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MINIMAL ISOMETRIC IMMERSIONS INTO S
2 × R AND H

2 × R

BENOÎT DANIEL

Abstract. For a given simply connected Riemannian surface Σ, we relate the
problem of finding minimal isometric immersions of Σ into S2×R or H2

×R to

a system of two partial differential equations on Σ. We prove that a constant
intrinsic curvature minimal surface in S2×R or H2

×R is either totally geodesic

or part of an associate surface of a certain limit of catenoids in H2
×R. We also

prove that if a non constant curvature Riemannian surface admits a continuous
one-parameter family of minimal isometric immersions into S2 ×R or H2

×R,
then all these immersions are associate.

1. Introduction

It is a classical result that any simply connected minimal surface in Euclidean
space R

3 belongs to a continuous one-parameter family of isometric minimal sur-
faces, called the associate family. Conversely, two minimal isometric immersions of
the same Riemannian surface into R

3 are associate. These are easy consequences
of the Gauss and Codazzi equations in R

3. More generally, analogous results hold
for constant mean curvature (CMC) surfaces in 3-dimensional space forms.

The aim of this paper is to investigate extensions of these results and related
questions for minimal surfaces in the product manifolds S2 ×R and H

2 ×R, where
S
2 is the 2-sphere of curvature 1 and H

2 is the hyperbolic plane of curvature −1.
The systematic study of minimal surfaces in S

2 × R and H
2 × R was initiated

by H. Rosenberg and W. Meeks [20, 17] and has been very active since then. The
existence of an associate family for simply connected minimal surfaces in S

2 × R

and H
2 × R was proved independently by the author [4] and by L. Hauswirth, R.

Sa Earp and E. Toubiana [13].
On the other hand, there exist examples of isometric minimal surfaces in H

2×R

that are not associate. For instance, a certain limit of rotational catenoids has
curvature −1 (see Example 4.1 for details); we will call it the parabolic generalized
catenoid. This surface is consequently isometric to a horizontal hyperbolic plane
H

2 × {a}, but these two surfaces are not associate (actually this example provides
a two-parameter family of non associate minimal isometric immersions). The par-
abolic generalized catenoid and the helicoid of Example 18 in [13] are associate.
Also, R. Sa Earp [21] gave examples of pairs of non associate isometric minimal
surfaces in H

2×R that are invariant by hyperbolic screw-motions (see Example 5.5
for details).
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These examples show that the classical result in R
3 cannot be extended to H2×R.

Hence it is a natural problem to investigate classifications of non associate isometric
minimal surfaces (for instance this is proposed in [10], p. 932). The main result of
this paper is a rigidity result: we prove that if a minimal surface in S

2×R or H2×R

belongs to a continuous one-parameter family of isometric minimal surfaces, then
this family is the associate family, unless the surface is a horizontal hyperbolic plane
or an associate surface of a parabolic generalized catenoid in H

2 ×R (Corollary 5.2
and Remark 5.3).

In this paper we consider a real constant c 6= 0 and we let M
2(c) denote the

simply connected Riemannian surface of constant curvature c. In particular S
2 =

M
2(1) and H

2 = M
2(−1). By scaling, it is not restrictive to assume that c ∈

{1,−1}; however we will generally not do this normalization, except when dealing
with previously known examples of minimal surfaces that were computed with this
normalization.

We will use the compatibility equations for surfaces in M
2(c)×R obtained in [4].

The angle function, i.e., the inner product of the unit normal with the unit upward
pointing vertical field, plays an important role in these equations. The strategy is
to study the angle function ν of a minimal isometric immersion and to reduce the
compatibility equations to a system of two partial differential equations satisfied by
ν. This system is similar to the one satisfied by the Kähler angle of the surfaces in
Kähler-Einstein 4-manifolds studied in [14, 23, 22], but in these papers the surfaces
that are considered have constant intrinsic curvature, which implies the constancy
of the solution or the reduction to a system of ordinary differential equations. In
our case we also treat non constant curvature surfaces, for which further equations
will be needed. The main results will follow from the study of this system.

The paper is organized as follows. In Section 2, we recall some results about
isometric immersions into M

2(c) × R and we establish the system satisfied by the
angle function (Theorem 2.4). In Section 3 we derive some new equations from this
system; these are compatibility equations. In particular, when the curvature is not
constant, we obtain a pointwise polynomial order 0 equation (Proposition 3.3).

Section 4 is devoted to the study of constant intrinsic curvature minimal sur-
faces. We classify them (even locally) in Theorem 4.2. We think this theorem is
particularily interesting in H

2 × R, since we have a classification of constant cur-
vature minimal 2-dimensional submanifolds of a 3-dimensional manifold where non
totally geodesic examples appear.

Finally, in Section 5 we prove that, up to congruences, there cannot exist more
than 6 minimal isometric immersions of a non constant curvature surface such
that no two of them are associate (Theorem 5.1). In particular, if a non constant
curvature surface admits a continuous one-parameter family of minimal isometric
immersions, then all these immersions are associate (Corollary 5.2).

2. The angle function

2.1. The compatibility equations and the associate family. We first fix some
notation and recall some definitions and results. We let ξ denote the upward point-
ing unit vector field that is tangent to the factor R, that is, ξ is the gradient of
the projection Π : M2(c) × R → R. We will call height function of a surface in
M

2(c)×R (respectively, of an immersion f into M
2(c)×R) the restriction of Π to

this surface (respectively, the map Π ◦ f).



MINIMAL ISOMETRIC IMMERSIONS INTO S
2
× R AND H

2
× R 3

We let Isom(M2(c) × R) denote the isometry group of M
2(c) × R. It has

4 connected components. The connected component of the identity consists of
isometries that preserve the orientations of both M

2(c) and R; we will denote it
by Isom0(M

2(c) × R). We say that two immersions f : Σ → M
2(c) × R and

g : Σ → M
2(c) × R are congruent if there exists Φ ∈ Isom(M2(c) × R) such that

g = Φ ◦ f .
We will make use of the following theorem for local isometric immersions into

M
2(c)× R.

Theorem 2.1 ([4]). Let (Σ, ds2) be an oriented simply connected Riemannian sur-
face. Let K be the curvature of ds2. Let S : TΣ → TΣ be a field of symmetric
operators, T ∈ X (Σ) and ν : Σ → [−1, 1] be a smooth function. Then there exists
and isometric immersion f : Σ → M

2(c) × R such that the shape operator with
respect to the normal N associated to f is

df ◦ S ◦ df−1

and such that
ξ = df(T ) + νN

if and only if the 4-tuple (ds2, S, T, ν) satisfies the following equations on Σ:

(C1) K = detS + cν2,

(C2) ∇XSY −∇Y SX − S[X,Y ] = cν(〈Y, T 〉X − 〈X,T 〉Y ),

(C3) ∇XT = νSX,

(C4) dν(X) + 〈SX, T 〉 = 0.

(C5) ||T ||2 + ν2 = 1.

If this is the case, then the immersion is moreover unique up to an isometry in
Isom0(M

2(c)× R).

We will refer to equations (C1), (C2), (C3), (C4), (C5) as the compatibility
equations for surfaces in M

2(c) × R and to the 4-tuple (ds2, S, T, ν) as the Gauss-
Codazzi data of the immersion. The function ν is called the angle function of the
immersion. Equations (C1) and (C2) are the Gauss and Codazzi equation.

Note that (C1), (C2), (C3), (C4), (C5) are necessary conditions even if Σ is
not simply connected. Also, if f : Σ → M

2(c) × R is an immersion and Φ ∈
Isom0(M

2(c)× R), then f and Φ ◦ f have the same Gauss-Codazzi data.
It follows from this theorem (see [4]) that if Σ is simply connected and oriented

and f : Σ → M
2(c)×R is a minimal isometric immersion with Gauss-Codazzi data

(ds2, S, T, ν), then for every θ ∈ R/(2πZ) there exists minimal isometric immersion
fθ : Σ → M

2(c) × R with Gauss-Codazzi data (ds2, eθJS, eθJT, ν), where J is the
rotation of angle π/2 on TΣ. Moreover, for each θ ∈ R/(2πZ), fθ is unique up
to an isometry in Isom0(M

2(c) × R), and is generically not congruent to f when
θ 6= 0. The family (fθ)θ∈R/(2πZ) is called the associate family of the immersion f .

Note that fπ = σ ◦ f where σ ∈ Isom(M2(c) × R) is the reflection with respect to
a horizontal totally geodesic surface M

2(c) × {a} for some a ∈ R (see Proposition
3.8 in [4]).

Similarly, two minimal surfaces (considered as sets) in M
2(c)×R are said to be

associate if they are images of two associate minimal isometric immersions of the
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same surface. There is a slight difference between these two notions. For instance,
the parabolic generalized catenoid is the image of non associate minimal isometric
immersions of the hyperbolic plane (see Example 4.1 for details): these immersions
are isometric reparametrizations of this surface. Though these immersions are not
associate, their images are associate as sets, since they are equal.

Remark 2.2. The existence of the associate family was also proved by L. Haus-
wirth, R. Sa Earp and E. Toubiana [13] using the harmonicity of the horizontal
and vertical projections of conformal minimal immersions. We also mention that
L. Hauswirth and H. Rosenberg [12] developped the theory of complete finite total
curvature minimal surfaces in H

2×R using the relation between the angle function
and solutions to the elliptic sinh-Gordon equation.

Remark 2.3. The associate family also exists for instance for minimal surfaces
in CP

2 [9]. A general discussion about the existence of an associate family can be
found in [16].

2.2. A system of two partial differential equations. We first show that, in
the case of minimal isometric immersions, the compatibility equations reduce, away
from points where ν2 = 1, to a system of two partial differential equations involving
only the metric ds2 and the angle function ν. Since minimal surfaces in M

2(c)×R

are locally graphs of functions satisfying an elliptic partial differential equation
with real analytic coefficients, all smooth surfaces, metrics and functions that we
consider in this paper will be real analytic.

Theorem 2.4. Let Σ be a minimal surface in M
2(c)×R. Then its angle function

ν : Σ → [−1, 1] satisfies

(M1) ||∇ν||2 = −(1− ν2)(K − cν2),

(M2) ∆ν − 2Kν + c(1 + ν2)ν = 0,

where K denotes the intrinsic curvature of Σ.
Conversely, let Σ be a real analytic simply connected Riemannian surface and ν :

Σ → (−1, 1) a smooth function satisfying (M1) and (M2) where K is the curvature
of Σ. Then there exists an isometric minimal immersion f : Σ → M

2(c)×R whose
angle function is ν. Moreover, if g : Σ → M

2(c)× R is another isometric minimal
immersion whose angle function is ν, then f and g are associate.

Proof. Let Σ be a minimal surface in M
2(c)×R. Considering the orientable double

cover if necessary, we may assume that Σ is oriented. Let (ds2, S, T, ν) be its Gauss-
Codazzi data. As we already mentioned, (Σ, ds2) is real analytic. Equation (C4)
and the symmetry of S imply that ST = −∇ν; moreover, since Σ is minimal, one
has SJ = −JS where J denotes the rotation of angle π/2 in TΣ. Hence, considering
the orthonormal frame (T/||T ||, JT/||T ||) at a point where T 6= 0, we obtain that
detS = −||∇ν||2/||T ||2. Then the Gauss equation (C1) and equation (C5) give
(M1) when T 6= 0, i.e., ν2 6= 1. At points where ν2 = 1, one has ∇ν = 0, so (M1)
also holds.

Since ξ is a Killing field, ν satisfies Lν = 0 where L is the Jacobi operator of Σ.
Since L = ∆−2K+c(1+ν2) (see [3], Section 5.2), this gives (M2), which concludes
the proof of the first assertion. It is also useful to notice that, by (C3), T satisfies

(2.1) ∇XT =
ν

1− ν2
(−〈∇ν,X〉T + 〈J∇ν,X〉JT )
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for every vector field X at points where ν2 6= 1.
Let now Σ be a real analytic simply connected Riemannian surface and ν : Σ →

(−1, 1) a smooth function satisfying (M1) and (M2). The fact that ν satisfies (M2)
implies that it is real analytic. The first step is to find a vector field T satisfying
(C5) and (2.1). Let (e1, e2) be an orthonormal frame defined in an open set U ⊂ Σ,
and let (ω1, ω2) be its dual coframe. We assume that U is simply connected. Let α
be the 1-form on U such that ∇Xe1 = α(X)e2 for every X ∈ X (U). Let θ : U → R

be a smooth function and T =
√
1− ν2eθJe1. Then, as ν

2 6= 1,

∇XT = − ν

1− ν2
dν(X)T + dθ(X)JT + α(X)JT,

so T satisfies (2.1) if and only if

ν

1− ν2
〈J∇ν,X〉 = dθ(X) + α(X)

for every X ∈ X (U), i.e., if and only if

(2.2) dθ = − ν

1− ν2
(dν ◦ J)− α.

We have

d

(

ν

1− ν2
(dν ◦ J) + α

)

=
1 + ν2

(1− ν2)2
dν ∧ (dν ◦ J) + ν

1− ν2
d(dν ◦ J) + dα

=

(

− 1 + ν2

(1− ν2)2
||∇ν||2 − ν

1− ν2
∆ν −K

)

ω1 ∧ ω2

= 0

by (M1) and (M2). So (2.2) has a solution θ : U → R, which is unique up to an
additive constant θ0. Hence there exists T ∈ X (U) satisfying (C5) and (2.1), and
T is unique up to the rotation by a fixed angle θ0. We now fix such a vector field T .
Since T does not vanish on U , there exists a unique symmetric traceless operator
S : TU → TU such that ST = −∇ν.

We now prove that (ds2, S, T, ν) satisfies (C1), (C2), (C3), (C4) and (C5) on U .
Equations (C5) and (C4) follow immediately from the definitions of T and S and
from the symmetry of S, and then (C3) follows from (2.1). Following a previous
computation we also get detS = −||∇ν||2/||T ||2, so (M1) gives (C1).

It now suffices to check that (C2) is satisfied for X = T and Y = JT . First,
using (C3) and the fact that SJ = −JS and that ∇Z commutes with J for every
Z, we get

[T, JT ] = 2νJST,

so, since S is symmetric,

〈S[T, JT ], T 〉 = 0, 〈S[T, JT ], JT 〉 = −2ν||ST ||2 = −2ν||∇ν||2.
Also,

∇TSJT −∇JTST = J∇T∇ν +∇JT∇ν,

which yields (using the symmetry of the Hessian (X,Y ) 7→ 〈X,∇Y ∇ν〉)
〈∇TSJT −∇JTST, T 〉 = 0, 〈∇TSJT −∇JTST, JT 〉 = ||T ||2∆ν.

Consequently we have

〈∇TSJT −∇JTST − S[T, JT ], T 〉 = 0,
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and, by (M1), (M2) and (C5),

〈∇TSJT −∇JTST − S[T, JT ], JT 〉 = −cν(1− ν2)2.

These two equations are (C2) for X = T and Y = JT . This concludes the proof of
the fact that (ds2, S, T, ν) satisfies (C1), (C2), (C3), (C4) and (C5) on U .

Since Σ is simply connected, classical arguments prove that we can extend S and
T , defined on U , to the whole Σ in a unique way. Since T is unique on U up to
a rotation by a fixed angle θ0 and S is defined uniquely in terms of T and ν, this
concludes the proof, by Theorem 2.1. �

In the second part of this theorem, we do not treat the case of functions ν that
take values 1 and −1, but we will not need this in the sequel.

Remark 2.5. It is clear that ν satisfies (M1) and (M2) if and only if −ν does.
The associate families of immersions having ν and −ν as angle functions differ by
a rotation of angle π around a horizontal geodesic in M

2(c) × R (see Proposition
3.8 in [4]).

Remark 2.6. L. Hauswirth, R. Sa Earp and E. Toubiana [13] studied minimal
immersions using the fact that the projections into H

2 and into R are harmonic.
In particular they proved that two minimal isometric immersions whose height
functions have the same Hopf differential are congruent.

From Theorem 2.4 follows the next result, which was already noted in [5, 6]
(where, more generally, all surfaces in M

2(c)×R with constant angle function were
classified).

Lemma 2.7. Let Σ be a minimal surface in M
2(c)×R with constant angle function

ν. Then

• either ν2 = 1, K = c and Σ is part of a horizontal surface M
2(c)× {a} for

some a ∈ R,
• either ν = 0, K = 0 and Σ is part of a vertical surface γ × R where γ is a
geodesic of M2(c).

In particular, Σ is totally geodesic.

Proof. Assume that ν2 = 1. Then by (M2) we have K = c. Moreover, with the
notation of Theorem 2.1, we have T = 0, so the height function of the surface is
constant, i.e., Σ is part of a horizontal surface M

2(c)× {a} for some a ∈ R.
Assume that ν2 < 1. Then by (M1) we have K = cν2. Reporting in (M2) yields

cν(1 − ν2) = 0, so ν = 0 and K = 0. The fact that ν = 0 means that the vertical
field ξ is tangent to Σ everywhere, so there exists a curve γ ⊂ M

2(c) such that Σ is
part of γ × R. Since Σ is minimal, γ is a geodesic of M2(c). �

Note that conversely it is clear from (C2) and (C5) that a totally geodesic surface
has either ν = 0 or T = 0, i.e., ν2 = 1.

3. Study of the system

In this section we derive some further equations from (M1) and (M2) that will be
useful to answer some geometric questions. Here Σ is a real analytic Riemannian
surface, ∇ its Riemannian connection, R its Riemann curvature tensor with the
following sign convention:

R(X,Y )Z = ∇Y ∇XZ −∇X∇Y Z +∇[X,Y ]Z,
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and K its curvature.
We first settle some notation. If f is a smooth function on Σ, its Hessian ∇2f

is defined by

(∇2f)(X,Y ) = 〈X,∇Y ∇f〉.
This is a symmetric 2-tensor. The Laplace-Beltrami operator ∆ applied to f is the
trace of ∇2f .

We now consider a local orthonormal frame (e1, e2). Let J be the linear operator
such that Je1 = e2 and Je2 = −e1. There exists a 1-form α such that

∇Xei = α(X)Jei

for all vector fields X. Setting αi = α(ei), we have

∇e1e1 = α1e2, ∇e2e1 = α2e2, ∇e1e2 = −α1e1, ∇e2e2 = −α2e1.

We will set

fi = 〈ei,∇f〉 = ei · f,
fij = (∇2f)(ei, ej) = ej · fi − (∇ejei) · f.

In the sequel we will use the following differentation formulas:

e1 · f1 = f11 + α1f2, e2 · f1 = f12 + α2f2,
e1 · f2 = f12 − α1f1, e2 · f2 = f22 − α2f1.

Let ν : Σ → [−1, 1] be a smooth (hence real analytic) function satisfying (M1)
and (M2). In the frame (e1, e2), equations (M1) and (M2) read as

(E1) ν21 + ν22 = −(1− ν2)(K − cν2),

(E2-1) ν11 + ν22 = ν(2K − c(1 + ν2)).

The first step is to seek another order one equation: we establish two new order
two equations in the next Lemma, and then in Proposition 3.2 we will use them to
get an order one equation.

Lemma 3.1. If ∇ν does not vanish and ν satisfies (E1) and (E2-1), then ν satisfies

(E2-2) 2(K − cν2)ν12 = K1ν2 +K2ν1 − 6cνν1ν2,

(E2-3) (K − cν2)(ν11 − ν22) = −3cν(ν21 − ν22) +K1ν1 −K2ν2.

Proof. By (E1), the fact that ∇ν does not vanish implies that 1− ν2 and K − cν2

do not vanish.
Differentiating (E1) yields

(3.1) 2(ν1ν11 + ν2ν12) = 2(K + c(1− 2ν2))νν1 − (1− ν2)K1,

(3.2) 2(ν1ν12 + ν2ν22) = 2(K + c(1− 2ν2))νν2 − (1− ν2)K2.

Then, reporting (E1) and (E2-1) in ν2(3.1)+ν1(3.2) gives (E2-2).
Also, ν1(3.1)−ν2(3.2) gives

2(ν21ν11 − ν22ν22) = 2(K + c(1− 2ν2))ν(ν21 − ν22)− (1− ν2)(K1ν1 −K2ν2).

Then, using the fact that

2(ν21ν11 − ν22ν22) = (ν11 + ν22)(ν
2
1 − ν22) + (ν11 − ν22)(ν

2
1 + ν22)

and using (E1) and (E2-1) we obtain (E2-3). �
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Proposition 3.2. Let ν : Σ → [−1, 1] be a real analytic function satisfying (M1)
and (M2). Then ν satisfies

(M3) 6cν〈∇ν,∇K〉 = ||∇K||2 − (K − cν2)∆K + 4(K − c)(K − cν2)(K + 2cν2).

Proof. If ν is constant on an non empty open set, then by analyticity ν is constant.
Then, by Lemma 2.7,K is also constant, and either (K, ν) = (c, 1) or (K, ν) = (0, 0).
In both cases (M3) is satisfied.

From now on we assume that ν is not a constant function. By analyticity it
sufficies to prove (M3) on a non empty open set U ⊂ Σ on which ∇ν does not
vanish. By restricting U if necessary, we may also assume that there exists an
orthonormal frame (e1, e2) on U . We now use the previous notations.

We will use the classical Bochner-Weitzenböck formula (see for instance [19],
Section 7.3, p. 175):

(3.3)
1

2
∆||∇ν||2 = 〈∇ν,∇∆ν〉+ ||∇2ν||2 +K||∇ν||2.

We have

||∇2ν||2 = ν211 + ν222 + 2ν212 =
1

2
(ν11 + ν22)

2 +
1

2
(ν11 − ν22)

2 + 2ν212,

so by (E2-2) and (E2-3) we get

2(K − cν2)2||∇2ν||2 = (K − cν2)2(∆ν)2 + 9c2ν2||∇ν||4

+||∇K||2||∇ν||2 − 6cν〈∇K,∇ν〉||∇ν||2.
Also, by (M1) and (M2) we have

∆||∇ν||2 = −(1−ν2)∆K+4ν〈∇K,∇ν〉+2(K+c−2cν2)ν∆ν+2(K+c−6cν2)||∇ν||2,
〈∇ν,∇∆ν〉 = 2ν〈∇K,∇ν〉+ (2K − c− 3cν2)||∇ν||2.

Reporting these three identities into (3.3) multiplied by 2(K − cν2)2 gives

0 = (K − cν2)2(1− ν2)∆K + (K − cν2)2(−2Kν − 2cν + 4cν3 +∆ν)∆ν

+9c2ν2||∇ν||4 + ||∇K||2||∇ν||2 − 6cν〈∇K,∇ν〉||∇ν||2

+2(K − cν2)2(2K − 2c+ 3cν2)||∇ν||2.
Dividing by ||∇ν||2, taking (M1) and (M2) into account, gives

0 = −(K − cν2)∆K + 3cν(K − cν2)∆ν + 9c2ν2||∇ν||2

+||∇K||2 − 6cν〈∇K,∇ν〉+ 2(K − cν2)2(2K − 2c+ 3cν2).

We finally obtain (M3) after reporting again (M1) and (M2). �

Equation (M3) is enough to treat the case where K is constant; this will be done
in Section 4. The remainder of this section will be devoted to the case where K
is not constant. We next derive an order zero equation, i.e., an algebraic equation
(no differentiation for the unknown function appears).

Proposition 3.3. Assume that K is not constant. Let ν : Σ → [−1, 1] be a real
analytic function satisfying (M1) and (M2). Then there exists a map P : Σ×R →
R, depending only on the metric, such that

• for every point x ∈ Σ, the map P (x, ·) is an even polynomial map of degree
at most 12,

• the map x 7→ P (x, ·) is real analytic,
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• for every point x ∈ Σ,

(M4) P (x, ν(x)) = 0,

• the set Σ \ Z is dense, where

Z = {x ∈ Σ | P (x, ·) ≡ 0}.
Proof. We first assume that Σ is orientable and we choose an orientation on Σ. We
let J denote the rotation of angle π/2 in TΣ. Let U = {x ∈ Σ | ∇K(x) 6= 0} and
V = {x ∈ Σ | ∇ν(x) 6= 0}. Since K is real analytic, U is a dense open subset. By
Lemma 2.7 and since ν is real analytic, V is also a dense open subset.

On U we consider the orthonormal frame (e1, e2) = (∇K/||∇K||, J∇K/||∇K||).
In this frame we have K1 = ||∇K|| and K2 = 0. This implies in particular that

(3.4) K12 = α1K1, K22 = α2K1.

We now do some computations in U ∩ V using the frame (e1, e2). We have
K − cν2 6= 0 by (M1) and the definition of V . Equation (M3) becomes

(3.5) 6cνK1ν1 = A

with

A = K2
1 − (K − cν2)∆K + 4(K − c)(K − cν2)(K + 2cν2).

Differentiating (3.5) with respect to e2 and using (3.4), we obtain

(3.6)
0 = −6cν2K1ν1 − 6cν(ν1K12 + ν2K22 +K1ν12) + 2K1K12

+2cνν2∆K − (K − cν2)(∆K)2 + 4(K − c)(2cKνν2 − 8c2ν3ν2).

After multiplication by K − cν2 and reporting (E2-2), this gives

0 = (−6c(K − 4cν2)K1ν1 +B)ν2 + (K − cν2)(−6cνK12ν1 + C)

with

B = −3cνK2
1 + 2cν(K − cν2)(K11 − 2K22 + 4(K − c)(K − 4cν2)),

C = 2K1K12 − (K − cν2)(∆K)2.

Multiplying by νK1 and reporting (3.5) yields

0 = Dν2 + (K − cν2)νE

with

D = −(K − 4cν2)K1A+ νK1B,

E = −K12A+K1C

= K2
1K12 + (K − cν2)(K12∆K −K1(∆K)2 − 4(K − c)(K + 2cν2)K12).

Observe that D factorizes as

D = (K − cν2)K1F

with

F = K∆K −K2
1 − 2cν2K11 − 8cν2K22 − 4K(K − c)(K − 4cν2).

From this we get

(3.7) 0 = K1Fν2 + νE.
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Finally, reporting (3.5) and (3.7) into (E1) gives

(3.8) A2F 2 + 36c2ν4E2 + 36c2K2
1ν

2(1− ν2)(K − cν2)F 2 = 0.

This equation holds on U ∩V and extends by continuity to U . It has the desired
form on U but may not extend smoothly to Σ. So, observing that

K2
1K11 = (∇2K)(∇K,∇K), K2

1K22 = (∇2K)(J∇K, J∇K),

K2
1K12 = (∇2K)(∇K, J∇K), K1(∆K)2 = 〈∇∆K, J∇K〉,

we see that if we multiply both sides of (3.8) by K4
1 we obtain an equation of the

form (M4) that extends to the whole surface Σ, where, for each x ∈ Σ, P (x, ·) is a
polynomial map, and where the map x 7→ P (x, ·) is analytic. One can also easily
check that P (x, ·) is even and of degree at most 12 for each point x ∈ Σ.

We now prove that Σ \ Z is dense. Note that Σ \ Z ⊂ U . Assume that Σ \ Z is
not dense. Then Z contains a non empty open set Ω. Since K is analytic and non
constant, by taking a smaller set Ω if necessary, we may also assume that K, K− c
and ∇K do not vanish on Ω.

The coefficients of orders 0 and 12 of P (x, ·) vanish for every x ∈ Ω. Using (3.8),
this leads to the following relations on Ω:

(3.9) K∆K −K2
1 − 4K2(K − c) = 0,

(3.10) K11 + 4K22 − 8K(K − c) = 0,

(3.11) K12 = 0.

We are going to prove that these three equations lead to a contradiction. We
recall that K2 = 0. We deduce from (3.4) and (3.11) that

(3.12) α1 = 0.

From (3.9), (3.10) and (3.4) we get

(3.13) K11 =
8

3
K(K − c) +

4K2
1

3K
.

(3.14) α2K1 = K22 =
4

3
K(K − c)− K2

1

3K
.

On the other hand, by (3.12) we have

K = 〈R(e1, e2)e1, e2〉 = −α2
2 − e1 · α2,

so differentiating (3.14) with respect to e1 yields

−(K + α2
2)K1 + α2K11 =

8KK1

3
− 4cK1

3
− 2K1K11

3K
+

K3
1

3K2
.

Reporting (3.14) and (3.13), we obtain, after a straightforward computation,

(3.15) 0 = (K + 20c)K2
1 − 16K2(K − c)2.

Differentiating this equation with respect to e1 and reporting (3.13), we get, after
another straightforward computation,

(3.16) 0 = (11K + 160c)K2
1 − 16K2(11K2 − 37cK + 26c2).

It then follows from (3.15) and (3.16) thatK is a root of a non trivial polynomial. In
particular, K is constant on Ω, hence on Σ by analyticity, which is a contradiction.
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This proves that Σ\Z is dense, and consequently that P has the required properties.
This concludes the proof in the case where Σ is orientable.

We now assume that Σ is not orientable. Let Σ̃ be the orientable double cover of
Σ, with a given orientation. Then we can define P̃ : Σ̃×R → R, and one can check
that P̃ does not depend on the chosen orientation. Consequently we can define
P : Σ× R → R with the desired properties. �

Corollary 3.4. Assume that K is not constant. Then there exist at most 12
functions ν : Σ → [−1, 1] (and possibly none) satisfying (M1) and (M2). Moreover,
a function ν satisfies (M1) and (M2) if and only if −ν does.

Proof. Let Ω ⊂ Σ \ Z be a non empty connected open set. Then any function
ν : Σ → [−1, 1] satisfying (M1) and (M2) on Ω satisfies (M4) on Ω. By the
properties of P , for each x ∈ Ω the set {s ∈ [−1, 1] | P (x, s) = 0} is finite and
has cardinal at most 12 (and is possibly empty). Hence, by analyticity, there are
at most 12 functions ν satisfying (M4) on Ω. Then a function ν : Σ → [−1, 1]
satisfying (M1) and (M2) on Σ is necessarily the analytic continuation of one of
these functions. The last assertion of the corollary is obvious. �

Remark 3.5. Ricci proved that a simply connected Riemannian surface Σ with
metric ds2 having negative curvature K can be minimally isometrically immersed
into R

3 if and only if the metric
√
−Kds2 is flat, i.e.,

(3.17) ||∇K||2 = K∆K − 4K3.

This condition is called the Ricci condition (see [7] for a generalization to higher
dimensions and all space forms). Recently, using the description of minimal surfaces
in R

3 in terms of meromorphic data and a study of log-harmonic functions, A.
Moroianu and S. Moroianu [18] proved that a simply connected Riemannian surface
can be minimally isometrically immersed into R

3 if and only if its curvature K
satisfies K 6 0 and (3.17).

It is not clear whether such a simple necessary and sufficient condition holds for
minimal isometric immersions into M

2(c)×R (we observe that setting c = 0 in (M3)
gives (3.17)). We can differentiate (3.5) with respect to e1 or (M4) with respect
to e1 or e2, and next report (3.5) and (3.7) to obtain other order zero equations
satisfied by ν, in terms of other derivatives of the curvature. However this seems
to lead to very complicated computations.

4. Minimal surfaces with constant intrinsic curvature

Trivial examples of minimal surfaces with constant intrinsic curvature are totally
geodesic surfaces of M2(c) × R (see Lemma 2.7). We first describe a non trivial
example, and then prove that all these minimal surfaces are either totally geodesic
or congruent to a part of an associate surface of this example.

It is interesting to mention that constant intrinsic curvature surfaces (non nec-
essarily minimal) in M

2(c)× R are studied in [1].

Example 4.1 (The parabolic generalized catenoid in H
2 × R). We recall the fol-

lowing example from [4] when c < 0. Here we do the normalization c = −1.
Proposition 4.17 in [4] describes a properly embedded minimal surface C in H

2 ×R

having the following properties:
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• the intersection of C with a horizontal plane H
2 × {a} is either empty or a

horocycle,
• all these horocycles have asymptotic points that project to the same point
in ∂∞H

2,
• the surface C is invariant by a one-parameter family of horizontal parabolic
isometries,

• the surface C has a horizontal plane of symmetry.

We will call this surface a parabolic generalized catenoid. This surface is the unique
minimal surface, up to isometries of H2×R, having these aforementioned properties.
It belongs to a two-parameter families of minimal surfaces foliated by horizontal
curves of constant curvature, which were classified by L. Hauswirth [11]. Moreover,
this surface is a limit of rotational catenoids as the radius of the circle in their
horizontal plane of symmetry tends to +∞ (one has to fix a point of the circle and
the tangent plane at this point to get the limit). The associate family of C contains
in particular the left and right helicoids with vertical period π (see Proposition 4.20
in [4] and Example 18 in [13]).

The embedding given in Proposition 4.17 of [4] is an embedding f : D → H
2×R

whereD = (−π/2, π/2)×R, and the induced metric is given in canonical coordinates
(u, v) by

ds2 =
du2 + dv2

cos2 u
.

One can check that this metric is complete and has constant curvature −1. More-
over, the angle function µ of the immersion is given by µ = sinu. We consider the
orthonormal frame (e1, e2) defined by

e1 = cosu
∂

∂u
, e2 = cosu

∂

∂v

and we use the notation of Section 3. Then µ1 = cos2 u and µ2 = 0.
We observe that the curve γ of equation v = 0 in D is a geodesic. For t ∈ R

we let ϕt : D → D denote the hyperbolic translation by t along γ with a chosen
orientation. Then f ◦ ϕt : D → H

2 ×R is a minimal isometric immersion (actually
an embedding) with angle function µ ◦ ϕt. When w 6= t, the functions µ ◦ ϕw and
µ ◦ ϕt are not equal, since µ is strictly monotonous along γ. Consequently, the
immersions f ◦ ϕw and f ◦ ϕt are not associate unless w = t.

The same argument holds replacing hyperbolic translations along γ by hyper-
bolic rotations around a given point. Hence we get an example of a Riemannian
surface admitting an infinite number (actually a two-parameter family) of non asso-
ciate minimal isometric immersions. Note that, however, these immersions are just
isometric reparametrizations of the same minimal surface (the parabolic generalized
catenoid).

We also observe that µ ◦ ϕt → 1 (respectively, µ ◦ ϕt → −1) uniformly on
compact sets as t → +∞ (respectively, t → −∞). We recall that the immersions
given by Theorem 2.1 are unique only up to isometries in Isom0(H

2 × R). So, if
we furthermore fix points z0 ∈ D and p0 ∈ H

2 × R, then we can choose a smooth
family (Ψt)t∈R of isometries in Isom0(H

2 × R) such that Ψt(f(ϕt(z0))) = p0 for
every t and such that the immersion Ψt ◦ f ◦ ϕt converges (uniformly on compact
sets) as t → +∞ to a constant height immersion, that is, the corresponding limit
surface is a horizontal hyperbolic plane.
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In the next theorem we classify constant intrinsic curvature minimal surfaces in
M

2(c)× R (when c > 0 this classification was obtained in [22]).

Theorem 4.2. Let Σ be a minimal surface in M
2(c) × R with constant intrinsic

curvature K. Then

• either Σ is totally geodesic and K = 0 or K = c,
• either c < 0, K = c and Σ is part of an associate surface of the parabolic
generalized catenoid.

Proof. Let ν : Σ → [−1, 1] denote the angle function of Σ. We note that, since
K is constant, (M1) and (M2) imply that the function ν is isoparametric, that
is, ∇ν and ∆ν are functions of ν only (this is similar to the situations treated in
[14, 23, 22]). Since K is constant, (M3) becomes

0 = 4(K − c)(K − cν2)(K + 2cν2).

If K 6= c, then this implies that K = cν2 or K = −2cν2. In particular ν is
constant, so Lemma 2.7 gives the result.

Assume now that K = c. If ν is constant, then Lemma 2.7 gives the result. So
we now assume that ν is not a constant function. By analyticity we may restrict
ourselves to a simply connected open set Ω ⊂ Σ on which ∇ν does not vanish.
Then (M1) implies that c(1− ν2)2 < 0, so c < 0.

Up to scaling, we may assume that c = −1. We set D = (−π/2, π/2) × R and
we endow D with the metric

ds2 =
du2 + dv2

cos2 u
.

We saw in Example 4.1 that this metric has curvature −1 and is complete. Hence,
we can assume that Ω is given by an immersion U → M

2(c) × R for some open
domain U ⊂ D. We consider the orthonormal frame (e1, e2) defined by

e1 = cosu
∂

∂u
, e2 = cosu

∂

∂v

and we use the notation of Section 3.
By applying isometries of D, we may assume that (0, 0) ∈ U , ν1(0, 0) > 0 and

ν2(0, 0) = 0. We set a = ν(0, 0). Then by (E1) we have ν1(0, 0) = 1 − a2; in
particular a ∈ (−1, 1). Then ν is solution to (E1), (E2-1), (E2-2), (E2-3) with
initial conditions

ν(0, 0) = a, ν1(0, 0) = 1− a2, ν2(0, 0) = 0.

For (u, v) ∈ D we set µ(u, v) = sinu. By the discussion in Example 4.1, µ is the
angle function of the parabolic generalized catenoid and for every t ∈ R the function
µ ◦ ϕt is a solution to (E1), (E2-1), (E2-2), (E2-3), where ϕt is as in Example 4.1.

We now claim that there exists t ∈ R such that

(µ ◦ ϕt)(0, 0) = a, (µ ◦ ϕt)1(0, 0) = b, (µ ◦ ϕt)2(0, 0) = 0.

Indeed, since a ∈ (−1, 1), there exists u0 ∈ (−π/2, π/2) such that µ(u0, 0) = a.
Let t ∈ R be such that ϕt(0, 0) = (u0, 0). Then clearly (µ ◦ ϕt)(0, 0) = a. Also for
i = 1, 2 we have d(0,0)ϕt(ei(0, 0)) = ei(ϕt(0, 0)), so (µ ◦ ϕt)1(0, 0) = µ1(ϕt(0, 0)) =

1− a2 and (µ ◦ ϕt)2(0, 0) = µ2(ϕt(0, 0)) = 0. This proves the claim.
Since there is at most one function satisfying (E1), (E2-1), (E2-2), (E2-3) with

those intial conditions, we obtain that ν = µ ◦ ϕt. Then by Theorem 2.4 and by
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analyticity Σ is part of an associate surface of the parabolic generalized catenoid.
�

We mention that there is an important literature about minimal isometric im-
mersions of space forms into space forms or complex space forms in arbitrary di-
mensions (see for instance [8, 2, 14, 15] and references therein). Note that H2 × R

embeds isometrically as a totally geodesic hypersurface in H
2 × H

2. It is perhaps
interesting to try to generalize Theorem 4.2 for immersions into higher dimensional
products of space forms.

5. On the set of minimal isometric immersions of a given surface

Theorem 5.1. Let Σ be a simply connected Riemannian surface with non constant
curvature. Then, up to congruences, the set of minimal isometric immersions from
Σ to M

2(c)×R is empty or consists of n families of associate minimal immersions
for some integer n ∈ [[1, 6]].

Proof. By Theorem 2.4, the angle function ν : Σ → [−1, 1] of such an immersion
satisfies (M1) and (M2), and is not constant by Lemma 2.7. By Corollary 3.4 there
exist at most 12 such functions ν. Again by Theorem 2.4 each of these functions ν
gives, up to congruences, at most one family of associate immersions. We conclude
using Remark 2.5. �

Corollary 5.2. Let Σ be a simply connected Riemannian surface with non constant
curvature. Let (ft)t∈I be a continuous family of minimal isometric immersions
from Σ to M

2(c)×R, where I is a real interval. Then all immersions ft, t ∈ I, are
associate.

Proof. Let Y be the set of smooth functions ν : Σ → [−1, 1] satisfying (M1) and
(M2). For each t ∈ I, let νt : Σ → [−1, 1] be the angle function of ft. Then the map
t 7→ νt is a continuous map from I to Y , which is finite by the proof of Theorem 5.1.
So this map is constant, that is, all immersions ft have the same angle function,
hence they are associate by Theorem 2.4. �

Remark 5.3. By Theorem 4.2, the hypothesis in Theorem 5.1 and Corollary 5.2
that the surface has non constant curvature can be removed if c > 0 and replaced
by the hypothesis that the surface does not have constant curvature c when c < 0.

Remark 5.4. Let Σ be a simply connected Riemannian surface and f : Σ →
M

2(c)×R a minimal isometric immersion. Let σ ∈ Isom(M2(c)×R) be the reflection
with respect to a horizontal totally geodesic surface and ϕ ∈ Isom(M2(c)× R) the
reflection with respect to a vertical totally geodesic surface. We assume that the
curvature of Σ is not constant. Then there exists a continuous one-parameter
family of minimal isometric immersions of Σ containing both f and σ ◦ f (namely
the associate family of f , since σ ◦ f = fπ), while there does not exist a continuous
one-parameter family of minimal isometric immersions of Σ containing both f and
ϕ ◦ f (by Corollary 5.2 and Lemma 2.7, since f and ϕ ◦ f have opposite angle
functions; see Proposition 3.8 in [4]).

The following example, due to R. Sa Earp [21], is an example of non constant
curvature Riemannian surfaces admitting two non associate minimal isometric im-
mersions into H

2 × R up to congruences.
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Example 5.5. R. Sa Earp [21] classified minimal surfaces in H
2 × R that are

invariant by a one-parameter family of hyperbolic screw motions. They constitute
a two-parameter family (Sℓ,d)(ℓ,d)∈R2 , the parameters being the pitch (or slope) ℓ
of the screw motion and the prime integral d of the ordinary differential equation
defining the generatrix curve.

Note that the statements in [21] asserting that there exists a two-parameter
family of minimal surfaces that are isometric to a given surface Sℓ,d are mislead-
ing, since changing the extra parameter m in that paper simply corresponds to
multiplying the second coordinate on the surface by a constant. Indeed, if fℓ,d,m
denotes the immersion in [21] with parameters ℓ, d, m, then, in the notation of
[21], fℓ,d,m(s, τ) = fℓ,d,1(s, τ/m) (this can be seen from Theorem 4.2 in [21]). In
general, the immersions fℓ,d,m and fℓ,d,1 do not induce the same metrics, since the
map (s, τ) 7→ (s, τ/m) is not an isometry (by formula (15) in [21]).

When ℓ = 0, the surface is invariant by a one-parameter family of horizontal
hyperbolic isometries (it belongs to the family of L. Hauswirth [11] and it is also
described in [4], p. 6279). When d = 0, the generatrix curve is a horizontal geodesic
(it also belongs to the family of L. Hauswirth [11]).

R. Sa Earp observed that the surfaces Sℓ,d and Sℓ,d are isometric but not associate

if d2 > 1, d2 < 1 and (d2−1)/(ℓ2+1) = (1−d2)/(d2+ ℓ2). This provides examples
of Riemannian surfaces admitting two minimal isometric immersions into H

2 × R

that are not associate up to congruences. A model of such a surface is R2 with the
metric is

ds2 = du2 + Λ(u)2dv2

where

Λ(u) =

√

(d2 − 1) cosh2 u+ ℓ2 + 1.

We consider the orthonormal frame (e1, e2) defined by

e1 =
∂

∂u
, e2 =

1

Λ(u)

∂

∂v

and we use the notation of Section 3. Then

[e1, e2] = −Λ′(u)

Λ(u)
e2, α1 = 0, α2 =

Λ′(u)

Λ(u)
,

so

K = 〈R(e1, e2)e1, e2〉 = −Λ′′(u)

Λ(u)
= −1 +

(ℓ2 + 1)(d2 + ℓ2)

Λ(u)4
.

We can check the functions ν and ν such that

ν2(u) =
(d2 − 1) cosh2 u

(d2 − 1) cosh2 u+ ℓ2 + 1
= 1− ℓ2 + 1

Λ(u)2
,

ν2(u) =
(d2 − 1) sinh2 u

(d2 − 1) cosh2 u+ ℓ2 + 1
= 1− d2 + ℓ2

Λ(u)2

satisfy (M1) and (M2). They are the angle functions of Sℓ,d and Sℓ,d respectively.

The surfaces Sℓ,d and S0,δ with δ =
√

1 + d2−1
ℓ2+1 are associate (this can be seen

making the change of coordinate v 7→
√
ℓ2 + 1v).
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Example 5.6. Using a computer algebra system, we can check that a minimal
surface in H

2×R (respectively, in S
2×R) that is locally isometric to a catenoid (re-

spectively, to an unduloid) is one of its associate surfaces (see [11, 4] for descriptions
of catenoids and unduloids).

Indeed, the metrics are given in an open subset of R2 by ds2 = du2 + Λ(u)2dv2

with Λ(u) =
√

β2 sinh2 u+ 1 for some β ∈ (−∞,−1)∪(1,+∞) (respectively Λ(u) =
√

β2 sin2 u+ 1 for some β 6= 0). Using the orthonormal frame as that of Example
5.5, we get α1 = 0, K2 = 0, K12 = 0 and (∆K)2 = 0 (since ∆K = K11 +K22 =
e1 ·K1+α2K1 is a function of u only). Hence E = 0, so (3.7) gives ν2 = 0 or F = 0.
If F = 0, then ν is a function of u only (since the coefficients in F are functions of
u only and are not identically 0), so we also have ν2 = 0.

Then reporting (3.5) into (M1) gives a pointwise polynomial equation for ν of
degree 8. We obtain up to a sign four complex valued solutions: two of them do
not satisfy (M1), another one does not take values in [−1, 1]. Hence there is, up to
a sign, a unique solution to (M1) and (M2) taking values in [−1, 1].

In a similar way we obtain that the surfaces in Example 5.5 do not have non
associate isometric minimal surfaces other than those described in that example
(up to congruences).

Remark 5.7. We do not know any example of a Riemannian surface admitting
non associate minimal isometric immersions into S

2 × R (up to congruences).
We do not know any example of a non constant curvature Riemannian surface

admitting more than two non associate minimal isometric immersions into H
2 ×R

(up to congruences).

Remark 5.8. Let H 6= 0. The problem of classifying non congruent CMC H
isometric immersions of a Riemannian surface into S

2×R or H2×R remains largely
open. F. Torralbo and F. Urbano [23] related this problem to a question about
surfaces with parallel mean curvature vector in S

2 × S
2 or H

2 × H
2 that are not

minimal. They provided some examples and classified pairs of non congruent CMC
H isometric immersions of a Riemannian surface having the same angle function.

This problem is quite different from the case of minimal immersions. For in-
stance, it is not known whether simply connected CMC H surfaces admit a contin-
uous one-parameter family of isometric CMC H surfaces. On the other hand, CMC
surfaces in S

2 ×R and H
2 ×R are related to minimal surfaces in simply connected

homogeneous Riemannian 3-manifolds with a 4-dimensional isometry group by a
local isometric Lawson-type correspondence [3].

It is also interesting to mention that J. Gálvez, A. Mart́ınez and P. Mira [10] an-
swered the question whether a surface in these homogeneous 3-manifolds is uniquely
determined by its metric and its principal curvatures.

References

[1] J. A. Aledo, J. M. Espinar, and J. A. Gálvez. Complete surfaces of constant curvature in
H2

×R and S2
×R. Calc. Var. Partial Differential Equations, 29(3):347–363, 2007.

[2] R. L. Bryant. Minimal surfaces of constant curvature in Sn. Trans. Amer. Math. Soc.,

290(1):259–271, 1985.
[3] B. Daniel. Isometric immersions into 3-dimensional homogeneous manifolds. Comment. Math.

Helv., 82(1):87–131, 2007.
[4] B. Daniel. Isometric immersions into Sn×R and Hn

×R and applications to minimal surfaces.
Trans. Amer. Math. Soc., 361(12):6255–6282, 2009.



MINIMAL ISOMETRIC IMMERSIONS INTO S
2
× R AND H

2
× R 17

[5] F. Dillen, J. Fastenakels, J. Van der Veken, and L. Vrancken. Constant angle surfaces in
S2 × R. Monatsh. Math., 152(2):89–96, 2007.

[6] F. Dillen and M. I. Munteanu. Constant angle surfaces in H2
× R. Bull. Braz. Math. Soc.

(N.S.), 40(1):85–97, 2009.
[7] M. do Carmo and M. Dajczer. Necessary and sufficient conditions for existence of minimal

hypersurfaces in spaces of constant curvature. Bol. Soc. Brasil. Mat., 12(2):113–121, 1981.
[8] M. P. do Carmo and N. R. Wallach. Minimal immersions of spheres into spheres. Ann. of

Math. (2), 93:43–62, 1971.

[9] J.-H. Eschenburg, I. V. Guadalupe, and R. de A. Tribuzy. The fundamental equations of
minimal surfaces in CP2. Math. Ann., 270(4):571–598, 1985.

[10] J. A. Gálvez, A. Mart́ınez, and P. Mira. The Bonnet problem for surfaces in homogeneous
3-manifolds. Comm. Anal. Geom., 16(5):907–935, 2008.

[11] L. Hauswirth. Minimal surfaces of Riemann type in three-dimensional product manifolds.
Pacific J. Math., 224(1):91–117, 2006.

[12] L. Hauswirth and H. Rosenberg. Minimal surfaces of finite total curvature in H × R. Mat.
Contemp., 31:65–80, 2006. Workshop on Differential Geometry (Portuguese).

[13] L. Hauswirth, R. Sa Earp, and E. Toubiana. Associate and conjugate minimal immersions in
M ×R. Tohoku Math. J. (2), 60(2):267–286, 2008.

[14] K. Kenmotsu and K. Masuda. On minimal surfaces of constant curvature in two-dimensional

complex space form. J. Reine Angew. Math., 523:69–101, 2000.
[15] Z.-Q. Li. Minimal S3 with constant curvature in CPn. J. London Math. Soc. (2), 68(1):223–

240, 2003.
[16] S. D. B. Lodovici and P. Piccione. Associated family of G-structure preserving minimal im-

mersions in semi-Riemannian manifolds. Results Math., 60(1-4):453–473, 2011.
[17] W. H. Meeks and H. Rosenberg. The theory of minimal surfaces in M ×R. Comment. Math.

Helv., 80(4):811–858, 2005.
[18] A. Moroianu and S. Moroianu. Ricci surfaces. Preprint, arXiv:1206.1620, to appear in Ann.

Sc. Norm. Super. Pisa Cl. Sci. (5).
[19] P. Petersen. Riemannian geometry, volume 171 of Graduate Texts in Mathematics. Springer-

Verlag, New York, 1998.

[20] H. Rosenberg. Minimal surfaces in M2
× R. Illinois J. Math., 46(4):1177–1195, 2002.

[21] R. Sa Earp. Parabolic and hyperbolic screw motion surfaces in H2
× R. J. Aust. Math. Soc.,

85(1):113–143, 2008.
[22] F. Torralbo and F. Urbano. Minimal surfaces in S2×S2. Preprint, arXiv:1301.1580, to appear

in J. Geom. Anal.
[23] F. Torralbo and F. Urbano. Surfaces with parallel mean curvature vector in S2 × S2 and

H2
× H2. Trans. Amer. Math. Soc., 364(2):785–813, 2012.
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