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REMARKS ON THE GIBBS MEASURES FOR NONLINEAR DISPERSIVE

EQUATIONS

by

Nicolas Burq, Laurent Thomann & Nikolay Tzvetkov

Abstract. — We show, by the means of several examples, how we can use Gibbs measures to construct
global solutions to dispersive equations at low regularity. The construction relies on the Prokhorov com-
pactness theorem combined with the Skorokhod convergence theorem. To begin with, we consider the non
linear Schrödinger equation (NLS) on the tri-dimensional sphere. Then we focus on the Benjamin-Ono
equation and on the derivative nonlinear Schrödinger equation on the circle. Next, we construct a Gibbs
measure and global solutions to the so-called periodic half-wave equation. Finally, we consider the cubic
2d defocusing NLS on an arbitrary spatial domain and we construct global solutions on the support of the
associated Gibbs measure.
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1. Introduction and main results

1.1. General introduction. — A Gibbs measure can be an interesting tool to show that local

solutions to some dispersive PDEs are indeed global. Once we have a suitable local existence and

uniqueness theory on the support of such a measure, we can expect to globalise these solutions; this

measure in some sense compensates the lack of conservation law at some level of Sobolev regularity.

See [4, 5, 50, 45, 46, 16, 35, 36, 12] where this approach has been fruitful.

Assume now that we have a Gibbs measure, but that we are not able to show that the equation is

locally well-posed on its support. The aim of this paper is to show - through several examples - that

in this case we can use some compactness methods to construct global (but non unique) solutions on

the support of the measure. Although this method of construction of solutions is well-known in other

contexts, like for the Euler equation (see Albeverio-Cruzeiro [1]) or for the Navier-Stokes equation (see

Da Prato-Debussche [23]), it seems to be not exploited in the context of dispersive equations.

In [13] we have constructed global rough solutions to the periodic wave equation in any dimension

with stochastic tools. While in [13] we used the energy conservation and a regularisation property

of the wave equation in the argument, here we use instead the invariance of the measure by the non

linear flow. As a consequence we also obtain that the distribution of the solutions we construct is

independent of time.

Our first example concerns the non linear Schrödinger equation on the sphere S
3 restricted to zonal

functions (the functions which only depend on the geodesic distance to the north pole). For sub-quintic

nonlinearities, we are able to define a Gibbs measure with support in Hσ(S3) for any σ < 1/2, and

to construct global solutions in this space. This is the result of Theorem 1.1. In [7], Bourgain-Bulut

have considered a similar equation (the radial NLS on R
3) in the case of the cubic nonlinearity. The

solutions obtained in [7] are certainly "stronger" compared to the ones obtained in the present paper,

the uniqueness statement being however not explicited in [7].

In a second time we deal with the Benjamin-Ono equation on the circle S
1 = R/(2πZ). This model

arises in the study of one-dimensional internal long waves. In [31, 32] L. Molinet has shown that

the equation is globally well-posed in L2(S1) and that this result is sharp. For this problem, a Gibbs

measure with support in H−σ(S1), for any σ > 0 has already been constructed by N. Tzvetkov in [44].

In this case, we also construct global solutions on the support of the measure and prove its invariance

(Theorem 1.2). A uniqueness result of the dynamics on the support of the measure was recently proven

in a remarkable paper by Y. Deng [21].

Our third example concerns the periodic derivative Schrödinger equation. Here we use the measure

constructed by Thomann-Tzvetkov [43]. We construct a dynamics for which the measure is invariant

(Theorem 1.3). This result may be seen as a consequence of a recent work by Nahmod, Oh, Rey-

Bellet and Staffilani [33] and Nahmod, Ray-Bellet, Sheffield and Staffilani [34]. Their approach is

based on the local deterministic theory of Grünrock-Herr [25] which gauges out (the worst part of)

the nonlinearity, and the uniqueness is only proved in this gauged-out context.

Next, we consider the so-called half-wave equation on the circle, which can be seen as a limit model

of Schrödinger-like equations for which one has very few dispersion. This model has been studied by
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Gérard-Grellier [24] who showed that it is well-posed in H1/2(S1) (see also O. Pocovnicu [38] and more

recently Krieger-Lenzmann-Raphaël [29] for a study of the equation on the real line). Here a Gibbs

measure with support in H−σ(S1), for any σ > 0 can be defined, and global solutions (see Theorem 1.7)

can be constructed.

Finally, we consider the NLS on an arbitrary 2d spatial domain. Here the construction of the

Gibbs measure goes back to the works in QFT (see [40] and the references therein). For the sake of

completeness, we shall present a proof below based on (precise versions of) the Weyl formula. However

we want to stress that the ideas used in the construction of the Gibbs measure are in the spirit of [40].

The support of the measure is again H−s for any s > 0. In the case of the torus as spatial domain,

J. Bourgain [5] constructs strong global solutions on the support of the measure. This remarkable

result relies on the local theory in Hσ, σ > 0 and on a probabilistic regularization property. In the

case of an arbitrary spatial domain the local theory is much more involved (and presently restricted

to much higher regularity) compared to the case of the torus. Consequently, it seems natural to turn

to weak solution techniques.

Therefore our results on the half-wave equation and the 2d NLS are out of reach of the present

"strong solutions" methods and as such they should be seen as the main result of this article.

Summarizing the previous discussion, one may also conclude that the main point to be discussed

when applying strong solutions techniques in all considered examples is the uniqueness.

1.2. The Schrödinger equation on S
3. — Let S3 be the unit sphere in R

4. We then consider the

non linear Schrödinger equation

(1.1)

{
i∂tu+∆S3u = |u|r−1u, (t, x) ∈ R× S

3,

u(0, x) = f(x) ∈ Hσ(S3),

for 1 ≤ r < 5. In [8] N. Burq, P. Gérard and N. Tzvetkov have shown that (1.1) is globally well-

posed in the energy space H1(S3). In this paper we address the question of the existence of global

solutions at regularity below the energy space. Denote by Z(S3) the space of the zonal functions, i.e.

the space of the functions which only depend on the geodesic distance to the north pole of S3. Set

Hσ
rad(S

3) := Hσ(S3) ∩ Z(S3), L2
rad(S

3) = H0
rad(S

3) and

X
1/2
rad = X

1/2
rad (S

3) =
⋂

σ<1/2

Hσ
rad(S

3).

For x ∈ S
3, denote by θ = dist(x,N) ∈ [0, π] the geodesic distance of x to the north pole and define

(1.2) Pn(x) =

√
2

π

sinnθ

sin θ
, n ≥ 1.

Then, (Pn)n≥1 is a Hilbertian basis of L2
rad(S

3), which will be used in the sequel. Next, in order to

avoid the issue with the 0-frequency, we make the change of unknown u 7−→ e−itu, so that we are
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reduced to consider the equation

(1.3)

{
i∂tu+ (∆S3 − 1)u = |u|r−1u, (t, x) ∈ R× S

3,

u(0, x) = f(x) ∈ Hσ(S3).

Let (Ω,F ,p) be a probability space and
(
gn(ω)

)
n≥1

a sequence of independent complex normalised

Gaussians, gn ∈ NC(0, 1), which means that gn can be written

gn(ω) =
1√
2

(
hn(ω) + iℓn(ω)

)
,

where
(
hn(ω), ℓn(ω)

)
n≥1

are independent standard real Gaussians (NR(0, 1)).

For N ≥ 1 we define the random variable

ω 7→ ϕN (ω, x) =

N∑

n=1

gn(ω)

n
Pn(x),

and we can show that if σ < 1
2 , then (ϕN )N≥1 is a Cauchy sequence in L2

(
Ω; Hσ(S3)

)
: this enables

us to define its limit

(1.4) ω 7→ ϕ(ω, x) =
∑

n≥1

gn(ω)

n
Pn(x) ∈ L2

(
Ω; Hσ(S3)

)
.

We then define the Gaussian probability measure µ on X
1/2
rad(S

3) by µ = p ◦ ϕ−1. In other words, µ is

the image of the measure p under the map

Ω −→ X
1/2
rad (S

3)

ω 7−→ ϕ(ω, ·) =
∑

n≥1

gn(ω)

n
Pn.

We now construct a Gibbs measure for the equation (1.3). For u ∈ Lr+1(S3) and β > 0, define the

density

(1.5) G(u) = βe−
1

r+1

∫
S3 |u|r+1

,

and with a suitable choice of β > 0, this enables to construct a probability measure ρ on X
1/2
rad(S

3) by

dρ(u) = G(u)dµ(u).

Then we can prove

Theorem 1.1. — Let 1 ≤ r < 5. The measure ρ is invariant under a dynamics of (1.1). More

precisely, there exists a set Σ of full ρ measure so that for every f ∈ Σ the equation (1.1) with initial

condition u(0) = f has a solution

u ∈ C
(
R ;X

1/2
rad(S

3)
)
.

The distribution of the random variable u(t) is equal to ρ (and thus independent of t ∈ R):

L
X

1/2
rad

(
u(t)

)
= L

X
1/2
rad

(
u(0)

)
= ρ, ∀ t ∈ R.
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Here and after, we abuse notation and write

C
(
R ;X

1/2
rad (S

3)
)
=

⋂

σ<1/2

C
(
R ;Hσ

rad(S
3)
)
.

In our work, the only point where we need to restrict to zonal functions is for the construction of the

Gibbs measure. The other arguments do not need any radial assumption. The result of Theorem 1.1

can not be extended to the case r = 5. Indeed, it is shown in [2, Theorem 4] that ‖u‖L6(S3) = +∞,

µ−a.s.

Since G(u) > 0, µ−a.s., both measures µ and ρ have same support. Indeed, µ(X
1/2
rad(S

3)) =

ρ(X
1/2
rad(S

3)) = 1, but we can check that µ(H
1/2
rad(S

3)) = ρ(H
1/2
rad(S

3)) = 0 (see [11, Proposition C.1]).

Let us compare our result to the result given by the usual deterministic compactness methods. The

energy of the equation (1.1) reads

H(u) =
1

2

∫

S3

|∇u|2 + 1

r + 1

∫

S3

|u|r+1.

Then, one can prove (see e.g. [17]) that for all f ∈ H1(S3) ∩ Lr+1(S3) there exists a solution to (1.1)

so that

(1.6) u ∈ Cw
(
R;H1(S3)

)
∩ Cw

(
R;Lr+1(S3)

)
,

(here Cw stands for weak continuity in time) and so that for all t ∈ R, H(u)(t) ≤ H(f). Notice that

in (1.6) we can replace the space H1 with H1
rad if f ∈ H1

rad.

The advantage of this method is that there is no restriction on r ≥ 1 and no radial assumption on

the initial condition. However this strategy asks more regularity on f . We also point out that with

the deterministic method one loses the conservation of the energy, while in Theorem 1.1 we obtain an

invariant probability measure (see also Remark 2.3).

1.3. The Benjamin-Ono equation. — Recall that S
1 := R/(2πZ) and let us define

‖f‖2L2(S1) = (2π)−1

∫ 2π

0
|f(x)|2dx.

For f(x) =
∑

k∈Z

αke
ikx and N ≥ 1 we define the spectral projector ΠN by ΠNf(x) =

∑

|k|≤N

αke
ikx. We

also define the space X0(S1) =
⋂

σ>0

H−σ(S1).

Denote by H the Hilbert transform, which is defined by

Hu(x) = −i
∑

n∈Z⋆

sign(n)cneinx, for u(x) =
∑

n∈Z⋆

cneinx.

In this section, we are interested in the periodic Benjamin-Ono equation

(1.7)

{
∂tu+H∂2

xu+ ∂x
(
u2
)
= 0, (t, x) ∈ R× S

1,

u(0, x) = f(x).
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Let (Ω,F ,p) be a probability space and
(
gn(ω)

)
n≥1

a sequence of independent complex normalised

Gaussians, gn ∈ NC(0, 1). Set g−n(ω) = gn(ω). For any σ > 0, we can define the random variable

(1.8) ω 7→ ϕ(ω, x) =
∑

n∈Z∗

gn(ω)

2|n| 12
einx ∈ L2

(
Ω; H−σ(S1)

)
,

and the measure µ on X0(S1) by µ = p ◦ ϕ−1. Next, as in [44] define the measure ρN on X0(S1) by

(1.9) dρN (u) = ΨN (u)dµ(u),

where the weight Ψ is given by

ΨN (u) = βNχ
(
‖uN‖2L2 − αN

)
e−

2
3

∫
S1 u3

N (x)dx, uN = ΠNu,

with χ ∈ C∞
0 (R),

αN =

∫

X0(S1)
‖uN‖2L2(S1)dµ(u) =

∫

Ω
‖ϕN (ω, .)‖2L2(S1)dp(ω) =

∑

1≤n≤N

1

n
,

and where the constant βN > 0 is chosen so that ρN is a probability measure on X0(S1). Then the

result of N. Tzvetkov [44] reads: There exists Ψ(u) which satisfies for all p ∈ [1,+∞[, Ψ(u) ∈ Lp(dµ)

and

(1.10) ΨN (u) −→ Ψ(u) in Lp(dµ(u)).

As a consequence, we can define a probability measure ρ on X0(S1) by dρ(u) = Ψ(u)dµ(u). Then our

result is the following

Theorem 1.2. — There exists a set Σ of full ρ measure so that for every f ∈ Σ the equation (1.7)

with initial condition u(0) = f has a solution

u ∈ C
(
R ;X0(S1)

)
.

For all t ∈ R, the distribution of the random variable u(t) is ρ.

Some care has to be given for the definition of the non linear term in (1.7), since u has a negative

Sobolev regularity. Here we can define ∂x(u
2) on the support of µ as a limit of a Cauchy sequence (see

Lemma 5.3).

As in [12, Proposition 3.10] we can prove that
⋃

χ∈C∞

0 (R)

supp ρ = suppµ.

The cut-off χ
(
‖uN‖2L2 − αN

)
can not be avoided here because the term

∫
S1

u3N (x)dx does not have a

sign (compare with the analysis of the half-wave equation and the defocusing NLS below where it can

be avoided, after a suitable renormalisation of the potential energy).

Observe that ϕ in (1.8) has mean 0, thus µ and ρ are supported on 0-mean functions. This is not a

restriction since the mean
∫
S1

u is an invariant of (1.7).

We complete this section by mentioning [47, 48, 49, 22] where the authors construct Gibbs type

measures associated with each conservation law of the Benjamin-Ono equation.
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1.4. The derivative non linear Schrödinger equation. — We consider the periodic DNLS equa-

tion.

(1.11)

{
i∂tu+ ∂2

xu = i∂x
(
|u|2u

)
, (t, x) ∈ R× S

1,

u(0, x) = u0(x).

Here, for σ < 1/2 we define the random variable (〈n〉 = (1 + n2)1/2)

(1.12) ω 7→ ϕ(ω, x) =
∑

n∈Z

gn(ω)

〈n〉 einx ∈ L2
(
Ω; Hσ(S1)

)
,

and the measure µ on X1/2(S1) =
⋂

σ<1/2

Hσ(S1) by µ = p ◦ ϕ−1. Next, denote by

fN (u) = Im

∫

S1

u2N (x) ∂x(u
2
N (x))dx.

Let κ > 0, and let χ : R −→ R, 0 ≤ χ ≤ 1 be a continuous function with support supp χ ⊂ [−κ, κ]

and so that χ = 1 on [−κ/2, κ/2]. We define the density

ΨN(u) = βNχ
(
‖uN‖L2(S1)

)
e

3
4
fN (u)− 1

2

∫
S1

|uN (x)|6dx,

and the measure ρN on X1/2(S1) by

(1.13) dρN (u) = ΨN (u)dµ(u),

and where βN > 0 is chosen so that ρN is a probability measure on X1/2(S1). By Thomann-

Tzvetkov [43, Theorem 1.1], ρN converges to a probability measure ρ so that dρ(u) = Ψ(u)dµ(u).

Moreover, for all p ≥ 2, if κ ≤ κp, then Ψ(u) ∈ Lp(dµ). Then our result reads

Theorem 1.3. — Assume that κ ≤ κ2. Then there exists a set Σ of full ρ measure so that for every

f ∈ Σ the equation (1.11) with initial condition u(0) = f has a solution

u ∈ C
(
R ;X1/2(S1)

)
.

For all t ∈ R, the distribution of the random variable u(t) is ρ.

Here, for κ ≤ κ2, we have
⋃

χ∈C∞

0 ([−κ,κ])

supp ρ =
{
‖u‖L2 ≤ κ

}⋂
suppµ.

1.5. The half-wave equation. — The periodic cubic Schrödinger on the circle has been much

studied and in particular rough solutions have been constructed. See Christ [18], Colliander-Oh [20],

Kwon-Oh [30], and Bourgain [5] in the 2-dimensional case.

Here we investigate a related equation where one has no more dispersion: We replace the Laplacian
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with the operator |D|, i.e. the operator defined by |D|einx = |n|einx, and we consider the following

half-wave Cauchy problem
{
i∂tu− |D|u = |u|2u, (t, x) ∈ R× S

1,

u(0, x) = f(x).

This model has been studied by P. Gérard and S. Grellier [24] who showed that it is well-posed

in H1/2(S1). However, the Sobolev space which is invariant by scaling is L2(S1), hence it is natural

to try to construct solutions which have low regularity. In the sequel, in order to avoid trouble with

the 0-frequency, we make the change of unknown u 7−→ e−itu, so that we are reduced to consider the

equation

i∂tu− Λu = |u|2u, (t, x) ∈ R× S
1,

where Λ := |D|+ 1.

Let (Ω,F ,p) be a probability space and
(
gn(ω)

)
n∈Z

a sequence of independent complex normalised

Gaussians. Here we define the random variable

(1.14) ω 7→ ϕ(ω, x) =
∑

n∈Z

gn(ω)

(1 + |n|) 1
2

einx ∈ L2
(
Ω; H−σ(S1)

)
,

for any σ > 0, and we then define the measure µ on X0(S1) by µ = p ◦ ϕ−1.

We need to give a sense to |u|2u on the support of µ. In order to avoid the worst interac-

tion term, we rather consider a gauged version of the equation for which the nonlinearity is for-

mally |u|2u− 2‖u‖2L2(S1)u. More precisely, define the Hamiltonian

HN (u) =

∫

S1

|Λu|2 + 1

2

∫

S1

|ΠNu|4 −
( ∫

S1

∣∣ΠNu
∣∣2
)2

,

and consider the equation

i∂tu =
δHN

δu
,

which reads

(1.15)

{
i∂tu− Λu = GN (u), (t, x) ∈ R× S

1,

u(0, x) = f(x),

where GN stands for

(1.16) GN (u) = ΠN

(
|ΠNu|2ΠNu

)
− 2‖ΠNu‖2L2(S1)ΠNu.

This modification of the nonlinearity is classical, and is the Wick ordered version of the usual cu-

bic nonlinearity (see Bourgain [5], Oh-Sulem [37]). Recall, that since the L2 norm of (1.15) is

preserved by the flow, one can recover the standard cubic nonlinearity with the change of function

vN (t) = uN (t) exp
(
− 2i

∫ t

0
‖uN (τ)‖2L2dτ

)
with the notation uN = ΠNu.

Here, the main interest for introducing the gauge transform in (1.16) is to define the limit equation,

when N −→ +∞.
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Proposition 1.4. — For all p ≥ 2, the sequence
(
GN (u)

)
N≥1

is a Cauchy sequence in the space

Lp
(
X0(S1),B, dµ;H−σ(S1)

)
. Namely, for all p ≥ 2, there exist η > 0 and C > 0 so that for all

1 ≤ M < N , ∫

X0(S1)
‖GN (u)−GM (u)‖p

H−σ(S1)
dµ(u) ≤ C

Mη
.

We denote by G(u) the limit of this sequence.

It is then natural to consider the equation

(1.17)

{
i∂tu− Λu = G(u), (t, x) ∈ R× S

1,

u(0, x) = f(x).

We now define a Gibbs measure for (1.17) as a limit of Gibbs measures for (1.15). In the sequel we

use the notation uN = ΠNu. Let χ ∈ C∞
0 (R) so that 0 ≤ χ ≤ 1. Define

αN =

∫

X0(S1)
‖uN‖2L2(S1)dµ(u) =

∑

|n|≤N

1

1 + |n| ,

consider the density

(1.18) ΘN (u) = βNχ
(
‖uN‖2L2 − αN

)
e−
(
‖uN‖4

L4−2‖uN‖4
L2

)
,

and define the measure

dρN (u) = ΘN (u)dµ(u),

where βN > 0 is chosen so that ρN is a probability measure.

Remark 1.5. — We could avoid the cut-off procedure, χ, above, by using another renormalization,

namely defining

(1.19) G̃N (u) = ΠN

(
|ΠNu|2ΠNu

)
− 2αNΠNu, αN = Eµ

[
‖ΠNu‖2L2(S1)

]
,

see the construction in Section 8.2 for NLS on a bounded domain.

In our next result, we define a weighted Wiener measure for the equation (1.17).

Theorem 1.6. — The sequence ΘN (u) defined in (1.18) converges in measure, as N → ∞, with

respect to the measure µ. Denote by Θ(u) the limit and define the probability measure

(1.20) dρ(u) ≡ Θ(u)dµ(u).

Then for every p ∈ [1,∞[, Θ(u) ∈ Lp(dµ(u)) and the sequence ΘN converges to Θ in Lp(dµ(u)), as N

tends to infinity.

The sign of the nonlinearity in (1.17) (defocusing) plays a role. Indeed, Theorem 1.6 does not hold

when G(u) is replaced with −G(u).

Again, with the arguments of [12, Proposition 3.10], we can prove that
⋃

χ∈C∞

0 (R)

supp ρ = suppµ.
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Consider the measure ρ defined in (1.20), then

Theorem 1.7. — There exists a set Σ of full ρ measure so that for every f ∈ Σ the equation (1.17)

with initial condition u(0) = f has a solution

u ∈ C
(
R ;X0(S1)

)
.

For all t ∈ R, the distribution of the random variable u(t) is ρ.

In equation (1.17) the dispersive effect is weak and it seems difficult to deal with the regularities on

the support of the measure by deterministic methods.

Remark 1.8. — More generally, we can consider the equation

i∂tu− Λαu = |u|p−1u, (t, x) ∈ R× S
1,

with α > 1 and p ≥ 1. Define Xβ(S1) =
⋂

τ<β H
τ (S1). In this case, the situation is better since the

series

ω 7→ ϕα(ω, x) =
∑

n∈Z

gn(ω)

(1 + |n|)α/2 einx,

are so that ϕα ∈ L2
(
Ω;Hβ(S1)

)
for all 0 < β < (α − 1)/2. Here we should be able to construct

solutions

u ∈ C
(
R;X(α−1)/2(S1)

)
.

1.6. The 2d NLS on an arbitrary spatial domain. — We assume that (M,g) is either a two

dimensional compact Riemannian manifold without boundary or a bounded domain in R
2. We suppose

that vol(M) = 1. This assumption is not a restriction since we can always reduce the analysis to this

case by rescaling the metric. We impose it since some of the computations simplify a little under this

assumption.

Denote by −∆g the Laplace-Beltrami operator on M (with Dirichlet boundary conditions in the

case of a domain in R
2). Consider the nonlinear Schrödinger equation

(1.21)

{
i∂tu+ (∆g − 1)u = |u|2u, (t, x) ∈ R×M,

u(0, x) = f(x).

Our aim is to construct a Gibbs measure ρ associated to (1.21) and to construct global solutions

to (1.21) on the support of ρ. Let (ϕn)n≥0 be an orthonormal basis of L2(M) of eigenfunctions of −∆g

associated with increasing eigenvalues (λ2
n)n≥0. By the Weyl asymptotics λn ≈ n1/2. Let (gn(ω))n≥0

be a sequence of independent standard complex Gaussian variables on a probability space (Ω,F ,p).

We denote by µ the Gaussian measure induced by the mapping

ω 7−→ Ψ(ω, x) :=
∑

n≥0

gn(ω)

(λ2
n + 1)

1
2

ϕn(x) ,

and we can interpret µ as the Gibbs measure which is associated to the linear part of (1.21). One may

see µ as a measure on H−s(M) for any fixed s > 0, and we can check that µ(L2(M)) = 0. Notice also
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that thanks to the invariance of the Gaussians under rotations the measure µ is independent of the

choice of the orthonormal basis (ϕn)n≥0.

Now, if one wishes to define a Gibbs measure ρ (which is a density measure w.r.t. µ) associated

to (1.21), namely corresponding to the Hamiltonian

H(u) =
1

2

∫

M
(|∇u|2 + |u|2) + 1

4

∫

M
|u|4,

we have
∫
M |u|4 = +∞ on the support of µ. Therefore a suitable renormalization is needed. For

u =
∑

n≥0 cnϕn, we set uN := ΠNu =
∑

n≤N cnϕn. Denote by

(1.22) αN =

∫

X0(M)
‖uN‖2L2(M)dµ(u) =

∑

0≤n≤N

1

1 + λ2
n

.

Then we define the renormalized Hamiltonian

HN (u) =

∫

M
(|∇u|2 + |u|2) + 1

2

∫

M
|ΠNu|4 − 2αN

∫

M

∣∣ΠNu
∣∣2 + α2

N ,

and consider the equation

i∂tu =
δHN

δu
,

which reads

(1.23)

{
i∂tu+ (∆g − 1)u = FN (uN ), (t, x) ∈ R×M,

u(0, x) = f(x),

where FN stands for

(1.24) FN (uN ) = ΠN

(
|uN |2uN

)
− 2αNuN .

Recall, that since the L2 norm of (1.23) is preserved by the flow, one can recover the standard cubic

nonlinearity with the change of function vN (t) = uN (t) exp(−2αN t).

Thanks to the gauge transform in (1.24) we are able to define the limit equation, when N −→ +∞.

Set X0(M) =
⋂

σ<0

Hσ(M), then

Proposition 1.9. — For all p ≥ 2 and σ > 2, the sequence
(
FN (uN )

)
N≥1

is Cauchy in

Lp
(
X0(M),B, dµ;H−σ(M)

)
. Namely, for all p ≥ 2, there exist η > 0 and C > 0 so that for all

1 ≤ M < N , ∫

X0(M)
‖FN (uN )− FM (uM )‖p

H−σ(M)
dµ(u) ≤ C

Mη
.

We denote by F (u) the limit of this sequence.

We now consider the equation

(1.25)

{
i∂tu+ (∆g − 1)u = F (u), (t, x) ∈ R×M,

u(0, x) = f(x).
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We now define a Gibbs measure for (1.25) as a limit of Gibbs measures for (1.23). Set

(1.26) fN (u) =
1

2

∫

M
|ΠNu|4 − 2αN

∫

M

∣∣ΠNu
∣∣2 + α2

N ,

and consider the measure

dρN (u) = CNe−fN (u)dµ(u),

where CN > 0 is chosen so that ρN is a probability measure. Then

Theorem 1.10. — Let us fix 1 ≤ p < ∞. The sequence (fN (u))N≥1 converges in Lp(dµ(u)) to some

limit denoted by f(u). Moreover

e−f(u) ∈ Lp(dµ(u)) .

Therefore, we can define a probability measure on X0(M) by

(1.27) dρ(u) = C∞e−f(u)dµ(u).

The result of Theorem 1.10 is not new. One may find a proof of it in the book by B. Simon [40,

page 229]. The approach in [40] is using the control of the singularity on the diagonal of the Green

function associated with ∆−1
g . Here we present a slightly different proof based on spectral consideration

via the Weyl asymptotics. We decided to include this proof since the argument is in the spirit of the

analysis of the other models considered in this article.

We are able to use the measure ρ defined in (1.27) to define global dynamics for the equation (1.25).

Theorem 1.11. — There exists a set Σ of full µ measure so that for every f ∈ Σ the equation (1.25)

with initial condition u(0) = f has a solution

u ∈ C
(
R ;X0(M)

)
.

For all t ∈ R, the distribution of the random variable u(t) is ρ.

Remark 1.12. — Another choice of renormalization procedure, namely defining

(1.28) F̃N (uN ) = ΠN

(
|uN |2uN

)
− 2‖uN‖2L2uN .

would lead to another limit equation

i∂tu+ (∆g − 1)u = F̃ (u),

with

F̃ (u) = lim
N→+∞

F̃N (u) ” = ” |u|2u− 2‖u‖2L2u,

which is slightly more natural as if v is a (L2-bounded) solution of

i∂tv + (∆g − 1)v = |v|2v,

then u = e−2it‖v‖2
L2 v satisfies

i∂tu+ (∆g − 1)u = F̃ (u).
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However, this renormalization would require another cut-off (see Section 7) because the main contri-

bution of the potential energy in the Hamiltonian is no longer positive. Finally, yet another renormal-

ization is possible: by the Weyl formula (8.17) we know αN =
1

4π
lnN + C + o(1), and it is easy to

check that it is possible to replace αN by its equivalent in the definition of HN (u) and in (1.24). In

this case, the renormalisation does not depend on M (but only on its volume which if fixed to 1).

Remark 1.13. — In Theorems 1.10, 1.11, the sign of the nonlinearity (defocusing) plays key a role

and we do not know how to define a probability Gibbs measure if F is replaced by −F .

Let us recall some deterministic results on the nonlinear cubic Schrödinger equation on a compact

surface. The equation is locally well-posed in Hs for all s > 0 when M = T
2 (Bourgain [6]), in Hs

for all s > 1/4 when M = S
2 and Hs for all s > 1/2 in the case of a general surface M without

boundary (Burq-Gérard-Tzvetkov [10]). In the case of a surface with boundary, the equation is locally

well-posed in Hs for all s > 2/3 (Blair-Smith-Sogge [3]). In each of the previous cases, thanks to an

interpolation argument, S. Zhong [51] has shown that the (defocusing) equation is globally well-posed

in Hs for some 1− δ < s < 1 with δ > 0 sufficiently small.

1.7. Notations and structure of the paper. —

Notations. — In this paper c, C > 0 denote constants the value of which may change from line to line.

These constants will always be universal, or uniformly bounded. For n ∈ Z, we write 〈n〉 = (1+|n|2)1/2.
In Section 7 we use the notation [n] = 1 + |n|, while in Section 8 we write [n] = 1 + λ2

n. We will

sometimes use the notations Lp
T = Lp(−T, T ) for T > 0. For a manifold M , we write Lp

x = Lp(M)

and for s ∈ R we define the Sobolev space Hs
x = Hs(M) by the norm ‖u‖Hs

x
= ‖

(
1 − ∆

)s/2
u‖L2(M).

If E is a Banach space and µ is a measure on E, we write Lp
µ = Lp(dµ) and ‖u‖Lp

µE
=
∥∥‖u‖E

∥∥
Lp
µ
.

For M a manifold, we define Xσ(M) =
⋂

τ<σ H
τ (M), and if I ⊂ R is an interval, C

(
I;Xσ(M)

)
=⋂

τ<σ C
(
I;Hτ (M)

)
. If X is a random variable, we denote by L (X) its law (its distribution).

The rest of the paper is organised as follows. In Section 2 we recall the Prokhorov and the Skorokhod

theorems which are the crucial tools for the proof of our results. In Section 3 we present the general

strategy for the construction of the weak stochastic solutions. Each of the remaining sections is devoted

to a different equation.

Acknowledgements. — The authors want to thank Arnaud Debussche for pointing out the refer-

ence [23]. The second author is very grateful to Philippe Carmona for many clarifications on measures.

We also benefitted from discussions with Christian Gérard and Igor Chueshov.

2. The Prokhorov and Skorokhod theorems

In this section, we state two basic results, concerning the convergence of random variables. To begin

with, recall the following definition (see e.g. [28, page 114])
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Definition 2.1. — Let S be a metric space and (ρN )N≥1 a family of probability measures on the

Borel σ−algebra B(S). The family (ρN ) on (S,B(S)) is said to be tight if for any ε > 0 one can find

a compact set Kε ⊂ S such that ρN (Kε) ≥ 1− ε for all N ≥ 1.

Then, we have the following compactness criterion (see e.g. [28, page 114] or [27, page 309])

Theorem 2.2 (Prokhorov). — Assume that the family (ρN )N≥1 of probability measures on the met-

ric space S is tight. Then it is weakly compact, i.e. there is a subsequence (Nk)k≥1 and a limit

measure ρ∞ such that for every bounded continuous function f : S → R,

lim
k→∞

∫

S
f(x)dρNk

(x) =

∫

S
f(x)dρ∞(x).

In fact, the Prokhorov theorem is stronger: In the case where the space S is separable and complete,

the converse of the previous statement holds true, but we will not use this here.

Remark 2.3. — Let us make a remark on the case S = R
n. The measure given by the theorem allows

mass concentration in a point and the tightness condition forbids the escape of mass to infinity.

The Prokhorov theorem is of different nature compared to the compactness theorems giving the

deterministic weak solutions: In the latter case there can be a loss of energy (as mentioned below (1.6)).

A weak limit of L2 functions may lose some mass whereas in the Prokhorov theorem a limit measure

is a probability measure.

We now state the Skorokhod theorem

Theorem 2.4 (Skorokhod). — Assume that S is a separable metric space. Let (ρN )N≥1 and ρ∞
be probability measures on S. Assume that ρN −→ ρ∞ weakly. Then there exists a probability space

on which there are S−valued random variables (XN )N≥1, X∞ such that L(XN ) = ρN for all N ≥ 1,

L(X∞) = ρ∞ and XN −→ X∞ a.s.

For a proof, see e.g. [27, page 79]. We illustrate this result with two elementary but significant

examples:

– Assume that S = R. Let (XN )1≤N≤∞ be standard Gaussians, i.e. L(XN ) = L(X∞) = NR(0, 1).

Then the convergence in law obviously holds, but in general we can not expect the almost sure

convergence of the XN to X∞ (define for example XN = (−1)NX∞).

– Assume that S = R. Let (YN )1≤N≤∞ be random variables. For any random variable Y on R

we denote by FY (t) = P (Y ≤ t) its cumulative distribution function. Here we assume that for

all 1 ≤ N ≤ ∞, FYN
is bijective and continuous, and we prove the Skorokhod theorem in this

case. Let X be a r.v. so that L(X) is the uniform distribution on [0, 1] and define the r.v.

ỸN = F−1
YN

(X). We now check that the ỸN satisfy the conclusion of the theorem. To begin with,

F
ỸN

(t) = P (ỸN ≤ t) = P (X ≤ FYN
(t)) = FYN

(t),

therefore we have for 1 ≤ N ≤ ∞, L(YN ) = L(ỸN ). Now if we assume that YN −→ Y∞ in law,

we have for all t ∈ R, FYN
(t) −→ FY∞

(t) and in particular ỸN −→ Ỹ∞ almost surely.
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3. General strategy

Let (Ω,F ,p) be a probability space and
(
gn(ω)

)
n≥1

a sequence of independent complex normalised

Gaussians, gn ∈ NC(0, 1). Let M be a Riemanian compact manifold and let (en)n≥1 be an Hilbertian

basis of L2(M) (with obvious changes, we can allow n ∈ Z). Consider one of the equations mentioned

in the introduction. Denote by

Xσ = Xσ(M) =
⋂

τ<σ

Hτ (M).

3.1. General strategy of the proof. — The general strategy for proving a global existence result

is the following:

Step 1: The Gaussian measure µ: We define a measure µ on Xσ(M) which is invariant by

the flow of the linear part of the equation. The index σc ∈ R is determined by the equation and

the manifold M . Indeed this measure can be defined as µ = p ◦ ϕ−1, where ϕ ∈ L2
(
Ω; Hσ(M)

)
for

all σ < σc is a Gaussian random variable which takes the form

ϕ(ω, x) =
∑

n≥1

gn(ω)

λn
en(x).

Here the (λn) satisfy λn ∼ cnα, α > 0 and are given by the linear part and the Hamiltonian structure

of the equation. Notice in particular that for all measurable f : Xσc(M) −→ R

(3.1)

∫

Xσc(M)
f(u)dµ(u) =

∫

Ω
f
(
ϕ(ω, ·)

)
dp(ω).

Step 2: The invariant measure ρN : By working on the Hamiltonian formulation of the equation,

we introduce an approximation of the initial problem which has a global flow ΦN , and for which we

can construct a measure ρN on Xσc(M) which has the following properties

(i) The measure ρN is a probability measure which is absolutly continuous with respect to µ

dρN (u) = ΨN (u)dµ(u).

(ii) The measure ρN is invariant by the flow ΦN by the Liouville theorem.

(iii) There exists Ψ 6≡ 0 such that for all p ≥ 2, Ψ(u) ∈ Lp(dµ) and

ΨN (u) −→ Ψ(u), in Lp(dµ).

(In particular ‖ΨN (u)‖Lp
µ
≤ C uniformly in N ≥ 1.) This enables to define a probability measure

on Xσc(M) by

dρ(u) = Ψ(u)dµ(u),

which is formally invariant by the equation.

Step 3: The measure νN : We abuse notation and write

C
(
[−T, T ];Xσc(M)

)
=
⋂

σ<σc

C
(
[−T, T ];Hσ(M)

)
.
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We denote by νN = ρN ◦ Φ−1
N the measure on C

(
[−T, T ];Xσc(M)

)
, defined as the image measure

of ρN by the map

Xσc(M) −→ C
(
[−T, T ];Xσc(M)

)

v 7−→ ΦN (t)(v).

In particular, for any measurable F : C
(
[−T, T ];Xσc(M)

)
−→ R

(3.2)

∫

C
(
[−T,T ];Xσc

) F (u)dνN (u) =

∫

Xσc

F
(
ΦN (t)(v)

)
dρN (v).

For each model we consider, we show that the corresponding sequence of measures (νN ) is tight in

C
(
[−T, T ];Hσ(M)

)
for all σ < σc. Therefore, for all σ < σc, by the Prokhorov theorem, there exists

a measure νσ = ν on C
(
[−T, T ];Hσ(M)

)
so that the weak convergence holds (up to a sub-sequence):

For all σ < σc and all bounded continuous F : C
(
[−T, T ];Hσ(M)

)
−→ R

lim
N→∞

∫

C
(
[−T,T ];Hσ

) F (u)dνN (u) =

∫

C
(
[−T,T ];Hσ

) F (u)dν(u).

At this point, observe that if σ1 < σ2, then νσ1 ≡ νσ2 on C
(
[−T, T ];Hσ1(M)

)
. Moreover, by the

standard diagonal argument, we can ensure that ν is a measure on C
(
[−T, T ];Xσc(M)

)
.

Finally, with the Skorokhod theorem, we can construct a sequence of random variables which con-

verges to a solution of the initial problem.

We now state a result which will be useful in the sequel. Assume that ρN satisfies the properties

mentioned in Step 2.

Proposition 3.1. — Let σ < σc. Let p ≥ 2 and r > p. Then for all N ≥ 1

(3.3)
∥∥‖u‖Lp

THσ
x

∥∥
Lp
νN

≤ CT 1/p
∥∥‖v‖Hσ

x

∥∥
Lr
µ
.

Let q ≥ 1, p ≥ 2 and r > p. Then for all N ≥ 1

(3.4)
∥∥‖u‖Lp

TLq
x

∥∥
Lp
νN

≤ CT 1/p
∥∥‖v‖Lq

x

∥∥
Lr
µ
.

In case ΨN ≤ C, one can take r = p in the previous inequalities.

Proof. — We apply (3.2) with the function u 7−→ F (u) = ‖u‖p
Lp
THσ

x
. Here and after, we make the

abuse of notation
∥∥‖u‖Lp

THσ
x

∥∥
Lp
νN

= ‖u‖Lp
νN

Lp
THσ

x
.
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Then

‖u‖p
Lp
νN

Lp
THσ

x
=

∫

C
(
[−T,T ];Xσc

) ‖u‖pLp
THσ

x
dνN (u)

=

∫

Xσc

‖ΦN (t)(v)‖p
Lp
T Hσ

x
dρN (v)

=

∫

Xσc

[ ∫ T

−T
‖ΦN (t)(v)‖pHσ

x
dt
]
dρN (v)

=

∫ T

−T

[ ∫

Xσc

‖ΦN (t)(v)‖pHσ
x
dρN (v)

]
dt,(3.5)

where in the last line we used Fubini. Now we use the invariance of ρN under ΦN , and we deduce that

for all t ∈ [−T, T ] ∫

Xσc

‖ΦN (t)(v)‖pHσ
x
dρN (v) =

∫

Xσc

‖v‖pHσ
x
dρN (v).

Therefore, from (3.5) and Hölder we obtain with 1/r1 + 1/r2 = 1

‖u‖p
Lp
νN

Lp
THσ

x
= 2T

∫

Xσc

‖v‖pHσ
x
dρN (v)

= 2T

∫

Xσc

‖v‖pHσ
x
ΨN (v)dµ(v)

≤ C‖v‖p
L
pr1
µ Hσ

x
‖ΨN (v)‖Lr2

µ
.

Now, let r > p, take r1 = r/p and we can conclude since ΨN ∈ Lr2(dµ).

For the proof of (3.4), we proceed similarly. We take F (u) = ‖u‖p
Lp
TLq

x
in (3.2), and use the same

arguments as previously.

3.2. Some deterministic estimates. — We now state an interpolation result, which will be useful

for the study of each model. Consider (en)n≥1 a Hilbertian basis of L2 = L2(M) of eigenfunctions

of ∆:

−∆en = λ2
nen, n ≥ 1.

For u =
∑

n≥1

αnen, we define the spectral projector

∆ju =
∑

n≥1 : 2j≤〈λn〉<2j+1

αnen,

so that we have u =
∑

j≥0

∆ju and for σ ∈ R

C12
jσ‖∆ju‖L2 ≤ ‖∆ju‖Hσ(M) ≤ C22

jσ‖∆ju‖L2 .

Define the space W 1,p
T by the norm ‖u‖

W 1,p
T

= ‖u‖Lp
T
+ ‖∂tu‖Lp

T
. Then
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Lemma 3.2. — Let T > 0 and p ∈ [1,+∞]. Assume that u ∈ Lp
(
[−T, T ];L2

)
and ∂tu ∈

Lp
(
[−T, T ];L2

)
. Then u ∈ L∞

(
[−T, T ];L2

)
and

‖u‖L∞

T L2 ≤ C‖u‖1−1/p

Lp
TL2 ‖u‖1/pW 1,p

T L2
.

Proof. — Let γ ∈ L2(M) be so that ‖γ‖L2 = 1, and define v(t) = 〈u(t), γ〉. Then we clearly have

‖v‖Lp
T
≤ ‖u‖Lp

TL2 , ‖∂tv‖Lp
T
≤ ‖∂tu‖Lp

TL2 ,

and from the Gagliardo-Nirenberg inequality we deduce

(3.6) ‖v‖L∞

T
≤ C‖v‖1−1/p

Lp
T

‖v‖1/p
W 1,p

T

≤ C‖u‖1−1/p

Lp
TL2 ‖u‖1/pW 1,p

T L2
.

Now from (3.6) we get

‖u‖L∞

T L2 = sup
t∈[−T,T ]

‖u(t)‖L2

= sup
t∈[−T,T ]

sup
‖γ‖L2=1

v(t)

= sup
‖γ‖L2=1

sup
t∈[−T,T ]

v(t) ≤ C‖u‖1−1/p

Lp
TL2 ‖u‖1/pW 1,p

T L2
.

This completes the proof of Lemma 3.2.

Denote by Hσ = Hσ(M). Using the previous result we can prove

Lemma 3.3. — Let T > 0 and p ∈ [1,+∞]. Let −∞ < σ2 ≤ σ1 < +∞ and assume that u ∈
Lp
(
[−T, T ];Hσ1

)
and ∂tu ∈ Lp

(
[−T, T ];Hσ2

)
. Then for all ε > σ1/p−σ2/p, u ∈ L∞

(
[−T, T ];Hσ1−ε

)

and

(3.7) ‖u‖L∞

T Hσ1−ε ≤ C‖u‖1−1/p

Lp
THσ1

‖u‖1/p
W 1,p

T Hσ2
.

Moreover, there exists η > 0 and θ ∈ [0, 1] so that for all t1, t2 ∈ [−T, T ]

‖u(t1)− u(t2)‖Hσ1−2ε ≤ C|t1 − t2|η‖u‖1−θ
Lp
THσ1

‖u‖θ
W 1,p

T Hσ2
.

Proof. — We use the frequency decomposition as recalled at the beginning of the section, and apply

Lemma 3.2 to ∆ju

‖∆ju‖L∞

T Hσ1−ε ≤ C2j(σ1−ε)‖∆ju‖L∞

T L2

≤ C2j(σ1−ε)‖∆ju‖1−1/p

Lp
TL2

(
‖∂t∆ju‖Lp

TL2 + ‖∆ju‖Lp
TL2

)1/p

≤ C2j(σ1−ε)2−jσ1(1−1/p)2−jσ2/p‖∆ju‖1−1/p

Lp
THσ1

‖∆ju‖1/p
W 1,p

T Hσ2

≤ C2−j(ε−σ1/p+σ2/p)‖u‖1−1/p

Lp
THσ1

‖u‖1/p
W 1,p

T Hσ2
.
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This inequality together with ‖u‖L∞

T Hσ1−ε ≤
∑

j≥0

‖∆ju‖L∞

T Hσ1−ε yields (3.7). By Hölder we get

(3.8) ‖u(t1)− u(t2)‖Hσ2 = ‖
∫ t2

t1

∂τu(τ)dτ‖Hσ2 ≤ |t1 − t2|1−1/p‖∂tu‖Lp
THσ2 .

Next by interpolation, there exists θ0 ∈ (0, 1) so that

‖u(t1)− u(t2)‖Hσ1−2ε ≤ ‖u(t1)− u(t2)‖1−θ0
Hσ1−ε‖u(t1)− u(t2)‖θ0Hσ2

≤ C‖u‖1−θ0
L∞

T Hσ1−ε‖u(t1)− u(t2)‖θ0Hσ2 ,

and the result follows from this latter inequality combined with (3.7) and (3.8).

4. The nonlinear Schrödinger equation on the three dimensional sphere

4.1. The setting. — Let S3 be the unit sphere in R4. Consider the non linear Schrödinger equation

(4.1)

{
i∂tu+ (∆− 1)u = |u|r−1u, (t, x) ∈ R× S

3,

u(0, x) = f(x) ∈ Hσ(S3),

where ∆ = ∆S3 stands for the Laplace-Beltrami operator, and where 1 ≤ r < 5. In the sequel we

consider functions which only depend on the geodesic distance to the north pole, these are called

zonal functions. Denote by Z(S3) this space. Roughly speaking, this is the same type of reduction as

restricting to radial functions in R
3. Denote by L2

rad(S
3) = L2(S3)∩Z(S3). We endow this space with

the natural norm

‖f‖L2
rad(S

3) =
( ∫

S3

|f |2
) 1

2
=
( ∫ π

0
|f(x)|2(sinx)2dx

) 1
2
,

where x ∈ [0, π] represents the geodesic distance to the north pole of S
3. The operator ∆ can be

restricted to L2
rad, and it reads

∆ =
∂2

∂x2
+

2

tan x

∂

∂x
.

One of the main interests to restrict to zonal functions, is that the eigenvalues of ∆ in L2
rad(S

3)

are simple. The family (Pn)n≥1 defined in (1.2) is a Hilbertian basis of L2
rad(S

3) of eigenfunction

of the Laplacian: For all n ≥ 1, −∆Pn = (n2 − 1)Pn. We define the operator Λ =
(
1 − ∆

) 1
2 , in

particular ΛPn = nPn.

Let us define the complex vector space EN = span
(
(Pn)1≤n≤N

)
. Then we introduce a smooth

version of the usual spectral projector on EN . Let χ ∈ C∞
0 (−1, 1), so that χ ≡ 1 on (−1/2, 1/2). We

then define

SN

(∑

n≥1

cnPn

)
= χ(

Λ

N
)
∑

n≥1

cnPn =
∑

n≥1

χ(
n

N
)cnPn.

One of the advantages of this operator compared with the usual spectral projector, is the following

result. See Burq-Gérard-Tzvetkov [9] for a proof.
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Lemma 4.1. — Let 1 < p < ∞. Then SN : Lp(S3) −→ Lp(S3) is continuous and there exists C > 0

so that for all N ≥ 1,

‖SN‖Lp(S3)→Lp(S3) ≤ C.

Moreover, for all f ∈ Lp(S3), SNf −→ f in Lp(S3), when N −→ +∞.

4.2. Preliminaries: Some estimates. — In the sequel, we will need a particular case of Sogge’s

estimates.

Lemma 4.2. — The following bounds hold true for n ≥ 1

(4.2) ‖Pn‖Lp(S3) ≤
{

Cn1/2−1/p, if 2 ≤ p ≤ 4,

Cn1−3/p, if 4 ≤ p ≤ ∞.

Proof. — The bound for p = ∞ is clear by the definition (1.2). The case p = 4 is proved in [45,

Lemma 10.1] thanks to the formula

PkPℓ =

√
2

π

min (k,ℓ)∑

j=1

P|k−ℓ|+2j−1, k, ℓ ≥ 1.

The general case follows from Hölder.

The next Lemma (Khinchin inequality) shows a smoothing property of the random series in the Lp

spaces. See e.g. [15, Lemma 4.2] for the proof.

Lemma 4.3. — There exists C > 0 such that for all p ≥ 2 and (cn) ∈ ℓ2(N)

(4.3) ‖
∑

n≥1

gn(ω) cn‖Lp
p
≤ C

√
p
(∑

n≥1

|cn|2
) 1

2
.

Define µ = p ◦ ϕ−1, with ϕ given in (1.4). Then we can state

Lemma 4.4. — Let σ < 1
2 , then there exists C > 0 so that for all p ≥ 2

(4.4)
∥∥‖v‖Hσ

x

∥∥
Lp
µ
≤ C

√
p.

Let 2 ≤ q < 6, then there exists C > 0 so that for all p ≥ q

(4.5)
∥∥‖v‖Lq

x

∥∥
Lp
µ
≤ C

√
p.

Proof. — We prove (4.4). Let σ < 1/2 and apply (4.3) to (1−∆)σ/2ϕ =
∑

n≥1

gn
n1−σ

Pn. Then

‖(1−∆)σ/2ϕ‖Lp
p
≤ C

√
p
(∑

n≥1

|Pn|2
n2(1−σ)

) 1
2
.

Take the L2(S3) norm of the previous inequality, and by the Minkowski inequality the claim follows.

The proof of (4.5) is similar, using (4.2) and the Minkowski inequality.

We will also need the next result. See [12, Lemma 3.3] for the proof.
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Lemma 4.5. — Let 2 ≤ q < 6. Then there exist c, C > 0 so that for all N ≥ 1 and λ > 0

µ
(
u ∈ X1/2(S3) : ‖SNu‖Lq(S3) > λ

)
≤ Ce−cλ2

.

Moreover there exist α, c, C > 0 so that for all 1 ≤ M ≤ N and λ > 0

(4.6) µ
(
u ∈ X1/2(S3) : ‖SNu− SMu‖Lq(S3) > λ

)
≤ Ce−cMαλ2

.

4.3. A convergence result. — Let 1 ≤ r < 5 and recall the definition (1.5) of G. Let N ≥ 1 and

set GN = βNG ◦ SN , where βN > 0 is chosen such that

dρN (u) = GN (u)dµ(u),

defines a probability measure on X1/2(S3). The next statement shows that we can pass to the limit

N −→ +∞ in the previous expression.

Proposition 4.6. — Let p ∈ [1,∞[, then

GN (u) −→ G(u), in Lp(dµ(u)),

when N −→ +∞.

In particular, for any Borel set A ⊂ X1/2(S3), lim
N→∞

ρN (A) = ρ(A). Observe that for all N ≥ 1,

ρN
(
X1/2\X1/2

rad

)
= 0, as well as ρ

(
X1/2\X1/2

rad

)
= 0.

Proof. — Let q < 6. By (4.6), we deduce that ‖SNu‖Lq
x

−→ ‖u‖Lq
x

in mesure, w.r.t. µ, hence

GN (u) = G(SNu) −→ G(u). In other words, if for ε > 0 and N ≥ 1 we denote by

AN,ε =
{
u ∈ X1/2(S3) : |GN (u)−G(u)| ≤ ε},

then µ(Ac
N,ε) −→ 0, when N −→ +∞. Now use that 0 ≤ G,GN ≤ 1

‖G−GN‖Lp
µ

≤ ‖(G −GN )1AN,ε
‖Lp

µ
+ ‖(G−GN )1Ac

N,ε
‖Lp

µ

≤ ε
(
µ(AN,ε )

)1/p
+ 2
(
µ(Ac

N,ε)
)1/p ≤ Cε,

for N large enough. This ends the proof.

4.4. Study of the measure νN . — Let N ≥ 1. We then consider the following approximation

of (4.1)

(4.7)

{
i∂tu+ (∆− 1)u = SN

(
|SNu|r−1SNu

)
, (t, x) ∈ R× S

3,

u(0, x) = v(x) ∈ X
1/2
rad (S

3).

The main motivation to introduce this system is the following proposition, which is directly inspired

from [12, Section 8]. Therefore we omit the proof.

Proposition 4.7. — The equation (4.7) has a global flow ΦN . Moreover, the measure ρN is invariant

under ΦN : For any Borel set A ⊂ X
1/2
rad(S

3) and for all t ∈ R, ρN
(
ΦN (t)(A)

)
= ρN

(
A
)
.

In particular if L
X

1/2
rad

(v) = ρN then for all t ∈ R, L
X

1/2
rad

(ΦN (t)v) = ρN .
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Remark 4.8. — Observe that (4.7) is not a finite dimensional system of ODE, but its flow restricted

to high frequencies is linear.

We denote by νN the measure on C
(
[−T, T ];X1/2(S3)

)
, defined as the image measure of ρN by the

map

X1/2(S3) −→ C
(
[−T, T ];X1/2(S3)

)

v 7−→ ΦN (t)(v).

Lemma 4.9. — Let σ < 1
2 and p ≥ 2. Then for all N ≥ 1

(4.8)
∥∥‖u‖Lp

THσ
x

∥∥
Lp
νN

≤ C.

Let 2 ≤ q < 6 and p ≥ q. Then for all N ≥ 1

(4.9)
∥∥‖u‖Lp

TLq
x

∥∥
Lp
νN

≤ C.

Proof. — By (3.3) and the fact that G ≤ C we already have

‖u‖Lp
νN

Lp
THσ

x
≤ C‖v‖Lp

µHσ
x
= C‖ϕ‖Lp

pHσ
x
,

where we used the transport property (3.1) with the map f : u 7−→ ‖u‖pHσ
x
. Finally we conclude

with (4.4).

For the proof of (4.9), we use (3.4) and (4.5).

Lemma 4.10. — Let σ > 3
2 and p ≥ 2. Then there exists C > 0 so that for all N ≥ 1

(4.10)
∥∥‖u‖W 1,p

T H−σ
x

∥∥
Lp
νN

≤ C.

Proof. — By (4.8) it is enough to show that
∥∥‖∂tu‖Lp

TH−σ
x

∥∥
Lp
νN

≤ C. By definition

‖∂tu‖pLp
νN

Lp
TH−σ

x
=

∫

C
(
[−T,T ];X1/2(S3)

) ‖∂tu‖pLp
TH−σ

x
dνN (u)

=

∫

X1/2(S3)
‖∂tΦN (t)(v)‖p

Lp
T H−σ

x
dρN (v).

Now we use that wN := ΦN (t)(v) satisfies (4.7) to get

‖∂twN‖Lp
ρN

Lp
TH−σ

x
≤ ‖(∆ − 1)wN‖Lp

ρN
Lp
TH−σ

x
+ ‖SN

(
|SNwN |r−1SNwN

)
‖Lp

ρN
Lp
TH−σ

x
,

which in turn implies

(4.11) ‖∂tu‖Lp
νN

Lp
TH−σ

x
≤ ‖(∆ − 1)u‖Lp

νN
Lp
TH−σ

x
+ ‖SN

(
|SNu|r−1SNu

)
‖Lp

νN
Lp
TH−σ

x
.

Firstly, by (4.8) we get for σ > 1/2

(4.12) ‖(∆ − 1)u‖Lp
νN

Lp
TH−σ

x
= ‖u‖Lp

νN
Lp
TH2−σ

x
≤ C.
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Then by Sobolev, since σ > 3/2, we get ‖g‖H−σ
x

≤ C‖g‖L1
x
. Therefore

‖SN

(
|SNu|r−1SNu

)
‖Lp

νN
Lp
TH−σ

x
≤ C‖SN

(
|SNu|r−1SNu

)
‖Lp

νN
Lp
TL1

x

≤ C‖SNu‖r
Lrk
νN

Lrk
T Lr

x

≤ C‖u‖r
Lrk
νN

Lrk
T Lr

x
,

where we used twice the continuity of SN on Lp
x spaces (see Lemma 4.1). Now, since 1 ≤ r < 5 we can

apply (4.9) and this together with (4.12) implies the result.

4.5. The convergence argument. —

Proposition 4.11. — Let T > 0 and σ < 1
2 . Then the family of measures

νN = LCTHσ

(
uN (t); t ∈ [−T, T ]

)
N≥1

is tight in C
(
[−T, T ];Hσ(S3)

)
.

Proof. — Let σ < 1
2 . Fix σ < s′ < s′′ < 1

2 and α > 0. We define the space Cα
TH

s′ =

Cα
(
[−T, T ];Hs′(S3)

)
by the norm

‖u‖Cα
THs′ = sup

t1,t2∈[−T,T ], t1 6=t2

‖u(t1)− u(t2)‖Hs′
x

|t1 − t2|α
+ ‖u‖L∞

T Hs′
x
,

and it is classical that the embedding Cα
TH

s′ ⊂ C
(
[−T, T ];Hσ(S3)

)
is compact.

We now claim that there exists 0 < α ≪ 1 so that for all p ≥ 1 we have the bound

(4.13) ‖u‖Lp
νN

Cα
THs′ ≤ C.

Indeed apply Lemma 3.3 with σ1 = s′′ and σ2 = σ. Then for p large enough we have

‖u‖Cα
THs′ ≤ C‖u‖1−θ

Lp
THs′′

‖u‖θ
W 1,p

T H−σ ≤ C‖u‖Lp
THs′′ + C‖u‖

W 1,p
T H−σ ,

for some small α > 0. By (4.8) and (4.10) we then deduce ‖u‖Lp
νN

Cα
THs′ ≤ C. (The fact that (4.13) is

indeed true for any p ≥ 1 is a consequence of Hölder.) Let δ > 0 and define

Kδ =
{
u ∈ CTHσ s.t. ‖u‖Cα

THs′ ≤ δ−1
}
.

Thanks to the previous considerations, the set Kδ is compact. Finally, by Markov and (4.13) we get

that

νN (Kc
δ ) ≤ δ ‖u‖L1

νN
Cα
THs′ ≤ δC,

which shows the tightness of (νN ).

The result of Proposition 4.11 enables us to use the Prokhorov theorem: For each T > 0 there exists

a sub-sequence νNk
and a measure ν on the space C

(
[−T, T ];X1/2(S3)

)
so that for all τ < 1/2 and all
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bounded continuous function F : C
(
[−T, T ];Hτ (S3)

)
−→ R

∫

C
(
[−T,T ];Hτ

) F (u)dνNk
(u) −→

∫

C
(
[−T,T ];Hτ

) F (u)dν(u).

By the Skorokhod theorem, there exists a probability space (Ω̃, F̃ , p̃), a sequence of random vari-

ables (ũNk
) and a random variable ũ with values in C

(
[−T, T ];X1/2(S3)

)
so that

(4.14) L
(
ũNk

; t ∈ [−T, T ]
)
= L

(
uNk

; t ∈ [−T, T ]
)
= νNk

, L
(
ũ; t ∈ [−T, T ]

)
= ν,

and for all τ < 1/2

(4.15) ũNk
−→ ũ, p̃− a.s. in C

(
[−T, T ];Hτ (S3)

)
.

We now claim that LX1/2(uNk
(t)) = LX1/2(ũNk

(t)) = ρNk
, for all t ∈ [−T, T ] and k ≥ 1. For

all t ∈ [−T, T ], the evaluation map

Rt : C
(
[−T, T ];X1/2(S3)

)
−→ X1/2(S3)

u 7−→ u(t, .),

is well defined and continuous. Then, for all t ∈ [−T, T ], uNk
(t) and ũNk

(t) have same distribution.

Let us now determine the distribution of uNk
(t) which we denote by νtNk

. By definition of νtNk
and νNk

we have for all measurable F : X1/2(S3) −→ R

∫

X1/2(S3)
F (v)dνtNk

(v) =

∫

C
(
[−T,T ];X1/2(S3)

) F (Rtu)dνNk
(u)

=

∫

X1/2(S3)
F
(
RtΦNk

(·)w
)
dρNk

(w)

=

∫

X1/2(S3)
F
(
ΦNk

(t)(w)
)
dρNk

(w).

From the invariance of ρNk
under ΦNk

we get νtNk
= ρNk

.

Thus from (4.15) and the convergence property of Proposition 4.6, we deduce that

(4.16) LX1/2(ũ(t)) = ρ, ∀ t ∈ [−T, T ].

Let k ≥ 1 and t ∈ R and consider the r.v. Xk given by

Xk = i∂tuNk
+ (∆− 1)uNk

− SNk

(
|SNk

uNk
|r−1SNk

uNk

)
.

Define X̃k similarly to Xk with uNk
replaced with ũNk

. Then by (4.14), LCTX1/2(X̃Nk
) =

LCTX1/2(XNk
) = δ0, in other words, X̃k = 0 p̃ – a.s. and ũNk

satisfies the following equation

p̃ – a.s.

(4.17) i∂tũNk
+ (∆− 1)ũNk

= SNk

(
|SNk

ũNk
|r−1SNk

ũNk

)
.
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We now show that we can pass to the limit k −→ +∞ in (4.17) in order to show that ũ is p̃ – a.s.

a solution to (4.1). Firstly, from (4.15) we deduce the convergence of the linear terms of the equation.

Indeed, p̃ – a.s. , when k −→ +∞

i∂tũNk
+ (∆− 1)ũNk

−→ i∂tũ+ (∆− 1)ũ in D′
(
[−T, T ]× S

3
)
.

To handle the nonlinear term, we apply the next lemma.

Lemma 4.12. — Let 1 ≤ r < 5. Up to a sub-sequence, the following convergence holds true

ũNk
−→ ũ, p̃− a.s. in Lr

(
[−T, T ]× S

3
)
.

Proof. — In order to simplify the notations in the proof, we drop all the tildes and write Nk ≡ k and

Lp
t,x = Lp([−T, T ] × S

3). If 1 ≤ r ≤ 2, the result immediately follows from (4.15). For 2 < r < 5, by

the Hölder inequality,

(4.18) ‖uk − u‖Lr
t,x

≤ ‖uk − u‖θL2
t,x
‖uk − u‖1−θ

Lr+1
t,x

,

with θ = 2
r(r−1) . By (4.15), a.s. in ω ∈ Ω

(4.19) ‖uk − u‖L2
t,x

−→ 0.

Let ε > 0 and λ > 0. By the inclusion

∀ X,Y ≥ 0,
{
XY > λ

}
⊂
{
X > εθλ

}
∪
{
Y > ε−θ

}
,

together with (4.18) and the Markov inequality we have

(4.20) p
(
‖uk − u‖Lr

t,x
> λ

)

≤ p
(
‖uk − u‖θL2

t,x
> εθλ

)
+ p

(
‖uk − u‖1−θ

Lr+1
t,x

> ε−θ
)

≤ p
(
‖uk − u‖L2

t,x
> ελ1/θ

)
+ ε2/(r−2)

∫

Ω
‖uk − u‖r+1

Lr+1
t,x

dp.

By (4.9) and the definition of νk
∫

Ω
‖uk‖r+1

Lr+1
t,x

dp =

∫
‖w‖r+1

Lr+1
t,x

dνk(w) ≤ CT .

Similarly,

∫

Ω
‖u‖r+1

Lr+1
t,x

dp ≤ CT . Therefore

∫

Ω
‖uk − u‖r+1

Lr+1
t,x

dp is bounded uniformly in k. Thus, thanks

to (4.19) and (4.20), we get the following convergence in probability

∀λ > 0, p
(
‖uk − u‖Lr

t,x
> λ

)
−→ 0, when k −→ +∞,

and after passing to a sub-sequence, we obtain the announced almost sure convergence.
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4.6. Conclusion of the proof of Theorem 1.1. — Define f̃ = ũ(0). Then by (4.16),

LX1/2( f̃ ) = ρ and by the previous arguments, there exists Ω̃′ ⊂ Ω̃ such that p̃(Ω̃′) = 1.

Set Σ = f̃(Ω′), then ρ(Σ) = p̃(Ω̃′) = 1. Moreover, for ω′ ∈ Ω̃′, the r.v. ũ satisfies the equation

(4.21)

{
i∂tũ+ (∆− 1)ũ = |ũ|r−1ũ, (t, x) ∈ R× S

3,

ũ(0, x) = f̃(x) ∈ X
1/2
rad (S

3).

It remains to check that we can construct a global dynamics. Take a sequence TN → +∞, and

perform the previous argument for T = TN . For all N ≥ 1, let ΣN be the corresponding set of initial

conditions and set Σ = ∩N∈NΣN . Then ρ(Σ) = 1 and for all f̃ ∈ Σ, there exists

ũ ∈ C
(
R ;X

1/2
rad(S

3)
)
,

which solves (4.21).

This completes the proof of Theorem 1.1.

5. The Benjamin-Ono equation

5.1. Preliminaries. — As in [44], consider the following approximation of (1.7)

(5.1)

{
∂tu+H∂2

xu+ΠN∂x
(
(ΠNu)2

)
= 0, (t, x) ∈ R× S

1,

u(0, x) = f(x).

This equation is a linear PDE for the high frequencies (modes larger than 2N) and an ODE for the

low frequencies. It is staightforward to check that the quantity ‖u‖L2(S1) is preserved by the equation,

thus (5.1) admits a global flow ΦN (t). The motivation for introducing (5.1), is that it is given by the

Hamiltonian

HN (u) = −1

2

∫

S1

(
|Dx|1/2u

)2 − 1

3

∫

S1

(
ΠNu

)3
.

As a consequence, we can check that the measure ρN as defined in (1.9) is invariant by ΦN . See [44]

for more details.

We now state a technical result which we will need in the sequel.

Lemma 5.1. — Let α > 1/2, then there exists Cβ > 0 so that for all N ∈ Z

(5.2)
∑

n∈Z

1

〈n〉α〈n−N〉α ≤ Cβ

〈N〉β ,

for all β < 2α− 1 when 1/2 < α ≤ 1 and β = α when α > 1.

Proof. — Cut the sum in two parts

(5.3)
∑

n∈Z

1

〈n〉α〈n−N〉α ≤
∑

|n|≤N/2

1

〈n〉α〈n−N〉α +
∑

|n|>N/2

1

〈n〉α〈n −N〉α .
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Assume that α > 1. Then by (5.3)
∑

n∈Z

1

〈n〉α〈n−N〉α ≤ C

〈N〉α
∑

|n|≤N

1

〈n〉α ≤ C

〈N〉α .

Assume that 1/2 < α ≤ 1 and fix β < 2α− 1. Then by (5.3)
∑

n∈Z

1

〈n〉α〈n−N〉α ≤ C

〈N〉β
∑

|n|≤N/2

1

〈n〉α〈n−N〉α−β
+

C

〈N〉β
∑

|n|>N/2

1

〈n〉α−β〈n−N〉α ≤ C

〈N〉β ,

which completes the proof.

5.2. Definition of the nonlinear term in (1.7). — To begin with, we have

Lemma 5.2. — Let σ > 0. Then there exists C > 0 so that for all p ≥ 2
∥∥‖v‖H−σ

x

∥∥
Lp
µ
≤ C

√
p.

The proof is analogous to (4.4) and is omitted here.

We define the term ∂x(u
2) in (1.7) on the support of µ as the limit of a Cauchy sequence. Recall the

notation uN = ΠNu and set Π0 = 1 − Π0 the orthogonal projection on 0-mean functions. The next

result is inspired from [44, Lemma 5.1]

Lemma 5.3. — For all p ≥ 2, the sequence
(
Π0(u2N )

)
N≥1

is Cauchy in Lp
(
X0(S1),B, dµ;H−σ(S1)

)
.

Namely, for all p ≥ 2, there exist η > 0 and C > 0 so that for all 1 ≤ M < N ,
∫

X0(S1)
‖Π0(u2N )−Π0(u2M )‖p

H−σ(S1)
dµ(u) ≤ C

Mη
.

We denote by Π0(u2) its limit. This enables to define

∂x
(
u2
)
:= ∂x

(
Π0(u2)

)
.

Proof. — By the result [43, Proposition 2.4] on the Wiener chaos, we only have to prove the statement

for p = 2.

Firstly, by definition of the measure µ
∫

X0(S1)
‖Π0(u2N )−Π0(u2M )‖2H−σ(S1)dµ(u) =

∫

Ω
‖Π0(ϕ2

N )−Π0(ϕ2
M )‖2H−σ(S1)dp.

Therefore, it is enough to prove that
(
Π0(ϕ2

N )
)
N≥1

is a Cauchy sequence in L2
(
Ω;H−σ(S1)

)
. Let

1 ≤ M < N , let k ∈ Z and denote by ek(x) = eikx. Then, by definition of ϕN ,

Π0(ϕ2
N ) =

∑

0<|n1|,|n2|≤N
n1 6=−n2

gn1gn2

|n1|
1
2 |n2|

1
2

ei(n1+n2)x,

and thus we get

〈Π0(ϕ2
N − ϕ2

M ) | ek 〉 =
∑

B
(k)
M,N

gn1gn2

|n1|
1
2 |n2|

1
2

,
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where B
(k)
M,N is the set defined by

B
(k)
M,N =

{
(n1, n2) ∈ Z

2 s.t. 0 < |n1|, |n2| ≤ N, n1 6= −n2,
(
|n1| > M or |n2| > M

)
and n1 + n2 = k

}
.

Therefore we obtain
∥∥〈Π0(ϕ2

N − ϕ2
M ) | ek 〉

∥∥2
L2(Ω)

=

∫

Ω

∑

(n1,n2)∈B
(k)
M,N

(m1,m2)∈B
(k)
M,N

gn1gn2gm1
gm2

|n1|
1
2 |n2|

1
2 |m1|

1
2 |m2|

1
2

dp.

Since (gn)n∈Z∗ are independent and centred Gaussians, we deduce that each term in the r.h.s. vanishes,

unless (n1, n2) = (m1,m2) or (n1, n2) = (m2,m1). Thus by interpolation between (5.2) and the

inequality
∑

|n|>M

1

|n||n− k| ≤
1

Mθ

∑

n 6=0

1

|n|1−θ|n− k| ≤
Cθ

Mθ
,

we obtain that for all 0 < η < 1 there exists C > 0 so that for all 1 < M < N

∥∥〈Π0(ϕ2
N − ϕ2

M ) | ek 〉
∥∥2
L2(Ω)

≤ C
∑

(n1,n2)∈B
(k)
M,N

1

|n1||n2|

≤ C
∑

|n|>M

1

|n||n− k| ≤
C

Mη〈k〉1−η
.

As a consequence we get

∥∥Π0(ϕ2
N − ϕ2

M )
∥∥2
L2(Ω;H−σ(S1))

=
∑

k∈Z

1

〈k〉2σ
∥∥〈Π0(ϕ2

N − ϕ2
M ) | ek 〉

∥∥2
L2(Ω)

≤ C

Mη

∑

k∈Z

1

〈k〉1+2σ−η
≤ C

Mη
,

whenever we choose η < 2σ.

5.3. Study of the measure νN . — Consider the probability measure ρN defined by (1.9). Define

the measure νN on C
(
[−T, T ];X0(S1)

)
as the image of ρN by the map

X0(S1) −→ C
(
[−T, T ];X0(S1)

)

v 7−→ ΦN (t)(v),

where ΦN is the flow of (5.1). Then, we are able to prove the following bounds

Lemma 5.4. — Let σ > 0 and p ≥ 2. Then there exists C > 0 such that for all N ≥ 1

(5.4)
∥∥‖u‖Lp

TH−σ
x

∥∥
Lp
νN

≤ C,
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and

(5.5)
∥∥‖∂tu‖Lp

TH−σ−2
x

∥∥
Lp
νN

≤ C.

Proof. — The bound (5.4) is obtained thanks to (1.10), (3.3) and Lemma 5.2. We now turn to (5.5).

From the equation

∂tu = −H∂2
xu−ΠN∂x

(
(ΠNu)2

)
,

similarly to (4.11), we deduce

‖∂tu‖Lp
νN

Lp
TH−σ−2

x
≤ ‖u‖Lp

νN
Lp
TH−σ

x
+ ‖Π0(ΠNu)2‖Lp

νN
Lp
TH−σ

x
.

By the invariance of the measure ρN by ΦN we get

∥∥Π0
[
(ΠNu)2

] ∥∥p
Lp
νN

Lp
TH−σ

x
=

∫

C([−T,T ];X0)

∥∥Π0
[
(ΠNu)2]

∥∥p
Lp
TH−σ

x
dνN (u)

=

∫

X0(S1)

∥∥∥Π0
[(

ΠN

[
ΦN (t)(v)

] )2] ∥∥∥
p

Lp
TH−σ

x

dρN (v)

=

∫

X0(S1)

∥∥Π0
[
(ΠNv)2

] ∥∥p
Lp
TH−σ

x
dρN (v)

= 2T

∫

X0(S1)

∥∥Π0
[
(ΠNv)2

] ∥∥p
H−σ

x
ΨN (v)dµ(v),(5.6)

and by Cauchy-Schwarz and Lemma 5.3
∥∥Π0

[
(ΠNu)2

] ∥∥p
Lp
νN

Lp
TH−σ

x
≤ CT

∥∥Π0
[
(ΠNv)2

] ∥∥p
L2p
µ H−σ

x
‖ΨN (v)‖L2

µ
≤ C,

which concludes the proof.

Proposition 5.5. — Let T > 0 and σ > 0. Then the family of measures

νN = LCTH−σ

(
uN (t); t ∈ [−T, T ]

)
N≥1

is tight in C
(
[−T, T ];H−σ(S1)

)
.

Proof. — The proof is similar to the proof of Proposition 4.11. Here we use the estimates (5.4)

and (5.5).

5.4. Proof of Theorem 1.2. — By Proposition 5.5 we can use the Prokhorov theorem: For each

T > 0 there exists a sub-sequence νNk
and a measure ν on the space C

(
[−T, T ];X0(S1)

)
so that

νNk
−→ ν weakly on C

(
[−T, T ];H−σ(S1)

)
, for all σ > 0. By the Skorokhod theorem, there exists a

probability space (Ω̃, F̃ , p̃), a sequence of random variables (ũNk
) and a random variable ũ with values

in C
(
[−T, T ];X0(S1)

)
so that

L
(
ũNk

; t ∈ [−T, T ]
)
= L

(
uNk

; t ∈ [−T, T ]
)
= νNk

, L
(
ũ; t ∈ [−T, T ]

)
= ν,

and for all σ > 0

(5.7) ũNk
−→ ũ, p̃− a.s. in C

(
[−T, T ];H−σ(S1)

)
.
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We have that LX0(S1)(uNk
(t)) = LX0(S1)(ũNk

(t)) = ρNk
, for all t ∈ [−T, T ] and k ≥ 1. Therefore, for

all t ∈ [−T, T ], LX0(S1)(u(t)) = ρ. Next, ũNk
satisfies the following equation p̃ – a.s.

∂tũNk
+H ∂2

xũNk
+ΠNk

∂x
(
(ΠNk

ũNk
)2
)
= 0.

We now show that we can pass to the limit k −→ +∞ in the previous equation. Firstly, from (5.7) we

deduce the convergence of the linear terms of the equation. Indeed, p̃ – a.s. , when k −→ +∞
∂tũNk

+H ∂2
xũNk

−→ ∂tũ+H ∂2
xũ in D′

(
[−T, T ]× S

1
)
.

The only difficulty is to pass to the limit in the non linear term. Here we can proceed as in [23].

Lemma 5.6. — Let σ > 0. Up to a sub-sequence, the following convergence holds true

Π0
[
(ΠNk

ũNk
)2
]
−→ Π0

[
ũ2
]
, p̃− a.s. in L2

(
[−T, T ];H−σ(S1)

)
.

Proof. — In order to simplify the notations, in this proof we drop the tildes and write Nk = k. Let

M ≥ 1 and write

Π0
[
(Πkuk)

2 − u2
]
= Π0

[(
(Πkuk)

2 − u2k
)
+
(
u2k − (ΠMuk)

2
)
+
(
(ΠMuk)

2 − (ΠMu)2
)
+
(
(ΠMu)2 − u2

)]
.

To begin with, by continuity of the square in finite dimension, when k −→ +∞
Π0
[
(ΠMuk)

2
]
−→ Π0

[
(ΠMu)2

]
, p̃− a.s. in L2

(
[−T, T ];H−σ(S1)

)
.

We now deal with the other terms. It is sufficient to show the convergence in the space X := L2
(
Ω×

[−T, T ];H−σ(S1)
)
, since the almost sure convergence follows after exaction of a sub-sequence.

With the same arguments as in (5.6) we obtain

∥∥Π0
[
(ΠMuk)

2 − u2k
] ∥∥2

X
=

∫

C([−T,T ];X0)

∥∥Π0
[
(ΠMv)2 − v2

] ∥∥2
L2
TH−σ

x
dνk(v)

=

∫

X0(S1)

∥∥∥Π0
[[
ΠMΦk(t)(f)

]2 −
[
Φk(t)(f)

]2] ∥∥∥
2

L2
TH−σ

x

dρk(f)

=

∫

X0(S1)

∥∥Π0
[(
ΠMf

)2 − f2
] ∥∥2

L2
TH−σ

x
dρk(f)

= 2T

∫

X0(S1)

∥∥Π0
[(
ΠMf

)2 − f2
] ∥∥2

H−σ
x

Ψk(f)dµ(f),

and by Cauchy-Schwarz and (1.10),
∥∥Π0

[
(ΠMuk)

2 − u2k
] ∥∥

X
≤ C

∥∥Π0
[(
ΠMf

)2 − f2
] ∥∥

L4
µH

−σ
x

.

This latter term tends to 0 uniformly in k ≥ 1 when M −→ +∞, according to Lemma 5.3. The term∥∥Π0
[
(ΠMu)2 − u2

] ∥∥
X

is treated similarly.

Finally, with the same argument we show
∥∥Π0

[
(Πkuk)

2 − u2k
] ∥∥

X
≤ C

∥∥Π0
[(
Πkf

)2 − f2
] ∥∥

L4
µH

−σ
x

,

which tends to 0 when k −→ +∞. This completes the proof.

The conclusion of the proof of Theorem 1.2 is similar to the argument in Subsection 4.6.
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6. The derivative nonlinear Schrödinger equation

6.1. Hamiltonian formalism of DNLS. — To begin with, we recall some facts which are explained

in the appendix of [43]. We define the operator ∂−1 by

∂−1 : f(x) =
∑

n∈Z

αneinx 7−→
∑

n∈Z\{0}

αn

in
einx,

and the skew symmetric operator (K(u, v)∗ = −K(u, v))

(6.1) K(u, v) =

(
−u∂−1u· −i+ u∂−1v·
i+ v∂−1u· −v∂−1v·

)
.

Define H by

H(u(t)) =

∫

S1

|∂xu|2dx+
3

4
i

∫

S1

u2 ∂x(u
2)dx+

1

2

∫

S1

|u|6dx,

and introduce the Hamiltonian system

(6.2)

(
∂tu

∂tv

)
= K(u, v)

(
δH
δu (u, v)

δH
δv (u, v)

)
.

Denote by

(6.3) Tu(t) = 2 Im

∫

S1

u∂xu+
3

2

∫

S1

|u|4,

then the system (6.2) is a Hamiltonian formulation of the equation

(6.4) i∂tu+ ∂2
xu = i∂x

(
|u|2u

)
+ Tu(t)u,

in the coordinates (u, v) = (u, u) (see [43, Proposition A.2]). Now, if we set

(6.5) v(t, x) = ei
∫ t
0 Tu(s)dsu(t, x),

then v is the solution of the equation
{
i∂tv + ∂2

xv = i∂x
(
|v|2v

)
, (t, x) ∈ R× S

1,

v(0, x) = u0(x).

Moreover, if u and v are linked by (6.5), we have Tu = Tv.

Thanks to these observations, we can focus on the equation (6.4). We introduce a natural truncation

for which we can construct an invariant Gibbs measure. Namely, let K be given by (6.1), and consider

the following system

(6.6)

(
∂tu

∂tv

)
= ΠNK(uN , vN )ΠN

(
δH
δu (uN , vN )

δH
δv (uN , vN )

)
.
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This is an Hamiltonian system with Hamiltonian H(ΠNu,ΠNv). Now we assume that v = u and we

compute the equation satisfied by uN : this will be a finite dimensional approximation of (6.4). Denote

by Π⊥
N = 1−ΠN , then in the coordinates vN = uN , the system (6.6) reads

(6.7) i∂tu+ ∂2
xuN = iΠN

(
∂x(|uN |2uN )

)
+ uNTuN

+RN (uN ), (t, x) ∈ R× S
1,

where

RN (uN ) =
3

2
ΠN

(
uN∂−1

[
uNΠ⊥

N

(
uN∂x(uN

2)
)
+ uNΠ⊥

N

(
uN∂x(uN

2)
)])

+
3

2
iΠN

(
uN∂−1

[
uNΠ⊥

N

(
|uN |4uN

)
− uNΠ⊥

N

(
|uN |4uN

)])

:= R1
N (uN ) +R2

N (uN ).(6.8)

For all N ≥ 1, this equation is globally well-posed in L2(S1) and denote by ΦN the flowmap. Moreover,

the measure ρN defined in (1.13) is invariant by ΦN (see [43, Proposition A.4]).

Recall that µ = p ◦ ϕ−1 with ϕ as in (1.12). We need to give a sense to the expression Tu in (6.3)

on the support of µ.

Lemma 6.1. — For all p ≥ 2, the sequence
(
TuN

)
N≥1

is a Cauchy sequence in Lp
(
X1/2(S1),B, dµ;R

)
.

Namely, for all p ≥ 2, there exists C > 0 so that for all 1 ≤ M < N ,
∫

X1/2(S1)
|TuN

− TuM
|pdµ(u) ≤ C

M
.

We denote by Tu the limit of this sequence which is formally given by (6.3).

Proof. — Denote by J(u) = Im

∫

S1

u∂xu. Let 1 ≤ M < N . Then for ϕN (ω, x) =
∑

|n|≤N

gn(ω)

〈n〉 einx we

compute

J(ϕN )− J(ϕM ) = −
∑

M<|n|≤N

n|gn|2
〈n〉2 = −

∑

M<|n|≤N

n(|gn|2 − 1)

〈n〉2 ,

where we used that
∑

M<|n|≤N

n

〈n〉2 = 0. Define the r.v. Gn(ω) = |gn(ω)|2 − 1, hence

(6.9) |J(ϕN )− J(ϕM )|2 =
∑

M<|n1|,|n2|≤N

n1n2Gn1Gn2

〈n1〉2〈n2〉2
.

By independence of the gn, E[GnGm] = Cδn,m. Thus by integration of (6.9)
∫

Ω
|J(ϕN )− J(ϕM )|2dp =

∑

M<|n|≤N

n2

〈n〉4 ≤ C

M
.

By definition of µ we have proved the result for p = 2. The general case p ≥ 2 follows from the Wiener

chaos estimates (see e.g. [43, Proposition 2.4]).
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6.2. Study of the measure νN . — Now define the measure νN = ρN ◦Φ−1
N on C

(
[−T, T ];X1/2(S1)

)

and we have

Lemma 6.2. — Let σ < 1
2 and p ≥ 2. Then for all N ≥ 1

(6.10)
∥∥‖u‖Lp

THσ
x

∥∥
Lp
νN

≤ C.

(6.11)
∥∥‖∂tu‖Lp

THσ−2
x

∥∥
Lp
νN

≤ C.

Proof. — The estimate (6.10) is obtained with Proposition 3.1 and the definition (1.12) of ϕ. Similarly,

we also have that for all 2 ≤ q ≤ p

(6.12) ‖u‖Lp
νN

Lp
TLq

x
≤ C.

We turn to (6.11). From the equation (6.7) we get (similarly to (4.11))

‖∂tu‖Lp
νN

Lp
THσ−2

x
≤

≤ ‖∂2
xu‖Lp

νN
Lp
THσ−2

x
+ ‖∂x(|uN |2uN )‖Lp

νN
Lp
THσ−2

x
+ ‖uNTuN

‖Lp
νN

Lp
THσ−2

x
+ ‖RN (uN )‖Lp

νN
Lp
THσ−2

x

≤ ‖u‖Lp
νN

Lp
THσ

x
+ ‖uN‖3Lp

νN
Lp
TL6

x
+ ‖uNTuN

‖Lp
νN

Lp
TL2

x
+ ‖RN (uN )‖Lp

νN
Lp
THσ−2

x
.

We estimate each term of the r.h.s. By (6.10) and (6.12) we only have to consider the two last ones.

By Cauchy-Schwarz (recall that Tu does not depend on x)

(6.13) ‖uNTuN
‖Lp

νN
Lp
TL2

x
≤ ‖uN‖

L2p
νN

L2p
T L2

x
‖TuN

‖
L2p
νN

L2p
T
.

Then using the invariance of ρN (see the proof of Proposition 3.1) and Lemma 6.1 we have

‖TuN
‖2p
L2p
νN

L2p
T

= 2T

∫

X1/2(S1)
|TvN |2pΨN (v)dµ(v)

≤ C‖TvN ‖2pL4p
µ
‖ΨN (v)‖L2

µ
≤ C,

which by (6.13) implies

‖uNTuN
‖Lp

νN
Lp
TL2

x
≤ C.

The conclusion of the proof is given by the next result.

Lemma 6.3. — Let σ > 1/2 and p ≥ 2. Then
∥∥‖RN (uN )‖Lp

TH−σ
x

∥∥
Lp
νN

−→ 0 when N −→ +∞.

Proof. — To begin with, using the same arguments as in the proof of Proposition 3.1 with F (u) =

‖RN (ΠNu)‖p
Lp
TH−σ

x
we have,

‖RN (uN )‖Lp
νN

Lp
TH−σ

x
≤ C‖RN (vN )‖L2p

µ H−σ
x

,
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where we used that ‖ΨN‖L2
µ
≤ C. We estimate each contribution in the r.h.s. of (6.8).

• Denote by QN (vN ) = vNΠ⊥
N

(
vN∂x(vN

2)
)
. Then by Sobolev and Cauchy-Schwarz

‖R1
N (vN )‖Lr

µH
−σ
x

≤ C‖R1
N (vN )‖Lr

µL
1
x

≤ C‖vN∂−1QN (vN )‖Lr
µL

1
x

≤ ‖vN‖L2r
µ L2

x
‖QN (uN )‖L2r

µ H−1
x

≤ C‖QN (uN )‖L2r
µ H−1

x
.(6.14)

Next, by the definition of µ and the Wiener chaos estimates

‖R1
N (vN )‖Lr

µH
−σ
x

≤ C‖QN (ϕN )‖L2r
p
H−1

x

≤ C‖QN (ϕN )‖L2
pH

−1
x

.(6.15)

We now compute the term ‖QN (ϕN )‖L2
pH

−1
x

. We have

ϕN∂x
(
ϕ2
N

)
= −i

∑

|n1|,|n2|,|n3|≤N

(n1 + n2)gn1 gn2 gn3

〈n1〉〈n2〉〈n3〉
ei(n3−n2−n1)x,

so that

∂−1QN (ϕN ) = −
∑

n∈AN

(n1 + n2)gn1 gn2 gn3 gn4

〈n1〉〈n2〉〈n3〉〈n4〉(n4 + n3 − n2 − n1)
ei(n4+n3−n2−n1)x,

where the set AN is given by

AN :=
{
n = (n1, n2, n3, n4) ∈ Z

4 s.t. |n1|, |n2|, |n3|, |n4| ≤ N,

|n1 + n2 − n3| > N and n4 + n3 − n2 − n1 6= 0
}
.

As a consequence we obtain the following expression

(6.16) ‖QN (ϕN )‖2
H−1

x
=

∑

n,m∈BN

(n1 + n2)(m1 +m2)gn1 gn2 gn3 gn4 gm1 gm2 gm3 gm4

〈n1〉〈n2〉〈n3〉〈n4〉〈m1〉〈m2〉〈m3〉〈m4〉(n4 + n3 − n2 − n1)2
,

with

BN :=
{
n,m ∈ AN s.t. m4 +m3 −m2 −m1 = n4 + n3 − n2 − n1

}
.

We take the expectation of (6.16). By independence of the gn and since they are centered, each

contribution in the r.h.s. is zero, unless
{
n1, n2,m3,m4

}
=
{
m1,m2, n3, n4

}
. But coming back

to the definition of AN , the condition |n1 + n2 − n3| > N implies that n3 6∈
{
n1, n2

}
. Similarly,
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m3 6∈
{
m1,m2

}
. Therefore, up to permutation we have n = m and by (5.2) with α = 2

∫

Ω
‖QN (ϕN )‖2

H−1
x

dp ≤ C
∑

n∈AN

(n1 + n2)
2

〈n1〉2〈n2〉2〈n3〉2〈n4〉2(n4 + n3 − n2 − n1)2

≤ CN2
∑

n∈AN

1

〈n1〉2〈n2〉2〈n3〉2〈n3 − n2 − n1〉2

≤ C
∑

n∈AN

1

〈n1〉2〈n2〉2〈n3〉2
.

Next, use that on AN , 〈n1〉〈n2〉〈n3〉 ≥ CN to get that

(6.17)

∫

Ω
‖QN (ϕN )‖2

H−1
x

dp ≤ C

N1/2

∑

n∈Z3

1

〈n1〉3/2〈n2〉3/2〈n3〉3/2
≤ C

N1/2
.

Finally, from (6.14), (6.15) and (6.17) we conclude that

‖R1
N (uN )‖Lp

νN
Lp
TH−σ

x
−→ 0.

• We now consider the contribution of R2
N . With the same arguments as previously,

‖R2
N (vN )‖Lr

µH
−σ
x

≤ C‖R2
N (vN )‖Lr

µL
1
x

≤ C
∥∥∥vN∂−1

[
vNΠ⊥

N

(
|vN |4vN

)]∥∥∥
Lr
µL

1
x

≤ C‖vN‖L2r
µ L2

x
‖vNΠ⊥

N

(
|vN |4vN

)
‖L2r

µ H−1
x

≤ C‖vNΠ⊥
N

(
|vN |4vN

)
‖L2r

µ L1
x

≤ C‖Π⊥
N

(
|vN |4vN

)
‖L4r

µ L2
x
.

Denote by VN = |vN |4vN . Then by [43, Lemma 2.2], (VN )N≥1 is a Cauchy sequence in L4r
µ L2

x, and

denote by V its limit. Write

‖Π⊥
NVN‖L4r

µ L2
x

≤ ‖Π⊥
N (VN − V )‖L4r

µ L2
x
+ ‖Π⊥

NV ‖L4r
µ L2

x

≤ ‖VN − V ‖L4r
µ L2

x
+ ‖Π⊥

NV ‖L4r
µ L2

x
,

which tends to 0 when N −→ +∞.

Proposition 6.4. — Let T > 0 and σ < 1/2. Then the family of measures

νN = LCTHσ

(
uN (t); t ∈ [−T, T ]

)
N≥1

is tight in C
(
[−T, T ];Hσ(S1)

)
.

Proof. — The proof is similar to the proof of Proposition 4.11. Here we use the estimates (6.10)

and (6.11).
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6.3. Proof of Theorem 1.3. — We can proceed as in the proofs of Theorems 1.1 and 1.2. By

Proposition 6.4 and the Prokhorov theorem we can extract a sub-sequence νNk
and a measure ν on the

space C
(
[−T, T ];X1/2(S1)

)
so that νNk

−→ ν weakly on C
(
[−T, T ];Hσ(S1)

)
for all σ < 1/2. Thanks to

the Skorokhod theorem, there exists a probability space (Ω̃, F̃ , p̃), a sequence of random variables (ũNk
)

and a random variable ũ with values in C
(
[−T, T ];X1/2(S1)

)
so that

L
(
ũNk

; t ∈ [−T, T ]
)
= L

(
uNk

; t ∈ [−T, T ]
)
= νNk

, L
(
ũ; t ∈ [−T, T ]

)
= ν,

and for all σ < 1/2

ũNk
−→ ũ, p̃− a.s. in C

(
[−T, T ];Hσ(S1)

)
.

Moreover, ũNk
satisfies p̃-a.s. the equation (6.7). Passing to the limit in the linear terms makes no

difficulty, we only have to take care on the nonlinear terms. Denote by

GN (u) = iΠN

(
∂x(|uN |2uN )

)
+ uNTuN

+RN (uN ).

The next result completes the proof of Theorem 1.3 (the conclusion of the proof is similar to the

argument in Subsection 4.6).

Lemma 6.5. — Up to a sub-sequence, the following convergence holds true. For any σ > 0

GNk
(ũNk

) −→ i∂x(| ũ |2 ũ) + ũTũ, p̃− a.s. in L2
(
[−T, T ];H−σ(S1)

)
.

Proof. — We drop the tildes and write Nk ≡ N . Since L (uN ) = νN , we can apply Lemma 6.3

‖RN (uN )‖L2
pL

2
TH−σ

x
= ‖RN (uN )‖L2

νN
L2
TH−σ

x
−→ 0,

when N −→ +∞. The convergence of the two other terms is obtained as in Lemma 5.6.

Remark 6.6. — Observe that in all the proof, we only used the fact that ΨN ∈ L2(dµ) uniformly

in N ≥ 1 (and not higher order integrability). Therefore the result of Theorem 1.3 holds for κ ≤ κ2,

and the support of ρ is not empty.

7. The half-wave equation

7.1. Justification of the equation. —

Proof of Proposition 1.4. — We prove the result when p = 2. The general case follows by the Wiener

chaos estimates.

To begin with, use that
∫

X0(S1)
‖GN (u)−GM (u)‖2H−σ(S1)dµ(u) =

∫

Ω
‖GN (ϕ) −GM (ϕ)‖2H−σ(S1)dp.

Therefore, we are reduced to prove that
(
GN (ϕ)

)
N≥1

is a Cauchy sequence in L2
(
Ω;H−σ(S1)

)
. Denote

by (with ϕN = ΠNϕ)

χN = |ϕN |2ϕN − 2‖ϕN‖2L2(S1)ϕN .
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It is enough to show the result for (χN ), because once we know that χN −→ χ in L2
(
Ω;H−σ(S1)

)
,

we deduce that GN (ϕ) = ΠNχN −→ χ in L2
(
Ω;H−σ(S1)

)
. In the sequel, we will use the notation

[n] = 1 + |n|. Then, by definition of ϕN we can compute

χN =
∑

|n1|,|n2|,|n3|≤N

gn1gn2
gn3

[n1]
1
2 [n2]

1
2 [n3]

1
2

ei(n1−n2+n3)x − 2
∑

|n1|,|n3|≤N

|gn1 |2gn3

[n1][n3]
1
2

ein3x

=
∑

|n1|,|n2|,|n3|≤N,
n1 6=n2,n3 6=n2

gn1gn2
gn3

[n1]
1
2 [n2]

1
2 [n3]

1
2

ei(n1−n2+n3)x.

Next, denote by ek(x) = eikx. Then for all 1 ≤ M ≤ N

(7.1) 〈χN − χM | ek〉 =
∑

B
(k)
M,N

gn1gn2
gn3

[n1]
1
2 [n2]

1
2 [n3]

1
2

,

where the set B
(k)
M,N is defined by

B
(k)
M,N =

{
(n1, n2, n3) ∈ Z

3 s.t. 0 < |n1|, |n2|, |n3| ≤ N, n1 6= n2, n3 6= n2,

and
(
|n1| > M or |n2| > M or |n3| > M

)
and n1 − n2 + n3 = k

}
.

From (7.1) we obtain

∥∥〈χN − χM | ek〉
∥∥2
L2(Ω)

=

∫

Ω

∑

(n1,n2,n3)∈B
(k)
M,N

(m1,m2,m3)∈B
(k)
M,N

gn1gn2
gn3gm1

gm2gm3

[n1]
1
2 [n2]

1
2 [n3]

1
2 [m1]

1
2 [m2]

1
2 [m3]

1
2

dp.

Since the (gn) are independent and centered, we deduce that each term in the r.h.s. vanishes, unless

n2 = m2 and (n1, n3) = (m1,m3) or (n1, n3) = (m3,m1). Thus

∥∥〈χN − χM | ek〉
∥∥2
L2(Ω)

≤ C
∑

(n1,n2,n3)∈B
(k)
M,N

1

〈n1〉〈n2〉〈n3〉
.

By symmetry in the previous sum, we can assume that M < |n1| ≤ N , 0 < |n2| ≤ N and write

n3 = k + n2 − n1. Then by (5.2) for some small ε > 0

∥∥〈χN − χM | ek〉
∥∥2
L2(Ω)

≤ C
∑

M<|n1|≤N

1

〈n1〉
∑

n2∈Z

1

〈n2〉〈n2 − (n1 − k)〉

≤ C
∑

M<|n1|≤N

1

〈n1〉〈n1 − k〉1−ε
≤ C

M ε〈k〉1−2ε
.(7.2)
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Now, by (7.2) we get

∥∥χN − χM

∥∥2
L2(Ω;H−σ(S1))

=
∑

k∈Z

1

〈k〉2σ
∥∥〈χN − χM | ek〉

∥∥2
L2(Ω)

≤ C

M ε

∑

k∈Z

1

〈k〉1+2σ−2ε
≤ C

M ε
,

if we choose ε < σ, and this concludes the proof.

As a conclusion, we are able to define a limit G(u) so that for all p ≥ 2

(7.3) ‖G(u)‖Lp
µH−σ(S1) ≤ Cp,

hence the result.

7.2. Construction of the measure ρ. — In this section ϕ is given by (1.14). Denote by

[n] = 1 + |n|, then define αN =
∑

|n|≤N

1

[n]
and

gN (u) = ‖ΠNu‖2L2 − αN .

7.2.1. Preliminar results. — We begin with the following result due to N. Tzvetkov. See [44,

Lemma 4.8] for a proof.

Lemma 7.1. — The sequence
(
gN (u)

)
N≥1

is Cauchy in L2
(
X0(S1),B, dµ

)
. Moreover there exists

c > 0 so that for all λ > 0 and N > M ≥ 1

µ
(
u ∈ X0(S1) : |gN (u)− gM (u)| > λ

)
≤ Ce−cλM1/2

.

Define the sequence

(7.4) fN (u) = −
∫

S1

|uN |4 + 2
( ∫

S1

|uN |2
)2

= −‖uN‖4L4 + 2‖uN‖4L2 .

Proposition 7.2. — The sequence (fN )N≥1 is Cauchy in L2
(
X0(S1),B, dµ

)
. More precisely, there

exists C > 0 so that for all N > M ≥ 1

(7.5) ‖fN (u)− fM (u)‖
L2
(
X0(S1),B,dµ

) ≤ C

M
1
2

.

Moreover, for all p ≥ 2 and N > M ≥ 1

(7.6) ‖fN (u)− fM (u)‖
Lp
(
X0(S1),B,dµ

) ≤ C (p− 1)2

M
1
2

.

Corollary 7.3. — There exists c > 0 so that for all λ > 0 and N > M ≥ 1

µ
(
u ∈ X0(S1) : |fN (u)− fM(u)| > λ

)
≤ Ce−cλ1/2M1/4

.
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Proof of Corollary 7.3. — By Markov and (7.6) we have that for all p ≥ 2

µ
(
u ∈ X0(S1) : |fN (u)− fM (u)| > λ

)
≤ 1

λp
‖fN (u)− fM (u)‖p

Lp
(
X0(S1),B,dµ

) ≤
( Cp2

λM1/2

)p
.

Then choose p = c0λ
1/2M1/4 for c0 > 0 small enough.

Proof of Proposition 7.2. — We prove (7.5). The estimate (7.6) immediately follows from [43, Propo-

sition 2.4]. Firstly, we have

∫

S1

|ϕN |2 =
∑

|n|≤N

|gn|2
[n]

, with the notation [n] = 1 + |n|. Thus

(7.7)
( ∫

S1

|ϕN |2
)2

=
∑

|n|,|m|≤N

|gn|2|gm|2
[n][m]

.

Similarly, we explicitly obtain

(7.8)

∫

S1

|ϕN |4 =
∑

|n1|,|n2|,|n3|,|n4|≤N
n1−n2+n3−n4=0

gn1gn2gn3gn4

[n1]
1
2 [n2]

1
2 [n3]

1
2 [n4]

1
2

.

We introduce the set

AN = {(n1, n2, n3, n4) ∈ Z
4 s.t. |n1|, |n2|, |n3|, |n4| ≤ N and n1 − n2 + n3 − n4 = 0}.

We now split the sum (7.8) in two parts, by distinguishing the cases n3 = n1 and n3 6= n1 in AN

and write

(7.9)

∫

S1

|ϕN |4 = XN + YN ,

with

XN =
∑

BN

gn1gn2gn3gn4

[n1]
1
2 [n2]

1
2 [n3]

1
2 [n4]

1
2

,

where BN = AN ∩ {n1 = n2 or n1 = n4 }, and

(7.10) YN =
∑

AN ,n1 6=n2
n1 6=n4

gn1gn2gn3gn4

[n1]
1
2 [n2]

1
2 [n3]

1
2 [n4]

1
2

.

We observe that if (n1, n2, n3, n4) ∈ BN , then either (n1, n3) = (n2, n4) or (n1, n3) = (n4, n2). Thus

XN =
∑

|n1|,|n3|≤N

|gn1 |2|gn3 |2
[n1][n3]

+
∑

|n1|,|n3|≤N
n1 6=n3

|gn1 |2|gn3 |2
[n1][n3]

= 2
( ∫

S1

|ϕN |2
)2 −

∑

|n|≤N

|gn|4
[n]2

,
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where in the last line we used (7.7). Thus, with (7.9) we obtain

fN(ϕN ) = −
∫

S1

|ϕN |4 + 2
( ∫

S1

|ϕN |2
)2

=
∑

|n|≤N

|gn|4
[n]2

− YN .

We now show that (YN )N≥1 is Cauchy in L2(Ω,F ,p). Let 1 ≤ N < M , then we define

AM,N =
{
(n1, n2, n3, n4) ∈ Z

4 s.t. M < |n1|, |n2|, |n3|, |n4| ≤ N,

n1 − n2 + n3 − n4 = 0 and s.t. |nj| > M for some 1 ≤ j ≤ 4
}
.

Thus, thanks to (7.10) we have

(YM − YN )2 =
∑

AM,N ,
n1 6=n2
n1 6=n4

∑

AM,N ,
m1 6=m2
m1 6=m4

gn1gn2gn3gn4

[n1]
1
2 [n2]

1
2 [n3]

1
2 [n4]

1
2

gm1gm2gm3gm4

[m1]
1
2 [m2]

1
2 [m3]

1
2 [m4]

1
2

.

We take the integral over Ω of the previous sum. By the independence of the Gaussians each term

vanishes unless {n1, n2, n3, n4} = {m1,m2,m3,m4}. Thus

‖YM − YN‖2L2(Ω) ≤ C
∑

AM,N

1

〈n1〉〈n2〉〈n3〉〈n4〉
.

By symmetry of the sum, we can assume that |n1| ≥ M and we replace n4 = n1 − n2 + n3. Then

by (5.2)

‖YM − YN‖2L2(Ω) ≤ C
∑

n1,n2,n3∈Z
|n1|>M

1

〈n1〉〈n2〉〈n3〉〈n1 − n2 + n3〉

≤ C
∑

n1,n2∈Z
|n1|>M

1

〈n1〉〈n2〉〈n1 − n2〉1−ε

≤ C
∑

|n1|≥M

1

〈n1〉2−2ε
≤ C

M1−2ε
,

which was the claim.

7.2.2. The crucial estimate. — We now have all the ingredients to prove the following proposition,

which is the key point in the proof of Theorem 1.6. Recall the definition (7.4).

Proposition 7.4. — Let χ ∈ C∞
0

(
[−R,R]

)
. Then for all 1 ≤ p < ∞ there exists C > 0 such that for

every N ≥ 1, ∥∥∥χ
(
‖ΠNu‖2L2(S1) − αN

)
efN (u)

∥∥∥
Lp(dµ(u))

≤ C .

Proof. — Our aim is to show that the integral
∫∞
0 λp−1µ(Aλ,N )dλ is convergent uniformly with respect

to N , where

Aλ,N =
{
u ∈ X0(S1) : χ

(
‖ΠNu‖2L2(S1) − αN

)
efN (u) > λ

}
.
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Proposition 7.4 is a straightforward consequence of the following lemma.

Lemma 7.5. — For any L > 0, there exists C > 0 such that for every N and every λ ≥ 1,

µ(Aλ,N ) ≤ Cλ−L.

Proof. — Firstly, observe that we can assume that λ ≥ CR for any constant CR > 0. Let c0 > 0 a

small number which will be fixed later and set

M = ec0(lnλ)1/2 .

To begin with µ(Aλ,N ) ≤ µ(Ãλ,N ), where

Ãλ,N =
{
u ∈ X0(S1) : fN(u) > lnλ, |gN (u)| ≤ R

}
.

• Assume that N ≤ M . On the set
{
|gN (u)| ≤ R+ 1

}
we have

fN (u) ≤ 2‖ΠNu‖4L2(S1) ≤ 2(C lnN +R)2 ≤ 2(C lnM +R)2 = Cc20 lnλ,

if λ ≥ CR large enough. We fix c0 > 0 so that Cc20 < 1/4. In particular µ(Aλ,N ) ≤ µ(Ãλ,N ) = 0.

• Assume that N ≥ M . First observe that if we define

Bλ,N =
{
u ∈ X0(S1) :

∣∣gN (u)− gM (u)
∣∣∣ > 1

}
,

by Lemma 7.1 and the definition of M , we get for any L ≥ 1

µ(Bλ,N ) ≤ C exp(−cM1/2) ≤ CLλ
−L .

Similarly, set

Cλ,N =
{
u ∈ X0(S1) :

∣∣fN(u)− fM (u)
∣∣∣ > 1

}
,

then by Corollary 7.3, for any L ≥ 1 we have

µ(Cλ,N ) ≤ C exp(−cM1/4) ≤ CLλ
−L .

We have Ãλ,N ⊂ Cλ,N ∪Dλ,N where

Dλ,N =
{
u ∈ X0(S1) : fM (u) >

1

2
lnλ, |gN (u)| ≤ R

}
.

Then observe that
{
|gN (u)| ≤ R

}
∩
{
|gN (u) − gM (u)| ≤ 1

}
⊂
{
|gM (u)| ≤ R + 1

}
, therefore we can

write Dλ,N ⊂ Bλ,N ∪ Eλ,N where

Eλ =
{
u ∈ X0(S1) : fM(u) >

1

2
lnλ, |gM (u)| ≤ R+ 1

}
.

In the first part of the proof, we have already shown that µ(Eλ) = 0. Finally, we put all the estimates

together and obtain µ(Aλ,N ) ≤ CLλ
−L.



42 NICOLAS BURQ, LAURENT THOMANN & NIKOLAY TZVETKOV

7.2.3. Convergence to the mesure ρ. — We now have all the ingredients to complete the proof of

Theorem 1.6.

First we define the density Θ : X0(S1) −→ R with respect to the measure µ of the measure ρ. By

Lemma 7.1 and Proposition 7.2, we have the following convergences in the µ measure: gN (u) converges

to g(u) and fN (u) to f(u). Then, by composition and multiplication of continuous functions, we obtain

ΘN (u) −→ βχ
(
g(u)

)
ef(u) ≡ Θ(u),

in measure, with respect to the measure µ, and where β > 0 is so that dρ(u) = Θ(u)dµ(u) is a

probability measure on X0(S1). By this construction, Θ is measurable from
(
X0(S1),B

)
to R.

Then, we can extract a sub-sequence ΘNk
(u) so that ΘNk

(u) −→ Θ(u), µ a.s. and by Proposition 7.4

and the Fatou lemma, for all p ∈ [1,+∞),
∫

X0(S1)
|Θ(u)|pdµ(u) ≤ lim inf

k→∞

∫

X0(S1)
|ΘNk

(u)|pdµ(u) ≤ C,

thus Θ(u) ∈ Lp(dµ(u)).

It remains to prove the convergence of ΘN (u) in Lp(dµ(u)): Here we can follow the proof of Propo-

sition 4.6. We do not write the details.

7.3. Study of the measure νN . — Let N ≥ 1 and consider the equation (1.15). Observe that

uN = ΠNu satisfies an ODE, while u⊥N = (1−ΠN )u is solution to the linear problem (i∂t −Λ)u⊥N = 0.

Since the L2(S1)-norm of a solution u to (1.15) is preserved, it follows that the equation is globally

well-posed in L2(S1). We denote by ΦN the flowmap. Moreover, because of the Hamiltonian structure

and the Liouville theorem, the measure ρN is invariant by ΦN .

Similarly to the previous section, for T > 0 we define the measure νN on C
(
[−T, T ];X0(S1)

)
as the

image of ρN by the flowmap

X0(S1) −→ C
(
[−T, T ];X0(S1)

)

v 7−→ ΦN (t)(v).

Using this definition, we can prove

Lemma 7.6. — Let σ > 0, then for all p ≥ 2

(7.11)
∥∥‖G(u)‖Lp

T H−σ
x

∥∥
Lp
νN

≤ C.

Proof. — By definition, invariance of ρN and Cauchy-Schwarz

‖G(u)‖p
Lp
νN

Lp
TH−σ

x
=

∫

C
(
[−T,T ];X0

) ‖G(u)‖p
Lp
T H−σ

x
dνN (u)

=

∫

X0

‖G
(
ΦN (t)(v)

)
‖p
Lp
TH−σ

x
dρN (v)

= 2T

∫

X0

‖G(v)‖p
H−σ

x
θN (v)dµ(v)

≤ 2T‖G(v)‖p
L2p
µ H−σ

x
‖θN (v)‖L2

µ
.
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We conclude with (7.3) and Proposition 7.4.

Lemma 7.7. — Let σ > 0, then for all p ≥ 2

(7.12)
∥∥‖u‖Lp

TH−σ
x

∥∥
Lp
νN

≤ C,

(7.13)
∥∥‖u‖W 1,p

T H−σ−1
x

∥∥
Lp
νN

≤ C.

Proof. — The proof of (7.12) is a consequence of (3.3) and Lemma 5.2. The estimate (7.13) is obtained

from (7.11) and (7.12): The proof is similar to (5.5) and we do not write the details.

As a consequence we can show

Proposition 7.8. — Let T > 0 and σ > 0. Then the family of measures

νN = LCTH−σ

(
uN (t); t ∈ [−T, T ]

)
N≥1

is tight in C
(
[−T, T ];H−σ(S1)

)
.

7.4. Proof of Theorem 1.7. — The proof is similar to the Benjamin-Ono case. The only difficulty

lies in the limit of the nonlinear term. Recall the definition (1.16), then

Lemma 7.9. — Up to a sub-sequence, the following convergence holds true

GNk
(ũNk

) −→ G(ũ), p̃− a.s. in L2
(
[−T, T ];H−σ(S1)

)
,

where G is defined by Proposition 1.4.

Proof. — We only give the main lines, and we refer to the proof of Lemma 5.6 for the details. We

drop the tildes and write Nk = k. Let M ≥ 1 and write

Gk(uk)−G(u) =

=
(
Gk(uk)−G(uk)

)
+
(
G(uk)−GM (uk)

)
+
(
GM (uk)−GM (u)

)
+
(
GM (u)−G(u)

)
.

For fixed M ≥ 1, using that GM is continuous

GM (uk) −→
k→+∞

GM (u), p̃− a.s. in L2
(
[−T, T ];H−σ(S1)

)
.

For the other terms, we use the definition of the measure νk and Proposition 1.4 to prove the convergence

(when k → +∞ or M → +∞) in the space X := L2
(
Ω × [−T, T ];H−σ(S1)

)
. Then the almost sure

convergence follows after exaction of a sub-sequence.
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8. The two dimensional nonlinear Schrödinger equation on an arbitrary domain

8.1. Estimates on the spectral function in mean value. — The following propositions which

will be proved in Section 8.5 are the key elements in our argument. The first one is a rough bound which

states that (in a mean value meaning with respect to the index n), the eigenfunctions are uniformly

bounded on M . We state it for windows of size 1 for the spectral projector.

Proposition 8.1. — There exists C > 0 such that for any orthonormal basis (ϕn)n≥0 of eigenfunc-

tions of −∆g, and any µ > 0, any x ∈ M , we have

∑

λm∈[µ,µ+1)

1

λ2
m + 1

|ϕm|2(x) ≤ C
∑

λm∈[µ,µ+1)

1

λ2
m + 1

.

The second one is more precise and states that (again in a mean value meaning), the eigenfunctions

are actually constant on M (away from the boundary and modulo errors). Remark that our assumption

that Vol(M) = 1 and the L2 normalization of eigenfunctions imply that this constant has to be 1.

Proposition 8.2. — There exists C > 0 such that for any orthonormal basis (ϕn)n≥0 of eigenfunc-

tions of −∆g, and any µ > 0, δ ∈ [0, 1], we have

∑

λm∈[µ,µ+δµ1/2)

1

λ2
m + 1

|ϕm|2(x) =
∑

λm∈[µ,µ+δµ1/2)

1

λ2
m + 1

+Gµ(x),

with

(8.1)

∫

M
Gµ(x)dx = 0,

and

(8.2) |Gµ(x)| ≤ Cµ−3/4 + Cµ−1/21{d(x)<µ−1/2},

where for x ∈ M , d(x) is the distance of x to the boundary of M .

Remark 8.3. — The introduction of windows [µ, µ + δµ1/2[ is required by the analysis near the

boundary but are unnecessary for manifolds without boundaries, in which case elementary version of

Proposition 8.1 are sufficient.

8.2. Definition of the Gibbs measure. — The aim of this paragraph is to prove Theorem 1.10.

To begin with, we decompose, on the support of the measure µ, the quartic term ‖ΠNu‖4L4(M) in the

Hamiltonian in order to get a suitable renormalisation in the following section.

8.2.1. Decomposition of ‖ΠNu‖4L4(M) on the support of µ. — Recall that αN is defined in (1.22) and

that ΠNu =
∑

n≤N cnϕn for u =
∑

n≥0 cnϕn. Therefore we can write

‖ΠNu‖4L4(M) =
∑

n1,n2,n3,n4≤N

cn1cn2cn3cn4 γ(n1, n2, n3, n4),
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where

γ(n1, n2, n3, n4) =

∫

M
ϕn1ϕn2ϕn3ϕn4 .

Next, we set

Λ =
{
(n1, n2, n3, n4) ∈ N

4 : {n1, n3} = {n2, n4}
}
.

We denote by Λc the complementary of Λ in N
4. Therefore, we can split

‖ΠNu‖4L4(M) = X1,N (u) +X2,N (u) +X3,N (u),

where

X1,N (u) =
∑

(n1,n2,n3,n4)∈Λc

n1,n2,n3,n4≤N

cn1cn2cn3cn4 γ(n1, n2, n3, n4),

X2,N (u) = 2
∑

n1,n2≤N

|cn1 |2|cn2 |2γ(n1, n1, n2, n2),

and finally

X3,N (u) = −
∑

n≤N

|cn|4γ(n, n, n, n) .

As we shall see the singular part of the L4 norm on the support of µ is given by the contribution

of X2,N . Indeed, let us study the behavior of X2,N on the support of µ. Write

X2,N

(∑

n≥0

gn(ω)

(λ2
n + 1)

1
2

ϕn(x)
)
= 2

∑

n1,n2≤N

|gn1(ω)|2 |gn2(ω)|2
(λ2

n1
+ 1)(λ2

n2
+ 1)

∫

M
|ϕn1 |2|ϕn2 |2 .

We can split the last expression as I + II + III, where

I = 2
∑

n1,n2≤N

(|gn1(ω)|2 − 1) (|gn2(ω)|2 − 1)

(λ2
n1

+ 1)(λ2
n2

+ 1)

∫

M
|ϕn1 |2|ϕn2 |2 ,

II = 4
∑

n1,n2≤N

|gn1(ω)|2
(λ2

n1
+ 1)(λ2

n2
+ 1)

∫

M
|ϕn1 |2|ϕn2 |2 ,

and

III = −2
∑

n1,n2≤N

1

(λ2
n1

+ 1)(λ2
n2

+ 1)

∫

M
|ϕn1 |2|ϕn2 |2 .

• Study of the term I: The term I is a regular term and gives a contribution to XN (u).

• Study of the term II: This one will require the most delicate analysis. We have

II = 4
∑

n≤N

|gn(ω)|2
λ2
n + 1

∑

m≤N

1

λ2
m + 1

∫

M
|ϕn|2|ϕm|2dx.

Let

αN =
∑

0≤m≤N

1

λ2
m + 1

= Eµ

[
‖uN‖2L2(M)

]

(notice that according to Weyl formula, |αN | . (ln(N))).



46 NICOLAS BURQ, LAURENT THOMANN & NIKOLAY TZVETKOV

We can write the segment [λ0, λN ] as a disjoint union of intervals Ek = [µk, µk+dkµ
1/2
k ), 1 ≤ k ≤ MN ,

with dk = 1 for k < MN and dMN
∈ [0, 1]. In other words we define µk by µ0 = λ0, µk+1 = µk + µ

1/2
k

for k < MN .

We can check that

(8.3) µk ∼ ck2,

and this will be used in the sequel to study convergence of series.

By Proposition 8.2, if we denote by

MN∑

k=1

Gµk
(x) = KN (x) we have

(8.4)
∑

m≤N

1

λ2
m + 1

|ϕm|2(x) = αN +KN (x),

and with this decomposition we can split

II = II1 + II2,

where

II1 = 4αN

∑

n1≤N

|gn1(ω)|2
λ2
n1

+ 1

and

II2 = 4
∑

n≤N

|gn(ω)|2
λ2
n + 1

∑

k≤MN

∫

M
|ϕn|2Gµk

(x)dx.

We deduce

II2 = II21 + II22,

where

II21 = 4
∑

n≤N

(|gn(ω)|2 − 1)

λ2
n + 1

∑

k≤MN

∫

M
|ϕn|2Gµk

(x)dx

and

II22 = 4
∑

n≤N

1

λ2
n + 1

∑

k≤MN

∫

M
|ϕn|2Gµk

(x)dx.

By Sobolev ‖ϕn‖L∞ ≤ Cλn, then by interpolation
∫

{x∈M ;d(x)<µ
−

1
2

k }
|ϕn|2(x)dx ≤ C inf(1, µ

− 1
2

k ‖ϕn‖2L∞) ≤ Cµ
− 1

16
k λ

1
4
n .

Thanks to the previous inequality, we get
∑

k≤MN

∫

M
|ϕn|2Gµk

(x)dx ≤ C
∑

k≤MN

(
µ
−3/4
k + µ

−1/2
k

∫

{x∈M ;d(x)<µ
−

1
2

k }
|ϕn|2(x)dx

)

≤ Cλ1/4
n ,

where we have used (8.3).
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We are now able to show that the term II21 is regular because

E
[
|II21|2

]
= C

∑

n≤N

1

(λ2
n + 1)2

∣∣∣
∑

k≤MN

∫

M
|ϕn|2Gµk

(x)dx
∣∣∣
2
≤ C

∑

n≥0

1

(λ2
n + 1)7/4

< +∞,

where in the last line we used that by Weyl formula, we have λn ∼ √
n.

On the other hand, II22 is a constant (and hence can be renormalized). However, we want to keep

track of the necessary renormalization involved (and to compare them with the usual ones). Hence, we

apply again Proposition 8.1 to the index n now (with the same decomposition on [λ1, λN ]). With (8.4)

and (8.1) we get

II22 = 4αN

∑

k≤MN

∫

M
Gµk

(x)dx+ 4
∑

k,ℓ≤MN

∫

M
Gµk

(x)Gµℓ
(x)dx

= 4

∫

M
K2

N (x)dx,

and with (8.2) we prove that this term is uniformly bounded with respect to N . Actually

(8.5)

II22 ≤ C
∑

k,ℓ≤MN

∫

d(x)<min(µ
−1/2
k ,µ

−1/2
ℓ )

Gµk
(x)Gµℓ

(x)dx+

+ C
∑

k≤ℓ≤MN

∫

µ
−1/2
ℓ ≤d(x)≤µ

−1/2
k

Gµk
(x)Gµℓ

(x)dx+

+ C
∑

k,ℓ≤MN

∫

d(x)>max(µ
−1/2
k ,µ

−1/2
ℓ )

Gµk
(x)Gµℓ

(x)dx+

≤ C
∑

k,ℓ≤MN

min(µ
−1/2
k , µ

−1/2
ℓ )

µ
1/2
k µ

1/2
ℓ

+C
∑

k≤ℓ≤MN

µ
−3/4
k µ

−3/4
ℓ + C(

∑

k≤MN

µ
−3/4
k )2

≤ C.

• Study of the term III: We have

III = −2

∫

M

( ∑

n1≤N

|ϕn1 |2
λ2
n1

+ 1

)( ∑

n2≤N

|ϕn2 |2
λ2
n2

+ 1

)
dx

= −2
(
α2
N +

∫

M

( ∑

k≤MN

Gµk
(x)
)2
dx
)
.

The last term in the previous line is I22 up to a factor, hence we can write

III = −2α2
N +X4,N ,

where X4,N = II22 up to a factor.
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Remark 8.4. — We could also define ΠN as the smooth projector ΠN = χ(
√
−∆/N), where

χ ∈ C∞
0 (R) is equal to 1 on [−1, 1]. Then

ΠN (
∑

n

cnϕn) =
∑

n

χ(λn/N)cnϕn .

With such a definition of ΠN the singular term II becomes

II =
∑

n

χ(λn/N)

1 + λ2
n

|gn(ω)|2
∑

m

χ(λm/N)

1 + λ2
m

∫

M
|ϕn(x)ϕm(x)|2dx .

In this context, the main contribution of this term is

∑

m

χ(λm/N)

1 + λ2
m

|ϕm(x)|2 = KN (x, x),

where KN (x, y) is the kernel of the operator (1 − ∆)−1χ(
√
−∆/N). Therefore KN is a regularised

version of the Green function G of 1 − ∆, namely KN (·, y) = ΠNG(·, y). In the case of a manifold

without boundary, we can use the Helffer-Sjöstrand formula (see for instance [9]) and a partition of

unity to prove that

KN (x, x) = αN +O(1),

where

αN ≡
∑

m

χ(λm/N)

1 + λ2
m

≈ lnN .

Therefore measuring the singularity on the diagonal of the truncated Green function of 1 −∆ is the

key point of the analysis of the singular term. The above interpretation of KN (x, y) is in the spirit of

the analysis in Simon [40].

8.2.2. An L2 estimate. — A crucial step in the proof is the following

Lemma 8.5. —

(8.6) ‖fN (u)− fM(u)‖L2(dµ(u)) . M−σ′

,

for some positive constant σ′.

Proof. — Thanks to the analysis in the previous section, we can write

‖fN (u)− fM (u)‖L2(dµ(u)) . J1 + J2 + J3 + J4,

where J1, J2, J3 and J4 are defined as follows. The term J1 is the contribution of X1,N (u) and thus it

is defined by

J1 =
∥∥∥

∑

(n1,n2,n3,n4)∈Λc

max(n1,n2,n3,n4)≥M
n1,n2,n3,n4≤N

gn1(ω)

(λ2
n1

+ 1)
1
2

gn2(ω)

(λ2
n2

+ 1)
1
2

gn3(ω)

(λ2
n3

+ 1)
1
2

gn4(ω)

(λ2
n4

+ 1)
1
2

γ(n1, n2, n3, n4)
∥∥∥
L2(Ω)

.
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The term J2 is the contribution of X3,N (u) and thus it is defined by

J2 =
∥∥∥

∑

M≤n≤N

|gn(ω)|4
(λ2

n + 1)2
γ(n, n, n, n)

∥∥∥
L2(Ω)

.

The term J3 is the contribution of I and thus it is defined by

J3 =
∥∥∥

∑

max(n1,n2)≥M
n1,n2≤N

(|gn1(ω)|2 − 1) (|gn2(ω)|2 − 1)

(λ2
n1

+ 1)(λ2
n2

+ 1)

∫

M
|ϕn1 |2|ϕn2 |2

∥∥∥
L2(Ω)

.

Finally, the term J4 is the contribution of the renormalized part of II and therefore it is defined by

J4 =
∥∥∥

∑

M≤n≤N

GN (n)(|gn(ω)|2 − 1)

λ2
n + 1

∥∥∥
L2(Ω)

.

Let us first estimate J4. Using Proposition 8.2 and orthogonality, we get that

J2
4 .

∑

M≤n≤N

1

n2
. M−1 .

For the estimate of J2, we will not use an orthogonality in ω, we will simply rely on the triangle

inequality. The estimates for J1 and J3 will rely on orthogonality arguments. The estimates for J1, J2
and J3 will rely on the following key estimate for the behavior of γ(n1, n2, n3, n4)

Lemma 8.6. — There exists δ > 0 such that

(8.7)
∑

max(λn1 ,λn2 ,λn3 ,λn4 )≥M

|γ(n1, n2, n3, n4)|2
(λ2

n1
+ 1)(λ2

n2
+ 1)(λ2

n3
+ 1)(λ2

n4
+ 1)

. M−δ .

We postpone the proof of this result and finish the proof of Lemma 8.5. Using an orthogonality

argument, we can estimate J1 as follows

J2
1 .

∑

max(n1,n2,n3,n4)≥M
n1,n2,n3,n4≤N

|γ(n1, n2, n3, n4)|2
(n1 + 1)(n2 + 1)(n3 + 1)(n4 + 1)

which can be readily estimated by an application of Lemma 8.6.

To estimate J2, we use the bound (8.23), which implies that

‖ϕn‖L4 ≤ Cλ
1
4
n ,

and therefore

J2 .
∑

M≤n≤N

1

n3/2
. M−1/2 .
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Finally concerning J3, we can use another orthogonality argument in order to write

J2
3 .

∑

max(n1,n2)≥M
n1,n2≤N

|γ(n1, n1, n2, n2)|2
(n1 + 1)2(n2 + 1)2

+
∑

M≤n1,n2≤N

|γ(n1, n1, n1, n1)γ(n2, n2, n2, n2)|
(n1 + 1)2(n2 + 1)2

.

The first term in the right hand side is estimated similarly as J2
1 (it is a sub-case), while the second

term is estimated as J2. This completes the proof of Lemma 8.5.

Proof of Lemma8.6. — By a symmetry argument, we can estimate the left hand-side of (8.7) by

(8.8)
∑

N1≥N2≥N3≥N4
N1≥M

(N1,N2,N3,N4)−dyadic

(N1N2N3N4)
−2

∑

λnj∼Nj

j=1,2,3,4

|γ(n1, n2, n3, n4)|2 .

Now we can perform the n1 summation and estimate (8.8) as

(8.9)
∑

N1≥N2≥N3≥N4
N1≥M

(N1N2N3N4)
−2

∑

λnj∼Nj

j=2,3,4

‖ϕn2ϕn3ϕn4‖2L2(M) .

Next, we can write

∑

λnj
∼Nj

j=2,3

‖ϕn2ϕn3ϕn4‖2L2(M) =

∫

M
|ϕn4(x)|2

( ∑

λn2∼N2

|ϕn2(x)|2
)( ∑

λn3∼N3

|ϕn3(x)|2
)
dx.

Now, from Proposition 8.8 applied to control

e(x, 2M,M) = e(x, 2M, 2M − 1) + · · ·+ e(x,M + 1,M),

we get the pointwise bound
∑

λn∼N

|ϕn(x)|2 . N2

and (integrating on the manifold)

#{n : λn ∼ N} . N2.

This gives that (8.9) can be estimated by
∑

N1≥N2≥N3≥N4
N1≥M

(N1N2N3N4)
−2N2

4 (N
2
2N

2
3 )

which clearly can be bounded by M−δ for any 0 < δ < 2.
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8.2.3. Proof of Theorem 1.10. — To prove Theorem 1.10, the main point is to estimate the measure

(8.10) µ
(
u : −fN(u) > ln(λ)

)

and to show that

(8.11)

∫ ∞

0
µ
(
u : −fN (u) > ln(λ)

)
λpdλ < C,

where C is independent of N . Standards arguments show that (8.10) implies Theorem 1.10 (see [12,

43, 44]). Now we can write

fN(u) =
1

2

∫

M

(
(ΠN (u))2 − 2αN

)2 − α2
N .

Therefore, we have the pointwise bound

(8.12) − fN (u) . (ln(N))4 .

The power of ln(N) of the last estimate is not of importance for the further analysis. Notice that here

we make a crucial use of the defocusing nature of the nonlinear interaction. Using (8.12) we obtain

that if M is such that

ln(λ)− C(ln(M))4 ≥ 1,

where C is the implicit constant appearing in (8.12), then

µ(u : −fN (u) > ln(λ)) ≤ µ(u : −(fN (u)− fM(u)) ≥ 1) .

We therefore choose M such that ln(λ) ≈ (ln(M))4, i.e.

M ≈ e(ln(λ))
1
4 .

The result clearly follows from the following bound

(8.13) ∃c, δ > 0;∀N > M,µ(u : −(fN (u)− fM(u)) ≥ 1) . e−cMδ
.

Finally, (8.13) follows from the L2-bound (8.6) and classical hypercontractivity estimates (see for

instance [43, Proposition 2.4]). This in turn completes the proof of Theorem 1.10.

8.3. Definition of the nonlinearity. — The aim of this paragraph is to prove Proposition 1.9.

By the result [43, Proposition 2.4] on the Wiener chaos, we only have to prove the statement for

p = 2.

Recall the definition of FN in (1.24) and let σ > 2. To begin with, use that
∫

X0(M)
‖FN (uN )− FM (uM )‖2H−σ(M)dµ(u) =

∫

Ω
‖FN (ΨN )− FM (ΨM )‖2H−σ(M)dp.

Therefore, we are reduced to prove that
(
FN (ΨN )

)
N≥1

is a Cauchy sequence in L2
(
Ω;H−σ(M)

)
.

Denote by

χN = |ΨN |2ΨN − 2αNΨN .

It is enough to show the result for (χN ), because once we know that χN −→ χ in L2
(
Ω;H−σ(M)

)
,

we deduce that FN (ϕN ) = ΠNχN −→ χ in L2
(
Ω;H−σ(M)

)
. In the sequel, we will use the notation
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[n] = λ2
n + 1. By the Weyl formula we have [n] ∼ n when n −→ +∞. Then, by definition of ΨN we

can compute

|ΨN |2ΨN =
∑

n1,n2,n3≤N

gn1gn2
gn3

[n1]
1
2 [n2]

1
2 [n3]

1
2

ϕn1ϕn2ϕn3

=
∑

n1,n2,n3≤N,
n1 6=n2,n3 6=n2

gn1gn2
gn3

[n1]
1
2 [n2]

1
2 [n3]

1
2

ϕn1ϕn2ϕn3 + 2
∑

n,m≤N

|gn|2gm
[n][m]

1
2

|ϕn|2ϕm −
∑

n≤N

|gn|2gn
[n]

3
2

|ϕn|2ϕn

:= Σ1(N) + Σ2(N)− Σ3(N).

Then for Σ2(N) we use the decomposition (8.4)

Σ2(N) = 2ΨN

∑

n≤N

|gn|2
[n]

|ϕn|2

= 2ΨN

∑

n≤N

|gn|2 − 1

[n]
|ϕn|2 + 2αNΨN + 2KNΨN

:= Σ21(N) + Σ22(N)− Σ23(N).

Observe that Σ22(N) is the term which is removed in the definition of χN . Therefore we are reduced

to study the contribution of the other terms.

• Contribution of Σ1: For all 1 ≤ M ≤ N

(8.14) 〈Σ1(N)− Σ1(M) |ϕk〉 =
∑

BM,N

gn1gn2
gn3

[n1]
1
2 [n2]

1
2 [n3]

1
2

γ(n1, n2, n3, k),

where the set BM,N is defined by

BM,N =
{
(n1, n2, n3) ∈ N

3 s.t. 0 ≤ n1, n2, n3 ≤ N, n1 6= n2, n3 6= n2,

and max(n1, n2, n3) > M
}
.

From (8.14) we obtain

∥∥〈Σ1(N)− Σ1(M) |ϕk〉
∥∥2
L2(Ω)

=
∫

Ω

∑

(n1,n2,n3)∈BM,N

(m1,m2,m3)∈BM,N

gn1gn2
gn3gm1

gm2gm3

[n1]
1
2 [n2]

1
2 [n3]

1
2 [m1]

1
2 [m2]

1
2 [m3]

1
2

γ(n1, n2, n3, k)γ(m1,m2,m3, k)dp.

Since the (gn) are independent and centred, we deduce that each term in the r.h.s. vanishes, unless

n2 = m2 and (n1, n3) = (m1,m3) or (n1, n3) = (m3,m1). Thus

∥∥〈Σ1(N)−Σ1(M) |ϕk〉
∥∥2
L2(Ω)

≤ C
∑

(n1,n2,n3)∈BM,N

|γ(n1, n2, n3, k)|2
〈n1〉〈n2〉〈n3〉

.
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Let σ > 1, then we get

∥∥Σ1(N)− Σ1(M)
∥∥2
L2(Ω;H−σ(M))

=
∑

k∈N

1

〈k〉σ
∥∥〈Σ1(N)− Σ1(M) |ϕk〉

∥∥2
L2(Ω)

≤ C
∑

(n1,n2,n3)∈BM,N

k∈N

|γ(n1, n2, n3, k)|2
〈k〉σ〈n1〉〈n2〉〈n3〉

,

and this term can be estimated as J1, namely for some η > 0

∥∥Σ1(N)− Σ1(M)
∥∥
L2(Ω;H−σ(M))

≤ C

Mη
.

• Contribution of Σ3: For all 1 ≤ M ≤ N

〈Σ3(N)− Σ3(M) |ϕk〉 =
∑

M<n≤N

|gn|2gn
[n]

3
2

γ(n, n, n, k).

By the the bound (8.23) we infer

|γ(n, n, n, k)| ≤ C〈n〉1/4〈k〉1/4

and from the independence of the Gaussians we get

∥∥〈Σ3(N)−Σ3(M) |ϕk〉
∥∥2
L2(Ω)

= C
∑

M<n≤N

|γ(n, n, n, k)|2
[n]3

≤ C〈k〉1/2
∑

M<n≤N

1

〈n〉5/2 ≤ C
〈k〉1/2
M

.

Finally, if σ > 3/2 we obtain

∥∥Σ3(N)− Σ3(M)
∥∥2
L2(Ω;H−σ(M))

=
∑

k∈N

1

〈k〉σ
∥∥〈Σ3(N)− Σ3(M) |ϕk〉

∥∥2
L2(Ω)

≤ C

M
.

• Contribution of Σ2: For all 1 ≤ M ≤ N

〈Σ21(N)− Σ21(M) |ϕk〉 = 2
∑

CM,N

(|gn|2 − 1)gm

[n][m]
1
2

γ(n, n,m, k),

where the set CM,N is defined by

CM,N =
{
(n,m) ∈ N

2 s.t. (M < n ≤ N and m ≤ N) or (M < m ≤ N and n ≤ M)
}
.

Then by the orthogonal properties of the Gaussians we obtain

∥∥〈Σ21(N)− Σ21(M) |ϕk〉
∥∥2
L2(Ω)

≤ C
∑

n,m≤N
max(n,m)>M

|γ(n, n,m, k)|2
〈n〉2〈m〉 ,
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which (when multiplied by 〈k〉−1) is estimated by Lemma 8.6 in the previous section (it is actually a

sub-case) fixing n1 = n2 = n, n3 = m,n4 = k):

∑

k

〈k〉−1
∥∥〈Σ21(N)− Σ21(M) |ϕk〉

∥∥2
L2(Ω)

≤ C
∑

k

∑

n,m≤N
max(n,m)>M

|γ(n, n,m, k)|2
〈n〉2〈m〉〈k〉

≤
∑

n1,n2,n3,n4≤N
max(n1,n2,n3,n4>M

|γ(n1, n2, n3, n4)|2
〈n1〉〈n2〉〈n3〉〈n4〉

≤ C

M δ
.

Therefore, if σ ≥ 1 we obtain

∥∥Σ21(N)− Σ21(M)
∥∥2
L2(Ω;H−σ(M))

≤ C

M
.

We now study the term Σ23. We have

(8.15) Σ23(N)− Σ21(M) = 2(KN −KM )ΨN + 2KM (ΨN −ΨM).

Let’s consider the contribution of the first term in the previous line. For k ≥ 0

〈(KN −KM )ΨN |ϕk〉 =
∑

n≤N

gn

[n]
1
2

∫

M
(KN −KM )ϕnϕk.

By the orthogonal properties of the Gaussians and Parseval, we obtain

∥∥〈(KN −KM )ΨN |ϕk〉
∥∥2
L2(Ω)

=
∑

n≤N

1

[n]

∣∣∣
∫

M
(KN −KM )ϕnϕk

∣∣∣
2

≤ C
∑

n≤N

∣∣∣
∫

M
(KN −KM )ϕnϕk

∣∣∣
2

≤ C

∫

M
(KN −KM )2|ϕk|2

≤ C〈k〉
∫

M
(KN −KM )2.

Now we estimate
∫
M (KN −KM )2 as in (8.5) and we get that for σ > 2

∥∥(KN −KM )ΨN

∥∥
L2(Ω;H−σ(M))

≤ C

Mη
,

for some η > 0. The estimate of the second term in (8.15) is similar.

As a conclusion, we are able to define a limit F (u) so that for all p ≥ 2

(8.16) ‖F (u)‖Lp
µH−σ(M) ≤ Cp.

8.4. Proof of Theorem 1.11. — Once estimate (8.16) is proved, the analysis in the proof of

Theorem 1.11 is the same as in the proof of Theorem 1.7 (see Section 7).
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8.5. Proof of Proposition 8.2. — The proof of Proposition 8.2 will rely on two results about

the spectral function of the Laplace operator on a compact manifold M . On the one hand a precise

asymptotic "away" from the boundary essentially due to Hörmander [26, Theorem 17.5.10] and on the

other hand a general bound near the boundary due to Sogge [42]. Let

e(x, λ, µ) =
∑

µ≤λn<λ

|ϕn(x)|2,

be the spectral function. Then we have the following

Proposition 8.7. — Let d(x) = d(x, ∂M) be the distance of the point x ∈ M to the boundary ∂M .

There exists C > 0 such that for any λ > 1, any x ∈ M satisfying d(x) ≥ λ−1/2 and any δ ∈ [0, 1], we

have

(8.17) |e(x, λ + δλ1/2, λ)− δ

2π
λ3/2| ≤ Cλ5/4.

This result can be deduced from Seeley [39, Estimate (0.1) with n = 2 and τ = λ]. Here we give an

argument based on Hörmander [26].

Proof. — We first treat the case of Dirichlet boundary conditions. For y ∈ R
2 and τ > 0, denote by

e0(y, τ
2) =

1

4π2

∫

{ξ∈R2 : |ξ|<τ}
eiy·ξdξ.

Then by [26, Theorem 17.5.10]

(8.18) |e(x, λ, 0) − e0(0, λ
2) + e0(2d(x), λ

2)| ≤ Cλ.

(Notice that in [26] the parameter λ denotes the eigenvalues while here λ are the square root of the

eigenvalues and that in our setting γ(x) = (det(gi,j(x)))−1/2). The function e0 is radial in y and with

a change of variables we get

(8.19) e0(y, τ
2) =

τ2

4π
J(τ |y|), with J(t) =

∫

{ξ∈R2 : |ξ|<1}
eitξ1dξ.

We now claim that for all t ∈ R

(8.20) J(t) ≤ C〈t〉−3/2, J ′(t) ≤ C〈t〉−3/2.

For the first inequality we write for |t| ≥ 1

J(t) =

∫ 1

−1

∫ √
1−ξ22

−
√

1−ξ22

eitξ1dξ1dξ2 =
1

it

∫ 1

−1

(
eit

√
1−ξ22 − e−it

√
1−ξ22

)
dξ2

=
2

it

∫ π/2

0

(
eit cos θ − e−it cos θ

)
cos θdθ

and the result follows from the stationary phase. The estimate on J ′ is obtained similarly.

Clearly, from e0(0, λ
2) = λ2/(4π) we get

(8.21) e0
(
0, (λ+ δλ1/2)2

)
− e0(0, λ

2) =
δ

2π
λ3/2 +O(λ),
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and by (8.19) and (8.20)
∣∣e0
(
2d(x), (λ + δλ1/2)2

)
− e0(2d(x), λ

2)
∣∣ ≤

≤ Cλ2δd(x)λ1/2〈d(x)λ〉−3/2 +Cδλ3/2〈d(x)λ〉−3/2 ≤ Cδλ5/4,

under the condition d(x) ≥ λ−1/2. Then by (8.18) and (8.21) we get (8.17).

Proposition 8.8. — There exists C > 0 such that for any λ > 1 and x ∈ M

(8.22) e(x, λ+ 1, λ) ≤ Cλ.

In particular, the previous result implies the bound

(8.23) ‖ϕn‖L∞ ≤ Cλ1/2
n ≤ C〈n〉1/4.

Proposition 8.8 is the case q = +∞ in [41, (1.5)], which in turn is an easy consequence of [42].

Let us now prove Proposition 8.2. For any µ > 0 and x ∈ M , we write

∑

λm∈[µ,µ+δµ1/2)

1

λ2
m + 1

|ϕm|2(x) =

=
∑

λm∈[µ,µ+δµ1/2)

|ϕm|2(x)
µ2 + 1

+
∑

λm∈[µ,µ+δµ1/2)

( 1

λ2
m + 1

− 1

µ2 + 1

)
|ϕm|2(x)

:= F1,µ(x) + F2,µ(x).

First observe that by (8.22) we have for all x ∈ M

(8.24) e(x, µ + δµ1/2, µ) ≤ Cµ3/2.

Then from the previous bound, we deduce that

|F2,µ(x)| ≤ C
µ3/2

µ2 + 1

∑

λm∈[µ,µ+δµ1/2)

|ϕm|2(x) ≤ Cµ−1,

which is an acceptable bound.

We now turn to the estimate of F1,µ. For x ∈ M such d(x) > µ−1/2 we can use (8.17) to write

F1,µ(x) =
1

µ2 + 1
e(x, µ + δµ1/2, µ) =

δµ
3
2

2π(µ2 + 1)
+O(µ−3/4).

But thanks to the Weyl formula

♯
{
n;λn ∈ [µ, µ+ δµ

1
2 )
}
=

δ

2π
µ

3
2

(
1 +O(µ− 1

4 )
)
,

which is obtained by integrating (8.17) and using (8.24), we get

(8.25)
∑

λm∈[µ,µ+δµ1/2)

1

λ2
m + 1

=
δµ

3
2

2π(µ2 + 1)
+O(µ−3/4),

which was the claim.
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Now we assume that d(x) ≤ µ−1/2. Then by (8.24) we have

F1,µ(x) =
1

µ2 + 1
e(x, µ + δµ1/2, µ) ≤ C

µ
3
2

µ2 + 1
= O(µ−1/2).

This proves (8.2). The fact (8.1) is obtained by integration of Fµ. The proof of Proposition 8.2 is

complete.

Proof of Proposition 8.1. — By (8.25) with δ = 1, we observe that Proposition 8.2 directly implies

Proposition 8.1.
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