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Some simple but challenging Markov processes

Florent Malrieu

December 19, 2014

Abstract

In this note, we present few examples of Piecewise Deterministic Markov Processes and
their long time behavior. They share two important features: they are related to concrete
models (in biology, networks, chemistry,. . . ) and they are mathematically rich. Their math-
ematical study relies on coupling method, spectral decomposition, PDE technics, functional
inequalities. We also relate these simple examples to recent and open problems.

1 Introduction

A Piecewise deterministic Markov processes (PDMP1) is a stochastic process involving determin-
istic motion punctuated by random jumps. This large class of non diffusion stochastic models
was introduced in the literature by Davis [20, 21] (see also [34]). As it will be stressed below,
these processes arise naturally in many application areas: biology, communication networks, re-
liability of complex systems for example. From a mathematical point of view, they are simple to
define but their study may require a broad spectrum of tools as stochastic coupling, functional
inequalities, spectral analysis, dynamical systems, partial differential equations.

The aim of the present paper is to present simple examples of PDMP appearing in different
applied frameworks and to investigate their long time behavior. Rather than using generic
technics (as Meyn-Tweedie-Foster-Lyapunov. . . strategy) we will focus on as explicit as possible
estimates. Several open and motivating questions (stability criteria, regularity of the invariant
measure(s), explicit rate of convergence. . . ) are also listed along the paper.

Roughly speaking the dynamics of a PDMP on a set E depends on three local characteristics,
namely, a flow ϕ, a jump rate λ and a transition kernel Q. Starting from x, the motion of the
process follows the flow t 7→ ϕt(x) until the first jump time T1 which occurs in a Poisson-like
fashion with rate λ(x). More precisely, the distribution of the first jump time is given by

Px(T1 > t) = exp

(

−
∫ t

0
λ(ϕs(x)) ds

)

.

Then, the location of the process at the jump time T1 is selected by the transition measure
Q(ϕT1

(x), ·) and the motion restarts from this new point as before. This motion is summed up
by the infinitesimal generator:

Lf(x) = F (x) · ∇f(x) + λ(x)

∫

E
(f(y) − f(x)) Q(x, dy), (1)

where F is the vector field associated to the flow ϕ. In several examples, the process may jump
when it hits the boundary of E. The boundary of the space ∂E can be seen as a region where
the jump rate is infinite (see for example [18] for the study of billiards in a general domain with
random reflections).

1This may also mean "Persi Diaconis: Mathemagician and Popularizer".
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In the sequel, we denote by P(Rd) the set of probability measures on (Rd, B(Rd)) and, for
any p > 1, by Pp(Rd) the set of probability measures on (Rd, B(Rd)) with a finite pth-moment:
µ ∈ Pp(Rd) if

∫

Rd
|x|p µ(dx) < +∞.

The total variation distance on P(Rd) is given by

‖ν − ν̃‖TV = inf
{

P(X 6= X̃) : X ∼ ν, X̃ ∼ ν̃
}

= sup

{
∫

f dν −
∫

f dν̃ : f bounded by 1/2

}

.

If ν and ν̃ are absolutely continuous with respect to µ with density functions g and g̃, then

‖ν − ν̃‖TV =
1

2

∫

Rd
|g − g̃| dµ.

For p > 1, the Wasserstein distance of order p, defined on Pp(Rd), is given by

Wp(ν, ν̃) = inf

{

[

E

(∣

∣

∣X − X̃
∣

∣

∣

p)]1/p
: X ∼ ν, X̃ ∼ ν̃

}

.

Similarly to the total variation distance, the Wasserstein distance of order 1 has a nice dual
formulation:

W1(ν, ν̃) = sup

{
∫

f dν −
∫

f dν̃ : f is 1-Lipschitz

}

.

A generic dual expression can be formulated for Wp (see [62]).

2 Storage models, with a bandit. . .

Let us consider the PDMP driven by the following infinitesimal generator:

Lf(x) = −βxf ′(x) + α

∫ ∞

0
(f(x + y) − f(x)) e−ydy.

Such processes appear in the modeling of storage problems or pharmacokinetics that describe the
evolution of the concentration of a chemical product in the human body. The present example
is studied in [59, 6]. More realistic models are studied in [11, 14]. Similar processes can also be
used as stochastic gene expression models (see [42, 65]).

In words, the current stock Xt decreases exponentially at rate β, and increases at random
exponential times by a random (exponentially distributed) amount. Let us introduce a Poisson
process (Nt)t>0 with intensity α and jump times (Ti)i>0 (with T0 = 0) and a sequence (Ei)i>1 of
independent random variables with an exponential law of parameter 1 independent of (Nt)t>0.
The process (Xt)t>0 starting from x > 0 can be constructed as follows: for any i > 0,

Xt =

{

e−β(t−Ti)XTi
if Ti 6 t < Ti+1,

e−β(Ti+1−Ti)XTi
+ Ei+1 if t = Ti+1.

This model is sufficiently naïve to express the Laplace transform of X.

Lemma 2.1 (Laplace transform). For any t > 0 and s < 1, the Laplace transform of Xt is
given by

L(t, s) := E

(

esXt

)

= L(0, se−βt)

(

1 − se−βt

1 − s

)α/β

,
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where L(0, ·) stands for the Laplace transform of X0. In particular, the invariant distribution of
X is the Gamma distribution with density

x 7→ xα/β−1e−x

Γ(α/β)
1[0,+∞)(x).

Proof. Applying the infinitesimal generator to x 7→ esx, one deduces that the function L is
solution of the following partial differential equation:

∂tL(t, s) = −βs∂sL(t, s) +
αs

1 − s
L(t, s).

More generally, if the random income is non longer exponentially distributed but has a Laplace
transform Li then L is solution of

∂tL(t, s) = −βs∂sL(t, s) + α(Li(s) − 1)L(t, s).

As a consequence, if G is given by G(t, s) = log L(t, s) + (α/β) log(1 − s) then

∂tG(t, s) = −βs∂sG(t, s).

The solution of this partial differential equation is given by G(t, s) = G(0, se−βt).

The next step is to investigate the convergence to equilibrium.

Theorem 2.2 (Convergence to equilibrium). Let us denote by νPt the law of Xt if X0 is
distributed according to ν. For any x, y > 0 and t > 0 and p > 1,

Wp(δxPt, δyPt) 6 |x − y|e−βt,

and (when α 6= β)

‖δxPt − δyPt‖TV 6 e−αt + |x − y|αe−βt − e−αt

α − β
. (2)

Moreover, if µ is the invariant measure of the process X, we have for any probability measure ν
with a finite first moment and t > 0,

‖νPt − µ‖TV 6 ‖ν − µ‖TVe−αt + W1(ν, µ)α
e−βt − e−αt

α − β
.

Remark 2.3 (Limit case). In the case α = β, the upper bound (2) becomes

‖δxPt − δyPt‖TV 6 (1 + |x − y|αt)e−αt.

Remark 2.4 (Optimality). Applying L to the test function f(x) = xn allows us to compute
recursively the moments of Xt. In particular,

Ex(Xt) =
α

β
+

(

x − α

β

)

e−βt.

This relation ensures that the rate of convergence for the Wasserstein distance is sharp. More-
over, the coupling for the total variation distance requires at least one jump. As a consequence,
the exponential rate of convergence is greater than α. Thus, Equation (2) provides the optimal
rate of convergence α ∧ β.
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Proof of Theorem 2.2. Firstly, consider two processes X and Y starting respectively at x and
y and driven by the same randomness (i.e. Poisson process and jumps). Then the distance
between Xt and Yt is deterministic:

Xt − Yt = (x − y)e−βt.

Obviously, for any p > 1 and t > 0,

Wp(δxPt, δyPt) 6 |x − y|e−βt.

Let us now construct explicitly a coupling at time t to get the upper bound (2) for the total vari-
ation distance. The jump times of (Xt)t>0 and (Yt)t>0 are the ones of a Poisson process (Nt)t>0

with intensity α and jump times (Ti)i>0. Let us now construct the jump heights (EX
i )16i6Nt

and (EY
i )16i6Nt

of X and Y until time t. If Nt = 0, no jump occurs. If Nt > 1, we choose

EX
i = EY

i for 1 6 i 6 Nt − 1 and EX
Nt

and EY
Nt

in order to maximise the probability

P

(

XTNt
+ EX

Nt
= YTNt

+ EY
Nt

∣

∣XTNt
, YTNt

)

.

This maximal probability of coupling is equal to

exp
(

−|XTNt
− YTNt

|
)

= exp
(

−|x − y|e−βTNt

)

> 1 − |x − y|e−βTNt .

As a consequence, we get that

‖δxPt − δyPt‖TV 6 1 − E

[(

1 − |x − y|e−βTNt

)

1{Nt>1}
]

6 e−αt + |x − y|E
(

e−βTNt1{Nt>1}
)

.

The law of Tn conditionally on the event {Nt = n} has the density

u 7→ n
un−1

tn
1[0,t](u).

This ensures that

E

(

e−βTNt1{Nt>1}
)

=

∫ 1

0
e−βtv

E

(

Ntv
Nt−1

)

dv.

Since the law of Nt is the Poisson distribution with parameter αt, one has

E

(

Ntv
Nt−1

)

= αteαt(v−1) .

This ensures that

E

(

e−βNt1{Nt>1}
)

= α
e−βt − e−αt

α − β
,

which completes the proof. Finally, to get the last estimate, we proceed as follows: if Nt is equal
to 0, a coupling in total variation of the initial measures is done, otherwise, we use the coupling
above.

Remark 2.5 (Another example). Surprisingly, a process of the same type appears in [37] in the
study of the so-called bandit algorithm. The authors have to investigate the long time behavior
of the process driven by

Lf(y) = (1 − p − py)f ′(y) + qy
f(y + g) − f(y)

g
,

where 0 < q < p < 1 and g > 0. This can be done following the lines of the proof of Theorem 2.2.
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3 The TCP model with constant jump rate

This section is devoted to the process on [0, +∞) driven by the following infinitesimal generator

Lf(x) = f ′(x) + λ(f(x/2) − f(x)) (x > 0).

In other words, the process grows linearly between jump times that are the one of a homogeneous
Poisson process with parameter λ and it is divided by 2 at these instants of time. See Section 3.4
for concrete motivations and generalizations.

3.1 Spectral decomposition

Without loss of generality, we choose λ = 1 in this section. The generator L of the naïve TCP
process preserves the degree of polynomials. As a consequence, for any n ∈ N, the eigenvalue
λn = −(1 − 2−n) is associated to a polynomials Pn with degree n. As an example,

P0(x) = 1, P1(x) = x − 2 and P2(x) = x2 − 8x + 32/3.

Moreover, one can explicitly compute the moments of the invariant measure µ (see [39]): for
any n ∈ N

∫

xn µ(dx) =
n!

∏n
k=1(1 − 2−k)

.

Roughly speaking, this relation comes from the fact that the functions mn : t ∈ [0, ∞) 7→ E(Xn
t )

for n > 0 are solution of
m′

n(t) = nmn−1(t) +
(

2−n − 1
)

mn(t).

It is also shown in [24] that the Laplace transform of µ is finite on a neighborhood of the origin.
As a consequence, the polynomials are dense in L2(µ). Unfortunately, the eigenvectors of L are
not orthogonal in L2(µ). For example,

∫

P1P2 dµ = −64

27
.

This lack of symmetry (due to the fact that the invariant measure µ is not reversible) prevents
us to easily deduce an exponential convergence to equilibrium in L2

µ.
When the invariant measure is reversible, the spectral decomposition (and particularly its

spectral gap) of L provides fine estimates for the convergence to equilibrium. See for example
[41] and the connection with coupling strategies and strong stationary times introduced in [1].

Open question 1 (Spectral proof of ergodicity). Despite the lack of reversibility, is it possible
to use the spectral properties of L to get some estimates on the long time behavior of X?

Remark 3.1. This spectral approach has been fruitfully used in [28, 45] to study (nonreversible)
hypocoercive models.

3.2 Convergence in Wasserstein distances

The convergence in Wasserstein distance is obvious.

Lemma 3.2 (Convergence in Wasserstein distance [57, 16]). For any p > 1,

Wp(δxPt, δyPt) 6 |x − y|e−λpt with λp =
λ(1 − 2−p)

p
. (3)
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Remark 3.3 (Alternative approach). The case p = 1 is obtained in [57] by PDEs estimates
using the following alternative formulation of the Wasserstein distance on R. If the cumulative
distribution functions of the two probability measures ν and ν̃ are F and F̃ then

W1(ν, ν̃) =

∫

R

|F (x) − F̃ (x)| dx.

The general case p > 1 is obvious from the probabilistic point of view: choosing the same
Poisson process (Nt)t>0 to drive the two processes provides that the two coordinates jump
simultaneously and

|Xt − Yt| = |x − y|2−Nt .

As a consequence, since the law of Nt is the Poisson distribution with parameter λt, one has

Ex,y(|Xt − Yt|p) = |x − y|pE
(

2−pNt

)

= |x − y|pe−pλpt.

This coupling turns out to be sharp. Indeed, one can compute explicitly the moments of Xt (see
[39, 52]): for every n > 0, every x > 0, and every t > 0,

Ex(Xn
t ) =

n!
∏n

k=1 θk
+ n!

n
∑

m=1

( m
∑

k=0

xk

k!

n
∏

j=k
j 6=m

1

θj − θm

)

e−θmt, (4)

where θn = λ(1 − 2−n) = nλn for any n > 1. Obviously, assuming for example that x > y,

Wn(δxPt, δyPt)
n
> Ex((Xt)

n) − Ey((Yt)
n)

∼
t→∞

n!

( n
∑

k=0

xk − yk

k!

n−1
∏

j=k

1

θj − θn

)

e−θnt.

As a consequence, the rate of convergence in Equation (3) is optimal for any n > 1.

3.3 Convergence in total variation distance

The estimate for the Wasserstein rate of convergence does not provide on its own any informa-
tion about the total variation distance between δxPt and δyPt. It turns out that this rate of
convergence is the one of the W1 distance. This is established in [57, Thm 1.1]. Let us provide
here an improvement of this result by a probabilistic argument.

Theorem 3.4 (Convergence in total variation distance). For any x, y > 0 and t > 0,

‖δxPt − δyPt‖TV 6 λe−λt/2|x − y| + e−λt. (5)

As a consequence, for any measure ν with a finite first moment and t > 0,

‖νPt − µ‖TV 6 λe−λt/2W1(ν, µ) + e−λt‖ν − µ‖TV. (6)

Remark 3.5 (Propagation of the atom). Note that the upper bound obtained in Equation (5)
does not go to zero as y → x. This is due to the fact that δxPt has an atom at y + t with mass
e−λt.

Proof of Theorem 3.4. The coupling is a slight modification of the Wasserstein one. The paths
of (Xs)06s6t and (Ys)06s6t starting respectively from x and y are determined by their jump

times (T X
n )n>0 and (T Y

n )n>0 up to time t. These sequences have the same distribution than the
jump times of a Poisson process with intensity λ.
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Let (Nt)t>0 be a Poisson process with intensity λ and (Tn)n>0 its jump times with the
convention T0 = 0. Let us now construct the jump times of X and Y . Both processes make
exactly Nt jumps before time t. If Nt = 0, then

Xs = x + s and Ys = y + s for 0 6 s 6 t.

Assume now that Nt > 1. The Nt − 1 first jump times of X and Y are the ones of (Nt)t>0:

T X
k = T Y

k = Tk 0 6 k 6 Nt − 1.

In other words, the Wasserstein coupling acts until the penultimate jump time TNt−1. At that
time, we have

XTNt−1
− YTNt−1

=
x − y

2Nt−1
.

Then we have to define the last jump time for each process. If they are such that

T X
Nt

= T Y
Nt

+ XTNt−1
− YTNt−1

,

then the paths of X and Y are equal on the interval (T X
Nt

, t) and can be chosen to be equal for
any time larger than t.

Recall that conditionally on the event {Nt = 1}, the law of T1 is the uniform distribution on
(0, t). More generally, if n > 2, conditionally on the set {Nt = n}, the law of the penultimate
jump time Tn−1 has a density s 7→ n(n−1)t−n(t−s)sn−2

1(0,t)(s) and conditionally on the event
{Nt = n, Tn−1 = s}, the law of Tn is uniform on the interval (s, t).

Conditionally on Nt = n > 1 and Tn−1, T X
n and T Y

n are uniformly distributed on (Tn−1, t)
and can be chosen such that

P

(

T X
n = T Y

n +
x − y

2n−1

∣

∣

∣NX
t = NY

t = n, T X
n−1 = T Y

n−1 = Tn−1

)

=

(

1 − |x − y|
2n−1(t − Tn−1)

)

∨ 0 > 1 − |x − y|
2n−1(t − Tn−1)

.

This coupling provides that

‖δxPt − δyPt‖TV 6 1 − E

[(

1 − |x − y|
2Nt−1(t − TNt−1)

)

1{Nt>1}

]

6 e−λt + |x − y|E
(

2−Nt+1

(t − TNt−1)
1{Nt>1}

)

.

For any n > 2,

E

(

1

t − TNt−1

∣

∣

∣Nt = n

)

=
n(n − 1)

tn

∫ t

0
un−2 du =

n

t
.

This equality also holds for n = 1. Thus we get that

E

(

2−Nt+1

(t − TNt−1)
1{Nt>1}

)

=
1

t
E

(

Nt2
−Nt+1

)

= λe−λt/2,

since Nt is distributed according to the Poisson law with parameter λt. This provides the
estimate (5). The general case (6) is a straightforward consequence: if Nt is equal to 0, a coupling
in total variation of the initial measures is done, otherwise, we use the coupling above.
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3.4 Some generalizations

This process on R+ belongs to the subclass of the AIMD (Additive Increase Multiplicative
Decrease) processes. Its infinitesimal generator is given by

Lf(x) = f ′(x) + λ(x)

∫ 1

0
(f(ux) − f(x)) ν(du), (7)

where ν is a probability measure on [0, 1] and λ is a non negative function. It can be viewed
as the limit behavior of the congestion of a single channel (see [24, 31] for a rigorous derivation
of this limit). In [44], the authors give a generalization of the scaling procedure to interpret
various PDMPs as the limit of discrete time Markov chains and in [40] more general increase
and decrease profiles are considered as models for TCP. In the real world (Internet), the AIMD
mechanism allows a good compromise between the minimization of network congestion time
and the maximization of mean throughput. See also [12] for a simplified TCP windows size
model. See [40, 43, 52, 53, 54, 51, 33] for other works dedicated to this process. Generalization
to interacting multi-class transmissions are considered in [29, 30].

Such processes are also used to model the evolution of the size of bacteria or polymers which
mixes growth and fragmentation: they growth in a deterministic way with a growth speed
x 7→ τ(x), and split at rate x 7→ λ(x) into two (for simplicity) parts y and x − y according a
kernel β(x, y)dy. The infinitesimal generator associated to this dynamics writes

Lf(x) = τ(x)f ′(x) + λ(x)

∫ x

0
(f(y) − f(x))β(x, y) dy.

If the initial distribution of the size has a density u(·, 0) then this density is solution of the
following integro-differential PDE:

∂tu(x, t) = −∂x(τ(x)u(x, t)) − λ(x)u(x, t) +

∫ ∞

x
λ(y)β(y, x)u(y, t) dy.

If one is interesting in the density of particles with size x at time t in the growing population (a
splitting creates two particles), one has to consider the PDE

∂tu(x, t) = −∂x(τ(x)u(x, t)) − λ(x)u(x, t) + 2

∫ ∞

x
λ(y)β(y, x)u(y, t) dy.

This growth-fragmentation equations have been extensively studied from a PDE point of view
(see for example [56, 23, 15, 46]). A probabilistic approach is used in [10] to study the pure
fragmentation process.

4 Switched flows and motivating examples

Let E be the set {1, 2, . . . , n}, (λ(·, i, j))i,j∈E be nonnegative continuous functions on R
d, and,

for any i ∈ E, F i(·) : R
d 7→ R

d be a smooth vector field such that the ordinary differential
equation

{

ẋt = F i(xt) for t > 0,

x0 = x

has a unique and global solution t 7→ ϕi
t(x) on [0, +∞) for any initial condition x ∈ R

d. Let us
consider the Markov process

(Zt)t>0 = ((Xt, It))t>0 on R
d × E

defined by its infinitesimal generator L as follows:

Lf(x, i) = F i(x) · ∇xf(x, i) +
∑

j∈E

λ(x, i, j)(f(x, j) − f(x, i))

8



for any smooth function f : R
d × E → R.

These PDMP are also known as hybrid systems. They have been intensively studied during
the past decades (see for example the review [64]). In particular, they naturally appear as the
approximation of Markov chains mixing slow and fast dynamics (see [19]). They could also be
seen as a continuous time version of iterated random functions (see the excellent review [22]).

In this section, we present few examples from several applied areas and describe their long
time behavior.

4.1 A surprising blow up for switched ODEs

The main probabilistic results of this section are established in [38]. Consider the Markov process
(X, I) on R

2 × {0, 1} driven by the following infinitesimal generator:

Lf(x, i) = (Aix) · ∇xf(x, i) + r(f(x, 1 − i) − f(x, i)) (8)

where r > 0 and A0 and A1 are the two following matrices

A0 =

(

−α 1
0 −α

)

and A1 =

(

−α 0
−1 −α

)

(9)

for some positive α. In other words, (It)t>0 is a Markov process on {0, 1} with constant jump

rate r (from 0 to 1 and from 1 to 0) and (Xt)t>0 is the solution of Ẋt = AItXt.
The two matrices A0 and A1 are Hurwitz matrices (all eigenvalues have strictly negative real

parts). Moreover, it is also the case for the matrix Ap = pA1 + (1 − p)A0 with p ∈ [0, 1] since
the eigenvalues of Ap are −α ± i

√

p(1 − p). Then, for any p ∈ [0, 1], there exists Kp > 1 and
ρ > 0 such that

‖xt‖ 6 Kp‖x0‖e−ρt,

for any solution (xt)t>0 of ẋt = Apxt.

4.1.1 Asymptotic behavior of the continuous component

The first step is to use polar coordinates to study the large time behavior of Rt = ‖Xt‖ and Ut

the point on the unit circle S1 given by Xt/Rt. One gets that

Ṙt = Rt〈AItUt, Ut〉
U̇t = AItUt − 〈AItUt, Ut〉Ut.

As a consequence, (Ut, It) is a Markov process on S1 × {0, 1}. One can show that it admits a
unique invariant measure µ.Therefore, if P(R0 = 0) = 0,

1

t
log Rt =

1

t
log R0 +

1

t

∫ t

0
〈AIsUs, Us〉 ds

a.s.−−−→
t→∞

∫

〈Aiu, u〉µ(du, i).

The stability of the Markov process depends on the sign of

L(α, r) :=

∫

〈Aiu, u〉µ(du, i).

An "explicit" formula for L(α, r) can be formulated in terms of the classical trigonometric func-
tions

cot(x) =
cos(x)

sin(x)
, sec(x) =

1

cos(x)
and csc(x) =

1

sin(x)
.

9



Theorem 4.1 (Lyapunov exponent [38]). For any r > 0 and α > 0,

L(α, r) = G(r) − α where G(r) =

∫ 2π

0
(p0(θ; r) − p1(θ; r)) cos(θ) sin(θ) dθ > 0

and p0 and p1 are defined as follows: for θ ∈ (−π/2, 0)

H(θ; r) = exp(−2r cot(2θ))

∫ 0

θ
exp(2r cot(2y)) sec2(y) dy,

C(r) =

[

4

∫ 0

− π
2

sec2(x) + (csc2(x) − sec2(x))rH(x; r) dx

]−1

,

p0(θ; r) = C(r) csc2(θ)rH(θ; r),

p1(θ; r) = C(r) sec2(θ)[1 − rH(θ; r)],

and for any θ ∈ R,
pi(θ; r) = p1−i(θ + π/2; r) = pi(θ + π; r).

Sketch of proof of Theorem 4.1. Let us denote by (Θt)t>0 the lift of (Ut)t>0. The process (Θ, I)
is also Markovian. Moreover, its infinitesimal generator is given by

Lf(θ, i) = −
[

i cos2(θ) + (1 − i) sin2(θ)
]

∂θf(θ, i) + r[f(θ, 1 − i) − f(θ, i)].

Notice that the dynamics of (Θ, I) does not depend on the parameter α. This process has a
unique invariant measure µ (depending on the jump rate r). With the one-to-one correspondence
between a point on S1 and a point in [0, 2π), let us write the invariant probability measure µ as

µ(dθ, i) = pi(θ; r)1[0,2π)(θ) dθ,

The functions p0 and p1 are solution of
{

∂θ(sin2(θ)p0(θ)) + r(p1(θ) − p0(θ)) = 0,

∂θ(cos2(θ)p1(θ)) + r(p0(θ) − p1(θ)) = 0.

These relations provide the desired expressions.

The previous technical result provides immediately the following result on the (in)stability
of the process.

Corollary 4.2 ((In)Stability [38]). There exist α > 0, a > 0 and b > 0 such that L(α, r) is
negative if r < a or r > b and L(α, r) is positive for some r ∈ (a, b).

From numerical experiments, see Figure 1, one can formulate the following conjecture on the
function G.

Conjecture 4.3 (Shape of G). There exists rc ∼ 4.6 such that G′(r) > 0 for r < rc and
G′(r) < 0 for r > rc and G(rc) ∼ 0.2. Moreover,

lim
r→0

G(r) = 0 and lim
r→∞

G(r) = 0.

Open question 2 (Shape of the instability domain). Is it possible to prove Conjecture 4.3?
This would imply that the set

Uα =

{

r > 0 : ‖Xt‖
p.s.−−−→

t→∞
+∞

}

= {r > 0 : L(r, α) > 0} = {r > 0 : G(r) > α}

is empty for α > G(rc) and is a non empty interval if α < G(rc).

Remark 4.4 (On the irreducibility of (U, I)). Notice that one can modify the matrices A0 and
A1 in such a way that (U, I) has two ergodic invariant measures (see [9]).

Open question 3 (Oscillations of the Lyapunov exponent). Is it possible to choose the two 2×2
matrices A0 and A1 in such a way that the set of jump rates r associated to unstable processes
is the union of several intervals?
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Figure 1: Shape of the function G defined in Theorem 4.1.

4.1.2 A deterministic counterpart

Consider the following ODE
ẋt = (1 − ut)A0xt + utA1xt, (10)

where u is a given measurable function from [0, ∞) to {0, 1}. The system is said to be unstable
if there exists a starting point x0 and a measurable function u : [0, ∞) → {0, 1} such that the
solution of (10) goes to infinity.

In [13, 4, 5], the authors provide necessary and sufficient conditions for the solution of (10)
to be unbounded for two matrices A0 and A1 in M2(R). In the particular case (9), this result
reads as follows.

Theorem 4.5 (Criterion for stability [5]). If A0 and A1 are given by (9), the system (10) is
unbounded if and only if

R(α2) :=
1 + 2α2 +

√
1 + 4α2

2α2
e−2

√
1+4α2

> 1. (11)

More precisely, the result in [5] ensures that

• if 2α > 1 (case S1 in [5]) then there exists a common quadratic Lyapunov function for A0

and A1 (and ‖Xt‖ goes to 0 exponentially fast as t → ∞ for any function u),

• if 2α 6 1 (case S4 in [5]) then, the system is

– globally uniformly asymptotically stable (and ‖Xt‖ goes to 0 exponentially fast as
t → ∞ for any function u) if R(α2) < 1,

– uniformly stable (but for some functions u, ‖Xt‖ does not converge to 0) if R(α2) = 1,

– unbounded if R(α2) > 1,

where R(α2) is given by (11).

11
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Figure 2: The worth trajectory with α = 0.32 (on the left), α = 0.3314 (in the middle) and
α = 0.34 (on the right). The system evolves clock-wisely from (0, 1).

Proof of Theorem 4.5. The general case is considered in [5]. The main idea is to construct the
so-called worst trajectory choosing at each instant of time the vector field that drives the particle
away from the origin. The solutions xt = (yt, zt) of ẋt = A0xt and ẋt = A1xt starting from
x0 = (y0, z0) are respectively given by

{

yt = (z0t + y0)e−αt

zt = z0e−αt
and

{

yt = y0e−αt

zt = (−y0t + z0)e−αt.

Let us define, for x = (y, z),

Q(x) = det(A0x, A1x) = αy2 − yz − αz2.

Then the set of the points where A0x and A1x are collinear is given by
{

x ∈ R
2 : Q(x) = 0

}

=
{

x = (y, z) : y = γ+z or y = γ−z
}

where

γ+ =
1 +

√
1 + 4α2

2α
> 0 and γ− =

1 −
√

1 + 4α2

2α
< 0.

Let us start with x0 = (0, 1) and I0 = 0. Choose t1 = γ+ in such a way that:

xt1
=
(

γ+e−αγ+

, e−αγ+
)

.

Now, set t2 = t1 + γ+ − γ− and It = 1 for t ∈ [t1, t2) in such a way that yt2
= γ−zt2

i.e.
yt2

= −(γ+)−1zt2
. Then, one has

xt2
=
(

γ+e−α(2γ+−γ−), −(γ+)2e−α(2γ+−γ−)
)

.

Finally, choose t3 = t2 − γ− and It = 0 for t ∈ [t2, t3) in such a way that yt3
= 0. Then, one has

xt3
=
(

0, −(γ+)2e−2α(γ+−γ−)
)

.

The process is unbounded if and only if ‖xt3
‖ > 1. This is equivalent to (11).

4.2 Invariant measure(s) of switched flows

In order to avoid the possible explosions studied in Section 4.1, one can impose that the state
space of the continuous variable is a compact set.

In [7], it is shown thanks to an example that the number of the invariant measures may
depend on the jump rate for fixed vector fields (as for the problem of (un)-stability described in
the previous section). Moreover Hörmander-like conditions on the vector fields are formulated in
[2, 7] to ensure that the first marginal of the invariant measure(s) may be absolutely continuous
with respect to the Lebesgue measure on R

d. However the density may blow up as it is shown
in the example below.

12
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Figure 3: Path of the process associated to F 0 and F 1 given by (12) starting from the origin.
Red (resp. blue) pieces of path correspond to I = 1 (resp. I = 0).

Example 4.6 (Possible blow up of the density near a critical point). Consider the process on
R × {0, 1} associated to the infinitesimal generator

Lf(x, i) = −αi(x − i)∂xf(x, i) + λi(f(x, 1 − i) − f(x)).

This process is studied in [36, 58]. The support of its invariant measure µ is the set [0, 1]×{0, 1}
and µ is given by

∫

f dµ =
λ1

λ0 + λ1

∫ 1

0
f(x, 0)p0(x) dx +

λ0

λ0 + λ1

∫ 1

0
f(x, 1)p1(x) dx,

where p0 and p1 are Beta distributions:

p0(x) =
xλ0/α0−1(1 − x)λ1/α1

B(λ0/α0, λ1/α1 + 1)
and p1(x) =

xλ0/α0(1 − x)λ1/α1−1

B(λ0/α0 + 1, λ1/α1)
.

The density of the invariant measure possibly explodes near 0 or 1.

The paper [3] is a detailed analysis of invariant measures for switched flows in dimension
one. In particular, the authors prove smoothness of the invariant densities away from critical
points and describe the asymptotics of the invariant densities at critical points.

The situation is more intricate for higher dimensions.

Example 4.7 (Possible blow up of the density in the interior of the support). Consider the
process on R

2 ×{0, 1} associated to the constant jump rates λ0 and λ1 for the discrete component
and the vector fields

F 0(x) = Ax and F 1(x) = A(x − a) where A =

(

−1 −1
1 −1

)

and a =

(

1
0

)

. (12)

The origin and a are the respective unique critical points of F 0 and F 1. Thanks to the precise
estimates in [3], one can prove the following fact. If λ0 is small enough then, as for one-
dimensional example, the density of the invariant measure blows up at the origin. This also
implies that the density is infinite on the set

{

ϕ1
t (0) : t > 0

}

.

Open question 4. What can be said on the smoothness of the density of the invariant measure
of such processes?

13



4.3 A convergence result

This section sums up the study of the long time behavior of certain switched flows presented
in [8]. See also [61] for another approach. To focus on the main lines of this paper, the hypotheses
below are far from the optimal ones.

Hypothesis 4.8 (Regularity of the jump rates). There exist a > 0 and κ > 0 such that, for
any x, x̃ ∈ R

d and i, j ∈ E,

a(x, i, j) > a and
∑

j∈E

|a(x, i, j) − a(x̃, i, j)| 6 κ‖x − x̃‖.

The lower bound condition insures that the second — discrete — coordinate of Z changes
often enough (so that the second coordinates of two independent copies of Z coincide sufficiently
often).

Hypothesis 4.9 (Strong dissipativity of the vector fields). There exists α > 0 such that,

〈

x − x̃, F i(x) − F i(x̃)
〉

6 −α‖x − x̃‖2, x, x̃ ∈ R
d, i ∈ E. (13)

Hypothesis 4.9 ensures that, for any i ∈ E,

∥

∥

∥ϕi
t(x) − ϕi

t(x̃)
∥

∥

∥ 6 e−αt‖x − x̃‖, x, x̃ ∈ R
d.

As a consequence, the vector fields F i has exactly one critical point σ(i) ∈ R
d. Moreover it is

exponentially stable since, for any x ∈ R
d,

∥

∥

∥ϕi
t(x) − σ(i)

∥

∥

∥ 6 e−αt‖x − σ(i)‖.

In particular, X cannot escape from a sufficiently large ball B̄(0, M). Define the following
distance W1 on the probability measures on B(0, M) × E: for η, η̃ ∈ P(B(0, M) × E),

W1(η, η̃) = inf
{

E|X − X̃| + P(I 6= Ĩ) : (X, I) ∼ η and (X̃, Ĩ) ∼ η̃
}

.

Theorem 4.10 (Long time behavior [8]). Assume that Hypotheses 4.8 and 4.9 hold.
Then, the process has a unique invariant measure and its support is included in B̄(0, M)×E.

Moreover, let ν0 and ν̃0 be two probability measures on B̄(0, M) × E. Denote by νt the law of
Zt when Z0 is distributed as ν0 Then there exist positive constants c and γ such that

W1(ηt, η̃t) 6 ce−γt.

The constants c and γ can be explicitly expressed in term of the parameters of the model
(see [8]). The proof relies on the construction of an explicit coupling. See also [17, 48].

Open question 5. One can apply Theorem 4.10 to the processes defined in Examples 4.6 and
4.7. The associated time reversal processes are associated to unstable vector fields and unbounded
jump rates. What can be said about their convergence to equilibrium?

Section 4.4 present an application of this theorem to a biological model. In Section 4.5,
we describe a naïve model for the movement of bacteria that can also be seen as an ergodic
telegraph process.

14



4.4 Neuron activity

The paper [55] establishes limit theorems for a class of stochastic hybrid systems (continuous
deterministic dynamic coupled with jump Markov processes) in the fluid limit (small jumps at
high frequency), thus extending known results for jump Markov processes. The main results are
a functional law of large numbers with exponential convergence speed, a diffusion approximation,
and a functional central limit theorem. These results are then applied to neuron models with
stochastic ion channels, as the number of channels goes to infinity, estimating the convergence to
the deterministic model. In terms of neural coding, the central limit theorems allows to estimate
numerically the impact of channel noise both on frequency and spike timing coding.

The Morris–Lecar model introduced in [49] describes the evolution in time of the electric
potential V (t) in a neuron. The neuron exchanges different ions with its environment via ion
channels which may be open or closed. In the original – deterministic – model, the proportion
of open channels of different types are coded by two functions m(t) and n(t), and the three
quantities m, n and V evolve through the flow of an ordinary differential equation.

Various stochastic versions of this model exist. Here we focus on a model described in [63],
to which we refer for additional information. This model is motivated by the fact that m and n,
being proportions of open channels, are better coded as discrete variables. More precisely, we
fix a large integer K (the total number of channels) and define a PDMP (V, u1, u2) with values
in R × {0, 1/K, 2/K . . . , 1}2 as follows.

Firstly, the potential V evolves according to

dV (t)

dt
=

1

C

(

I −
3
∑

i=1

giui(t)(V − Vi)

)

(14)

where C and I are positive constants (the capacitance and input current), the gi and Vi are
positive constants (representing conductances and equilibrium potentials for different types of
ions), u3(t) is equal to 1 and u1(t), u2(t) are the (discrete) proportions of open channels for two
types of ions.

These two discrete variables follow birth-death processes on {0, 1/K, . . . , 1} with birth rates
α1, α2 and death rates β1, β2 that depend on the potential V :

αi(V ) = ci cosh

(

V − V ′
i

2V ′′
i

)(

1 + tanh

(

V − V ′
i

V ′′
i

))

βi(V ) = ci cosh

(

V − V ′
i

2V ′′
i

)(

1 − tanh

(

V − V ′
i

V ′′
i

)) (15)

where the ci and V ′
i , V ′′

i are constants.
Let us check that Theorem 4.10 can be applied in this example. Formally the process is

a PDMP with d = 1 and the finite set E = {0, 1/K, . . . , 1}2. The discrete process (u1, u2)
plays the role of the index i ∈ E, and the fields F (u1,u2) are defined (on R) by (14) by setting
u1(t) = u1, u2(t) = u2.

The constant term u3g3 in (14) ensures that the uniform dissipation property (13) is satisfied:
for all (u1, u2),

〈

V − Ṽ , F (u1,u2)(V ) − F (u1,u2)(Ṽ )
〉

= − 1

C

3
∑

i=1

uigi(V − Ṽ )2

6 − 1

C
u3g3(V − Ṽ )2.

The Lipschitz character and the bound from below on the rates are not immediate. Indeed
the jump rates (15) are not bounded from below if V is allowed to take values in R.
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However, a direct analysis of (14) shows that V is essentially bounded : all the fields F (u1,u2)

point inward at the boundary of the (fixed) line segment S = [0, max(V1, V2, V3 + (I + 1)/g3u3)],
so if V (t) starts in this region it cannot get out. The necessary bounds all follow by compactness,
since αi(V ) and βi(V ) are C1 in S and strictly positive.

4.5 Chemotaxis

Let us briefly describe how bacteria move (see [50, 26, 25] for details). They alternate two
basic behavioral modes: a more or less linear motion, called a run, and a highly erratic motion,
called tumbling, the purpose of which is to reorient the cell. During a run the bacteria move
at approximately constant speed in the most recently chosen direction. Run times are typically
much longer than the time spent tumbling. In practice, the tumbling time is neglected. An
appropriate stochastic process for describing the motion of cells is called the velocity jump
process which is deeply studied in [50]. The velocity belongs to a compact set (the unit sphere
for example) and changes by random jumps at random instants of time. Then, the position
is deduced by integration of the velocity. The jump rates may depend on the position when
the medium is not homogeneous: when bacteria move in a favorable direction i.e. either in the
direction of foodstuffs or away from harmful substances the run times are increased further.
Sometimes, a diffusive approximation is available [50, 60].

In the one-dimensional simple model studied in [27], the particle evolves in R and its velocity
belongs to {−1, +1}. Its infinitesimal generator is given by:

Af(x, v) = v∂xf(x, v) +
(

a + (b − a)1{xv>0}
)

(f(x, −v) − f(x, v)), (16)

with 0 < a < b. The dynamics of the process is simple: when X goes aways from 0, (resp. goes
to 0), V flips to −V with rate b (resp. a). Since b > a, it is quite intuitive that this Markov
process is ergodic. One could think about it as an analogue of the diffusion process solution of

dZt = dBt − sign(Zt) dt.

More precisely, under a suitable scaling, one can show that X goes to Z. Finally, this process is
an ergodic version of the so-called telegraph process. See for example [35, 32].

Of course, this process does not satisfy the hypotheses of Theorem 4.10 since the vector fields
have no stable point. It is shown in [27] that the invariant measure µ of (X, V ) driven by (16)
is the product measure on R+ × {−1, +1} given by

µ(dx, dv) = (b − a)e−(b−a)x dx ⊗ 1

2
(δ−1 + δ+1)(dv).

One can also construct an explicit coupling to get explicit bounds for the convergence to the
invariant measure in total variation norm [27]. See also [47] for another approach, linked with
functional inequalities.

Open question 6 (More realistic models). Is it possible to establish quantitative estimates for
the convergence to equilibrium for more realistic dynamics (especially in R

3) as considered in
[50, 26, 25]?
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