
HAL Id: hal-01097697
https://hal.science/hal-01097697

Submitted on 6 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Keeping a Clear Separation between Goals and Plans
Costin Caval, Amal El Fallah-Seghrouchni, Patrick Taillibert

To cite this version:
Costin Caval, Amal El Fallah-Seghrouchni, Patrick Taillibert. Keeping a Clear Separation between
Goals and Plans. Dalpiaz, Fabiano; Dix, Jürgen; van Riemsdijk, M.Birna. Engineering Multi-Agent
Systems, 8758, Springer International Publishing, pp.15-39, 2014, Lecture Notes in Computer Science,
978-3-319-14483-2. �10.1007/978-3-319-14484-9_2�. �hal-01097697�

https://hal.science/hal-01097697
https://hal.archives-ouvertes.fr

Preliminary version. The final publication is available at link.springer.com.

Keeping a Clear Separation

between Goals and Plans

Costin Caval1,2, Amal El Fallah Seghrouchni1, and Patrick Taillibert1

1 LIP6, Paris, France,
{costin.caval, amal.elfallah, patrick.taillibert}@lip6.fr,

2 Thales Airborne Systems, Elancourt, France

Abstract. Many approaches to BDI agent modeling permit the agent
developers to interweave the levels of plans and goals. This is possible
through the adoption of new goals inside plans. These goals will have
plans of their own, and the definition can extend on many levels. From a
software development point of view, the resulting complexity can render
the agents’ behavior difficult to trace, due to the combination of elements
from different abstraction levels, i.e., actions and goal adoptions. This
has a negative effect on the development process when designing and
debugging agents. In this paper we propose a change of approach that
aims to provide a more comprehensible agent model with benefits for
the ease of engineering and the fault tolerance of agent systems. This is
achieved by imposing a clear separation between the reasoning and the
acting levels of the agent. The use of goal adoptions and actions on the
environment inside the same plan is therefore forbidden. The approach
is illustrated using two theoretical scenarios as well as an agent-based
maritime patrol application. We argue that by constraining the agent
model we gain in clarity and traceability therefore benefiting the develop-
ment process and encouraging the adoption of agent-based techniques in
industrial contexts.

Keywords: goal directed agents, goal reasoning, goal-plan tree

1 Introduction

In the field of intelligent agents, BDI agents are used extensively due to their
proactivity, adaptability and similarity between their abstract representation
and the human reasoning. These agents are enticed with beliefs to cover their
view of the world, a reason for their behaviors in the form of desires or goals,
and a description of the means to act, in the form of plans or intentions.

In the original BDI model proposed by Rao and Georgeff [1], the “matching”
between goals and plans is assured through a cycle that considers the options for
desires, deliberates on them to update the existing intentions and then executes
the actual actions. In more practical approaches, automata are used to handle
the life-cycle of goals from their adoption to the appropriate plan selection and
execution [2,3].

http://link.springer.com/chapter/10.1007%2F978-3-319-14484-9_2

2

Goal/Sub-goal

Plan

Goal/Sub-goal

Plan

Goal/Sub-goal

Plan

Goal/Sub-goal

Plan

Goal/Sub-goal

Plan

Goal/Sub-goal

Plan

Goal/Sub-goal

Plan

Goal/Sub-goal

Plan

Goal/Sub-goal

Plan

Environment
Act

Goal/Sub-goal

Plan

Goal/Sub-goal

Plan

Goal/Sub-goal

Plan

Goal/Sub-goal

Plan
Etc.

Fig. 1. Agent complexity when goals are adopted in plans acting on the environment

The purpose of an agent is usually to act on the environment, which is done
through its plans. Actions can involve the use of actuators, but they also cover the
sending of messages3. However, in practice, various works [3,4] and programming
frameworks (Jason [5], Jadex [6] etc.) employ a model where plans can also adopt
new goals, often termed sub-goals. A goal can thus have multiple possible plans,
whose success depends on the achievement of their respective sub-goals and this
can extend on many levels (Fig. 1). Note however that the successful completion
of a plan does not necessarily guarantee the achievement of a goal, as goals can
have success and failure conditions [7].

While it may be straightforward to design in this way, the fact that in a
plan (1) actions on the environment – i.e., with effects “outside” of the agent –
and (2) goal adoptions – i.e., with effects on the, possibly long-term, reasoning
and behavior of the agent – are used together in the same structure can have
adverse effects on the resulting agents: low intelligibility during design, difficult
traceability during execution and poor reusability afterwards.

This recursive construction has the advantage of using already existing BDI
building blocks and can help abstract certain aspects of an agent’s behavior
offering the possibility to define the agent in a top-down approach. However,
it also creates a structure which is difficult to trace, especially when actions
occur at any level, and whose depth may be unpredictable. Important aspects
in the behavior of an agent might be hidden from the eyes of a developer or
code reviewer due to this intricate design. One might always wonder whether
the current plan is a terminal one or whether the model continues with further
sub-goals. Given that the adoption of a goal usually implies a new reasoning
process with an automaton and further plans, the goal adoption shouldn’t be
treated the same as an atomic action.

For a change of perspective, let us take the example of the army as a clear-
cut multi-level organization. A soldier executes the orders (goals) given from
“above” but cannot make high level decisions. Strategies and new objectives
(goal adoptions) are decided by the higher ranks. This is due to the separa-
tion of responsibilities and competences, as well as the soldier’s limited view of
the situation. In a similar way, an agent’s goals should not be mixed with the
acting. This would also allow plans to have limited interdependencies, just as
the soldier has a limited view of the situation, with benefits on complexity and

3 We do not consider belief revision to be an action.

3

fault confinement. A similar analogy can be made with other hierarchical human
organizations such as companies, where the management decides – either on a
single or at multiple levels – before requiring the workers to perform the required
tasks. Needs that can arise have to be discussed with the manager or managers,
who can then decide to take new measures, just as an agent’s reasoning would
adopt new goals. While small companies with a “flatter” hierarchy can cope
with certain issues faster, complex organizations have proven to benefit from
this hierarchical composition4.

Agent oriented development methodologies such as Tropos [8] and Prome-
theus [9] have top-down approaches where they start with system level charac-
teristics to then “descend” towards agent goals before defining plans and other
low level details. Implementing agent systems modeled using such methodologies
would also be more natural if reasoning and acting were more clearly separated.

Several works [10,11,12,7] have argued for the interest of using declarative
goals-to-be together with procedural goals-to-do, for decoupling goal achievement
(the “to be” part) from plan execution (the “to do” part), giving the agents
their pro-activeness, but also better flexibility and fault tolerance. Taking this
delimitation a step further, we argue for the interest of separating a level where
goal reasoning takes place – managing goal adoptions, dependencies, conflict
resolution – from an action level where the agent interacts with its peers and
environment.

While at runtime it is useful and even inevitable to alternate between reason-
ing and acting, we argue that these already conceptually distinct levels should
be kept separate when designing agents.

To address these issues we propose a subtle change in the agent modeling
that simplifies the agent representation by requiring the actions on the environ-
ment to be separated from the goal adoptions. We call the approach Goal-Plan
Separation, or GPS. As shall be seen, the direct consequence of this separation
is the structuring of the agent into two levels: one concerned with goals and one
concerned with actions.

This paper is organized as follows. Section 2 presents the original approach
of the paper which is illustrated on two examples. Section 3 discusses implemen-
tation issues and Sect. 4 some aspects of the goal execution. Section 5 presents
an experimentation in the domain of maritime patrol. In Sect. 6 we discuss some
fault tolerance issues with respect to the experimentation. Section 7 addresses
the related work and Sect. 8 concludes the paper.

2 The Goal-Plan Separation

In this section we introduce a representation model from the literature which we
use to illustrate our proposition through a first generic example. This allows us

4 Note: while we are presenting examples of organizations with many people, our scope
remains the design of the reasoning of a single agent, which would thus correspond
to the army or the company as a whole.

4

P1 P2
OR

 ;

SG1 SG2 SG3

G1

AND

(Sequence)

P4 P5 P6

||
AND

SG4
P7

SG5
P8

(Parallel)

P3

SG6
P10

Goal Reasoning Level

P9OR

Plan(Sub-)Goal P1'
P2

OR

SG1 SG2 SG3

G1

AND

P4' P5 P6

||
AND

SG4

P7

SG5
P8

(Parallel)

P3'

SG6

P10
P9

SG11 SG12 SG13

SG21

SG31
AND

AND
SG22 SG23

(a) (b)

Fig. 2. An example of goal-plan tree (a) and a goal-plan separation of the same example
(b)

to discuss the consequence of the Goal-Plan Separation, followed by the more
refined example of a Mars rover.

2.1 Goal-Plan Trees to Goal-Plan Separation

Thangarajah [4,13] formalizes the representation of the agent model in the form
of an AND-OR tree: the goal-plan tree, or GPT. Goals are OR nodes since their
child nodes, the plans, offer alternative solutions and only one plan suffices for
the achievement of a goal. Plans on the other hand are AND nodes in order to
denote the obligation to achieve all the adopted sub-goals for a successful plan
execution. Furthermore, two operators are added to the plan node, to indicate
either that the goals have to be achieved in sequence (;) or in parallel (||). A
generic example which illustrates all these is given in Fig. 2 (a). Here, the GPT
using the two operators spreads in depth across several levels. Note that there
can be more than one tree for a given agent, in other words more than one root
goal. We chose this model because even if it is used more as an analysis than a
development tool (see Related Work in Sect. 7), it shows well the issues we are
addressing, in particular how the goal and plan levels alternate.

To illustrate the Goal-Plan Separation approach, the generic example was
modified to obtain a possible goal-plan separation, as seen in Fig. 2 (b). The
plans that are the most important here are P1, P3 and P4 as they are the
ones that can contain both actions on the environment and goal adoptions. The
new representation, which decomposes goals into sub-goals is an AND-OR tree
(very similar to the one used in [14]) with only the leaf nodes having plans
containing actions, but no goal adoptions. To save space, we consider that the
default operator for the AND nodes is the sequence operator, unless stated
otherwise, e.g., in the case of SG23. To preserve the original structure, goals are
also allowed to be OR nodes, in order to depict cases where a goal or sub-goal
can be achieved in more than one way. Similarly, goals that have more than one

5

plan are OR nodes. While the original goals were preserved, the plans that were
not leaves were replaced by sub-goals, e.g., SG11. To compensate, plan names of
the form P’ were used to indicate a variation of an original P plan which at least
removes the goal adoptions. Note, however, that this exact transformation is not
unique for the given example as it depends on the plan’s specific features5. More
examples can be seen in Sect. 2.3. SG12 was introduced to avoid the existence
of siblings of different types. This example shows that transforming an existing
agent is possible. Nevertheless, as is the case with many such translations and
as we discovered during the experimentation we describe in Sect. 5, a complete
redesign of the agent produces a more appropriate result.

2.2 The Goal Reasoning Level

As can be seen in Fig. 2 (b), a direct consequence of the separation of goal
adoptions from the actions on the environment is the appearance of two levels
in the definition of the agent: a goal reasoning level and an action level.

The goal reasoning level is the part of the agent concerned with goal adoption,
control, dependencies and interactions. In this paper, we are concerned mostly
with the specification (by a programmer or designer) of dependencies between
goals and issues related to the adoption and life-cycle control. For the purpose of
the Goal-Plan Separation, no actions on the environment are present at this level.
However, as will be discussed further on, other mechanisms can appear at this
level, e.g., for handling perceptions, events or various types of goal dependencies.

2.3 Mars Rover Scenario

To further illustrate the GPS, let us consider a Mars rover example from [13].
Figure 3 (a) represents a goal-plan tree for a Mars rover’s goal to analyze soil
samples. The depth of the tree varies between P7: ExpSoilByDelegationPlan that
is at a depth of one and P6: TransmitTo(Lander)Plan, at a depth of 5. While
all leaf nodes are plans, there are also intermediary plans which adopt goals and
can contain actions: P1: ExpSoilBySelfPlan and P4: RecordResultsPlan. If these
two plans had no actions on the environment, the representation would be GPS-
compliant as no unwanted action-goal adoption mix would be present. In this
case, an alternative representation can also be obtained in the same manner as in
the example in Sect. 2. As depicted in Fig. 3 (b), P1 changes into a sub-goal and
P4 disappears completely as there is already SG3 to regroup the corresponding
sub-tree. For P7, a parent sub-goal SG12 is created to avoid having two siblings
of the G1 node of different types, i.e., a goal and a plan. SG12 also carries the
precondition originally contained by P7.

Another approach would be to rewrite the Mars rover’s behavior in a format
similar to the goal diagram from Tropos [8], as in Fig. 3 (c). The representation

5 E.g., a plan that turns on a sensor, adopts a goal to retrieve data and then saves

that data. Such a plan would rather transform into a main goal with three sequential
sub-goals, the first corresponding to the beginning of the original plan, and the last
corresponding to its final part.

6

Collect(Soil)Goal

ExpSoilBySelfPlan
P1

ExpSoilByDelegationPlan
P7

OR

 ;

SG1 SG2
RecordResultsGoal

SG3

ExpSoilGoalG1

AND

(Sequence)

Collect(Soil)Plan
P2

Analyze(Soil)Plan
P3

RecordResultsPlan
P4
||

AND

TransmitTo(StorageAgent)Goal
SG4

TransmitTo(StorageAgent)Plan
P5

TransmitTo(Lander)Goal
SG5

TransmitTo(Lander)Plan
P6

(Parallel)

PreCond: FreeRover(X)

Analyze(Soil)Goal
Collect(Soil)Goal

ExpSoilBySelfGoal

ExpSoilByDelegationPlan
P7

OR

 ;

SG1 SG2
RecordResultsGoal

SG3

ExpSoilGoalG1

AND

(Sequence)

Collect(Soil)Plan
P2 Analyze(Soil)Plan

P3

||
AND

TransmitTo(StorageAgent)Goal
SG4

TransmitTo(StorageAgent)Plan
P5

TransmitTo(Lander)Goal
SG5

TransmitTo(Lander)Plan
P6

(Parallel)

PreCond: FreeRover(X)

Analyze(Soil)Goal

SG12SG11 ExpSoilByDelegationGoal

Goal Reasoning Level

(a) (b)

FreeRover(X)?

Collect(Soil)Goal

ExpSoilByDelegationGoal
SG12

SG1
Analyze(Soil)Goal

SG2

Collect(Soil)Plan
P2

Analyze(Soil)Plan
P3

TransmitTo(StorageAgent)Goal
SG4

TransmitTo(StorageAgent)Plan
P5

TransmitTo(Lander)Goal
SG5

TransmitTo(Lander)Plan
P6

ExpSoilByDelegationPlan
P7

YES
NO

Goal Reasoning Level

Plan

Goal/Sub-goal

Test Condition

(c)

Fig. 3. (a) the goal-plan tree of a Mars rover from [13], (b) a translation of the Mars
rover scenario in the form of a GPS-compliant AND-OR goal decomposition and (c) a
modified representation of the scenario with a clear goal-plan separation

can also be seen as a type of plan. It starts with a decision node that corre-
sponds to P7 ’s precondition from the original scenario. The sequence operator
is represented through the arrows that depict the dependencies between goals,
while the parallelism is implied through the fact that two arrows start from the
same entity, in this case SG2.

If, however, P1 and P4 also contained actions on the environment, the trans-
formation would become more complicated. Figure 4 shows only the sub-tree
starting from SG3 with three simple examples of possible cases: (1) actions in
parallel with, (2) before or (3) after the goal adoptions. This shows the hidden
complexity associated with the action-goal mix.

The examples in this section obey the GPS principle since in each case,
the two levels, the goal reasoning level and the plan level, can be clearly dis-
tinguished. This shows the applicability of the Goal-Plan Separation is not re-
stricted to a specific goal reasoning formalism.

7

RecordResultsGoal SG3
RecordResultsPlanP4

||
AND

TransmitTo(StorageAgent)Goal
SG4

TransmitTo(StorageAgent)Plan
P5

TransmitTo(Lander)Goal
SG5

TransmitTo(Lander)Plan
P6

(Parallel)

RecordResultsGoal
SG3

AuxRecordResultsPlan
P4'

||
AND

TransmitTo(StorageAgent)Goal
SG4

TransmitTo(StorageAgent)Plan
P5

TransmitTo(Lander)Goal
SG5

TransmitTo(Lander)Plan
P6

(Parallel)

SG40

(a) (b)

RecordResultsGoalSG3

AuxRecordResultsPlan
P4'

||
AND

TransmitTo(StorageAgent)Goal
SG4

TransmitTo(StorageAgent)Plan
P5

TransmitTo(Lander)Goal
SG5

TransmitTo(Lander)Plan
P6

(Parallel)

; (Sequence)

SG41 AND SG42

RecordResultsGoal SG3

AuxRecordResultsPlan
P4'

||
AND

TransmitTo(StorageAgent)Goal
SG4

TransmitTo(StorageAgent)Plan
P5

TransmitTo(Lander)Goal
SG5

TransmitTo(Lander)Plan
P6

(Parallel)

; (Sequence)

SG43ANDSG42

(c) (d)

Fig. 4. Transformation of the SG3 sub-tree (a) from the Mars rover scenario (Fig. 3)
into a GPS-compliant form, in some of the non trivial cases: P4 contains actions on the
environment that happen in parallel with the goal adoption (b), P4 contains actions
on the environment that happen before (c) or after (d) the goal adoption

3 GPS Method Implementation

Throughout the evolution of programming, languages and development tools
often advanced by limiting the programmer’s freedom to access lower level el-
ements such as registers and pointers to data, and offering in exchange higher
level tools and constructs such as variables and dynamically created references to
data. These evolutions allowed for the creation of increasingly complex systems
while decreasing the possibilities for coding errors. Similarly, we do not refrain
from restraining the freedoms of the programmers and designers in the interest
of clarity and reliability.

To achieve the goal-plan separation, rather than adopting sub-goals, at ex-
ecution time an agent’s action level (usually composed of action plans) would
accomplish the necessary actions and then relinquish control to the higher level
where the reasoning and possibly a following goal is adopted. This creates, as il-
lustrated in the examples above, a distinct goal reasoning level where an agent’s
goals are chosen and their execution is managed.

As shall be discussed in this paper, the representation on multiple levels,
either by using sub-goals or through other mechanisms, is important for the
scalability and intelligibility of the resulting agents and therefore constitutes
an important characteristic of the models that should be at least taken into
consideration for the goal reasoning level.

8

In [15], GPTs are used as support for a study on plan coverage and overlap,
with the hypothesis that the plan libraries discussed have no cycles. This is
important to note as in the general case adopting goals inside plans may produce
cycles, sometimes even with unwanted consequences similar to the infinite loops
in classic programming. We, on the other hand, do not restrict cycles, as will be
seen in the scenario in Sect. 5. However, the Goal-Plan Separation doesn’t allow
cycles created through plans that also have actions on the environment.

As the Goal-Plan Separation approach in its simplest form is the requirement
to keep a clear distinction between the two abstraction levels, it is general enough
so that it can be applied using any of the BDI frameworks that allow goal
adoptions in plans. The important condition, however, is to make sure no goals
are adopted in plans that act on the environment. Examples of representations
that can be used are given next, followed by a more detailed description of a
model based on what we call goal plans and that we use in Sect. 5.

3.1 Examples of Possible Models for the Goal Reasoning Level

Reasoning through Rules. Using goal trigger rules, an almost “reactive”
agent can be created. The goal relationships are implicit but a dependency tree
similar to the one seen in Fig. 3 (c) above can be constructed at runtime for trac-
ing purposes. This reasoning model can be implemented in Jadex by simply spec-
ifying trigger conditions for each goal but without creating explicit connections
between these goals. The advantage of this approach is that the representation
can handle more complex systems that act in highly dynamic environments, with
new goals added effortlessly. However, this model lacks look-ahead capabilities.

Reasoning Using a Planner. Rather than having goals simply triggered by
rules, a planner can be used to select among available goals, as for example in
CANPLAN [7]. The difference then from the reasoning model described above is
that this time the reasoning allows the choice of goals to be prepared in advance
starting form the current context. Another difference is that a planner would
render the agent proactive, as it would not have to wait for events in order
to act. The job of the planner would be to select, order and parallelize goals
according to the current needs, and for this it could use certain operators [16].
The example in Sect. 5 does not correspond to this method as no planner is used
and its goal plan (see below) is defined at design time. Our intuition is also that
the GPS approach benefits this model as planning should be easier to perform
only on goals, without the interference of details from actions.

3.2 Reasoning through a Goal Plan

Between the reactivity of the first model above, and the planning capabilities
of the second, we propose here a middle solution that allows for a certain level
of look-ahead owing to the use of pre-written goal dependencies, just as plan
libraries can be used with BDI systems. As required by the GPS method, the

9

P = < N,E > // action plan

N = A ∪O ∪ T // nodes

A = {action | action 6= goalAdoption}

O = {o | o ∈ {startNode, finishNode,

AND, ‖, wait(duration)}}

T = {test(stateCond) | stateCond ∈

{Beliefs, Events}} // conditions

E = {n1 → n2 | n1, n2 ∈ N} // edges

(a)

GP = < Ng, E > // goal plan

Ng = Ag ∪O ∪ T // nodes

Ag = {adopt(G) | G ∈ Goals}

O = {o | o ∈ {startNode, finishNode,

AND, ‖, wait(duration)}}

T = {test(stateCond) | stateCond ∈

{Beliefs, Events}} // conditions

E = {n1 → n2 | n1, n2 ∈ N} // edges

(b)

Fig. 5. Action plan (a) compared to goal plan (b). Only the action nodes differ.

goal reasoning level should be kept separate from the plans that handle action
composition. Considering that relations between goals can be similar to those
between actions, we can envisage using a modified plan language to represent
the relations between goal adoptions. We call the resulting plans that handle
goal composition goal plans and we oppose them to action plans.

As defined in Fig. 5, a goal plan is an oriented graph with three types of
nodes:

– Ag, the goal adoption nodes, as the unique action allowed in the goal plan.
Each node represents the invocation of an automaton associated with the
goal. Note that this is the only distinction from the action plans which have
A = {action | action 6= goalAdoption}.

– O, the operator nodes, with operations including a unique start node and
at least one finish node. Different finish nodes can be used to indicate final
states for a plan, e.g., “successful completion” or “partial failure”. There
is also an operator for branching parallel threads and one for the logical
condition AND that can be used to synchronize threads or to indicate the
obligation of two or more conditions to be all true, for example to require
several goals to be achieved in order for the execution to continue.

– T , the condition test nodes that can handle state conditions for belief values
and events such belief change and message arrival. They can either be used
to test for a momentarily condition, or to wait for a condition to become
true or for a message to arrive.

Edges indicate the succession of nodes in the goal plan and, as stated before,
cycles are possible, for example to indicate a recurrent goal adoption.

The Mars rover scenario in Fig. 3 (c) with its inline goal dependencies can
easily be transformed into a goal plan, as seen in Fig. 6. There are two possible
finish nodes, with one for a successful mission where either G7 or both SG4 and
SG5 were achieved, and one to indicate all other cases as failures.

10

FreeRover(X)?

Collect(Soil)Goal

ExpSoilByDelegationGoal
G7

SG1
Analyze(Soil)Goal

SG2 ||

TransmitTo(StorageAgent)Goal
SG4

TransmitTo(Lander)Goal
SG5(Parallel)

YES
NO

success(SG1)?
YES

NO

success(G7)?
YES

NO
success(SG2)?

YES
NO

success(SG4)?
YES

NOsuccess(SG5)?
YES

NO

Start

AND

Finish(Fail)

Finish
(Success)

Adopt goal Condition Operator

Fig. 6. A goal plan for the Mars rover scenario from Fig. 3

While implicit relations between entities (such as the rule-triggered goals
above) may be enticing due to their ease of definition and generality, they are
also difficult to follow and may hide unwanted interactions. The goal plans,
however, favor the use of explicit specifications of dependencies between goals.
If for example a Mars rover needs to perform an experiment at a location X
and it has two goals for achieving this, one being G1=“move to X” and the
other G2=“drill”, then it is clearer to link the adoption of G2 to the successful
achievement of G1 rather than for example the belief that the rover is at location
X.

In a framework like Jadex, this model can be implemented using a plan that
is triggered at agent’s birth. The plan would specify the dependencies between
sub-goals and adopt them without any other actions.

In practice, this model can become difficult to manage as the agent grows in
complexity. A solution to this problem is to group together parts of the goal plan
and abstract them into sub-goal plans, that are to be expanded only when needed.
In this way, the representation can still be conceptually on one level, while having
the advantages, in particular the scalability, of a hierarchical representation.

This kind of reasoning is suitable for agent systems where the behavior can be
thoroughly specified at design time so that all dependencies can be accurately
included. Adding new goals and other modifications, however, are difficult to
apply. The first implementation described in Sect. 5.2 corresponds to this ap-
proach.

3.3 Reasoning through Multiple Goal Plans

The method above has the advantage of providing a “big picture” of the agent’s
behavior but, as stated before, does not scale well to complex agents. Designing
the behavior of an agent that can run for hours can for example create a large
goal plan that is difficult to follow and which risks being too rigid in case of
unforeseen events. The solution is then to decouple the sub-goal plans from their
“parent” goal plans by using goals to manage the expansion, in other words, by
allowing any goal not only to have action plans, but also goal plans. This means

11

P7

SG1
SG2

SG3

G1

P2
P3

SG4

P5

SG5

P6

SG12SG11

Goal
Reasoning
Level GP1

GP2

GP3

FreeRover(X)? ExpSoilByDelegationGoal
G7YES

NO

success(G7)?
YES

NO
Start
GP1

Finish(Fail) Finish(Success)

Collect(Soil)Goal
SG1

Analyze(Soil)Goal
SG2

TransmitData
SG3

success(SG1)?
YES

NO

success(SG2)?
YES

NO

success(SG3)?
YES

NO
Finish(Fail)

Finish(Success)

ExpSoil
SG11

success(SG11)?
YES

NO

||

TransmitTo(StorageAgent)Goal
SG4

TransmitTo(Lander)Goal
SG5(Parallel)

success(SG4)?
YES

NOsuccess(SG5)?
YES

NO

AND

Finish(Fail)

Finish(Success)

Adopt goal

Condition

Operator

20
(Wait)

Start
GP2

Start
GP3

(a) (b)

Fig. 7. A multiple level goal plan for the Mars rover scenario from Fig. 3, with (a) the
resulting tree (similar to a goal-plan tree) representation and (b) the corresponding
goal plans. Note the separation in (a) between the action plans, i.e., P2, P3, P5, P6
and P7, and the goal reasoning level comprising the goals and the three goal plans,
i.e., GP1, GP2 and GP3.

using the “classic” BDI mechanisms – i.e., goals, plans and automata – with just
the subtle difference in the construction of plans: no goal adoption will be in the
same plan as an action on the environment. Note, however, that in this case the
states indicated through finish nodes do not necessarily reflect the achievement
or failure of the parent goal, as the goal would normally have its own conditions
for success and failure. Figure 7 (a) shows the Mars rover’s behavior represented
with this model. The resulting model can be represented through a structure
that is similar to the GPT as can be seen in the Fig. 7 (b), but this tree contains
fewer details as more logic is included in the goal plans, while in the same time
complying with the GPS approach.

There are many advantages of this multiple goal plan model. First of all,
splitting the behavior into more levels of goals and sub-goals with the corre-
sponding plans improves flexibility and fault tolerance – in case a plan fails,
the BDI logics can require a retry using the same or a different plan, provided
that such plan is available. Then, splitting the behavior into more manageable
chunks leaves less room for hidden faults. The use of goal plans for managing
goal dependencies allows for a more refined specification than what was available
through the AND, OR and the operators in the GPT. For example, in Fig. 7, the
suite of goal adoptions in GP2 does represent the sequence that was originally in
the GPT, but other operators – such as the delay in the example – can be added
through this specification, and precise goal failures can be handled accordingly
(while not present in the given example, one could add other goals to account for

12

Goal/Sub-goal

BDI Logics

Plani Plan Library Plan Generator

Fig. 8. BDI logics: handler of the goal-plan relation at runtime

these specific sub-goal failures). This model is therefore preferred to the simple
goal plans presented above, and is illustrated in the second implementation in
Sect. 5.2.

4 Execution

While not explicitly presented in the GPT, as stated before and seen in Fig. 8,
between the goal and plan levels there are the BDI logics or more commonly
a goal automaton [2,3] which handles the goal life-cycle. This life-cycle usually
starts with the adoption of the goal and includes the choice and execution of
plans.

An example of a goal life-cycle for which an automaton is used is depicted
in Fig. 9. It uses a series of beliefs for state changes, such as desirable (des) to
indicate the presence in the automaton, selected (sel) to indicate the passage in
an active state and satisfaction (sat) that indicates if the goal was achieved. We
use these beliefs to control the execution of goals by linking them to other beliefs
that justify them, for example the goal adoption conditions for desirable. In case
any of these conditions is no longer valid, the belief is no longer justified so
the automaton changes its state automatically, which in the case of the desirable
belief means that the goal is aborted. If we take the example in Fig. 6, supposing
that during the execution of G7 the condition FreeRover(X) is contradicted by
an observation, the adoption of the goal will no longer be justified and the goal
will fail automatically. It is also important to note that as a higher level means
of control, the goal reasoning level has precedence over the action level.

Beliefs can also be used to control the goal automaton from the higher level
in a more straightforward manner, if for example we added another operator
that causes a goal to abort its execution.

For the GPS approach the automaton is a black box that is given a goal to
adopt and possible plans to execute and this is why we represent only goals and
plans in our modeling examples. The execution can cause side effects such as
belief changes that can lead the reasoning level to take actions with respect to
current goal or even the adoption or execution of other goals. For example, this
can cause the goal to be aborted in case it is estimated to take the agent in an
unsafe state, or it can cause the adoption of a reparation or compensation goal
to counter certain unwanted effects. Note that several automata can function

13

Desire Intention
Plan in
progress

Fail Success

Adoption

sel ∧ des ∧ ¬sat

(to ∨ ¬des) ∧ ¬sat

sat

¬sel ∧ ¬sat

(to ∨ ¬des ∨ ¬me) ∧ ¬sat

me ∧ sel ∧ des ∧ ¬sat

sat

¬sel ∧ ¬sat

sel ∧ des ∧ ¬sat

sat

Fig. 9. Our generic goal life-cycle with transition conditions on state beliefs (des =
desirable, sel = selected, sat = satisfied, me = means, to = timeout)

at a given moment as parallelism is allowed in our method. While conflicts are
normally treated at goal reasoning level and can even be explicitly handled in
the goal plans, conflict management is not within the scope of this paper.

5 Experimenting with GPS

The GPS approach has been experimented in an industrial context at Thales
Airborne Systems on an application designed for experimenting on AI in general
and more precisely on Interval Constraints propagation and multi-agent systems
(MAS). The purpose of this application, Interloc, is the localization of boats
from a maritime patrol aircraft. It is implemented as a MAS and can contain
dozens of agents implemented as Prolog processes.

Interloc was initially designed as a set of non goal-directed autonomous
agents. This means that the agents had only one purpose that was achieved
through a set of associated plans. Subsequently, it was redesigned in order to
improve the level of autonomy of the agents by endowing them with goals. The
pursuit of intelligibility brought along the idea of having a clear separation be-
tween the levels of abstraction of goals and plans.

A first implementation in the spirit of GPS used a goal plan formalism as
the one described in Sect. 3.2. This meant designing a plan where the only
possible action was goal adoption. For the ease of use, sub-goal plans – which
anticipate the hierarchical approach later implemented – were also used, adding
their activation to the goal adoption as the only possible “actions” in the goal
plan. The intention of the designer (prior to the GPS methodology presented in
the present paper) was to exhibit an abstract (goal) level describing the main
features of the behavior of agents so that one would find it sufficient to only
read the goal level description in order to understand the salient behavior of
the agents. Agents were then implemented following the idea described in Sect.

14

3.3 as the flexibility and robustness of goals seemed preferable to the simple
invocation of sub-goal plans.

In the pursuit of a more formal representation, we abstracted the goal plans
into Time Petri Nets, TPNs [17], seen in Figs. 10 and 11 (b-e). We chose the
TPNs because they present many advantages through their graphical and in-
tuitive representation, as well as their expressive power (parallelism, sequence,
synchronisation etc.). This extension over classic Petri nets gives the possibility
of assigning firing time intervals to the transitions, which we used for representing
waiting in the agent behavior. Furthermore, the TPNs allowed us to structurally
verify the goal plans and ensure their correctness. We also used a type of Petri
net that resemble the Recursive Petri Nets (already used for representing agent
plans [18]) where we distinguished two types of transition: the elementary tran-
sitions to be fired according to the standard semantics of Petri nets and the
abstract ones corresponding to the action of adoptiong a goal. However, the ex-
pansion of this action, the goal adoption, is not handled in this network, and
its transition corresponds to a call to the associated automaton, e.g., the one in
Fig. 9.

We first present the application itself, then the particular case of one of the
main agents, the aircraft, in the two goal plan-based implementations mentioned
above. This section concludes with a discussion on the advantages of the GPS
approach in the specific case of the Interloc application.

5.1 Interloc

The main goal of the application is the localization of boats using a goniometer6

on-board a maritime patrol aircraft. The sole use of a goniometer allows for a
stealth detection, i.e., detect without being detected, of boats which is impor-
tant for some missions such as gas-freeing prevention7. If the boats were steady,
the problem would be simple. The fact that they move necessitates a reliance
on non-linear regression methods, as is the case of existing commissioned imple-
mentations, or interval constraint propagation, in Interloc. Most of the agents,
i.e., boats, the goniometer and the data visualization agent, were designed for
the purpose of simulation. The main agent, the aircraft, must (1) follow all the
boats visible from its location, (2) compute in real-time their position by ac-
cumulating bearings and interacting with computation agents (more precisely
artifacts [19]) operating interval propagation, (3) adapt its trajectory to obser-
vations and contingencies and (4) transmit results to the visualization agent.
For the patrol aircraft, boats may appear or vanish at any time. Several aircraft
might be present at the same time, but so far they do not communicate with
each other. Typically 20 to 30 agents or artifacts are active in the system at a
given time.

6 Tool which displays the direction towards the source of a signal, in this case a boat
and its radar.

7 Deterring tankers from polluting the environment by cleaning their fuel tanks at sea.

15

5.2 The Aircraft Agent

Boats and aircraft have been designed following the GPS method. We present
here the aircraft, which is the most complex agent type and hence the most
interesting for illustrating the methodology.

Five goals corresponding to five main activities of the agent were identified:

– Init. (for “initialization”) of the system: get data related to the aircraft
trajectory (pre-defined, planned or human-guided) and various parameters
characterising the simulation

– Move: execute one step forward
– Measure: initiate measurement of the bearing of all the visible boats
– Treat. (for “treatment”): process a received measurement
– Visu. (for “visualization”): process a single request from the visualization

agent

The sole knowledge of the various goals present in the system is not sufficient
to understand (and define) its behavior. One must also describe the way in which
these goals are adopted and what happens when they are achieved, for exam-
ple by specifying their chronology, conditions for becoming a desire, conditions
for becoming an intention. This knowledge may be provided in different forms,
corresponding to the different ways of applying the GPS approach.

Using a single goal plan. For the first implementation we present here, the
aircraft agent in Interloc was designed using a goal plan with four sub-plans to
indicate the dependencies of the goals above. These dependencies correspond to
the goal reasoning level in the GPS approach.

Informally, the goal plan is the following (a more formal description of this
plan is given in Fig. 10 as a Petri net): the achievement goal Init. is adopted. If
the goal is not achieved, the system is halted. Otherwise, four sub-branches im-
plemented as sub-goal plans are activated in parallel: main move, main measure,
main visualization and main analyze.

The main move sub-plan:

– Wait for a move time step delay
– Adopt the Move goal, whose associated plans will compute and execute the

next time step
– Wait for the Move goal achievement
– Loop

The main measure sub-plan:

– Adopt the Measure goal, where the associated plans will measure the bear-
ings of all the visible boats through interactions with the measurement arti-
fact and the (simulated) boat agents

– Once achieved, the goal will be re-adopted after a given time delay

The main analyze sub-plan:

16

[10,w[

[10,w[

Move fails

Treat.

Ready for next

Treat. succedesTreat. fails

Wait Treat.

Treat.(new)

Known boat
New boat

test: known boat
test: new boat

Opened

Open msg

Msg: infomeasure(...)

Measurements

Move succedes

Wait Move

Move

Measure

Measure succedes

Measure fails

Wait Measure

Finish(Fail)

Visu. fails

Visu. succedes

Wait Visu.

Visu.

Requests

Msg: request(...)

Ready to b-cast

Ready to move

Ready

Ready to respond

Init. succedesInit. fails

Wait Init.
Init.

Ready to go

Start

Fig. 10. Petri net representation of the goal plan for the aircraft agent with goal adop-
tions represented as hollow transitions. The Treat. (for “treatment”) goal is adopted
in two different contexts in order to insure that messages from each boat are treated
sequentially, but in parallel with the other boats. Multiple instances of the goal with
different beliefs are thus created.

– Wait for a measurement, in the form of a message that arrives randomly
after a measurement request message is issued

– Record the newly present boats
– Adopt the Treat. goal, whose associated plan will generate a constraint to

be added to the previously received measurements and send it to an interval
constraint propagation artifact which will compute a more and more precise
boat location

– Loop, in order to process waiting measurements

The main vizualization sub-plan:

– Wait for a request from the visualization agent
– Adopt the Visu. goal in order to process the request
– Wait for the achievement
– Loop to process pending requests

Using a multiple levels of goal plans. When the pursuit for flexibility and
robustness pushed us further and we separated the goal plans and their sub-
goal plans through new goals, we obtained the tree structure seen in Fig. 11

17

P5

MissionGoal

P1 P2 P3 P4

Visualization
Init.

Goal
Reasoning
Level GP1

GP2 GP3

Surveillance
Movement

Ask

Visu.
Treat

GP4

Move

GP5
Measure

Ask

Movement

Surveillance

Visualization

Start

Start

Finish(Fail)

Finish(Fail)

P4P3P2P1

Move fails

Treat.

y for next

Treat. succedesTreat. fails

t Treat.

Treat.(new)

Known boat
New boat

known boat
new boat

Opened

Open msg

infomeasure(...)

Measurements

Move succedes

Wait Move

[10,w[Move

Measure

Measure

Wait M

Finish(Fail)

Visu.

Visu.

Requests

Msg:

Ready to
y to move

Ready

Init. succedes

Init. fails

Wait Init.
Init.

Ready to go

Start

(a) (b)

Start

Start

Start

Start

Finish(Fail)

Finish(Fail)

Finish(Fail)

Finish(Fail)

Move fails

Treat.

y for next

Treat. succedesTreat. fails

t Treat.

Treat.(new)

Known boat
New boat

known boat
new boat

Opened

Open msg

infomeasure(...)

Measurements

Move succedes

Wait Move

[10,w[Move

Measure

[10,w[

Measure succedes

Measure fails

easure

Visu. fails

Visu. succedes

Wait Visu.

Visu.

Requests

Msg: request(...)

to b-cast
y to move

Ready

Ready to respond

Start

Start

Finish(Fail)

Finish(Fail)

Move fails

Treat.

Ready for next

Treat. succedesTreat. fails

Wait Treat.

Treat.(new)

Known boat
New boat

test: known boat
test: new boat

Opened

Open msg

Msg: infomeasure(...)

Measurements

Move succedes

Wait Move

[10,w[Move

y to move

Ready
Start

Finish(Fail)

Move fails

Move succedes

Wait Move

[10,w[Move

Ready to move

(c) (d) (e)

Fig. 11. (a) the goal-plan structure of the aircraft agent, (b-e) Petri net representations
of the GP1 (b), GP2 (c), GP3 (d) and GP4 (e) goal plans. GP5 is not presented
because it is very similar to GP4, as can be deduced from Fig. 10. Goal adoptions are
represented as hollow transitions.

(a). GP1, in Fig. 11 (b), guides the adoption of four intermediary goals that are
internal to the goal reasoning level, i.e., they do not have action plans. GP2 -
GP5 correspond roughly to the sub-goal plans described above and can easily
be matched with the corresponding branches in the initial one-level goal plan
(Fig. 10).

5.3 Discussion

With GPS, iterative and timed behaviors appear at goal level: in the
pre-GPS version of the application, the natural tendency was to incorporate
dynamic aspects into the plans, making them fairly complex. For instance, the
Move goal was not conceived as a single step as presented above, instead, it was
charged with the complete management of the aircraft’s trajectory, including

18

the loop sequencing individual steps. This rather straightforward design would
close the loop inside the plans and after the actions on the environment – e.g.,
the movement or broadcast of measure request messages – were performed. The
move time-step, which is important for the global understanding of the behavior
of the aircraft, was also “buried” in the plan pursuing the goal. In the GPS-
compliant versions, deciding to rewrite the plan and change the scope of the
goal to the achievement of a single movement step, created the need for the
definition of the time-step and the iterative behavior at the goal reasoning level,
leading to a clearer design. The fact that such details are at an upper level of
abstraction emphasizes their importance and improves the understanding of the
agent behavior.

With GPS, relevant perceptions of the environment are required

at the goal reasoning level: it is the case of messages coming from the visu-
alization or the measurement agents. Here again, it emanates from the fact that
certain perceptions can be essential for the global understanding of the agent
behavior. In Interloc, measurements trigger the adoption of a goal whose achieve-
ment is more or less secondary since other measurements can occur rapidly. That
is the reason why it seems to be a good approach to handle these measurements
at the upper level of abstraction. A perception filtering strategy, to avoid unnec-
essary inputs or even overloading the agent, can also appear in this goal plan,
possibly by the adoption of a specific goal prior to the adoption of the Measure
goal itself.

With GPS, handling errors is easier to take into account: this is
because errors, whatever their cause, often manifest through the failure of goals.
This provides an adequate range of exception mechanisms in the language in
which plans are written. Hence, the programmer’s effort with regard to fault
tolerance is mainly to take into account the processing of non-achieved goals. Of
course, this does not concern the goal plan itself, which has to be designed tradi-
tionally by explicitly introducing fault tolerance actions. However the amount of
code regarding the classic plans is far greater than the amount of the goal plan
code. In the Interloc application, no specific fault tolerance effort has been car-
ried out but a clean processing of non-achieved goals in order to stop the system
rather than have it crash. As a consequence, application debugging was greatly
facilitated. For the same reasons, the GPS approach proved to facilitate the evo-
lution of the multi-agent system. Thus, the aircraft agent was easily changed
into a UAV (Unmanned Autonomous Vehicle), with a larger autonomy in the
trajectory choice. Here again, the abstraction obtained by separating goals and
plans seems to be the reason.

In Interloc, we used an in-house agent programming language (Alma) to
implement the goal plans. All the required primitives were available, since a goal
plan is a type of plan. Nonetheless, it appears that specific primitives could be
introduced to facilitate the programming of the goal level. These concern mainly
iterative and time-controlled behaviors.

19

6 Discussion on the Fault Tolerance with Goal Reasoning

In real life applications agents tend to have more refined representations than
the ones discussed in Sect. 2. In particular, when it comes to handling errors, the
specification easily grows in complexity as specific cases have to be taken into
consideration [20]. Goals give agents a level of abstraction that is beneficial for
a system’s robustness as errors, exceptions, anomalies etc. usually occur during
plan execution which, in a robust8 system, only cause the plan to fail and the
goal automaton to react normally and reattempt to achieve the goal. While
there are studies that treat the more general case of partial goal satisfaction [21]
(described below), if we only consider a binary goal definition, a goal’s adoption
has only two possible outcomes at reasoning level: the goal is either achieved or
not. Requiring the programmer to specify not only the actions to take after the
achievement of a goal, but also the actions to take in case the goal fails enhances
the reliability of the agent without dramatically increasing its complexity.

In the Mars rover scenario represented in Fig. 6, the failure to delegate the
task to another agent, i.e., the failure of G7, causes the rover to attempt to
accomplish the mission by itself through the adoption of SG1. Similarly, in the
aircraft specification of the Interloc application (Sect. 5), both the successful
achievement and the failure of goals are represented in the Petri net and also in
the implementation. However, for simplicity reasons, in our example, no special
actions are taken and the only result of a goal failure is to ensure the agent does
not reach unforeseen states. Also, the current format implies an infinite life for
the agent, which is not necessarily desirable in a real application.

In the paper cited above [21], goal satisfaction is evaluated using a progress
metric. Partial goal satisfaction could be integrated with our model by enforcing
the coverage of the whole range of possible values for the progress metric used.
For example for a Surveillance goal, instead of specifying success and fail behav-
iors, it could be interesting to estimate the percentage of the assigned area that
was covered and to use thresholds for the desired behaviors: less than 30% would
be considered a mission failure with the area announced as unsafe, a coverage
between 30 and 80% would require a call for backup to finish the job, while a
coverage of more than 80% would be considered a success. Note that this does
not concern the intermediary stages such as those that are handled by the goal
automata, but final goal failures, i.e., when all alternatives have been tried and
no positive outcome resulted.

7 Related Work

The aspect of the Goal-Plan Separation that handles goal reasoning is situated at
what Harland et al. [3] and Thangarajah et al. in earlier works [4,13] call agent
deliberation level. This is where agent goals are considered, which constitutes

8 In this case, we understand by robust an agent system in which an error or exception
in a plan is caught and only causes that plan to fail, while the rest of the agent
continues to function normally, i.e., does not cause the whole agent to fail.

20

the point where goals start their life-cycle. It is the same level where top level
commands are issued to interfere with the goal life-cycle, e.g., when deciding
to drop or suspend the goal. As the cited authors point out, goal deliberation
can deal with issues such as goal prioritization, resource management and even
user intervention. These aspects are beyond the scope of this paper but can be
considered for future developments of our approach. We note, however, that in
[3] changes in the goal state have preference over any executing plans, just as in
the case of GPS, where the goal reasoning level takes precedence over the lower
levels that it controls, i.e., the goal life-cycle automata and the plan execution.

The arguments for planning in BDI agents at goal level employed by Sar-
dina and Padgham [7] offer more reasons for the existence of the goal reasoning
level (be it hardcoded, created through planning or other means) that the GPS
approach delimits: “(a) important resources may be used in taking actions that
do not lead to a successful outcome; (b) actions are not always reversible and
may lead to states from which there is no successful outcome; (c) execution of
actions take substantially longer than “thinking” (or planning); and (d) actions
have side effects which are undesirable if they turn out not to be useful”. All
these advocate for an agent that behaves strategically and proactively rather
than react based on a limited context, and it is at goal reasoning level that such
a strategic reasoning is possible. The multi-level goal plan structure proposed
in Sect. 3.3 allows for both complex “strategic” and simple “reactive” behaviors
(GP3 vs. GP2 in Fig. 11).

While this paper discusses the goal reasoning level in the need to better or-
ganize the levels “below”, i.e., the plans, Morandini et al. [14] approach the same
level from a different perspective: the need to fill in the gap between goal based
engineering and goal implementations. They propose a tool for transforming an
agent designed using the Tropos methodology [8] into Jadex code, for which they
introduce a formalism based on rules for the life-cycle of non-leaf goals in a goal
hierarchy. This segregation between leaf and non-leaf goals creates a goal level
that corresponds to our goal reasoning level and thus their work is consistent
with the GPS approach. This further confirms our statement with respect to the
utility of a goal-plan separation for the implementation of goal-based methodolo-
gies. Furthermore, our proposition of using goal plans on multiple levels means
that even goals that are internal to the goal reasoning level will have the same
life-cycles as goals that use action plans. A specific life-cycle, as proposed by
Morandini et al. is therefore no longer needed, deeming the development process
easier, as there are less types of goals to consider. One of the interesting aspects
is that Morandini et al. take into account the fact that even if the sub-goals are
achieved, the parent goal may still fail due to its own achievement condition,
which is often not taken into consideration when discussing the goal-plan trees.
While this formalism is rich and GPS-compliant, as our application example
shows, our approach aims to provide a model that allows for a more refined
representation, with more diverse goal relations, event-based goal reasoning and
time constraints.

21

There are many parallels that can be drawn between our approach and the
one employed by the Prometheus agent development methodology [9] in the
detailed design phase. This is where functionalities identified in the previous
phases of the methodology – system specification and architectural design – are
used as a starting point for designing capabilities. A capability is a module within
the agent that can contain further capabilities, and at the bottom level plans,
events and data, e.g., capability C1 uses data D or plan P1 sends message to
plan P2. Internal messages are used to connect between different design artifacts,
such as plans and capabilities. This functionality is assured by either beliefs
or direct goal dependencies in our work. This nested structure of capabilities
is similar to the sub-goal plans (Sect. 3.2) in its pursuit of “understandable
complexity at each level”, and while semantically different, it does provide a
very similar functionality to our goal reasoning level. Furthermore, the use of
internal messages to indicate dependencies between internal artifacts (mostly
capabilities and plans) creates a very similar structure to our goal plans where
we explicit dependencies between goals, often guided by tests on beliefs and
messages. In Prometheus, BDI goals at agent level can be represented through
a specific type of event, because events can trigger plans. As events, i.e., goal
events, but also messages, percepts and internal messages, can be produced in
plans as well as in outside the agent, a clearly defined goal reasoning level in the
GPS sense cannot be delimited in the current form of the methodology. The Goal-
Plan Separation approach would, however, benefit from the integration with the
first two phases of the Prometheus methodology: the system specification and
the architectural design. Due to the fact that these two phases correspond to
a top-down design approach, and also, as we showed above, the fact that there
are already similarities in the current form of Prometheus, we feel that such
an integration would be possible, resulting in a methodology tailored for goal-
directed GPS agents.

In [22] Pokahr et al. address the issue of goal deliberation. This concept is not
equivalent but rather included in our goal reasoning level as they consider only
goals that have already been adopted. Their work focuses on the similar issue
of goal interactions, i.e., when goals interfere positively or negatively with each
other, and they base their proposed strategy on the extension of the definition
of goals. They include for example inhibition arcs that block the adoption of a
certain goal or type of goal when another goal is adopted. Such mechanisms can
be integrated when specifying the goal reasoning level discussed in our approach.

The goal automaton proposed by Braubach et al. [2] presents a goal state
labeled “New” with a “Creation condition” acting as a triggering condition for
the goal before the adoption and the actual goal life-cycle. This state, together
with the condition are at the level of our goal reasoning level. A goal that was
defined for the agent is considered to be in the “New” state, as opposed to a
goal that can for example be received from the exterior or generated through the
agent reasoning. Only when such a goal is received does it pass into the “New”
state. All the goals discussed in the examples in this paper are already in this
state.

22

The goal-plan trees have been used in various works for representing agent
specifications and as a basis for further treatments. In [4] GPTs are used to
gather resource requirements called summary information and identify possible
goal interactions. This is due to the hierarchical structure of the tree where
summary information can be propagated upwards towards the root of the tree.
Further works on the subject [3] reuse the model to illustrate their operational
semantics for the goal life-cycle. Furthermore, Shaw et al. propose different ap-
proach for handling goal interactions using Petri Nets [23] and constraints [24]
instead of GPTs. These, as well as other works that use GPTs, such as [25] on
intention conflicts, can be used with GPS, and our intuition is that by separating
the goal reasoning level, goal interactions can be managed more easily.

Singh et al. [26] use learning for plan selection in BDI agents. They also use
GPTs to describe the agents and even note briefly that only “leaf plans inter-
act directly with the environment”, which is consistent with the GPS approach.
This allows for a representation where, given the results – i.e., success or fail
– of the executions of all leaf nodes, the success or failure of the root node is
decided by simply propagating these logic values in the AND-OR tree. This is a
confirmation of the benefits of the GPS approach, for, if actions were included in
intermediary plans, even if all sub-goals of a plan were achieved, the plan would
not necessarily cause the achievement of its parent goal. The GPT is therefore
already a simplification of the system, as it uses the rather strong hypothesis
that there are no perturbations, such as the one in the afore-mentioned case,
in the AND-OR tree. Another example of “perturbation” in the propagation
of success values in the tree can be the use of specific achievement and failure
conditions for each goals [7,14].

Note that, while we use the GPT representation to justify our approach, the
GPS is concerned with more general agent models. Also, this paper does not
argue against the GPT formalism, neither does it dispute the plethora of works
that use it as a model, but rather discusses the more general issue of specifying
agents with interwoven goal and action levels. The current paper complements
the cited works on goal interactions as it concerns the agent specification rather
than the runtime mechanisms that aim to improve the efficiency, proactivity,
reactivity etc. of the agents.

Another representation used for resource handling is the task expansion tree
described in [27]. This tree represents the decomposition of a task (a concept
similar to goals in our work) into subtasks. The particularity is the introduction
of special composite tasks that are used to compose other tasks in a functional
manner. These include, besides the sequence and parallel operators present in
the GPT model described in this paper, other tasks that allow other types of
branching and tests. The use of these operators in a tree structure situates their
model between classic goal hierarchies and our goal plan.

Clement et al. [28] champion the advantages of abstraction for solving var-
ious problems such as large scale planning and scheduling. They argue that by
abstracting the less critical details in a large problem, the overall solution is
easier to find, and can then be expanded to the actual detailed solution. This

23

applies well to our Goal-Plan Separation approach, as well as to their approach
on planning in a hierarchical way. They extend HTNs (hierarchical task net-
works) to take time into consideration and use summary information at higher
levels in the HTN to identify possible interactions between plans while working
with abstract actions (which are similar to the BDI concept of goal). HTNs are
quite similar to goal hierarchies in that they too offer a gradual refinement for
the behavior of an agent from the more abstract to the actual actions. The ad-
vantage of using goals instead of “abstract plans” is given by the flexibility and
resilience offered through the goal life-cycles where a goal’s achievement can be
attempted through various plans, with different constraints etc. Nevertheless,
our work does not exclude the possibility of using HTNs for plan selection, for
example in a similar fashion with CANPLAN [7].

8 Conclusion and Future Work

In this paper, we argued that the separation of reasoning and acting is important
for the specification and construction of BDI agents. It was shown that the pos-
sibility to mix actions on the environment with goal adoptions in various agent
models and languages can have negative effects on the resulting representation
and can hinder the development process. A series of examples illustrated what an
agent would look like when complying with the Goal-Plan Separation approach,
with emphasis on the two resulting levels: a goal reasoning level and an action
level. As a possible representation for the former, goal plans were introduced.
The GPS therefore imposes a constraint on agent design that does go against
the reflex of adopting a goal in any place it is needed but produces a better-
structured result. The GPS also results in agents that “step back and look at
the overall picture” rather than react “rashly” to their current situation, making
it suitable for “strategic”, proactive and complex behaviors, without necessarily
neglecting the reactive ones, e.g., GP2 in Fig. 11. The importance of tidy agent
representation lies with the ease of development, which can, in turn, facilitate
the wide-scale adoption of the development model. Furthermore, a clean repre-
sentation that helps diminish the number of design and development faults and
also improves maintainability helps bring the overall project costs down.

As discussed in the paper, on the side of BDI agent modeling there are many
studies on goal representations and goal life-cycles. However, the higher level that
is placed above these automata is less examined in the literature and constitutes
a point of this paper that we plan as a further study. For this, a more in-depth
research on specifying the agent’s goal reasoning will have to be undertaken.
Among other primitives, the handling of temporal constraints is important for
agent systems and should be taken into consideration. Furthermore, as stated
above, there are fault tolerance aspects related to this direction in agent develop-
ment that can be exploited. We are particularly interested in the use of GPS and
goal-directed agents in general for designing multi-agent systems that can better
cope with faults that were not foreseen at design. As presented in Sect. 5, we
have already began the empirical evaluation of the approach and its advantages

24

on agent design on a real time application. However, more evaluations will be
necessary in order to extend and generalize the GPS approach. In the long run,
the goal is to integrate this approach in an agent development methodology.

Acknowledgement. The authors would like to thank the anonymous reviewers
for their insights on this work. The authors would also like to acknowledge the
usefulness of the discussions at the the EMAS14 Workshop that helped refine
and advance our research on this topic.

References

1. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings
of the First International Conference on Multiagent Systems, San Francisco, USA,
AAAI Press (1995) 312–319

2. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal representation for
BDI agent systems. In Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni,
A., eds.: Programming Multi-Agent Systems. Volume 3346 of LNCS. Springer
Berlin Heidelberg (2005) 44–65

3. Harland, J., Morley, D.N., Thangarajah, J., Yorke-Smith, N.: An operational se-
mantics for the goal life-cycle in BDI agents. Autonomous Agents and Multi-Agent
Systems 28(4) (2014) 682–719

4. Thangarajah, J., Padgham, L.: Computationally effective reasoning about goal
interactions. Journal of Automated Reasoning 47(1) (2011) 17–56

5. Bordini, R., Hübner, J., Vieira, R.: Jason and the golden fleece of agent-oriented
programming. In Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A., eds.:
Multi-Agent Programming. Volume 15 of Multiagent Systems, Artificial Societies,
and Simulated Organizations. Springer US (2005) 3–37

6. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A short overview. In:
Net.ObjectDays 2004: AgentExpo. (2004)

7. Sardina, S., Padgham, L.: A BDI agent programming language with failure han-
dling, declarative goals, and planning. Autonomous Agents and Multi-Agent Sys-
tems 23(1) (2011) 18–70

8. Giunchiglia, F., Mylopoulos, J., Perini, A.: The tropos software development
methodology: Processes, models and diagrams. In Giunchiglia, F., Odell, J., Weiß,
G., eds.: Agent-Oriented Software Engineering III. Volume 2585 of LNCS. Springer
Berlin Heidelberg (2003) 162–173

9. Winikoff, M., Padgham, L.: Developing Intelligent Agent Systems: A Practical
Guide. Wiley Series in Agent Technology. John Wiley and Sons (2004)

10. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.: Agent programming
with declarative goals. In Castelfranchi, C., Lespérance, Y., eds.: Intelligent Agents
VII Agent Theories Architectures and Languages. Volume 1986 of LNCS. Springer
Berlin Heidelberg (2001) 228–243

11. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and proce-
dural goals in intelligent agent systems. In: Proceedings of the 8th International
Conference on Principles of Knowledge Representation and Reasoning, Toulouse,
France, Morgan Kaufman (2002) 470–481

25

12. Dastani, M., Riemsdijk, M.v., Dignum, F., Meyer, J.J.: A programming lan-
guage for cognitive agents: Goal directed 3apl. In Dastani, M., Dix, J., El Fal-
lah Seghrouchni, A., eds.: Programming Multi-Agent Systems, First International
Workshop. Volume 3067 of LNCS. Springer Berlin Heidelberg (2004) 111–130

13. Thangarajah, J.: Managing the Concurrent Execution of Goals in Intelligent
Agents. PhD thesis, RMIT University, Melbourne, Australia (2005)

14. Morandini, M., Penserini, L., Perini, A.: Operational semantics of goal models
in adaptive agents. In: Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems. Volume 1., Budapest, Hungary, In-
ternational Foundation for Autonomous Agents and Multiagent Systems (2009)
129–136

15. Thangarajah, J., Sardina, S., Padgham, L.: Measuring plan coverage and over-
lap for agent reasoning. In: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems. Volume 2., Valencia, Spain, In-
ternational Foundation for Autonomous Agents and Multiagent Systems (2012)
1049–1056

16. Chaouche, A.C., El Fallah Seghrouchni, A., Ilié, J.M., Säıdouni, D.E.: A higher-
order agent model for ambient systems. Procedia Computer Science 21(0) (2013)
156 – 163 The 4th International Conference on Emerging Ubiquitous Systems and
Pervasive Networks and the 3rd International Conference on Current and Future
Trends of Information and Communication Technologies in Healthcare.

17. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time petri nets. IEEE Transactions on Software Engineering 17(3) (1991)
259–273

18. El Fallah Seghrouchni, A., Haddad, S.: A recursive model for distributed planning.
In: Proceedings of the 2nd International Conference on Multi-Agent Systems, Ky-
oto, Japan, AAAI Press (1996) 307–314

19. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the a&a meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3) (2008) 432–456

20. Torres-Pomales, W.: Software fault tolerance: A tutorial. Technical report, NASA
Langley Research Center, Hampton, Virginia, USA (2000)

21. Riemsdijk, M.B.v., Yorke-Smith, N.: Towards reasoning with partial goal satisfac-
tion in intelligent agents. In: Programming Multiagent Systems, 8th International
Workshop (ProMAS’10). Volume 6599 of LNAI., Springer (2012) 41–59

22. Pokahr, A., Braubach, L., Lamersdorf, W.: A goal deliberation strategy for BDI
agent systems. In Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.,
eds.: Multiagent System Technologies. Volume 3550 of LNCS. Springer Berlin /
Heidelberg (2005) 82–93

23. Shaw, P., Bordini, R.: Towards alternative approaches to reasoning about goals.
In Baldoni, M., Son, T., Riemsdijk, M.B.v., Winikoff, M., eds.: Declarative Agent
Languages and Technologies V. Volume 4897 of LNCS. Springer Berlin Heidelberg
(2008) 104–121

24. Shaw, P., Bordini, R.: An alternative approach for reasoning about the goal-plan
tree problem. In Dastani, M., El Fallah Seghrouchni, A., Hübner, J., Leite, J.,
eds.: Languages, Methodologies, and Development Tools for Multi-Agent Systems.
Volume 6822 of LNCS. Springer Berlin Heidelberg (2011) 115–135

25. Shapiro, S., Sardina, S., Thangarajah, J., Cavedon, L., Padgham, L.: Revising
conflicting intention sets in BDI agents. In: Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems. Volume 2., Valencia,
Spain, International Foundation for Autonomous Agents and Multiagent Systems
(2012) 1081–1088

26

26. Singh, D., Sardina, S., Padgham, L., James, G.: Integrating learning into a
BDI agent for environments with changing dynamics. In: Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence. Volume 3.,
Barcelona, Spain, AAAI Press (2011) 2525–2530

27. Morley, D.N., Myers, K.L., Yorke-Smith, N.: Continuous refinement of agent re-
source estimates. In: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems, Hakodate, Japan, ACM (2006) 858–
865

28. Clement, B.J., Durfee, E.H., Barrett, A.C.: Abstract reasoning for planning and
coordination. Journal of Artificial Intelligence Research 28(1) (2007) 453–515

	Keeping a Clear Separation between Goals and Plans

