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Introduction

In order to bound the mean value of multiplicative functions, Halász [START_REF] Halász | Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen[END_REF] introduced a majorant principle which (after a little refining) asserts that if λ 1 , λ 2 , . . . are real numbers, if |a n | 6 A n for all n, and

P n>1 A n < 1, then (1.1) 
Z T -T � � � � X n>1 a n e iλnt � � � � 2 dt 6 3 Z T -T � � � � X n>1 A n e iλnt � � � � 2 dt.
For a proof of the principle in this form, see Montgomery [8, §7.3]. In Halász's theory, one needs bounds for integrals of the shape (1.2)

I(q) = Z 1 -1 � � � � X p a p log p p σ+it � � � � q dt, J(q) = Z 1 -1 � � � � X n>1 b n n σ+it � � � � q dt,
when |a p | 6 1 for all p, and |b n | 6 1 for all n. From (1.1) it is immediate that

I(2) 6 3 Z 1 -1 � � � � X n>2 ⇤(n) n σ+it � � � � 2 dt = 3 Z 1 -1 � � � ⇣ 0 ⇣ (σ + it) � � � 2 dt ⌧ Z 1 -1 dt |σ + it -1| 2 ⌧ 1 σ -1
uniformly for 1 < σ 6 2. Similarly, J(2) ⌧ 1/(σ -1) for σ in this range. By applying the majorant principle to the squares of these Dirichlet series we find that I(4) ⌧ (σ -1) -3 and J(4) ⌧ (σ -1) -3 . Hence by Hölder's inequality,

I(q) ⌧ (σ -1) 1-q , J(q) ⌧ (σ -1) 1-q (2 6 q 6 4), (1.3) I(q) ⌧ (σ -1) -q/2 , J(q) ⌧ (σ -1) -q/2 (1 6 q 6 2) (1.4)
uniformly for 1 < σ 6 2. The estimate (1.3) is best possible, as we see by taking a p = 1 for all p and b n = 1 for all n. For purposes of Halász's theory, it would be helpful if (1.3) would hold also when 1 < q 6 2. However, we construct examples that show that the weaker estimate (1.4) is best possible. Theorem 1.1. Let I(q) and J(q) be defined as in (1.2). There exist numbers a p with a p = ±1 for all p, and b n with b n = ±1 for all n, such that

I(q) ⇣ (σ -1) -q/2 , J(q) ⇣ (σ -1) -q/2
uniformly for 1 < σ 6 2, 1 6 q 6 2.

This is analogous to the situation for Fourier series. For example, if |b n | 6 1 for -N 6 n 6 N and e(#) = e 2⇡i# , then (1.5)

Z 1 0 � � � � X |n|6N b n e(nx) � � � � q dx ⌧ N q-1
uniformly for 2 6 q 6 4, and

(1.6) Z 1 0 � � � � X |n|6N b n e(nx) � � � � q dx ⌧ N q/2
for 1 6 q 6 2, but there exists a choice of the b n with b n = ±1 for all n such that (1.7)

Z 1 0 � � � � X |n|6N b n e(nx) � � � � q dx ⇣ N q/2
uniformly for 1 6 q 6 2. Indeed, we use such b n in our construction.

Antecedents of Halász's majorant principle (1.1) are found in Wiener & Wintner [START_REF] Wiener | On a local L 2 -variant of Ikehara's theorem[END_REF] and in Erdős & Fuchs [START_REF] Erdős | On a problem in additive number theory[END_REF]. Logan [START_REF] Logan | An interference problem for exponentials[END_REF] showed that the constant 3 in (1.1) is best-possible.

Lemmas

We begin with a generalization of a result of H. S. Shapiro [START_REF] Shapiro | Extremal problems for polynomials and power series[END_REF]. Let the sequence {r n } 1 n=0 be defined by the relations r 0 = 1, r 2n = r n and r 2n+1 = (-1) n r n . The sequence {r n } 1 n=0 is the classical Rudin-Shapiro sequence. Suppose that the binary expansion of n is n = P j>0 e j (n)2 j where e j (n) = 0 or 1. A well-known alternative definition is

r n = (-1) H(n) , where H(n) := X j>0 e j (n)e j+1 (n) (n > 0).
Let p m (z), q m (z) denote polynomials defined recursively by the relations p 0 (z) = 1, q 0 (z) = 1 and (2.1)

p m+1 (z) = p m (z) + z 2 m q m (z) q m+1 (z) = p m (z) -z 2 m q m (z).
One can easily check that

p m (z) = X 06n62 m -1 r n z n (m > 0).
The Rudin-Shapiro sequence may be generalized by the so-called paper-folding twist. This amounts to introducing a sequence {" m } 1 m=0 2 {±1} N and replacing (2.1) by

(2.2) p m+1 (z) = p m (z) + " m z 2 m q m (z) q m+1 (z) = p m (z) -" m z 2 m q m (z).
We then obtain

p m (z) = X 06n62 m -1 c n z n (m = 0, 1, . . .) with (2.3) c n = r n Y j>0 " ej (n) j (n > 0),
a formula for which we did not find a reference in the literature and which B. Sa↵ari kindly pointed out to us.

Lemma 2.1. Let the sequence c m be defined as above. Put

(2.4) P M (#) = X 06m<M c m e(m#) . Then |P M (#)| 6 � 2 + p 2 �p M
for all positive integers M and all real #.

Shapiro proved this in the case c m = r m (m > 0) but never published his work. The coefficients r m were independently discovered by Golay [START_REF] Golay | Multi-slit spectroscopy[END_REF]. Rudin [START_REF] Rudin | Some theorems on Fourier coefficients[END_REF] published an account of Shapiro's argument in the case M = 2 k , but obtained an inferior constant in the general case. The above lemma is proved in [7, théorème 2].

We note in passing that it follows from the proof of theorem 2 of [START_REF] France | Dimension des courbes planes, papiers pliés, et suites de Rudin-Shapiro[END_REF] that, given an arbitrary sequence {⌘ j } 1 j=0 2 {±1} N , a generalized Rudin-Shapiro sequence may alternatively be written as

(2.5) c m = (-1) vm
where v m equals 0 or 1 according to whether P j>0 ⌘ j |e j (m)e j+1 (m)| belongs to {0, 1} or to {2, 3} modulo 4. In this setting, we recover r m by selecting ⌘ j = (-1) j (j > 0). Also, this easily enables retrieving (2.3). Numerical studies suggest that, at least in the case c j = r j (j > 0),

(2.6) max # |f (re(#))| = f (r) .
Moreover, it is easy to show that, in the above circumstance, f (r) p 1r does not tend to a limit as r ! 1 -. Indeed, it is proved in Brillhart, Erdős and Morton [1] that (2.7)

X m<n r m = p n G ⇣ log n log 4 ⌘ (n > 0)
where G is 1-periodic and continuous. Moreover, Dumont and Thomas [START_REF] Dumont | Systèmes de numération et fonctions fractales relatifs aux substitutions[END_REF] showed that G is nowhere di↵erentiable and Tenenbaum [START_REF] Tenenbaum | Sur la non-dérivabilité de fonctions périodiques associées à certaines fonctions sommatoires[END_REF] obtained the oscillation result

G(x + h) -G(x) = ⌦ �p h � (h > 0)
for any given real number x.

By partial summation it is readily derived from (2.7) that f (r) p 1r oscillates as r ! 1-: indeed, as y ! 1,

(2.8) 2 y f � exp(-4 -y ) �
tends to a 1-periodic, nowhere di↵erentiable function of y.

It is noteworthy that

(2.9) f (z) = f (z 2 ) + f (-z 2 ), f (-z) = f (z 2 ) -f (-z 2 ) .
Kumiko Nishioka [START_REF] Nishioka | New approach in Mahler's method[END_REF] showed that f (z) and f (-z) are algebraically independent, and then used these recurrences and Mahler's method to show that if ↵ is algebraic with 0 < |↵| < 1, then f (↵) and f (-↵) are algebraically independent.

Proof. Clearly f (re(#)) 1 -r = X m>0 P m+1 (#)r m .
Hence by Lemma 2.1 and the triangle inequality it follows that (2.10)

� � � f (re(#)) 1 -r � � � 6 (2 + p 2) X m>0 p m + 1r m . But (2.11) p m + 1 6 ✓ m + 1/2 m
◆ for all non-negative integers m. Hence the right hand side of (2.10) is

6 (2 + p 2) X m>0 ✓ m + 1/2 m ◆ r m = 2 + p 2 (1 -r) 3/2 ,
which gives the stated result.

To prove (2.11), let

a m = � m+1/2 m � / p m + 1.
To show that a m > 1, it suffices to note that a 0 = 1, and to show that the a m are increasing. As to this latter point, we observe that

a m a m-1 = m + 1/2 p m(m + 1) = 2m + 1 p (2m + 1) 2 -1 > 1. ⇤ Lemma 2.3. Let f be defined as in Lemma 2.2. For each r, 0 < r < 1, there is a measurable set A r ✓ T with Lebesgue measure λ � A r � > 1/50, such that (2.12) |f (re(#))| > 1 2 p 1 -r for all # 2 A r .
Proof. Let B r = T r A r be the complementary set of those # on which |f | is small; precisely |f (re(#))| < 1/(2 p 1r). By Parseval's identity we know that (2.13)

Z 1 0 |f (re(#))| 2 d# = X m>0 r 2m = 1 1 -r 2 > 1 2(1 -r) •
By Lemma 2.2, the left hand side above equals

Z Ar |f (re(#))| 2 d# + Z Br |f (re(#))| 2 d# 6 (2 + p 2) 2 1 -r λ(A r ) + 1 -λ(A r ) 4(1 -r) •
On combining this with (2.13), we find that

1 4 6 � (2 + p 2) 2 -1 4 � λ(A r ),
which gives the stated result.

⇤ Lemma 2.4. Write s = σ + it. Then X n6x ⇤(n) n s = - ⇣ 0 ⇣ (s) + x 1-s 1 -s + O ⇣ x 1-σ exp( p log x) ⌘ for x > 2, 1 < σ 6 2, -1 6 t 6 1.
This is included in equation (III.5.72) of [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF] and is proved by Perron's summation formula (see Theorem 5.2] or Tenenbaum [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF]corollary II.2.4]) appealing to the classical zero-free region and estimates for ⇣ 0 (s)/⇣(s) in the zero-free region.

Lemma 2.5. For x > 2, 1 < σ 6 2, and -1 6 t 6 1, we have

X n6x 1 n s = ⇣(s) + x 1-s 1 -s + O ⇣ 1 x σ ⌘ .
This is immediate by partial summation; see Montgomery-Vaughan [9, Theorem 1.12] or Tenenbaum [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF]theorem II.3.5] for the details.

Proof of the Theorem

In view of the upper bounds of (1.4), it suffices to establish lower bounds. For I(q) we let c m be defined as in (2.3), and take a p := c m for e ⇡m < p < e ⇡(m+1) . Then, for s

= σ + it, 1 < σ 6 2, |t| 6 1, X p a p log p p s = X m>0 c m X e ⇡m <p<e ⇡(m+1) log p p s = X m>0 c m ✓ X e ⇡m <n<e ⇡(m+1) ⇤(n) n s + O � e ⇡m(1-2σ) � ◆ . (3.1) By Lemma 2.4 this is = X m>0 c m ⇣ e ⇡(m+1)(1-s) 1 -s - e ⇡m(1-s) 1 -s ⌘ + O ✓ X m>0 e ⇡m(1-σ) exp(c p m) ◆ + O(1).
Here the first error term is also O(1), uniformly for σ > 1. The main term is 1e ⇡(σ-1) ⇣ 1 p σ -1 when t/2 2 A e ⇡(σ-1) , i.e. on a subset of -1 6 t 6 1 of measure > 1/25. Hence I(q) � (σ -1) -q/2 . The proof for J(q) is the same, except that now the passage from log p to ⇤(n) in (3.1) is unnecessary, and instead of Lemma 2.4 we use Lemma 2.5, in which the error term is smaller.

(3.2) F (s)f � e ⇡(

Lemma 2 . 2 .

 22 For |z| < 1, let f (z) = P m>0 c m z m where c m is defined as in (2.3). Then |f (re(#))| 6

  The zeros of this entire function are the numbers 1+2im where m runs over non-zero integers. Thus |F (s)| is bounded away from 0 uniformly on the rectangle 1 6 σ 6 2,-1 6 t 6 1. With a little computation one can in fact show that the minimum of |F (s)| in this rectangle is |F (2 ± i)| ⇡ 0.73766. By Lemma 2.3 it follows that if σ

	is fixed, 1 < σ 6 2, then � � � � X p	a p log p p σ+it	� � � � �	p	1
						1-s) �
	where f is defined in Lemma 2.2, and	
	(3.3)	F (s) =	e ⇡(1-s) -1 1 -s	•
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