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Abstract

We study a monetary version of the Keen model by merging two alternative extensions,
namely the addition of a dynamic price level and the introduction of speculation. We recall
and study old and new equilibria, together with their local stability analysis. This includes
a state of recession associated with a deflationary regime and characterized by falling em-
ployment but constant wage shares, with or without an accompanying debt crisis. We also
emphasize some new qualitative behavior of the extended model, in particular its ability
to produce and describe repeated financial crises as a natural pace of the economy, and its
suitability to describe the relationship between economic growth and financial activities.

Key words : Minsky’s financial instability hypothesis; Keen model; stock-flow consistency;
financial crisis; dynamical systems in macroeconomics; local stability; limit cycles

1 Introduction

More than six years after the end of the 2007-08 financial crisis, most advanced economies find
themselves in regimes of low inflation or risk of deflation [4]. Because the crisis itself is generally
regarded as having speculative excesses as one of its root causes, it is important to analyze
the interplay between inflation and speculation in a integrated manner, and this is what we set
ourselves to do in this paper.

We take as a starting point the model first proposed in [5] to described the joint dynamics of
wages, employment, and private debt. This model was fully analyzed in [2], the main result of
which is that the model exhibits essentially two distinct equilibrium points: a good equilibrium
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characterized by a finite private debt ratio and positive wage share and employment rate, and a
bad equilibrium characterized by an infinite debt ratio and zero wages and employment. Moreover,
both equilibria are locally stable for a wide range of parameters, implying that the bad equilibrium
must be taken seriously as describing the possibility of a debt-induced crisis.

The model in [5], however, has the drawback of being expressed in real terms, so any monetary
phenomenon such as a debt-deflation spiral could only be inferred indirectly from it. This was
partially remedied in [7], where a price dynamics is introduced alongside a thorough discussion
of the endogenous money mechanism behind the dynamics of private debt. The resulting 9-
dimensional dynamical system proposed in [7], however, is exceedingly hard to analyze beyond
numerical simulations, and the effects of the newly introduced price dynamics are difficult to
infer.

In the present paper, we first modify the basic Keen model by adopting the price dynamics
proposed in [7] and nothing else. The resulting system is still three-dimensional, so most of the
analysis in [2] carries over to this new setting. We first show how the conditions for stability for
the equilibrium points that were already present for the original Keen model need to be modified
to be expressed in nominal terms and include inflation or deflation regimes. The interpretation is
mostly the same but some conditions are weakened while others are strengthened by the addition
of the price level dynamics. Overall, as the numerical examples show, it can be said that money
emphasizes the stable nature of asymptotic states of the economy, both desirable and undesirable.

Next we extend the model by adding a flow of speculative money that can be used to buy
existing financial assets. In real terms, this extension had already been suggested in [5], but
was not pursued in the monetary model proposed in [7]. To our knowledge, we present the first
analysis of an extension of the Keen model with both inflation and speculation.

The model is described by a four-dimensional dynamical system, from which many interesting
phenomena arise. For example, even in the good equilibrium state of economy, adding specula-
tion can change a healthy positive inflation rate into a low deflation rate. The stability of this
equilibrium point also expresses the danger that speculation represents for wage incomes and
price levels.

A third and significant analytical contribution of the paper is the description of new equi-
librium points appearing with the introduction of a price dynamics. These points describe an
economy where the employment rate approaches zero, but nevertheless deflation is sufficiently
strong to maintain positive equilibrium nominal wages. This stylized situation has an interesting
interpretation, whereby the real economy enters a recession simultaneous with strong deflation,
so that nominal wages decrease but real wages, for the few workers left employed, remain stable.
These equilibrium points are furthermore interesting because sufficient conditions for their local
stability are weaker than for the original equilibrium points.

The final contribution is the qualitative study of the speculation parameters on the simulated
trajectories of the monetary Keen model with speculation. We obtain, for an interesting range of
parameters, complex limit cycles in four dimensions, which fully illustrate the rich dynamics that
can arise from the interaction between labour markets, debt-financed investment, and speculation
in financial markets.

The paper is organized as follows. In Section 2, we present the Keen model of [5] in its simplest,
yet stock-flow consistent form, with constant price index and no Ponzi financing. In Section 3,
we study the extension suggested in [6] with markup-led prices. We provide a full equilibrium
and stability analysis. In particular, we introduce the new equilibria mentioned previously, and
comment on their interpretation.

In Section 4, we introduce the speculative dimension, repeat the equilibrium analysis, including
necessary and sufficient conditions for stability, and describe the new deflationary equilibrium
regime. Section 5 is dedicated to numerical computations and simulations of previously defined
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systems, where we provide examples of convergence to the several possible equilibrium points.
We also dedicate a paragraph to the emergence of the limit cycle phenomenon described above.

2 The Keen model

We recall the basic setting of [5]. Denote real output by Y and assume that it is related to the
stock of real capital K held by firms through a constant capital-to-output ratio ν according to

Y =
K

ν
. (1)

This can be relaxed to incorporate a variable rate of capacity utilization as in [3], but we will not
pursue this generalization here. Capital is then assumed to evolve according to the dynamics

K̇ = I − δK , (2)

where I denotes real investment by firms and δ is a constant depreciation rate. Firms obtain
funds for investment both internally and externally. Internal funds consist of net profits after
paying a wage bill and interest on existing debt, that is,

Π = pY −W − rB, (3)

where p denotes the price level for both capital and consumer goods, r is the interest rate paid
by firms, and B = L − Df denotes net borrowing of firms from banks, that is, the difference
between firms loans L and firm deposits Df . Whenever nominal investment differ from profits,
firms change their net borrowing from banks, that is,

Ḃ = pI −Π. (4)

One key assumption in [5] is that investment by firms is given by I = κ(π)Y , where κ(·) is an
increasing function of the net profit share

π =
Π

pY
= 1− ω − rb, (5)

where

ω =
W

pY
and b =

B

pY
(6)

denote the wage and firm debt shares, respectively. The investment function κ is assumed to be
differentiable on R, verifying also the following technical conditions invoked in [2]:

lim
π→−∞

κ(π) = κ0 < ν(α+ β + δ) < lim
π→+∞

κ(π) , (7)

lim
π→−∞

π2κ′(π) = 0 . (8)

Denoting the total workforce by N and the number of employed workers by ℓ, we can define the
productivity per worker a, the employment rate λ, and the nominal wage rate as

a =
Y

ℓ
, λ =

ℓ

N
=

Y

aN
, w =

W

ℓ
. (9)

We then assume that productivity and workforce follow exogenous dynamics of the form

ȧ

a
= α,

Ṅ

N
= β, (10)

3



for constants α and β, which leads to the employment rate dynamics

λ̇

λ
=
Ẏ

Y
− α− β. (11)

The other key assumption in [5] is that changes in the wage rate are related to the current
level of employment by a classic Phillips curve, that is, the wage rate evolves according to

ẇ

w
= Φ(λ), (12)

where Φ(·) is an increasing function of the employment rate. The function Φ is defined on [0, 1)
and takes values in R. It is assumed to be differentiable on that interval, with a vertical asymptote
at λ = 1, and to satisfy

Φ(0) < α, (13)

so that the equilibrium point defined below in (17)-(19) exists.
The model in [5] assumes that all variables are quoted in real terms, which is equivalent

to assume that the price level is constant and normalized to one, that is, p ≡ 1. Under this
assumption, which we will relax in the next section, it is straightforward to see that the dynamics
of the wage share, employment rate, and debt share reduce to the three-dimensional system







ω̇ = ω [Φ(λ)− α]

λ̇ = λ [g(π)− α− β]

ḃ = κ(π)− π − bg(π)

(14)

where

g(π) :=
Ẏ

Y
=
κ(π)

ν
− δ, (15)

is the growth rate of the economy for a given profit share π = 1− ω − rb.
The properties of (14) were extensively analyzed in [2], where it is shown that the model

exhibits essentially two economically meaningful equilibrium points. The first one corresponds to
the equilibrium profit share

π1 = g−1(α+ β) = κ−1(ν(α+ β + δ)), (16)

which we substitute in system (14) to obtain

ω1 = 1− π1 − rb1 (17)

λ1 = Φ−1(α) (18)

b1 =
κ(π1)− π1

α+ β
. (19)

This point is locally stable if and only if

0 < r

(

1 + κ′(π1)

(

b1
ν

− 1

))

< α+ β (20)

It corresponds to a desirable equilibrium point, with finite debt, positive wages and employment
rate, and an economy growing at its potential pace, namely with a growth rate at equilibrium
equal to

g(π1) =
κ(π1)

ν
− δ = α+ β , (21)
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that is, the sum of population and productivity growth.
By contrast, the other equilibrium point is an undesirable state of the economy characterized

by (ω2, λ2, b2) = (0, 0,+∞), with the rate of investment converging to limx→−∞ κ(x) = κ0. This
equilibrium is stable if and only if

g(−∞) =
κ0
ν

− δ < r . (22)

The key point in [2] is that both conditions (20) and (22) are easily satisfied for a wide range of
realistic parameters, meaning that the system exhibits two locally stable equilibria, and neither
can be ruled out a priori.

The model in (14) can be seen as a special case of the stock-flow consistent model represented
by the balance sheet, transactions, and flow of funds in Table 1. To see this, observe that although
[5] does not explicitly model consumption for banks and households, it must be the case that total
consumption satisfies

C = Y − I = (1− κ(π))Y, (23)

since there are no inventories in the model, which means that total output is implicitly assumed
to be sold either as investment or consumption. In other words, consumption is fully determined
by the investment decisions of firms. This shortcoming of the model is addressed in [3], where
inventories are included in the model and consumption and investment are independently spec-
ified. For this paper, however, we adopt the original specification (23). Further assuming that
rf = rL = r and that p = 1 leads to the system in (14).

Households Firms Banks Sum

Balance Sheet

Capital stock +pK +pK

Deposits Dh +Df −D 0
Loans −L +L 0

Sum (net worth) Xh Xf Xb X

Transactions current capital
Consumption −pCh +pC −pCb 0
Investment +pI −pI 0
Accounting memo [GDP] [pY ]
Wages +W −W 0
Interest on deposits +rhDh +rfDf −rhDh − rfDf 0
Interest on loans −rLL +rLL 0

Financial Balances Sh Π −pI Sb 0

Flow of Funds

Change in Capital Stock +pI +pI

Change in Deposits +Ḋh +Ḋf −Ḋ 0

Change in Loans −L̇ +L̇ 0

Column sum Sh Π Sb pI

Change in net worth Ẋh = Sh Ẋf = Π+ (ṗ− δp)K Ẋb = Sb Ẋ

Table 1: Balance sheet, transactions, and flow of funds for a three-sector economy.
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3 Keen model with inflation

3.1 Specification and equilibrium points

We follow [1] and [7] and consider a wage-price dynamics of the form

ẇ

w
= Φ(λ) + γi , (24)

i =
ṗ

p
= −ηp

[

1− ξ
w

ap

]

= ηp(ξω − 1) (25)

for a constants 0 ≤ γ ≤ 1, ηp > 0 and ξ ≥ 1. The first equation states that workers bargain
for wages based on the current state of the labour market as in (12), but also take into account
the observed inflation rate i. The constant γ measures the degree of money illusion, with γ = 1
corresponding to the case where workers fully incorporate inflation in their bargaining, which is
equivalent to the wage bargaining in real terms assumed in [5]. The second equation assumes that
the long-run equilibrium price is given by a markup ξ times unit labor cost w/a, whereas observed
prices converge to this through a lagged adjustment of exponential form with a relaxation time
1/ηp.

The wage-price dynamics in (24)-(25) leads to the modified system






ω̇ = ω [Φ(λ)− α− (1− γ)i(ω)]

λ̇ = λ [g(π)− α− β]

ḃ = κ(π)− π − b [i(ω) + g(π)]

, (26)

where π = 1−ω− rb and i(ω) = ηp(ξω− 1). Observe that the introduction of the price dynamics
(25) does not increase the dimensionality of the model, because the price level p does not enter
in the system (26) explicitly and can be found separately by solving (25) for a given solution of
(26).

This model has the same types of equilibrium points as the model in Section 2, plus two new
ones. We start with the original points. Namely, defining the equilibrium profit rate as in (16),
substitution into (26) leads to the good equilibrium

ω1 = 1− π1 − rb1 (27)

λ1 = Φ−1[α+ (1− γ)i(ω1)] (28)

b1 =
κ(π1)− π1

α+ β + i(ω1)
. (29)

We therefore see that, if ξ ≥ 1/ω1, then i(ω1) = ηp(ξω1 − 1) ≥ 0, that is, the model is asymptot-
ically inflationary. In this case, it is easy to see from (28) that the equilibrium employment rate
is higher than the corresponding values (18) in the basic model. Conversely, if ξ < 1/ω1, then
the model is asymptotically deflationary, that is i(ω1) < 0, leading to lower employment rate at
equilibrium. This is reminiscent of the common interpretation of the Philips curve as a trade-off
between unemployment and inflation, but derived here as a relation holding at equilibrium, with
the Philips curve used in (24) as a structural relationship governing the dynamics of the wage
rate instead.

Inserting the expression for b1 into (27) we see that ω1 is a solution of the quadratic equation
a0ω

2 + a1ω + a2 = 0 where

a0 = ξηp > 0

a1 = α+ β − ηp(1 + ξ(1− π1))

a2 = (ηp − α− β)(1− π1) + r(κ(π1)− π1)
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We naturally seek a non-negative solution to the above equation. For low values of ηp, the price
level in (25) adjusts slowly, and we retrieve a behavior similar to the basic Keen model of Section
2. For example, if

ηp < α+ β and π1 ≤ min(1, ν(α+ β + δ)), (30)

then a2 < 0 and there is a unique positive value ω1. If, however, ηp is large enough, that is
ηp > α+ β, then we need to further consider the discriminant condition

((α+ β − ηp) + ηpξ(1− π1))
2
> 4ηpξr(κ(π1)− π1) . (31)

If this condition holds, provided π1 < 1, then a1 > 0 and at least one solution ω1 is non-
negative, and often more than one. Provided the equilibrium point (ω1, λ1, b1) exists, its stability
is analyzed in the Section 3.2.1.

Similarly, the bad equilibrium can be found by studying the modified system (ω, λ, q) with
q = 1/b, that is,







ω̇ = ω [Φ(λ)− α− (1− γ)i(ω)]

λ̇ = λ [g(1− ω − r/q)− α− β]
q̇ = q [g(1− ω − r/q) + i(ω)]− q2 [κ(1− ω − r/q)− (1− ω − r/q)]

, (32)

for which the point (0, 0, 0) is a trivial equilibrium corresponding to (ω2, λ2, b2) = (0, 0,+∞).
The stability of this equilibrium is analyzed in Section 3.2.2.

We now focus on a new feature of the monetary model (26), namely the possibility that at
low employment rates, a deflation regime compensates the decrease in nominal wages. We start
with an equilibrium with non-zero wage share, zero employment, and finite debt ratio given by
(ω3, 0, b3) where

ω3 =
1

ξ
+

Φ(0)− α

ξηp(1− γ)
(33)

and b3 solves the nonlinear equation

b [i(ω3) + g(1− ω3 − rb)− r] = κ(1− ω3 − rb)− 1 + ω3 . (34)

Notice that
i(ω1) = Φ(λ1)− α > Φ(0)− α = i(ω3) ,

so that any equilibria characterized by the wage share ω3 in (33) is asymptoticly deflationary
on account of condition (13). Because of (9) and (1), a zero employment rate implies that both
output and capital vanish at equilibrium. Following (6)-(9), the total wage bill W is null but the
real wage per capita w/p continues to grow asymptotically at the same rate as the productivity,
namely α, since

w

p
= ωa (35)

and ω → ω3. This situation seems artificial and must be qualified. When this equilibrium is locally
stable, it illustrates an economic situation where the decrease in employment rate does not lead
to a real wage loss for the diminishing working force, because of the corresponding decrease in
the general price level. The state is still bad, but expresses the possibility that economic crises
do not necessarily translate into lower average real wages.

Moreover, we see from (6) that a finite b3 leads to B = 0 at equilibrium too, corresponding to
a slowing down of the economy as a whole, including banking activities. As we will see with the
stability analysis, and a fortiori in the case with speculation, this situation is unlikely to happen.
The reduction in nominal wages reinforces the profit share, and thus the expansion of credit.
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The eventuality of deflation favours creditors at the expense of debtors, which in turn fosters an
increase in the debt ratio. To study the possibility of exploding debt ratio in this case, if one uses
the change of variable leading to the modified system (32), then (ω3, 0, 0) is an equilibrium point
of that system which corresponds to the equilibrium (ω3, 0,+∞) of the original system (26).

We therefore see that, provided local stability holds for one or both points characterized by
(33), we are dealing with examples of economic crises related to deflationary regimes which are
likely, but not necessarily, accompanied by a debt crises.

3.2 Local stability analysis

3.2.1 Good equilibrium

Assume the existence of (ω1, λ1, b1) as defined in Section 3.1, with ω1 > 0 and λ1 ∈ (0, 1). The
study of local stability in system (26) goes through the Jacobian matrix J3 given by



















Φ(λ)− α+ (1− γ)ηp(1− 2ξω) ωΦ′(λ) 0

−
λκ′(π)

ν
g(π)− α− β −r

λκ′(π)

ν

(b− ν)κ′(π)

ν
+ 1− ηpξb 0

rκ′(π)(b− ν)

ν
+ r − g(π)− i(ω)



















. (36)

At the equilibrium point (ω1, λ1, b1), with g(π1) = α+β as stated by (21), this Jacobian becomes

J3(ω1, λ1, b1) =





K0 K1 0
−K2 0 −rK2

K3 − ηpξb1 0 K4



 ,

with the terms

K0 = (γ − 1)ηpξω1 < 0, K1 = ω1Φ
′(λ1) > 0 and K2 = λ1

κ′(π1)

ν
> 0 (37)

having well-defined signs, and the terms

K3 =
κ′(π1)(b1 − ν)

ν
+ 1 and K4 = rK3 − (α+ β + i(ω1)) (38)

having signs that depend on the underlying parameters. The characteristic polynomial of J3(ω1, λ1, b1)
is given by

K3[X] = (K4 −X) (K2K1 −X(K0 −X))− rK1K2

(

K3 − ηpξb1
)

. (39)

Factorization provides

−K3[X] = X3
−X2(K0 +K4) +X (K0K4 +K1K2) +K1K2K5 .

with K5 = α + β + i(ω1) − rηpξb1, which provides the necessary conditions for stability of the
equilibrium point:

K0 < −K4, −K0K4 > K1K2, K5 > 0, and (K0 +K4)(K0K4 +K1K2) > K1K2K5.

A numerical test can be implemented to study such a condition. Notice that if K3 > ηpξb1,
then K3 has three negative roots if (K4 −X) (K2K1 −X(K0 −X)) has three negative roots.
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According to (37), K1K2 > 0 and K0 < 0, so that the Routh-Hurwitz criterion for the later
polynomial reduces to the last condition K4 < 0. A sufficient condition for having three negative
roots to K3 is thus

rηpξb1 < r

(

1 + κ′(π1)

(

b1
ν

− 1

))

< α+ β + i(ω1) . (40)

This condition resembles (20) with modifications. The left-hand side inequality is a stronger
condition than (20) if b1 > 0, which is expected. On the contrary, the righ-hand side inequality
of (40) is a weaker condition if i(ω) > 0, which is also expected.

3.2.2 Bad equilibrium

As stated in Section 3.1, a bad equilibrium emerges if we study a modified system with state
space (ω, λ, q) with q = 1/b. Assuming (8), the Jacobian matrix of the modified system (32) at
the point (0, 0, 0) is

Jε(0, 0, 0) =









Φ(0)− α+ (1− γ)ηp 0 0

0
κ0
ν

− α− β − δ 0

0 0
κ0
ν

− δ − ηp − r









. (41)

This matrix is similar to the one found in [2]. Provided (7) holds, the bad equilibrium is locally
stable if and only if

Φ(0) < α− (γ − 1)ηp and
κ0
ν

− δ − ηp < r . (42)

Notice that, especially for high values of ηp, the first condition above is stronger than (13), which
was a necessary and sufficient condition for stability of the bad equilibrium in the original Keen
model without inflation (see [2]). On the contrary, the second condition above is weaker than
condition (22), but bares the same interpretation, with the nominal growth rate replacing the
real growth rate in the comparison with the interest rate r.

3.2.3 New equilibria

We now study the previously computed Jacobian matrices on the new equilibria defined at the
end of Section 3.1. Take first the point (ω3, 0, b3) with ω3 defined by (33) and b3 defined by (34).
We obtain from (36)

J3(ω3, 0, b3) =





K ′
0 K ′

1 0
0 g(π3)− α− β 0

K ′
3 − ηpξb3 0 K ′

4



 (43)

where K ′
0,K

′
1,K

′
3 and K ′

4 are given by (37) and (61) where (ω1, λ1, b1) is replaced by (ω3, 0, b3),

and α+β in K4 is replaced by g(π3) =
κ(π)
ν

− δ, with π = 1−ω3− rb3. The Jacobian for (λ, ω, b)

is thus lower triangular, which readily provides eigenvalues for J3(ω3, λ3, b3), and the conditions
for local stability:

(γ − 1)ηpξω3 < 0, g(π3) < α+ β and r

(

1 + κ′(π3)

(

b3
ν

− 1

))

< g(π3) + i(ω3) . (44)
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The first condition above is always satisfied. The second condition, however, fails to hold whenever
π3 > π1, which must be checked numerically, since (34) does not have an explicit solution. The
third condition is reminiscent of (20) and (40) and must also be checked numerically.

Turning to the equilibrium (ω3, 0,+∞), that is q3 = 0 in the modified system (32), the
Jacobian matrix Jε(ω3, 0, 0) at point defined by (33) is the same as in (41), except for one zero
term changed in ω3Φ

′(0), and the diagonal terms. The conditions for local stability are thus

(γ − 1)ηpξω3 < 0 and
κ0
ν

− δ + i(ω3) < r . (45)

Again, the first condition is always satisfied, whereas the second one should be interpreted as
the comparison between nominal growth rate and nominal interest rate, similarly to the second
stability condition in (42) for the bad equilibrium (0, 0,+∞).

4 Keen model with inflation and speculation

4.1 Assumptions and equilibria

Borrowing for speculative purposes was modeled in [5] by modifying the debt dynamics equation
(4) to

Ḃ = pI −Π+ F, (46)

where the additional term F corresponded to the flow of new credit to be used solely to purchase
existing financial assets. The dynamics of F itself was modeled in [5] as

Ḟ = Ψ(g(π))Y, (47)

where Ψ(·) is an increasing function of the observed growth rate g(π) of the economy.
In the analysis presented in [2], this was changed to

Ḟ = Ψ(g(π))F, (48)

in order to ensure positivity of F . It was then shown that the extended system for the variables
(ω, λ, b, f), where f = F/Y , admitted (ω1, λ1, b1, 0) as a good equilibrium, with ω1, λ1, b1 defined
as in (17)-(19), but with local stability requiring that

Ψ(α+ β) < α+ β, (49)

in addition to the previous condition (20). Moreover, [2] also provide the conditions for local
stability for the bad equilibria corresponding to (ω, λ, b, f) = (0, 0,+∞, 0) and (ω, λ, b, f) =
(0, 0,+∞,+∞), and showed that these were wider than the corresponding conditions in the basic
Keen model. In other words, the addition of a speculative flow of the form (48) makes it harder
to achieve stability for the good equilibrium and easier for the bad equilibrium.

In this paper, we revert back to the original formulation in [5], because it allows for more
flexible modelling of the flow of speculative credit, which as we will see can be either positive
or negative at equilibrium. In addition, in accordance with the previous section, we continue to
assume a wage-price dynamics of the form (24)-(25) and modify (47) to

Ḟ = Ψ(g(π) + i(ω))pY, (50)

where Ψ(·) is now an increasing function of the growth rate of nominal output. Defining the
corresponding state variable as f = F/(pY ), it then follows that the model corresponds to the
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four-dimensional system















ω̇ = ω [Φ(λ)− α− (1− γ)i(ω)]

λ̇ = λ [g(π)− α− β]

ḃ = κ(π)− π − b [g(π) + i(ω)] + f

ḟ = Ψ(g(π) + i(ω))− f [g(π) + i(ω)]

. (51)

Similarly to the model (26), new equilibria emerge along with familiar ones. With the addition
of the speculative dimension f , we see that the point (ω1, λ1, b1, f1) obtained by defining π1 as
in (16), so that g(π1) = α+ β, and setting

ω1 = 1− π1 − rb1 (52)

λ1 = Φ−1[α+ (1− γ)i(ω1)] (53)

b1 =
κ(π1)− π1 + f1
α+ β + i(ω1)

(54)

f1 =
Ψ(α+ β + i(ω1))

α+ β + i(ω1)
(55)

is a good equilibrium for (51). Finding this point requires solving (52), (54) and (55) simul-
taneously using the definition of i(ω1) = ηp(ξω1 − 1). Considering the change of variable
X = α+ β + i(ω1), this is equivalent to solve the following equation for X:

X3 + (ηpξ(π1 − 1)− α− β + ηp)X
2 + rηpξ (κ(π1)− π1)X + rηpξΨ(X) = 0 . (56)

Since the polynomial part of (56) is of order three, it crosses the non-decreasing term rηpξΨ(X) at
least once, implying the existence of at least one solution to (56). The good equilibrium satisfies
ω1 > 0 if and only if the corresponding solution to (56) verifies X > α + β − ηp. As we can
see, provided α + β + i(ω1) > 0, a positive equilibrium speculative flow f1 leads to a higher
equilibrium borrowing ratio b1 and consequently lower equilibrium wage share ω1 compared to
the equilibrium values for the model without speculation. The stability of this equilibrium is
analyzed in Section 4.2.1.

Similarly to [2], the change of variables x = 1/f and v = f/b allows us to study the bad
equilibria given by (ω2, λ2, b2, f2) = (0, 0,+∞,±∞) and (ω2, λ2, b2, f2) = (0, 0,+∞, f0,∞) where

f0,∞ =
Ψ(g(−∞)− ηp)

g(−∞)− ηp
. (57)

There are thus two possible crisis states for the speculative flow. One corresponding to a finite
ratio f0,∞ which corresponds to a financial flow F 0,∞ = 0 (since Y = 0 whenever λ = 0). The
other corresponds to the explosion of f , but at lower speed compared to b. We refer to [2] for
a full interpretation. The local stability of these two types of equilibria are studied in Sections
4.2.3 and 4.2.2, respectively.

Next we consider the equilibrium (ω3, 0, b3, f3) where ω3 is given as in (33), b3 solves

b

(

κ(1− ω3 − rb)

ν
− i(ω3)

)

= κ(1− ω3 − rb)− (1− ω3 − rb) + f3 .

and

f3 =
Ψ
(

κ(1−ω3−rb)
ν

− δ + i(ω3)
)

κ(1−ω3−rb)
ν

− δ + i(ω3)
. (58)
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As in Section 3, this equilibrium must be interpreted as a bad equilibrium despite the finite
values taken by state variables. The interpretation extends to f , which leads to a financial flow
F 3 = f3pY 3 = 0. The stability of this equilibrium points is analyzed in Section 4.2.1.

The final possibilities corresponds to the equilibrium points (ω3, 0,+∞,±∞) and (ω3, 0,+∞, f3,∞),
where ω3 is given as in (33) and

f3,∞ =
Ψ(g(−∞) + i(ω3))

g(−∞) + i(ω3)
. (59)

The stability of these equilibria is studied in Sections 4.2.2 and 4.2.3. Overall, the system exhibits
one good equilibrium point and seven different bad equilibria, confirming Tolstoy’s dictum on the
multiplicity of states of unhappiness.

4.2 Local stability Analysis

4.2.1 Equilibria with finite debt

The good equilibrium (ω1, λ1, b1, f1), and the bad equilibrium (ω3, 0, b3, f3) are studied via system
(51). The Jacobian J4(ω, λ, b, f) for this system is given by



















−(1− γ)ηpξω ωΦ′(λ) 0 0

−
λκ′(π)

ν
g − α− β −r

λκ′(π)

ν
0

b

(

κ′(π)

ν
− ηpξ

)

+ 1− κ′(π) 0 r

(

b
κ′(π)

ν
+ 1− κ′(π)

)

− (g + i) 1
(

κ′(π)

ν
− ηpξ

)

(f −Ψ′(g + i)) 0 r
κ′(π)

ν
(f −Ψ′(g + i)) −(g + i)



















(60)
with g = κ(1 − ω − rb)/ν − δ and i = ηp(ξω − 1). At the equilibrium point (ω1, λ1, b1, f1), it
becomes











K0 K1 0 0
−K2 0 −rK2 0

K3 − ηpξb1 0 K4 1
(

κ′(π1)
ν

− ηpξ
)

K6 0 r κ
′(π1)
ν

K6 −(α+ β + i)











with K0,K1,K2 and K3 already defined in (37) and (38), and

K6 = f1 −Ψ′(α+ β + i) . (61)

The characteristic polynomial is given non-trivially by

K4[X] =
(

(α+ β + i) +X
)

K3[X] + rK5

(

κ′(π1)

ν
(X −K0)X + ηpξK1K2

)

= X4 + a3X
3 + a2X

2 + a1X + a0 ,

where

a3 = −K0 − rK3

a2 = K0K4 +K1K2 − (α+ β + i)(K0 +K4)− rK6
κ′(π1)

ν

a1 = (α+ β + i)K0K4 + rηpξb1K1K2 − rK6
κ′(π1)

ν
K0

a0 = −K1K2

(

(α+ β + i)K5 + rK6ηpξ
)
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with Ki for i = 0 to 4 by (37), K5 = (α + β + i) − rηpξb1 and finally (38), K6 by (61). The
Routh-Hurwitz criterion in this case is given by

ai > 0 for 0 ≤ i ≤ 3 , a3a2 > a1 , and a3a2a1 > a21 + a23a0 .

This is expected to be solved numerically only.
For the new equilibrium point (ω3, 0, b3, f3), (60) becomes, after permuting the order of ω and

λ and defining π3 = 1− ω3 − rb3:













g(π3)− α− β 0 0 0
ω3Φ

′(0) −(1− γ)ηpξω3 0 0

0 b3

(

κ′(π1)
ν

+ ηpξ
)

+ 1− κ′(π3) r
(

b3
κ′(π3)
ν

+ 1− κ′(π3)
)

− (g + i3) 1

0
(

κ′(π)
ν

+ ηpξ
)

(f3 +Ψ′(g + i3)) r κ
′(π)
ν

(f3 +Ψ′(g + i3)) −g − i3













The first two eigenvalues are given by g(π3)−α−β and (γ−1)ηpξω3 < 0, whereas a characteristic
equation for the lower right 2× 2 square matrix is given by

(

rκ′(π3)

ν
(b− ν) + r − g(π3)− i(ω3)−X

)

(X + g(π3) + i(ω3))+
rκ′(π3)

ν
(f3−Ψ′(g(π3)+i(ω3)))

The Routh-Hurwitz condition for a second order polynomial is the positivity of all coefficients of
the equation. The equilibrium point is thus locally stable if and only if

r

(

1 + κ′(π3)

(

b3
ν

− 1

))

> 2(g(π3) + i(ω3)) , g(π3) < α+ β , and Ψ′(g(π3) + i(ω3)) > f3 .

The first condition recalls again (20), (40) and (44), but with a multiplier making the condition
stronger here. The second condition is also redundant and, if π3 > π1, it fails at this point as for
the model without speculation (26). The last condition is an extra condition rendering stability
even more difficult to reach.

4.2.2 Equilibria with infinite debt and finite speculation

We make a change of variable to study the equilibria (0, 0,+∞, f0,∞) and (ω3, 0,+∞, f3,∞) where

ω3, f0,∞ and f3,∞ are defined respectively in (33), (57), and (58). The modification q = 1/b
provides the new system















ω̇ = ω [Φ(λ)− α− (1− γ)i(ω)]

λ̇ = λ [g(π)− α− β]
q̇ = q [g(π) + i(ω)]− q2 [κ(π)− π + f ]

ḟ = Ψ(g(π) + i(ω))− f [g(π) + i(ω)]

,

with now π = 1 − ω − r/q. For both equilibrium points, q = 0 and we have that g = κ0/ν − δ
and κ′(π) = 0. Moreover, according to (8),

lim
q→0

κ′(π)

q2
= lim
q→0

κ′(π)

q
= 0 .
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The Jacobian matrix of this system, with these particular values in mind, is given by

















Φ(0)− α− (1− γ)ηp(2ξω − 1) ωΦ′(λ) 0 0

−
λκ′(π)

ν

κ0
ν

− δ − α− β 0 0

0 0
κ0
ν

− δ + i− r 0
(

κ′(π)

ν
− ηpξ

)

(f −Ψ′(g + i)) 0 0 −
κ0
ν

+ δ − i

















For the first equilibrium point, the term ωΦ′(λ) disappears, whereas for the second equilibrium
point, −λκ′(π)/ν = 0. In both cases, the matrix is, up to a permutation, lower triangular,
providing directly the eigenvalues and the necessary and sufficient conditions for local stability of
equilibria, which are almost the same for both points. For the first point, first term in the Jacobian
provides the first condition in (42), whereas the condition for the second point is (γ−1)ηpξω3 < 0
and is always satisfied. Assuming that (7) holds, the other conditions for local stability reduce to

0 <
κ0
ν

− δ + i(ω) < r . (62)

The second point (with positive wage share) is thus locally stable under stronger conditions than
for the first one, since i(0) < i(ω3).

4.2.3 Bad equilibria with infinite debt and infinite speculation

The second modification of the system is v = f/b = q/x with x = 1/f , providing














ω̇ = ω [Φ(λ)− α− (1− γ)i(ω)]

λ̇ = λ [g(π)− α− β]
v̇ = vxΨ(g(π) + i(ω))− v2[x(κ(π)− π) + 1]
ẋ = x[g(π) + i(ω)]− x2Ψ(g(π) + i(ω))

,

which now exhibits two equilibria: (0, 0, 0, 0) and (ω3, 0, 0, 0). The first one, similarly to [2],
corresponds to a bad equilibrium with explosive debt and explosive rate of investment into pure
finance. Notice that debt rate b grows much faster than the financial investment rate f , so that the
explosive debt corresponds to a Ponzi scheme into both real and financial sectors of the economy.
The second point bares the same interpretation, with positive wages sustained by deflation.

In both cases, λ = v = x = 0, g(π) = κ0/ν − δ and from (8),

lim
|v|+|x|→0

κ′
(

1− ω −
r

vx

)

(∣

∣

∣

∣

1

v

∣

∣

∣

∣

+

∣

∣

∣

∣

1

v2

∣

∣

∣

∣

+

∣

∣

∣

∣

1

x

∣

∣

∣

∣

+

∣

∣

∣

∣

1

vx

∣

∣

∣

∣

+

∣

∣

∣

∣

1

xv2

∣

∣

∣

∣

+

∣

∣

∣

∣

1

vx2

∣

∣

∣

∣

)

= 0 .

The Jacobian matrix at both points takes the form










Φ(0)− α− (1− γ)ηp(2ξω − 1) ωΦ′(0) 0 0

0
κ0
ν

− δ − α− β 0 0

0 0 −r 0
0 0 0 g + i











For the local stability of point (0, 0, 0, 0), we need the first condition in (42), whereas similarly
to above, the condition (γ − 1)ηpξω3 < 0 for local stability of (ω3, 0, 0, 0) is always satisfied.
Condition (7) provides the second condition, r ≥ 0 the third, and

κ0
ν

− δ + i(ω) < 0
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expresses the last condition. Notice two things. First, that i(ω3) > i(0) so that as previously, this
last condition holds for a wider range of parameters for the point (0, 0, 0, 0). Second, similarly to
[2], the condition is partially complementary to (62), so that if the bad equilibrium with finite
speculation is not locally stable, then the bad equilibrium with infinite speculation has most
chances to be.

5 Numerical Simulations and Qualitative Analysis

5.1 Parameters, equilibria and stability

5.1.1 Basic Keen Model

We take most values from previous work, see [5] and [2]. We choose the fundamental economic
constants to be

(α, β, δ, ν, r) = (0.025, 0.02, 0.01, 0.03) . (63)

The Phillips curve is chosen to be

Φ(λ) =
φ1

(1− λ)2
− φ0 (64)

with

(φ0, φ1) =

(

0.04

1− 0.042
,

0.043

1− 0.042

)

so that Φ(0.96) = 0 and Φ(0) = −0.04. The investment function is given by

κ(π) = κ0 + exp(κ1 + κ2π) (65)

with
(κ0, κ1, κ2) = (−0.0065,−5, 20) .

The required conditions (7) and (8) are satisfied. We recall results of [2]: there exists only one
reachable good equilibrium

(ω1, λ1, b1) = (0.8361, 0.9686, 0.0702)

which is locally stable, because condition (20) is satisfied. We notice for later use that, according
to (16), the profit share corresponding to this equilibrium is

π1 = 0.1618 . (66)

Moreover, the bad equilibrium (ω2, λ2, b2) = (0, 0,+∞) is locally stable too, because (22) is also
satisfied.

In addition to parameters present in the basic Keen model of Section 2, we need to choose
the parameters ηp, ξ and γ for the model with inflation of Section 3, and the function Ψ for the
model with speculation of Section 4.

5.1.2 Keen Model with inflation

We recall that the parameter ξ determines whether the good equilibrium is asymptotically infla-
tionary (ξω1 > 1) or deflationary (ξω1 < 1). The price level is asymptotically constant if

ξ = 1 +
1− ω1

ω1
,
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where a first proxy for 1−ω1, ignoring interest payments, is given by π1, which is directly given as
a function of exogenously fixed parameters in (66). Replacing in the equation provides ξ = 1.193,
and we choose a slightly higher value to ensure an inflationary state at equilibrium, while at the
same time consistent with empirical estimates (see [8]). The parameter ηp, on the other hand,
reflects the speed of adjustment of prices to their long-term target. We already mentioned the
importance of this parameter in Section 3. To distinguish from the non-monetary Keen model
analyzed in [2], we take ηp = 4, representing an average period of adjustment of three months.
We thus take additional parameters as follows:

(ηp, ξ, γ) = (4, 1.2, 0.8) . (67)

According to this parametrization, we obtain two positive roots to the equation a0ω
2+a1ω+a2 =

0, namely
{

ω+
1 = 0.8372

ω−
1 = 0.8250

, (68)

corresponding to the two equilibrium points

(ω+
1 , λ

+

1 , b
+

1 ) = (0.8372, 0.9695, 0.0498) and (ω−
1 , λ

−

1 , b
−

1 ) = (0.8250, 0.9665, 0.6602) . (69)

The first point leads to an inflation rate of i
+

= 1.838%, whereas the second leads to i
−

=
−4.022%, corresponding respectively to higher and lower equilibrium employment rates compared
to the base case λ1 = 0.9686, consistently with the observation following equations (27)-(29). The
local analysis formulas described in Section 3.2.1 assert, however, that in this case that only the
first point is locally stable.

We also test the new bad equilibrium with finite wage share, finite debt, but zero employment
rate. Computations of (33) provide ω3 = 0.7656. Solving (34) provides b3 = −0.9539. The stabil-
ity analysis pursued in Section 3.2 shows that this point is, as expected, locally unstable. Indeed,
the equilibrium profit share in this case is π3 = 0.2535, which implies a very high investment
share κ(π3). Accordingly, the second condition of (44) fails to hold.

The stability of the two possible bad equilibria with infinite debt is also easy to analyze. With
deflation given by i(ω3) < 0 we have that

κ0
ν

− δ + i(ω3) < r , (70)

so that the second condition in (42) holds and (ω3, 0,+∞) is locally stable. However, with the
parametrization ηp = 4 and γ = 0.8, the first condition of (42) fails holds, and consequently
(0, 0,+∞) is not locally stable.

5.1.3 Keen Model with inflation and speculation

To complete the model, we define the function Ψ as in [2]:

Ψ(g) = ψ0(e
ψ2(g−ψ1) − 1) , (71)

with

(ψ0, ψ1, ψ2) = (0.25, 0.02, 1.2) .

The equilibrium is found by solving (56) numerically. The algorithm converges to a unique
solution and provides

(ω1, λ1, b1, f1) = (0.8303, 0.9679, 0.2635, 0.0049) , (72)
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with the corresponding inflation rate equal to i = −1.18%. According to the criterion presented
in Section 4.2, the good equilibrium is locally stable. Moreover, since f1 is positive, a regular
flow of new credit goes into speculative finance at equilibrium and, as mentioned in Section 3,
the debt share is higher in (72) than in the first equilibrium in (69) and the wage share is lower,
as expected. This is an interesting result mentioned in the introduction, namely introducing
speculation in the system turns an inflationary equilibrium into a deflationary one.

The study of alternative equilibria with ω3 given by (33) provides the following equilibrium
point with finite debt and finite speculation flow:

(ω3, 0, b3, f3) = (0.7656, 0,−0.6820, 0.1006) , (73)

with asymptotic inflation rate i(ω3) = −32.50%. For the same reasons as without speculation,
the local stability condition does not hold for the point with finite debt share, thus remaining a
meaningless case.

Concerning the bad equilibria with infinite debt ratio, we numerically obtain with the inflation
rate found above that

κ0
ν

− δ + i(ω3) < 0 ,

which implies the local stability of the bad equilibria with infinite debt ratio and infinite specula-
tion, and the instability of the ones with infinite debt ratio and finite speculation. Additionally,
the failure of first condition in (42) remains here, thus implying that the equilibrium point with
zero wage share is also unstable. Consequently, the only bad equilibria that are locally stable in
this example are given by (ω3, 0,+∞,±∞), that is, corresponding to a positive wage share ω3,
zero employment, infinite debt ratio, and infinite speculation flow ratio.

5.2 Dynamics and behavior

5.2.1 Keen model with inflation

As emphasized in [2] and recalled in Section 2, the basic Keen model possesses two explicit locally
stable equilibrium points, for a wide range of parameters. Numerical simulations in [2] also show
that no apparent strange attractor can be exhibited: the phase space is numerically divided into
two complementary regions being the basins of attraction of the good and the bad equilibrium
respectively.

The Keen model with inflation (26) adds three additional parameters that were fixed in (67)
in the previous subsection. Changes in these parameters have the following effects.

First it appears that ηp and (1−γ) have, as expected, a dampening effect on oscillations of the
system. Recall that ηp is the speed of adjustment of prices for a given wage share, whereas γ is
the proportion of inflation taken into consideration of wage negotiation. They also alter the value
of the good equilibrium point. It is expected that the local basin of attraction is also affected,
but this is not pursued here. Figure 1 below illustrates the dampening effect of ηp and (1− γ) on
the oscillatory behavior of the employment rate λ.

The parameter ξ is even more influential. Its value crucially impacts condition (31), so that
a slight decrease in the markup can lead to the absence of a good equilibrium point. This is
illustrated by Figure 2, where a convergence toward the bad equilibrium (ω3, 0,+∞) appears
after dampened oscillations that first seem to converge to a good equilibrium.

The three-dimensional monetary Keen model (26) is then a privileged framework for studying
the isolated effect of price parameters in comparison with the basic Keen model (14). While it
exhibits new undesirable economic situations, it also shows accelerated convergence to equilibrium
points, thus rendering the economic situation more stable, whether or not the result is considered
good or bad.
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Figure 1: Convergent trajectories for variable λ(t) in system (26) with initial values (ω0, λ0, b0) =
(0.9, 0.9, 0.3), and parameters defined in Section 5, except (ηp, γ).

Figure 2: Trajectories for variable ω(t) in system (26) with initial values (ω0, λ0, b0) =
(0.9, 0.9, 0.3), and parameters defined in Section 5, except ξ.

5.2.2 Keen model with inflation and speculation

Similarly to the three-dimensional case, the higher the value of price parameters ηp and (1− γ),
the faster the dampening of oscillations, when the economy converges to the good equilibrium
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(ω1, λ1, b1, f1). When we take low values for ηp in particular, the case is very similar to the
Keen model with speculation of [2], and Figure 3 pictures such a trajectory for system (51) with
parameter ηp = 0.4. One can then see two scales of oscillations due to different factors. The short-
period oscillations are already present in system (14): they are given by the wage-employment
variations, interpreted as business cycles in the Goodwin model, and dampened on the long run
by the use of credit to compensate capital availability for work. The dampening speed is also
highly influenced by the relaxation parameter ηp, which adjusts the price of capital and nominal
growth to sustain wages requirements. The long-run variations are due to the adjustment of the
financial flow f . The higher the parameter ψ2, the shorter and the wider those fluctuations. This
parameter represents the sensitivity of the flow F to nominal growth output.

Figure 3: A convergent trajectory for system (51), (ω0, λ0, b0, f0) = (0.85, 0.85, 0.5, 0.1), and
parameters defined in Section 5.

Let us now come back to the initial parametrization (67), with ηp = 4. The interest here is to
analyze the effect of the speculation function Ψ, which is not explicit in the local stability analysis
pursued in Section 4.2.1. The form of (71) implies that Ψ > 0 if and only if g(π) + i(ω) > ψ1, so
that this last term represent the threshold of speculation direction (in or out of financial markets).

Depending on the value of the parameter ψ1, the system exhibits either local stability of the
good equilibrium or an absorbing limit cycle, provided that we start from a ”good” initial state
(ω0, λ0, b0, f0). Even when the good equilibrium point (72) is still theoretically locally stable,
its basin of attraction is very small. Starting numerically close to that good equilibrium, the
trajectory actually converges on a very long term (+1000 years) to an elaborate limit cycle.
Figure 4 illustrates such a claim.

The limit cycle can be described as follows, with assistance of Figure 5. Starting the economy
in a state of low debt (around years 9 and 10), it initially evolves with small cycles of oscillation
between periods of high employment rate with high wage share, and periods with high profit share
and low inflation rate. During this period, fluctuations in inflation and real growth cancel each
other and the nominal growth has a steady, albeit slowly path. Speculation reacts accordingly
and reduces its flow towards financial markets, directing it towards debt reduction instead. This
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Figure 4: A trajectory starting near the good equilibrium point and converging to a limit cycle.
Left: projection in the phase subspace (λ, b, f). Right: projection in the phase subspace (ω, b, f).

in turn implies high profit rates, and pushes up the level of growth, as well as debt creation for
investment purposes. The stability of growth above a certain threshold turns the financial flow
back toward financial markets, increasing the debt level and debt service charge and stabilizing
employment and speculation flow before year 20. The wage share steadily decreases together with
inflation. Growth remains strong until year 30, sustained by credit creation. Nominal growth
is however impacted by deflation, which reduces the flow of speculation into financial markets
again. When the debt burden is too high, real investment decreases, reducing the output growth.
At this point the speculative flow decreases sharply, and the debt burden decreases and allows
for high profits again, high employment rate and in consequence, higher wages, around year 40.

If we reduce the value of ψ1 in the above parameters configuration, then the speculation flow
remains positive for smaller values of the nominal growth rate. There is no reversal of flow from
speculative purposes back into debt repayment, and the debt service charges remain high. What
happens is that a trajectory starting from the previous limit cycle then converges to the bad
equilibrium (ω3, 0,+∞,+∞).
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