 0.91 0.34 20 2.8 7.2·10−4 0.26 1.52 0.91 0.31
3 51 2.8 8.6·10−4 0.29 2.28 1.06 0.77 52 2.8 4.7·10−4 0.21 1.60 0.92 0.83
4 51 2.8 5.7·10−4 0.23 1.94 1.05 1.5 51 2.9 3.5·10−4 0.17 1.38 0.89 1.7
5 51 2.9 3.8·10−4 0.18 2.07 1.04 3.1 51 2.9 2.7·10−4 0.14 1.35 0.89 3.4
6 51 2.9 2.2·10−4 0.13 2.08 1.06 7.9 51 2.9 1.8·10−4 0.11 1.53 0.98 7.9
7 51 2.9 1.8·10−4 0.12 1.88 0.97 9.8 51 2.9 1.6·10−4 9.9·10−2 1.37 0.88 11
8 52 2.9 1.5·10−4 0.11 2.12 1.12 14 53 2.9 1.3·10−4 8.8·10−2 1.73 1.08 18
9 60 2.9 1.3·10−4 9.7·10−2 1.95 1.03 19 56 2.9 1.2·10−4 8.3·10−2 1.41 0.95 22
10 78 2.9 8.2·10−5 7.4·10−2 2.04 1.03 40 72 3 8.4·10−5 6.7·10−2 1.48 0.97 48

Hybrid Finite Volume Discretization
Nb It F ErrF Errg CRu CRg CPU It F ErrF Errg CRu CRg CPU
1 51 4.7 1.08·10−3 0.43 n/a n/a 0.32 52 5.1 1.1·10−2 8.6 n/a n/a 0.54
2 51 4.8 3.7·10−4 0.22 1.91 1.02 1.9 84 5.2 3.4·10−3 4.7 2.09 1.09 3.9
3 53 4.8 2.3·10−4 0.16 1.96 1.09 4.8 97 5.2 2.2·10−3 3.7 1.73 0.89 9.8
4 71 4.9 1.4·10−4 0.12 2.07 1.08 11 108 5.2 1.5·10−3 3.1 1.68 0.86 22
5 88 4.9 9.1·10−5 9.5·10−2 2.07 1.07 25 146 5.2 1.1·10−3 2.6 1.84 0.91 50
6 114 4.9 5.1·10−5 6.9·10−2 2.05 1.06 67 248 5.2 6.5·10−4 2.1 1.80 0.89 155
7 132 4.9 4.1·10−5 6.1·10−2 1.98 1.01 104 532 5.2 5.4·10−4 1.9 1.72 0.84 387
8 146 4.9 3.2·10−5 5.3·10−2 2.06 1.05 162 530 5.2 4.4·10−4 1.7 1.83 0.88 565
9 165 4.9 2.8·10−5 4.9·10−2 1.99 1.01 216 312 5.2 3.9·10−4 1.6 1.80 0.90 477
10 196 4.9 1.8·10−6 3.8·10−2 2.02 1.03 498 748 5.2 2.6·10−4 1.3 1.89 0.94 906

Table 6: Second test case. For the isotropic (left) and the anisotropic (right) subcases, the
VAG and HFV schemes and the ten tetrahedral meshes: mesh number Nb, number IT of
GMRES iterations preconditioned by ILUT, fill-in factor F , sum of the L2 relative errors in the
matrix and in the fractures for the function (Erru) and for the gradient reconstruction (Errg),
convergence rates for the function (CRu) and for the gradient (CRg) reconstruction, CPU time
in seconds.

7 Conclusion

In this paper, the gradient scheme framework [16] is extended to hybrid dimensional Darcy
flow models in fractured porous media. Both the Vertex Approximate Gradient and the Hy-
brid Finite Volume schemes are shown to satisfy, whatever the choice of the control volumes,
the coercivity, consistency, limit-conformity and compacity assumptions of the gradient scheme
framework. These properties ensures in particular the convergence of the schemes to a weak so-
lution of the model. One of the key ingredient to prove that both schemes satisfy this framework
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is the density of smooth function subspaces for both the solution and flux Hilbert spaces. This
result is obtained for a general network of polygonal fractures including intersecting, immersed
or non immersed fractures. The numerical experiments carried out on Cartesian, hexahedral
and tetrahedral families of meshes exhibit the convergence of both schemes except as expected
for the HFV scheme with non planar faces. The results also clearly show that the VAG scheme
is much cheaper in terms of CPU time than the HFV scheme on tetrahedral meshes and is also
more robust regarding anisotropy.
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