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We study the classification of immersed constant mean curvature (CMC) spheres in the homogeneous Riemannian 3-manifold Sol 3 , i.e., the only Thurston 3dimensional geometry where this problem remains open. Our main result states that, for every H > 1/ √ 3, there exists a unique (up to left translations) immersed CMC H sphere S H in Sol 3 (Hopf-type theorem). Moreover, this sphere S H is embedded, and is therefore the unique (up to left translations) compact embedded CMC H surface in Sol 3 (Alexandrov-type theorem). The uniqueness parts of these results are also obtained for all real numbers H such that there exists a solution of the isoperimetric problem with mean curvature H.

Introduction

Two fundamental results in the theory of compact constant mean curvature (CMC) surfaces are the Hopf and Alexandrov theorems. The first one [START_REF] Hopf | Differential geometry in the large[END_REF] states that round spheres are the unique immersed CMC spheres in Euclidean space R 3 ; the proof relies on the existence of a holomorphic quadratical differential, the so-called Hopf differential.

The second one [START_REF] Alexandrov | A characteristic property of spheres[END_REF] states that round spheres are the unique compact embedded CMC surfaces in Euclidean space R 3 ; the proof is based on the so-called Alexandrov reflection technique, and uses the maximum principle. Hopf's theorem can be generalized immediately to hyperbolic space H 3 and the sphere S 3 , and Alexandrov's theorem to H 3 and a hemisphere of S 3 .

An important problem from several viewpoints is to generalize the Hopf and Alexandrov theorems to more general ambient spaces -for instance, isoperimetric regions in a Riemannian 3-manifold are bounded by compact embedded CMC surfaces. In this sense, among all possible choices of ambient spaces, the simply connected homogeneous 3-manifolds are placed in a privileged position. Indeed, they are the most symmetric Riemannian 3-manifolds other than the spaces of constant curvature, and are tightly linked to Thurston's 3-dimensional geometries. Moreover, the global study of CMC surfaces in these homogeneous spaces in currently a topic of great activity.

Hopf's theorem was extended by Abresch and Rosenberg [START_REF] Abresch | A Hopf differential for constant mean curvature surfaces in S 2 × R and H 2 × R[END_REF][START_REF] Abresch | Generalized Hopf differentials[END_REF] to all simply connected homogeneous 3-manifolds with a 4-dimensional isometry group, i.e., H 2 × R, S 2 × R, the Heisenberg group Nil 3 , the universal cover of PSL 2 (R) and the Berger spheres: any immersed CMC sphere in any of these spaces is a standard rotational sphere. To do this, they proved the existence of a holomorphic quadratic differential, which is a linear combination of the Hopf differential and of a term coming from a certain ambient Killing field. Once there, the proof is similar to Hopf's: such a differential must vanish on a sphere, and this implies that the sphere is rotational.

On the other hand, Alexandrov's theorem extends readily to H 2 ×R and a hemisphere of S 2 times R in the following way: any compact embedded CMC surface is a standard rotational sphere (see for instance [START_REF] Hsiang | On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces[END_REF]). The key property of these ambient manifolds is that there exist reflections with respect to vertical planes, and this makes the Alexandrov reflection technique work. In contrast, the Alexandrov problem in Nil 3 , the universal cover of PSL 2 (R) and the Berger hemispheres is still open, since there are no reflections in these manifolds.

The purpose of this paper is to investigate the Hopf problem in the simply connected homogeneous Lie group Sol 3 , i.e., the only Thurston 3-dimensional geometry where this problem remains open. The topic is a natural and widely commented extension of the Abresch-Rosenberg theorem, but in this Sol 3 setting there are substantial difficulties that do not appear in other homogeneous spaces.

One of these difficulties is that Sol 3 has an isometry group only of dimension 3, and has no rotations. Hence, there are no known explicit CMC spheres, since, contrarily to other homogeneous 3-manifolds, we cannot reduce the problem of finding CMC spheres to solving an ordinary differential equation (there are no compact one-parameter subgroups of ambient isometries). Let us also observe that geodesic spheres are not CMC [START_REF] Lichnerowicz | Sur les espaces riemanniens complètement harmoniques[END_REF]. Moreover, even the existence of a CMC sphere for a specific mean curvature H ∈ R needs to be settled (although the existence of isoperimetric CMC spheres is known). Other basic difficulty is that the Abresch-Rosenberg quadratic differential does not exist in Sol 3 (more precisely, Abresch and Rosenberg claimed that there is no holomorphic quadratic differential of a certain form for CMC surfaces in Sol 3 [START_REF] Abresch | Generalized Hopf differentials[END_REF]).

As regards the Alexandrov problem in Sol 3 , a key fact is that Sol 3 admits two foliations by totally geodesic surfaces such that reflections with respect to the leaves are isometries; this ensures that a compact embedded CMC surface is topologically a sphere (see [START_REF] Espinar | Complete surfaces with positive extrinsic curvature in product spaces[END_REF]). Hence the problem of classifying compact embedded CMC surfaces is solved as soon as the Hopf problem is solved and embeddedness of the examples is studied.

We now state the main theorems of this paper. We will generally assume without loss of generality that H 0, by changing orientation if necessary. We also refer to Section 5.1 for the basic definitions regarding stability, index and the Jacobi operator.

Theorem 1.1 Let H > 1/ √ 3. Then:

i) There exists an embedded CMC H sphere S H in Sol 3 .

ii) Any immersed CMC H sphere in Sol 3 differs from S H at most by a left translation.

iii) Any compact embedded CMC H surface in Sol 3 differs from S H at most by a left translation.

Moreover, these canonical spheres S H constitute a real analytic family, they all have index one and two reflection planes, and their Gauss maps are global diffeomorphisms into S 2 .

As explained before, the Alexandrov-type uniqueness iii) follows from the Hopf-type uniqueness ii), by using the standard Alexandrov reflection technique with respect to the two canonical foliations of Sol 3 by totally geodesic surfaces.

We actually have the following more general uniqueness theorem. (c) It has index one.

(d) Its Gauss map is a (global) diffeomorphism into S 2 .
Then Σ H is embedded and unique up to left translations in Sol 3 among immersed CMC H spheres (Hopf-type theorem) and among compact embedded CMC H surfaces (Alexandrovtype theorem).

Let us remark that solutions of the isoperimetric problem in Sol 3 are embedded CMC spheres. Hence, we can deduce from results of Pittet [START_REF] Pittet | The isoperimetric profile of homogeneous Riemannian manifolds[END_REF] that the infimum of the set of H > 0 such that there exists a CMC H sphere satisfying (a) is 0 (see Section 2.2). We will additionally prove that for all H > 1/ √ 3 there exists a CMC H sphere satisfying (c), which gives Theorem 1.1.

We outline the proof of the theorems. We first study the Gauss map of CMC H immersions into Sol 3 . We prove in Section 3 that the Gauss map is nowhere antiholomorphic and satisfies a certain second order elliptic equation. Conversely we obtain a Weierstrass-type representation formula that allows to recover a CMC H immersion from a nowhere antiholomorphic solution of this elliptic equation.

To prove uniqueness of CMC H spheres, the main idea will be to ensure the existence of a quadratic differential Qdz 2 that satisfies the so-called Cauchy-Riemann inequality (a property weaker than holomorphicity, introduced by Alencar, do Carmo and Tribuzy [START_REF] Alencar | A theorem of Hopf and the Cauchy-Riemann inequality[END_REF]) for all CMC H immersions. This will be the purpose of Section 4. The main obstacle is that it seems very difficult and maybe impossible to obtain such a differential (or even just a CMC sphere) explicitly. We are able to prove the existence of this differential provided there exists a CMC H sphere whose Gauss map G is a (global) diffeomorphism of S 2 (our differential Qdz 2 will be defined using this G).

The next step is to study the existence of CMC spheres whose Gauss map is a diffeomorphism. This is done in Section 5. We first prove that the Gauss map of an isoperimetric sphere, and more generally of an index one CMC sphere, is a diffeomorphism. For this purpose we use a nodal domain argument. We also prove that a CMC sphere whose Gauss map is a diffeomorphism is embedded.

Then we deform an isoperimetric sphere with large mean curvature by the implicit function theorem. More generally we prove that we can deform index one CMC spheres, and that the property of having index one is preserved by this deformation. In this way we prove that there exists an index one CMC H sphere for all H > 1/ √ 3. To do this we need a bound on the second fundamental form and a bound on the diameter of the spheres. This diameter estimate is a consequence of a theorem of Rosenberg [START_REF] Rosenberg | Constant mean curvature surfaces in homogeneously regular 3manifolds[END_REF] and relies on a stability argument; however, this estimate only holds for H > 1/ √ 3. This will complete the proof.

We conjecture that Theorem 1.1 should hold for every H > 0 (see Section 6). Also, in this last section we will explain how our results give information on the symmetries of solutions to the isoperimetric problem in Sol 3 .

A remarkable novelty of our approach to this problem is that we obtain a Hopf-type theorem for a class of surfaces without knowing explicitly beforehand the spheres for which uniqueness is aimed, or at least some key property of them (e.g. that they are rotational). This suggests that the ideas of our approach may be suitable for proving Hopf-type theorems in many other theories (see Remark 4.8).

In this sense, let us mention that Sol 3 belongs to a 2-parameter family of homogeneous 3-manifolds, which also includes R 3 , H 3 and H 2 × R. The manifolds in this family generically possess, as Sol 3 , an isometry group of dimension 3. However, they are "less symmetric" than Sol 3 , in the sense that their isometry group only has 4 connected components, whereas the isometry group of Sol 3 has 8 connected components. Also, contrarily to Sol 3 , these manifolds do not have compact quotients (this is the reason why they are not Thurston geometries, see for instance [START_REF] Bonahon | Geometric structures on 3-manifolds[END_REF]). We believe that it is very possible that the techniques developed in this paper also work in these manifolds, since we do not use these additional properties of Sol 3 .
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2 The Lie group Sol 3

We will study surfaces immersed in the homogeneous Riemannian 3-manifold Sol 3 , i.e., the least symmetric of the eight canonical Thurston 3-geometries. This preliminary section is intended to explain the basic geometric elements of this ambient space, and the consequences for CMC spheres of some known results.

Isometries, connection and foliations

The space Sol 3 can be viewed as R 3 endowed with the Riemannian metric , = e 2x 3 dx 2 1 + e -2x 3 dx 2 2 + dx 2 3 , where (x 1 , x 2 , x 3 ) are canonical coordinates of R 3 . It is important to observe that Sol 3 has a Lie group structure with respect to which the above metric is left-invariant. The group structure is given by the multiplication

(x 1 , x 2 , x 3 ) • (y 1 , y 2 , y 3 ) = (x 1 + e -x 3 y 1 , x 2 + e x 3 y 2 , x 3 + y 3 ).
The isometry group of Sol 3 is easy to understand; it has dimension 3 and the connected component of the identity is generated by the following three families of isometries:

(x 1 , x 2 , x 3 ) → (x 1 + c, x 2 , x 3 ), (x 1 , x 2 , x 3 ) → (x 1 , x 2 + c, x 3 ), (x 1 , x 2 , x 3 ) → (e -c x 1 , e c x 2 , x 3 + c).
Obviously, these isometries are just left translations in Sol 3 with respect to the Lie group structure above, i.e., left multiplications by elements in Sol 3 . On the contrary, right translations are not isometries.

The corresponding Killing fields associated to these families of isometries are

F 1 = ∂ ∂x 1 , F 2 = ∂ ∂x 2 , F 3 = -x 1 ∂ ∂x 1 + x 2 ∂ ∂x 2 + ∂ ∂x 3 .
They are right-invariant.

Another key property of Sol 3 is that it admits reflections. Indeed, Euclidean reflections in the (x 1 , x 2 , x 3 ) coordinates with respect to the planes x 1 = const. and x 2 = const. are orientation-reversing isometries of Sol 3 . A very important consequence of this is that we can use the Alexandrov reflection technique in the x 1 and x 2 directions, as we will explain in Section 2.2.

More specifically, the isotropy group of the origin (0, 0, 0) is isomorphic to the dihedral group D 4 and is generated by the following two isometries:

σ : (x 1 , x 2 , x 3 ) → (x 2 , -x 1 , -x 3 ), τ : (x 1 , x 2 , x 3 ) → (-x 1 , x 2 , x 3 ).
(2.1)

These two isometries are orientation-reversing; σ has order 4 and τ order 2. Observe that the reflection with respect to the plane x 2 = 0 is given by σ 2 τ . An important role in Sol 3 is played by the left-invariant orthonormal frame (E 1 , E 2 , E 3 ) defined by

E 1 = e -x 3 ∂ ∂x 1 , E 2 = e x 3 ∂ ∂x 2 , E 3 = ∂ ∂x 3 .
We call it the canonical frame. The coordinates with respect to the frame (E 1 , E 2 , E 3 ) of a vector at a point x = (x 1 , x 2 , x 3 ) ∈ Sol 3 will be denoted into brackets; then we have

a 1 ∂ ∂x 1 + a 2 ∂ ∂x 2 + a 3 ∂ ∂x 3 =   e x 3 a 1 e -x 3 a 2 a 3   . (2.
2)

The expression of the Riemannian connection ∇ of Sol 3 with respect to the canonical frame is the following:

∇ E 1 E 1 = -E 3 , ∇ E 2 E 1 = 0, ∇ E 3 E 1 = 0, ∇ E 1 E 2 = 0, ∇ E 2 E 2 = E 3 , ∇ E 3 E 2 = 0, ∇ E 1 E 3 = E 1 , ∇ E 2 E 3 = -E 2 , ∇ E 3 E 3 = 0. (2.3)
From there, we see that the sectional curvatures of the planes (E 2 , E 3 ), (E 1 , E 3 ) and (E 1 , E 2 ) are -1, -1 and 1 respectively, and that the Ricci curvature of Sol 3 is given, with respect to the canonical frame (E 1 , E 2 , E 3 ), by

Ric =   0 0 0 0 0 0 0 0 -2   .
In particular, Sol 3 has constant scalar curvature -2.

One of the nicest features of Sol 3 is the existence of three canonical foliations with good geometric properties. First, we have the foliations

F 1 ≡ {x 1 = constant}, F 2 ≡ {x 2 = constant},
which are orthogonal to the Killing fields F 1 , F 2 , respectively. It is immediate from the expression of the metric in Sol 3 that the leaves of this foliation are isometric to the hyperbolic plane H 2 . For instance, for a leaf S of F 1 , the coordinates (x 2 , x 3 ) ∈ R 2 are horospherical coordinates of H 2 , i.e.

, | S = e -2x 3 dx 2 2 + dx 2 3 , (x 2 , x 3 ) ∈ R 2 .
For us, the main property of these foliations is that Euclidean reflections across a leaf of F 1 , F 2 are orientation-reversing isometries of Sol 3 . Also, these leaves are the only totally geodesic surfaces in Sol 3 [START_REF] Souam | Totally umbilic surfaces in homogeneous 3-manifolds[END_REF].

The third canonical foliation of Sol 3 is G ≡ {x 3 = constant}. Its leaves are isometric to R 2 and are minimal. This foliation G is less important than F 1 , F 2 , since Euclidean reflections with respect to the planes x 3 = constant do not describe isometries in Sol 3 anymore. In addition, G is no longer orthogonal to a Killing field of Sol 3 .

The existence of these foliations by minimal surfaces also implies (by the maximum principle) that there is no compact minimal surface in Sol 3 .

Let us also observe that the map Sol 3 → R, (x 1 , x 2 , x 3 ) → x 3 is a Riemannian fibration. This means that the coordinate x 3 has a geometric meaning (whereas x 1 and x 2 do not have it).

For more details we refer to [START_REF] Troyanov | L'horizon de SOL[END_REF]. Some papers, such as [START_REF] Troyanov | L'horizon de SOL[END_REF] and [START_REF] Inoguchi | A Weierstrass type representation for minimal surfaces in Sol[END_REF], have a different convention for the metric of Sol 3 .

Alexandrov reflection and the isoperimetric problem

Let us now focus on the Alexandrov reflection technique. Let S be an embedded compact CMC surface in Sol 3 . Then, applying the Alexandrov technique in the x 1 direction, we obtain that S is, up to a left translation, a symmetric bigraph in the x 1 direction over some domain U in the plane x 1 = 0. But then we can apply the Alexandrov reflection technique in the x 2 direction. This implies that, up to a left translation, U can be written as

U = {(x 2 , x 3 ) ∈ R 2 ; x 3 ∈ I, x 2 ∈ [-f (x 3 ), f (x 3 )]}
for some continuous function f and some set I, which is necessarily an interval (otherwise S would not be connected). Then U is topologically a disk, and S is topologically a sphere. Hence we have the following fundamental result (see the concluding remarks in [START_REF] Espinar | Complete surfaces with positive extrinsic curvature in product spaces[END_REF]). Fact 2.1 A compact embedded CMC surface in Sol 3 is a sphere.

In particular, all solutions of the isoperimetric problem in Sol 3 are spheres. Some important information about the mean curvatures of the solutions of the isoperimetric problem in Sol 3 can be deduced from results of Pittet [START_REF] Pittet | The isoperimetric profile of homogeneous Riemannian manifolds[END_REF].

The identity component of the isometry group of Sol 3 is Sol 3 itself, acting by left multiplication. It is a solvable Lie group, hence amenable (an amenable Lie group is a compact extension of a solvable Lie group). It is unimodular: its Haar measure dx 1 dx 2 dx 3 is biinvariant. It has exponential growth, i.e., the volume of a geodesic ball of radius r increases exponentially with r (see for example [START_REF] Coulhon | A geometric approach to on-diagonal heat kernel lower bounds on groups[END_REF]). Consequently, by Theorem 2.1 in [START_REF] Pittet | The isoperimetric profile of homogeneous Riemannian manifolds[END_REF], there exist positive constants c 1 and c 2 such that the isoperimetric profile

I(v) of Sol 3 satisfies c 1 v ln v I(v) c 2 v ln v (2.4)
for all v large enough (let us recall that the isoperimetric profile I(v) is defined as the infimum of the areas of compact surfaces enclosing a volume v).

It is well-known that I admits left and right derivatives I ′ -(v) and I ′ + (v) at every v ∈ (0, +∞), and there exist isoperimetric surfaces of mean curvatures I ′ -(v)/2 and I ′ + (v)/2 respectively (see for instance [START_REF] Ros | The isoperimetric problem[END_REF]; here the mean curvature is computed for the unit normal pointing into the compact domain bounded by the surface, i.e., the mean curvature is positive because of the maximum principle used with respect to a minimal surface x 3 = constant). Also by (2.4) the numbers I ′ -(v) and I ′ + (v) cannot be bounded from below by a positive constant. From this and the fact that isoperimetric surfaces are spheres (since they are embedded), we get the following result. Fact 2.2 Let J be the set of real numbers H > 0 such that there exists an isoperimetric sphere of mean curvature H. Then inf J = 0.

Even though we will not use it, it is worth pointing out the following consequence about entire graphs (a surface is said to be an entire graph with respect to a non-zero Killing field F of Sol 3 if it is transverse to F and intersects every orbit of F at exactly one point).

Corollary 2.3 Any entire CMC graph with respect to a non-zero Killing field of Sol 3 must be minimal (H = 0).

Proof: Let G be an entire CMC H graph with respect to a non-zero Killing field F with H = 0. By Fact 2.2, there exists an isoperimetric sphere S whose mean curvature H 0 satisfies H 0 |H|.

Let (ϕ c ) c∈R be the one-parameter group of isometries generated by

F . Then (ϕ c (G)) c∈R is a foliation of Sol 3 . Let c 0 = max{c ∈ R; ϕ c (G) ∩ S = ∅} and c 1 = min{c ∈ R; ϕ c (G) ∩ S = ∅}. Then at c = c 0 or at c = c 1 the sphere S is tangent to ϕ c (G)
and is situated in the mean convex side of ϕ c (G); this contradicts the maximum principle since H 0 |H|. ✷

The same proof also shows that no entire graph can have a mean curvature function bounded from below by a positive constant. In contrast, there exists various entire minimal graphs in Sol 3 . Indeed, for instance one can easily check that a graph

x 1 = f (x 2 , x 3 ) is minimal if and only if (e 2x 3 f 2 x 3 + 1)f x 2 x 2 -2e 2x 3 f x 2 f x 3 f x 2 x 3 + (e -2x 3 + e 2x 3 f 2 x 2 )f x 3 x 3 -(e 2x 3 f 2 x 2 -e -2x 3 )f x 3 = 0,
and so the following equations define entire F 1 -graphs:

x 1 = ax 2 + b, x 1 = ae -x 3 , x 1 = ax 2 e -x 3 , x 1 = x 2 e -2x 3 .

The Gauss map

In this section we will expose the basic equations for immersed surfaces in Sol 3 , putting special emphasis on the geometry of the Gauss map associated to the surface in terms of the Lie group structure of Sol 3 .

So, let us consider an immersed oriented surface in Sol 3 , that will be seen as a conformal immersion X : Σ → Sol 3 of a Riemann surface Σ. We shall denote by N : Σ → TSol 3 its unit normal.

If we fix a conformal coordinate z = u + iv in Σ, then we have

X z , X z = λ 2 > 0, X z , X z = 0,
where λ is the conformal factor of the metric with respecto to z. Moreover, we will denote the coordinates of X z and N with respect to the canonical frame (E 1 , E 2 , E 3 ) by

X z =   A 1 A 2 A 3   , N =   N 1 N 2 N 3   .
The usual Hopf differential of X, i.e., the (2, 0) part of its complexified second fundamental form, is defined as

P dz 2 = N, ∇ Xz X z dz 2 .
From the definitions, we have the basic algebraic relations

               |A 1 | 2 + |A 2 | 2 + |A 3 | 2 = λ 2 , A 2 1 + A 2 2 + A 2 3 = 0, N 2 1 + N 2 2 + N 2 3 = 1, A 1 N 1 + A 2 N 2 + A 3 N 3 = 0. (3.1)
A classical computation proves that the Gauss-Weingarten equations of the immersion read as

             ∇ Xz X z = λ z λ X z + P N, ∇ Xz X z = λH 2 N, ∇ Xz X z = λ z λ X z + P N,      ∇ Xz N = -HX z - 2P λ X z , ∇ Xz N = - 2 P λ X z -HX z. (3.2) 
Using (2.3) in these equations we get

             A 1z = λ z λ A 1 + P N 1 -A 1 A 3 , A 2z = λ z λ A 2 + P N 2 + A 2 A 3 , A 3z = λ z λ A 3 + P N 3 + A 2 1 -A 2 2 ,              A 1z = λH 2 N 1 -Ā1 A 3 , A 2z = λH 2 N 2 + Ā2 A 3 , A 3z = λH 2 N 3 + |A 1 | 2 -|A 2 | 2 , (3.3)              N 1z = -HA 1 - 2P λ Ā1 -A 1 N 3 , N 2z = -HA 2 - 2P λ Ā2 + A 2 N 3 , N 3z = -HA 3 - 2P λ Ā3 + A 1 N 1 -A 2 N 2 . (3.4) Moreover, the fact that X z × X z = i λ 2 N implies that N 1 = - 2i λ (A 2 Ā3 -A 3 Ā2 ), N 2 = - 2i λ (A 3 Ā1 -A 1 Ā3 ), N 3 = - 2i λ (A 1 Ā2 -A 2 Ā1 ). (3.5)
Once here, let us define the Gauss map associated to the surface. We first set

N = (N 1 , N 2 , N 3 ) : Σ → S 2 ⊂ R 3 .
In other words, for each z ∈ Σ, N(z) is just the vector in the Lie algebra of Sol 3 (identified with R 3 by means of the canonical frame) that corresponds to N(z) when we apply a left translation in Sol 3 taking X(z) to the origin.

Definition 3.1 Given an immersed oriented surface X : Σ → Sol 3 , the Gauss map of X is the map

g := ϕ • N : Σ → C := C ∪ {∞},
where ϕ is the stereographic projection with respect to the southern pole, i.e.

g = N 1 + iN 2 1 + N 3 .
Here, N 1 , N 2 , N 3 are the coordinates of the unit normal of X with respect to the canonical frame (E 1 , E 2 , E 3 ).

Equivalently, we have

N = 1 1 + |g| 2   2 Re g 2 Im g 1 -|g| 2   . (3.6) Remark 3.2
The Gauss map obviously remains invariant when we apply a left translation to the surface. On the other hand, if we apply the orientation-preserving isometry of Sol

3 στ : (x 1 , x 2 , x 3 ) → (x 2 , x 1 , -x 3 )
then the Gauss map g of the surface changes to g * := i/g. Definition 3.3 Given an immersed oriented surface X : Σ → Sol 3 , let us denote

η := 2 E 3 , X z = 2A 3 .
A straightforward computation from (3.1) proves that

A 1 = - 1 -ḡ2 4ḡ η, A 2 = i 1 + ḡ2 4ḡ η, A 3 = η 2 (3.7)
and thereby

λ = (1 + |g| 2 ) 2 |η| 2 4|g| 2 . (3.8)
Then the right system in (3.3) becomes

(ḡ 2 + 1) ηḡ z 4ḡ 2 + 1 4 ḡ - 1 ḡ η z = (1 + |g| 2 ) |η| 2 4|g| 2 H Re(g) + |η| 2 1 -g 2 8g , (3.9) 
i(ḡ 2 -1)

ηḡ z 4ḡ 2 + i 4 ḡ + 1 ḡ η z = (1 + |g| 2 ) |η| 2 4|g| 2 H Im(g) -i|η| 2 1 + g 2 8g , (3.10) 
1 2 η z = |η| 2 8|g| 2 ((1 -|g| 4 )H -g 2 -ḡ2 ). (3.11)
Reporting (3.11) into (3.9) + i (3.10) gives

gḡ z 2η = H 8 (1 + |g| 2 ) 2 + 1 8 (ḡ 2 -g 2 ), i.e. η = 4ḡg z R(g) where R(q) = H(1 + |q| 2 ) 2 + q 2 -q2 . (3.12) 
Once here, we are ready to state the main result of this section.

Theorem 3.4 Let X : Σ → Sol 3 be a CMC H surface with Gauss map g : Σ → C. Then, g is nowhere antiholomorphic, i.e., g z = 0 at every point for any local conformal parameter z on Σ, and g verifies the second order elliptic equation

g z z = A(g)g z g z + B(g)g z ḡz , (3.13) 
where, by definition,

A(q) = R q R = 2H(1 + |q| 2 )q + 2q R(q) , B(q) = R q R - Rq R = - 4H(1 + |q| 2 )(q + q 3 ) |R(q)| 2 , (3.14) R(q) = H(1 + |q| 2 ) 2 + q 2 -q2 .
Moreover, the immersion X = (x 1 , x 2 , x 3 ) : Σ → Sol 3 can be recovered in terms of the Gauss map g by means of the representation formula

(x 1 ) z = e -x 3 (ḡ 2 -1)g z R(g) , (x 2 ) z = ie x 3 (ḡ 2 + 1)g z R(g) , (x 3 ) z = 2ḡg z R(g) . (3.15)
Conversely, if a map g : Σ → C from a simply connected Riemann surface Σ verifies (3.13) for H = 0 and the coefficients A, B given in (3.14), and if g is nowhere antiholomorphic, then the map X : Σ → Sol 3 given by the representation formula (3.15) defines a CMC H surface in Sol 3 whose Gauss map is g. Remark 3.5 It is immediate that (3.13) is invariant by changes of conformal parameter, i.e., g is a solution to (3.13) if and only if g • ψ is a solution to (3.13), where ψ is a locally injective meromorphic function. This shows that we can work with (3.13) at z = ∞, just by making the change z → 1/z.

In addition, a direct computation shows that if g is a solution to (3.13), then

g * := i g
is also a solution to (3.13) (see Remark 3.2 for the geometric meaning of this duality).

Again, this gives a way to work with (3.13) at points where g = ∞.

Remark 3.6 If g is a nowhere antiholomorphic solution to (3.13), inducing a CMC H immersion X, then a direct computation shows that ig and 1/g are also solutions to (3.13) with H replaced by -H, and they induce the CMC -H immersion σ • X and τ • X. Also, the map z → 1/ḡ(z) is also solution to (3.13) with H replaced by -H, and induces the same surface as g but with the opposite orientation.

Proof: The fact that g is nowhere antiholomorphic follows from (3.8) and (3.12). Formula (3.13) follows from the constancy of H, just by computing the expression η z/η from (3.12) and reporting it then in (3.11). Besides, the representation formula (3.15) follows directly from (3.7) and (3.12), taking into account the relation (2.2).

To prove the converse, we start with a simply connected domain U ⊂ Σ on which g = ∞ at every point. Then, using (3.13), we have

∂ ∂ z 2ḡg z R(g) = 2|g z | 2 |R(g)| 2 H(1 -|g| 4 ) -(g 2 + ḡ2 ) ∈ R.
Hence, there exists

x 3 : U ⊂ Σ → R with (x 3 ) z = 2ḡg z R(g) . (3.16) 
We define now in terms of x 3 the map F : U → C 3 given by

F = e -x 3 (ḡ 2 -1)g z R(g) , i e x 3 (ḡ 2 + 1)g z R(g) , 2ḡg z R(g) . (3.17) 
Again using (3.13) it can be checked that F z ∈ R at every point. So, there exists

X = (x 1 , x 2 , x 3 ) : U → R 3 ≡ Sol 3 with X z = F .
This indicates that the representation formula (3.15) gives, indeed, a well defined map X : U ⊂ Σ → Sol 3 . Clearly, X is defined up to left translation in Sol 3 , due to the integration constants involved in (3.15). Now, let us assume that U ⊂ Σ is a simply connected domain on which g may take the value ∞ at some points, but not the value 0. Let us define g * = i/g. By Remark 3.5, g * is a solution to (3.13) not taking the value ∞ on U, and so we already have proved the existence of a map

X * = (x * 1 , x * 2 , x * 3 ) : U → Sol 3 with X * z = F * = e -x 3 ( ḡ * 2 -1)g * z R(g * ) , i e x 3 ( ḡ * 2 + 1)g * z R(g * ) , 2 ḡ * g * z R(g * ) .
Hence, since g * = i/g, a direct computation shows that X := (x * 2 , x * 1 , -x * 3 ) satisfies X z = F for F as in (3.17). Integrating F again shows that the representation formula (3.15) is well defined also when g = ∞ at some points. Finally, as Σ is simply connected, (3.15) can be defined globally on Σ, thus giving rise to a map X : Σ → Sol 3 which is unique up to left translations.

Once here, we need to check that X is a conformal CMC H immersion with Gauss map g. In this sense, it is clear from (3.17) and (2.2) that

X z = [A 1 , A 2 , A 3 ],
where the A k 's are given by (3.7) and (3.12). Consequently, X z , X z = 0 and

X z , X z = λ 2 = 2(1 + |g| 2 ) 2 |R(g)| 2 |g z | 2 , (3.18) 
which is non-zero since g is nowhere antiholomorphic. Thus, X is a conformal immersion. Besides, denoting by N = (-2i/λ)X z × X z the unit normal of X, we easily see from (3.5) that (3.6) holds. So, g is indeed the Gauss map of the surface X.

At last, let H X denote the mean curvature function of X. Putting together (3.7) and (3.12) we see that H X is given (for any immersed surface in Sol 3 ) by

H X = 2ḡg z (1 + |g| 2 ) 2 A 3 - g 2 -ḡ2 (1 + |g| 2 ) 2 .
In our case, as (3.7) and (3.12) hold for H, this tells directly that H = H X , as wished. This completes the proof. ✷ Remark 3.7 Using (3.4), (3.3), (3.5), (3.7) and (3.12), we obtain after a computation that the Hopf differential P dz 2 of the surface is given by

P = -A 1 N 1z -A 2 N 2z -A 3 N 3z + N 3 (A 2 2 -A 2 1 ) + A 3 (A 1 N 1 -A 2 N 2 ) = 2g z ḡz R(g) - 2(1 -ḡ4 )g 2 z R(g) 2 .
Let us now make some brief comments regarding the special case of minimal surfaces in Sol 3 , i.e. the case H = 0. In that situation it is immediate from (3.14) that B(g) = 0, and thus the Gauss map equation (3.13) simplifies to

g z z = R * g R * g z g z , R * (q) := q 2 -q2 . (3.19)
Now, it is immediate that this is the harmonic map equation for maps g : Σ → ( C, dσ 2 ), where dσ 2 is the singular metric on C given by

dσ 2 = |dw| 2 |w 2 -w2 | .
This result was first obtained in [START_REF] Inoguchi | A Weierstrass type representation for minimal surfaces in Sol[END_REF]. It is somehow parallel to the case of minimal surfaces in the Heisenberg space Nil 3 . Indeed, it is a result of the first author [START_REF] Daniel | The Gauss map of minimal surfaces in the Heisenberg group[END_REF] that the Gauss map of a minimal local graph in Nil 3 (with respect to the canonical Riemannian fibration Nil 3 → R 2 ) is a harmonic map into the unit disk D endowed with the Poincaré metric.

In addition, it is remarkable that every minimal surface in Sol 3 has an associated holomorphic quadratic differential. Indeed, it follows from (3.19) that the quadratic differential

Q * dz 2 := 1 R * (g) g z ḡz dz 2
is holomorphic (whenever it is well defined) on any minimal surface in Sol 3 .

Remark 3.8 Theorem 3.4 has been obtained by analyzing the structure equations of immersed CMC surfaces in Sol 3 . Alternatively, it could also have been obtained by working with the Dirac equations obtained by Berdinsky and Taimanov in [START_REF] Berdinskiȋ | Surfaces in three-dimensional Lie groups[END_REF].

Example 3.9 Let us compute the CMC surfaces in Sol 3 that are invariant by translations in the x 2 direction. Then we have to look for a real-valued Gauss map g, and we may choose without loss of generality a conformal parameter z = u + iv such that g only depends on u. Then (3.13) becomes

g uu = (A(g) + B(g))g 2 u = 2Hg(1 + g 2 ) -2g H(1 + g 2 ) 2 g 2 u .
From this we get

g u = β(1 + g 2 ) exp 1 H(1 + g 2 ) (3.20)
for some constant β ∈ R \ {0}. Up to a multiplication of the conformal parameter by a constant, we may assume that β = 1.

Conversely, assume that g satisfies g v = 0 and (3.20) with β = 1. Let us first notice that such a real-valued function is defined on a domain (u 0 , u 1 ) × R where u 0 and u 1 are finite, since

1 1 + x 2 exp - 1 H(1 + x 2 )
dx is bounded. On the other hand, the function g := 1/g satisfies

g u = -(1 + g 2 ) exp g 2 H(1 + g 2 )
.

Hence by allowing the value ∞ we can define a function g : C → R ∪ {∞}, which will be periodic in u. Then, (3.12) gives

A 3 = gg u H(1 + g 2 ) 2 ,
and so, up to a translation,

x 3 = - 1 H(1 + g 2 ) + 1 2H .
Then we see from (3.7) and (3.20) that

A 1 = (g 2 -1)g u 2H(1 + g 2 ) 2 = g 2 -1 2H(1 + g 2 ) e -x 3 +1/(2H) , A 2 = ig u 2H(1 + g 2 ) = i 2H e -x 3 +1/(2H) ,
so, up to a translation in the x 2 direction, we get from (2.2)

x 1 = e -2x 3 +1/(2H) g 2 -1 H(1 + g 2 ) du, x 2 = - e 1/(2H) H v.
We now define a new variable t by

cos t = g 2 -1 1 + g 2 , sin t = 2g 1 + g 2 .
Then from (3.20) we have

t u = -2 exp 1 H(1 + g 2 )
,

and hence we get that the immersion X = (x 1 , x 2 , x 3 ) is given with respect to these (t, v) coordinates by

x 1 (t, v) = - 1 2H e -(cos t)/(2H) cos t dt, x 2 (t, v) = - e 1/(2H) H v, x 3 (t, v) = cos t 2H .
This surface is complete, simply connected and not embedded since

3π/2 -π/2 e -(cos t)/(2H) cos t dt = π/2 -π/2 -2 sinh cos t 2H cos t dt < 0.
Also, it is conformally equivalent to the complex plane C. The profile curve is drawn in Figure 1.

Uniqueness of immersed CMC spheres

The uniqueness problem for a class of immersed spheres is usually approached by seeking a holomorphic quadratic differential Q dz 2 for the class of surfaces under study. Once this is done, this holomorphic differential will vanish on spheres, what provides the key step for proving uniqueness.

As a matter of fact, and as already pointed out by Hopf, is not necessary that Q dz 2 be holomorphic. Indeed, it suffices to find a complex quadratic differential Q dz 2 whose zeros (when not identically zero) are isolated and of negative index. This condition implies again, by the Poincaré-Hopf theorem, that Q dz 2 will vanish on topological spheres. By means of this idea and a careful local analysis, Alencar, do Carmo and Tribuzy recently obtained in [START_REF] Alencar | A theorem of Hopf and the Cauchy-Riemann inequality[END_REF] the following result: Theorem 4.1 Let Q dz 2 denote a complex quadratic differential on C. Assume that around every point z 0 of C we have

|Q z | 2 f |Q| 2 , (4.1) 
where f is a continuous non-negative real function around z 0 , and z is a local conformal parameter. Then Q ≡ 0 on C.

Our next objective is to seek a quadratic differential Q dz 2 satisfying the so-called Cauchy-Riemann inequality (4.1) for every CMC H surface in Sol 3 . Our main result in this section will be that such a quadratic differential exists, provided there also exists an immersed CMC H sphere in Sol 3 whose Gauss map is a global diffeomorphism of C ≡ S 2 . The existence of such a sphere will be discussed in Section 5.

We will make a constructive approach to this result, in order to clarify its nature. To start, we consider a very general quadratic differential Q dz 2 on a CMC H surface X : Σ → Sol 3 , defined in terms of its Gauss map g : Σ → C as

Q = L(g)g 2 z + M(g)g z ḡz , (4.2) 
where

L : C → C q → L(q), M : C → C q → M(q)
are to be determined. It is immediate that Q dz 2 is invariant by conformal changes of coordinates in Σ, so it gives a well defined quadratic differential, at least at points where g = ∞. In order to ensure that Q is well defined at points where g = ∞, we use the conformal chart w = i/q on C, the Riemann sphere on which g takes its values. From there, we get the following restrictions, which imply that Q is well defined at every point: q 4 L(q) is smooth and bounded around q = ∞, (

and |q| 4 M(q) is smooth and bounded around q = ∞. (4.4)

Then, using (3.13) we get from (4.2)

Q z = g z g 2 z (L q + 2LA) + g z |g z | 2 (L q + 2LB + M B) +g z |g z| 2 (M q + MA) + ḡz |g z | 2 (M q + MB + M Ā). (4.5)
We first notice that this expression simplifies for some specific choice for M. Indeed, let us define M : C → C by

M(q) = 1 R(q) = 1 H(1 + |q| 2 ) 2 + q 2 -q2 . (4.6) 
A computation shows that

M i q = |q| 4 M(q), (4.7) 
what implies that M can be extended to a map M : C → C satisfying (4.4) by setting

M(∞) = 0.
Moreover, the following formulas are a direct consequence of the definition of the coefficients A, B:

M q = -MA, M q = -M( Ā + B). (4.8) 
Thereby, if in the expression (4.2) we choose M as in (4.6), then (4.5) simplifies to

Q z = g 2 z (L q + 2LA)g z + (L q + 2LB + M B)ḡ z . (4.9) 
From here, we have the following result. 

(L q + 2LA) L = (L q + 2LB + M B) M , (4.10) 
where A, B, M are given by (3.14) and (4.6), and which satisfies the condition (4.3).

Then, for any immersed CMC H surface X : Σ → Sol 3 with Gauss map g : Σ → C, the quadratic differential Q(g)dz 2 on Σ given by

Q(g) = L(g)g 2 z + M(g)g z ḡz
satisfies the Cauchy-Riemann inequality (4.1) at every point of Σ.

Proof: Let g : Σ → C denote the Gauss map of a CMC H surface in Sol 3 , and define

α = L q + 2LA M . (4.11)
This function is well defined on C, since M does not vanish on C. We need to study α(q) in a neighbourhood of q = ∞. For this we shall use that, since L verifies the growth condition (4.3), we have

L(q) = 1 q 4 ϕ i q (4.12)
where ϕ is a smooth bounded function in a neighbourhood of 0. Using (4.12) together with (4.7) and the easily verified relation

A i q = iq 2 A(q) -2iq,
we get from (4.11) that

α(q) = - iq 2 q 4 R i q ϕ q i q + 2ϕ i q A i q = q2 q 4 ψ i q (4.13)
where ψ is bounded and continuous in a neighbourhood of 0.

Once here, observe that by (4.9) and (4.10) we have

Q z = α(g)(L(g)g z + M(g)ḡ z ) g 2 z ,
and so

|Q z | = β |Q|, with β(z) = |α(g(z))g z (z)|.
This function β is continuous except, possibly, at points z ∈ Σ where g(z) = ∞. But in the neighbourhood of such a point, by (4.13) we have

β = ψ i g ∂ ∂z i g .
Consequently β is continuous at every z ∈ Σ. Thus, Q verifies the Cauchy-Riemann inequality (4.1), as claimed. ✷

Once here, it comes clear from Theorem 4.1 and Lemma 4.2 that, in order to have a quadratic differential that vanishes on CMC H spheres in Sol 3 , we just need a global solution L to (4.10) that satisfies the growth condition (4.3). Next, we prove that such a solution exists provided we know beforehand the existence of a CMC H sphere whose Gauss map is a global diffeomorphism of C. Proposition 4.3 Let H = 0. Assume that there exists a CMC H sphere S H ≡ C whose Gauss map G : C → C is a diffeomorphism. Then there exists a solution L : C → C to (4.10) that satisfies the condition at infinity (4.3).

Consequently, we can define, associated to every smooth map g : Σ → C from a Riemann surface Σ, the quadratic differential Q(g)dz 2 where

Q(g) = L(g)g 2
z + M(g)g z ḡz , and then Q(g)dz 2 satisfies the Cauchy-Riemann inequality (4.1) if g : Σ → C is the Gauss map of any CMC H immersion X : Σ → Sol 3 from a Riemann surface Σ.

Proof: We view S H as a conformal immersion from C into Sol 3 , whose Gauss map G : C → C is a global diffeomorphism, and G z = 0 at every point. Then, we can define a function

L : C → C by L(G(z)) = - M(G(z)) Ḡz (z) G z (z) . (4.14)
It is important to remark that this function L has been chosen so that

L(G)G 2 z + M(G)G z Ḡz = 0 (4.15)
identically on C (we prove next that L is well defined at ∞).

Let us analyze the behaviour of L(q) at q = ∞. We set G = i/Γ in the neighbourhood of the point z 0 ∈ C where G(z 0 ) = ∞. Then by (4.7) we can write

L(G(z)) = Γ(z) 4 M(Γ(z)) Γz (z) Γ z (z) .
We know that Γ z does not vanish (indeed, Γ is the Gauss map of the image of S by the isometry στ , see Remark 3.5), M(0) = 1/H and Γz has a finite limit when z → z 0 , so we can write L(q) = 1 q 4 ϕ i q where ϕ is bounded in a neighbourhood of 0. Hence we can define L(q) on the whole Riemann sphere C, and moreover the condition (4.3) is satisfied.

We want to prove next that L(q) verifies (4.10). For that, we divide (4.15) by G z and then differentiate with respect to z. As G verifies the Gauss map equation (3.13), G z = 0 and M satisfies (4.8), we obtain the relation

(L q + 2LA)G z + (L q + 2LB + M B) Ḡz = 0
(where L q + 2LA and L q + 2LB + M B are evaluated at the point G(z)). So, using again (4.15) we have (L q + 2LA) L = (L q + 2LB + M B) M at every point q = G(z). Since G is a global diffeomorphism, this equation holds at every q ∈ C. Thus, we have proved the existence of a solution L : C → C to (4.10) that satisfies the condition at infinity (4.3), so by Lemma 4.2 This idea is very general, it does not use any differential equation, and could also work in many other contexts. As a matter of fact, in this general strategy the role of the Gauss map g could be played by some other geometric mapping into C that determines the surface uniquely.

The second key idea is to prove, using the Gauss map equation, that this quadratic differential Q dz 2 must actually vanish identically on any sphere, as otherwise it would only have isolated zeros of negative index, thus contradicting the Poincaré-Hopf theorem. This is also a rather general strategy, that actually goes back to Hopf.

It is hence our impression that the underlying ideas in the proof of Theorem 4.7 actually provide a new and flexible way of proving Hopf-type theorems. Corollary 4.9 Let S be a CMC sphere whose Gauss map is a diffeomorphism. Then there exists a point p ∈ Sol 3 , which we will call the center of S, such that S is globally invariant by all isometries of Sol 3 fixing p.

In particular, there exists two constants d 1 and d 2 such that S is invariant by reflections with respect to the planes x 1 = d 1 and x 2 = d 2 .

Proof: Let H be the mean curvature of S. By Theorem 4.7, S is the unique CMC H sphere up to left translations. In particular, there exists a left translation

T : (x 1 , x 2 , x 3 ) → (e -c 3 (x 1 + c 1 ), e c 3 (x 2 + c 2 ), x 3 + c 3 )
such that T σ(S) = S, where σ : (x 1 , x 2 , x 3 ) → (x 2 , -x 1 , -x 3 ). The isometry T σ fixes the point

p = e -c 3 c 1 + c 2 2 , e c 3 c 2 -c 1 2 , c 3 2 . 
In the same way, there exists a left translation

T ′ : (x 1 , x 2 , x 3 ) → (e -c ′ 3 (x 1 + c ′ 1 ), e c ′ 3 (x 2 + c ′ 2 ), x 3 + c ′ 3 )
such that T ′ τ (S) = S, where τ : (x 1 , x 2 , x 3 ) → (-x 1 , x 2 , x 3 ). We have

T ′ τ (x 1 , x 2 , x 3 ) = (e -c ′ 3 (-x 1 + c ′ 1 ), e c ′ 3 (x 2 + c ′ 2 ), x 3 + c ′ 3 )
, so since S is compact we have c ′ 3 = 0 and c ′ 2 = 0. Now we have (T σT ′ τ ) 2 (S) = S, and

(T σT ′ τ ) 2 (x 1 , x 2 , x 3 ) = (x 1 -c ′ 1 + c 2 + e -c 3 c 1 , x 2 + c 1 + e c 3 (c 2 -c ′ 1 ), x 3 ),
so again since S is compact we get c ′ 1 = c 2 + e -c 3 c 1 . Consequently, T ′ τ fixes p. So T σ and T ′ τ generate the isotropy group of p, which finishes the proof. ✷ Remark 4.10 Consider an equation of the form 

g z z = A(g)g z g z + B(g)g z ḡz ,

Existence and properties of CMC spheres

The object of this section is to prove existence of index one CMC spheres and some of their properties. For this purpose we will use stability and nodal domain arguments. We will first recall some well known results of this context, and their application to CMC surfaces in Sol 3 . A good reference is [START_REF] Cheng | Eigenfunctions and nodal sets[END_REF] (see also [START_REF] Fischer-Colbrie | On complete minimal surfaces with finite Morse index in threemanifolds[END_REF][START_REF] Souam | On stable constant mean curvature surfaces in S 2 × R and H 2 × R[END_REF][START_REF] Rossman | Lower bounds for Morse index of constant mean curvature tori[END_REF]).

Preliminaries on the stability operator

Let S be a compact CMC surface in Sol 3 . Its stability operator (or Jacobi operator ) is defined by

L = ∆ + ||B|| 2 + Ric(N)
where ∆ is the Laplacian with respect to the induced metric, B the second fundamental form of S, N its unit normal vector field and Ric the Ricci curvature of Sol 3 . The stability operator is also the linearized operator of the mean curvature functional.

The operator -L admits a sequence

λ 1 < λ 2 λ 3 • • • λ k • • •
of eigenvalues such that lim k→+∞ λ k = +∞. We will call λ k the k-th eigenvalue. Moreover the corresponding eigenspaces are orthogonal. The number of negative eigenvalues is called the index of S and will be denoted by Ind(S). To the operator -L is associated the quadratic form Q defined by

Q(f, f ) = - S f Lf = S || grad f || 2 -(||B|| 2 + Ric(N))f 2 . ( 5.1) 
The quadratic form Q acts naturally on the Sobolev space H 1 (S).

A Jacobi function is a function f on S such that Lf = 0. If F is a Killing field in Sol 3 , then N, F is a Jacobi function on S. Since S is compact, it is not invariant by a one-parameter group of isometries; consequently the Jacobi fields F 1 , F 2 and F 3 induce three linearly independent Jacobi functions. This implies that 0 is an eigenvalue of L with multiplicity at least 3. Hence it cannot be the first eigenvalue, and so λ 1 < 0. Consequently, Ind(S) 1, and Ind(S) = 1 if and only if λ 2 = 0.

We say that S is stable (or weakly stable) if

Q(f, f ) = - S f Lf 0 for any smooth function f on S satisfying S f = 0.
If S is stable, then Ind(S) = 1 (indeed, if λ 2 < 0, then there exists a linear combination f of the first two eigenfunctions such that -S f Lf < 0 and S f = 0, which contradicts stability). Another well known property in this context is that solutions to the isoperimetric problem are stable compact embedded CMC surfaces (hence stable spheres in Sol 3 ). We state the following well known theorems:

• Courant's nodal domain theorem: any eigenfunction of λ 2 has at most 2 nodal domains (Proposition 1.1 in [START_REF] Cheng | Eigenfunctions and nodal sets[END_REF]),

• if S is a sphere, then the dimension of the eigenspace of λ 2 is at most 3 (Theorem 3.4 in [START_REF] Cheng | Eigenfunctions and nodal sets[END_REF]).

The results in [START_REF] Cheng | Eigenfunctions and nodal sets[END_REF] are stated for the Laplacian but can be extended for an operator of the form ∆ + V where V is a function (see for instance [START_REF] Rossman | Lower bounds for Morse index of constant mean curvature tori[END_REF] for a proof of Courant's nodal domain theorem; then the other results are deduced using topological arguments and the local behaviour of solutions of ∆f +V f = 0). Also the convention for the numbering of the eigenfunctions in [START_REF] Cheng | Eigenfunctions and nodal sets[END_REF] differs from ours: what is called the k-th eigenvalue in [START_REF] Cheng | Eigenfunctions and nodal sets[END_REF] is what we call the (k + 1)-th eigenvalue.

In particular, if S is an index one compact CMC surface in Sol 3 , then any Jacobi function on S admits at most two nodal domains (see also Proposition 1 in [START_REF] Ros | The isoperimetric and Willmore problems[END_REF]).

The Gauss map of index one CMC spheres

Proposition 5.1 Let S be an index one CMC sphere. Then its Gauss map g : S → C is an orientation-preserving diffeomorphism.

Proof: Since g is a map from a sphere to a sphere, it suffices to prove that its Jacobian J(g) = |g z | 2 -|g z| 2 is positive everywhere.

Let F = a 1 F 1 + a 2 F 2 + a 3 F 3 be a non-zero Killing field. Then

f = F, N = (a 1 -a 3 x 1 )e x 3 N 1 + (a 2 + a 3 x 2 )e -x 3 N 2 + a 3 N 3 (5.2)
is a Jacobi function. Since Ind(S) = 1, the function f has at most two nodal domains, so since S is a sphere, f cannot have a singular point on the nodal curve (see also Theorem 3.2 in [START_REF] Cheng | Eigenfunctions and nodal sets[END_REF]). Consequently, if f (p) = 0 for some p, then f z (p) = 0. We have

f z = (a 1 -a 3 x 1 )e x 3 N 1z + (a 2 + a 3 x 2 )e -x 3 N 2z + a 3 N 3z +(a 1 -a 3 x 1 )e x 3 x 3z N 1 -a 3 e x 3 x 1z N 1 -(a 2 + a 3 x 2 )e -x 3 x 3z N 2 + a 3 e -x 3 x 2z N 2 . Setting b = (a 1 -a 3 x 1 )e x 3 + i(a 2 + a 3 x 2 )e -x 3 , (5.3) 
we get

f z = Re b ∂ ∂z g + ḡ 1 + |g| 2 + Im b ∂ ∂z i(ḡ -g) 1 + |g| 2 + a 3 ∂ ∂z 1 -|g| 2 1 + |g| 2 + bg + bḡ 1 + |g| 2 A 3 -a 3 A 1 N 1 + a 3 A 2 N 2 = bg z + bḡ z 1 + |g| 2 - bg + bḡ (1 + |g| 2 ) 2 (ḡg z + gḡ z ) - 2a 3 (1 + |g| 2 ) 2 (ḡg z + gḡ z ) + bg + bḡ 1 + |g| 2 η 2 + a 3 η 2ḡ g -ḡ3 1 + |g| 2 .
(5.4)

Let z 0 ∈ S. Assume first that |g(z 0 )| = 1. We can also assume that g(z 0 ) = ∞, since g(z 0 ) = ∞ can be dealt with in the same way using the isometry στ (see Remark 3.2). Then f (z 0 ) = 0 if and only if

a 3 = - bg + bḡ 1 -|g| 2
at z 0 . If this condition is satisfied, then, at the point z 0 , using (3.12) we get

(1 + |g| 2 ) 2 f z = (1 + |g| 2 )( bg z + bḡ z ) -( bg + bḡ)(ḡg z + gḡ z ) + 2 bg + bḡ 1 -|g| 2 (ḡg z + gḡ z ) +(1 + |g| 2 )(bg + bḡ) 2ḡg z R(g) - bg + bḡ 1 -|g| 2 (1 + |g| 2 ) 2g z R(g) (g -ḡ3 ) = (1 + |g| 2 )( bg z + bḡ z ) + 1 + |g| 2 1 -|g| 2 ( bg + bḡ)(ḡg z + gḡ z ) + 2g z R(g) 1 + |g| 2 1 -|g| 2 ( b + bḡ 2 )(ḡ 2 -g 2 ),
and so (1

-|g| 4 )f z = C 1 b + C 2 b
with

C 1 := 1 + 2(ḡ 2 -g 2 ) R(g) ḡ2 g z + ḡz = R(g) R(g) ḡ2 g z + ḡz , C 2 := 1 + 2(ḡ 2 -g 2 ) R(g) g z + g 2 ḡz = R(g) R(g) g z + g 2 ḡz .
From this we get C 1 b + C 2 b = 0. This holds for all non-zero Killing fields F such that F, N vanishes at z 0 , i.e., for all b ∈ C \ {0}. This means that the real-linear equation

C 1 b + C 2 b = 0 in (b, b) has b = 0 as unique solution, so we get |C 1 | 2 = |C 2 | 2 , which is equivalent to |g z | 2 = |ḡ z | 2 .
Assume now that |g(z 0 )| = 1 at some z 0 ∈ S where f (z 0 ) = 0. Then N 3 (z 0 ) = 0 and from (5.2), (5.3) we have (at z 0 ) Re(bḡ) = 0, that is, b = iµg for some µ ∈ R. Hence, using (3.12) and the fact that |g(z 0 )| = 1, equation (5.4) simplifies (at z 0 ) to

f z = - (a 3 + iµ)ḡ 2 g z - (a 3 -iµ)g 2 ḡz + (a 3 + iµ)(g -ḡ3 ) R(g) g z ,
and after some computations to

f z = -g z (a 3 + iµ) R(g) R(g) ḡ 2 -ḡz (a 3 -iµ) g 2 .
So, as f z (z 0 ) = 0, this quantity must be non-zero for all non-zero Killing fields F such that F, N vanishes at z 0 , i.e., for all a 3 + iµ ∈ C \ {0}. Again, this means that

|g z |(z 0 ) = |ḡ z |(z 0 ).
We have proved that |g z | 2 = |ḡ z | 2 everywhere, i.e., that g is a diffeomorphism. To prove that g preserves orientation, it suffices to prove that |g z | 2 > |ḡ z | 2 at some point. At a point of S where x 3 has an extremum, we have g = 0 or g = ∞, so since g is a diffeomorphism, x 3 admits exactly one extremum where g = 0, at a point that we will denote z 0 .

We have (x 3 ) z = η/2 = 2ḡg z /R(g). Hence, at the point z 0 , using that g(z 0 ) = 0 and R(0) = H, we get

(x 3 ) zz = 2g z ḡz H , (x 3 ) z z = 2|g z | 2 H , (x 3 ) z z = 2g z ḡz H .
Since x 3 has an extremum at z 0 , the Hessian of x 3 at z 0 has a non-negative determinant, i.e., 4(x 3 ) 2 z z -4(x 3 ) zz (x 3 ) zz 0. Since since g z = 0, we obtain that |g z | 2 |ḡ z | 2 at z 0 , which concludes the proof. ✷ 5.3 Bounds on the second fundamental form and the diameter Proposition 5.2 Let H = 0 and let S be a CMC H sphere whose Gauss map is an orientation-preserving diffeomorphism. Then its second fundamental form B satisfies

||B|| 2 < 4H 2 + 4|H| + 2. ( 5.5) 
Proof: By a classical computation we have

det B = H 2 - 4|P | 2 λ 2
where P dz 2 is the Hopf differential, and so

||B|| 2 = 4H 2 -2 det B = 2H 2 + 8|P | 2 λ 2 .
By (3.8), (3.12) and Remark 3.7 we have

|P | λ = 1 2(1 + |g| 2 ) 2 R(g) ḡz g z -1 + ḡ4 .
Since g is an orientation-preserving diffeomorphism we have |ḡ z | < |g z | and so

|P | λ < |R(g)| + 1 + |g| 4 2(1 + |g| 2 ) 2 |H| + 1 2 ,
which gives the result (notice that the first inequality is strict since R(g) does not vanish when H = 0). ✷

The following diameter estimate when H > 1/ √ 3 is a consequence of a theorem of Rosenberg [START_REF] Rosenberg | Constant mean curvature surfaces in homogeneously regular 3manifolds[END_REF]. We also refer to [START_REF] Fischer-Colbrie | On complete minimal surfaces with finite Morse index in threemanifolds[END_REF] for some arguments used in the proof. Lemma 5.3 Let H > 1/ √ 3 and S be an index one CMC H sphere. Then its intrinsic diameter is less than or equal to 8π/ 3(3H 2 -1).

Proof: We recall that a domain U ⊂ S is said to be strongly stable if -U f Lf 0 for all smooth functions f on U that vanish on ∂U.

Fix p 0 ∈ S and for r > 0 let B r denote the geodesic ball of radius r centered at p 0 . Let ρ := sup{r > 0; B r is strongly stable}.

We have ρ < +∞ since S is not strongly stable. Let ε > 0 and U = S \ B ρ+ε . We claim that U is strongly stable (when U = ∅). Indeed, assume that U is not strongly stable. Then the first eigenvalue λ 1 (U) of -L (for the Dirichlet problem with zero boundary condition) on U is negative; let f 1 be an eigenfunction on U for λ 1 (U), extended by 0 on B ρ+ε . In the same way, B ρ+ε is not strongly stable and so λ 1 (B ρ+ε ) < 0; let f 2 be an eigenfunction on B ρ+ε for λ 1 (B ρ+ε ), extended by 0 on U. Then f 1 and f 2 have supports that overlap on a set of measure 0, so they are orthogonal for Q; then Q is negative definite on the space spanned by f 1 and f 2 , which has dimension 2. This contradicts the fact that Ind(S) = 1. This proves the claim.

Since Sol 3 has scalar curvature -2 and since H > 1/ √ 3, Theorem 1 in [START_REF] Rosenberg | Constant mean curvature surfaces in homogeneously regular 3manifolds[END_REF] states that if Ω is a strongly stable domain in S, then for all p ∈ Ω we have dist S (p, ∂Ω) 2π 3(3H 2 -1) (5.6) where dist S denotes the intrinsic distance on S. (Observe that in [START_REF] Rosenberg | Constant mean curvature surfaces in homogeneously regular 3manifolds[END_REF] the scalar curvature is defined as one half of the trace of the Ricci tensor, whereas in our convention it is defined as the trace of the Ricci tensor.) Applying (5.6) for p 0 in B ρ we get ρ 2π 3(3H 2 -1) .

Let p ∈ S. We claim that dist S (p, p 0 ) 4π 3(3H 2 -1) + ε.

If p ∈ B ρ+ε , this is clear. So assume that p ∈ U (in the case where U = ∅). Then applying (5.6) for the strongly stable domain U we get dist S (p, ∂U) 2π 3(3H 2 -1)

.

But ∂U = ∂B ρ+ε , so dist S (p, p 0 ) 2π

3(3H 2 -1) + ρ + ε.
This finishes proving the claim. Since this holds for all ε > 0, the lemma is proved. ✷

Embeddedness

Proposition 5.4 Let S be an immersed CMC sphere whose Gauss map is a diffeomorphism. Then S is embedded, and consequently it is a symmetric bigraph in the x 1 and x 2 directions.

Proof: We view S as a conformal immersion X : S ≡ C → Sol 3 . By Corollary 4.9, up to a left translation, X(S) is symmetric with respect to the planes Π 1 = {x 1 = 0} and Π 2 = {x 2 = 0}. It will be important to keep in mind that the frame

( ∂ ∂x 1 , ∂ ∂x 2 , ∂ ∂x 3 ) is orthogonal. Let N = [N 1 , N 2 , N 3 
] : S → TSol 3 be the unit normal vector field of X and g : S → C the Gauss map of S. We first notice that at a critical point of x 3 we have N = ±E 3 , i.e., g = 0 or g = ∞. Hence, since g is a diffeomorphism, x 3 admits exactly one minimum at a point p ∈ S, one maximum at a point q ∈ S and no other critical point. Since X(S) is symmetric with respect to the planes Π 1 and Π 2 , we necessarily have

X(p) ∈ Π 1 , X(q) ∈ Π 1 , X(p) ∈ Π 2 , X(q) ∈ Π 2 .
Let γ be the set of the points of S where N is orthogonal to E 1 . Then γ = {z ∈ S; g(z) ∈ iR ∪ {∞}}. Since g is a diffeomorphism, γ is a closed embedded curve in S.

Let z 0 ∈ γ. Since X(S) is invariant by the symmetry τ with respect to Π 1 , there exists a point z 1 ∈ S such that X(z 1 ) = τ (X(z 0 )) and N(z 1 ) = [-N 1 (z 0 ), N 2 (z 0 ), N 3 (z 0 )]. But z 0 ∈ γ so N 1 (z 0 ) = 0 and so g(z 1 ) = g(z 0 ). Since g is a diffeomorphism we have z 1 = z 0 and so X(z 0 ) ∈ Π 1 . This proves that X(γ) ⊂ Π 1 .

We claim that X(γ) is embedded and is a bigraph in the x 2 direction. We have p, q ∈ γ and, as explained before, X(p), X(q) ∈ Π 2 . The set γ \ {p, q} consists of the following two disjoint curves:

γ + := {z ∈ S; g(z) = ir, r ∈ (0, +∞)}, γ -:= {z ∈ S; g(z) = ir, r ∈ (-∞, 0)}.
Then the curve X(γ + ) is transverse to ∂ ∂x 2 since N is never parallel to E 3 on γ + . Consequently, X(γ + ) can be written as a graph {(x 2 , x 3 ); x 3 ∈ I, x 2 = f (x 3 )} where I = (x 3 (p), x 3 (q)) and f : I → R is a smooth function such that lim t→x 3 (p) f (t) = lim t→x 3 (q) f (t) = 0. By symmetry, X(γ -) is the graph {(x 2 , x 3 ); x 3 ∈ I, x 2 = -f (x 3 )}.

We now prove that f > 0 or f < 0. Without loss of generality, we may assume that a maximum of x 2 on γ is attained at a point of γ + , and consequently a minimum of x 2 on γ is attained at a point of γ -. But at a critical point of x 2 on γ we have N = ±E 2 , i.e., g = ±i. Since g is a diffeomorphism, x 2 admits exactly two critical point on γ, so exactly one on γ + , which is the abovementioned maximum. This implies that f > 0. This finishes proving the claim. Consequently, X(γ) is embedded and bounds a domain U in Π 1 ; this domain U is topologically a disk. Let S + := {z ∈ S; g(z) ∈ C, Re(g(z)) > 0}, S -:= {z ∈ S; g(z) ∈ C, Re(g(z)) < 0}.

Then S is the disjoint union of S + , S -and γ. Also, X(S + ) is transverse to ∂ ∂x 1 since N is never orthogonal to E 1 on S + , and is bounded by X(γ) = ∂U. Consequently, X(S + ) can be written as a graph {(x 1 , x 2 , x 3 ); (x 2 , x 3 ) ∈ U, x 1 = h(x 2 , x 3 )} where h : U → R is a smooth function. By symmetry, X(γ -) is the graph {(x 1 , x 2 , x 3 ); (x 2 , x 3 ) ∈ U, x 1 = -h(x 2 , x 3 )}. By the same argument as above, we prove that h > 0 or h < 0 (otherwise x 1 would admit at least 3 critical points). So X(S) is embedded. ✷

Deformations of CMC spheres

Lemma 5.5 Let Σ be an oriented embedded compact surface (not necessarily CMC) in Sol 3 . Let N be its unit normal vector and H its mean curvature function. Then, for all Killing field F of Sol 3 , it holds

Σ F, N = 0, Σ H F, N = 0. (5.7) 
Proof: These formulas are well-known. We include a proof for the convenience of the reader.

Since Killing fields have divergence zero, the first formula follows from Stokes' formula applied on the compact region bounded by Σ.

Let J : TΣ → TΣ be the rotation of angle π/2. Denote by ∇, ∇ and B the Riemannian connection of Sol 3 , the Riemannian connection of Σ and the second fundamental form of Σ respectively. We define on Σ the 1-form ω by ∀v ∈ TΣ, ω(v) = F, Jv . Here we used the fact that J commutes with ∇ and the fact that ∇ v F, v = 0 for all v since F is a Killing field. Then Stokes' formula yields

0 = Σ dω = -2 Σ H F, N .

✷

In the next propostion we will deform index one CMC spheres using the implicit function theorem and the fact that all the Jacobi functions on such a sphere come from ambient Killing fields. Proposition 5.6 Let S be an index one CMC H sphere. Then there exist ε > 0 and a real analytic family (S H ) H∈(H 0 -ε,H 0 +ε) of spheres such that S H 0 = S and S H has CMC H for all H ∈ (H 0ε, H 0 + ε). Also, if H ∈ (H 0ε, H 0 + ε) and S is a CMC H sphere close enough to S, then S = S H (up to a left translation).

Moreover, the spheres S H , H ∈ (H 0ε, H 0 + ε), have index one.

Proof: By Propositions 5.1 and 5.4, the Gauss map of S is a diffeomorphism and S is embedded. We view S as an embedding X : S → Sol 3 and we will identify S and X(S).

Let us start by proving the existence of the family (S H ) by means of a classical deformation technique (see for instance [START_REF] Pérez | The space of properly embedded minimal surfaces with finite total curvature[END_REF][START_REF] Koiso | Deformation and stability of surfaces with constant mean curvature[END_REF] for details).

Let α > 0. For a function ϕ ∈ C 2,α (S), we define the normal variation

X ϕ : S → Sol 3 by X ϕ (s) = exp X(s) (ϕ(s)N(s)),
where exp denotes the exponential map for the Riemannian metric on Sol 3 and N the unit normal vector field of S. There exists some neighbourhood Ω of 0 in C 2,α (S) such that X ϕ is an embedding for all ϕ ∈ Ω; then let H(ϕ) be the mean curvature of X ϕ . Hence we have defined a map H : Ω → C 0,α (S), and the differential of H at 0 ∈ C 2,α (S) is one half the stability operator of S:

d 0 H = 1 2 L : C 2,α (S) → C 0,α (S).
If E ⊂ C 0,α (S), we will let E ⊥ denote the orthogonal of E in C 0,α (S) for the L 2 (S) scalar product. As explained in Section 5.1, all Jacobi functions on S come from ambient Killing fields, i.e., ker L has dimension 3 and is generated by the functions f k := F k , N , k = 1, 2, 3, where (F 1 , F 2 , F 3 ) is the basis of Killing fields defined in Section 2. We also have Im L = (ker L) ⊥ .

We now consider the map

K : Ω × R 3 → C 0,α (S) (ϕ, a 1 , a 2 , a 3 ) → H(ϕ) -a 1 F 1 , N ϕ -a 2 F 2 , N ϕ -a 3 F 3 , N ϕ
where N ϕ denotes the unit normal vector field of X ϕ . Then we have

d (0,0,0,0) K = Φ : C 2,α (S) × R 3 → C 0,α (S) (u, b 1 , b 2 , b 3 ) → 1 2 Lu -b 1 f 1 -b 2 f 2 -b 3 f 3 .
We first claim that Φ is surjective. Let v ∈ C 0,α (S). If v ∈ ker L, then there exists (b 1 , b 2 , b 3 ) such that v = Φ(0, b 1 , b 2 , b 3 ). If v ∈ (ker L) ⊥ , then there exists u ∈ C 2,α (S) such that Lu = 2v, and so v = Φ(u, 0, 0, 0). This proves the claim. Also, since Im L = (ker L) ⊥ , we have ker Φ = ker L × {(0, 0, 0)}, so ker Φ has dimension 3.

We can now apply the implicit function theorem (see for instance [START_REF] Lang | Introduction to differentiable manifolds[END_REF]): there exist ε > 0, a real analytic family (ϕ H ) H∈(H 0 -ε,H 0 +ε) of functions and real analytic functions a 1 , a 2 , a 3 : (H 0ε, H 0 + ε) → R such that, for all H ∈ (H 0ε, H 0 + ε), K(ϕ H , a 1 (H), a 2 (H), a 3 (H)) = H and K -1 (H) is locally a manifold of dimension 3. Now, applying (5.7) to S H := X ϕ H (S), we get a 1 (H) = a 2 (H) = a 3 (H) = 0, and so H(ϕ H ) = H. This gives the existence of the family (S H ) as announced. Also, in a neighbourhood of S H the set of CMC H spheres is a 3-dimensional manifold, so it is composed uniquely of images of S H by left translations. This gives the announced uniqueness result.

Let us show next that all spheres in this deformation have index one. Assume that there is some H 1 ∈ (H 0ε, H 0 + ε) such that Ind(S H ) = 1. Without loss of generality, we can assume that H 1 < H 0 . Let H = inf{H > H 1 ; Ind(S H ) = 1}.

The functions λ k (S H ) and their eigenspaces are continuous with respect to H [START_REF] Kato | Perturbation theory for linear operators[END_REF][START_REF] Kodaira | On deformations of complex analytic structures. III. Stability theorems for complex structures[END_REF] Proof: Let S be a solution of the isoperimetric problem that has CMC H 0 with H 0 > 1/ √ 3 (such a solution exists since there exist solutions with arbitrary large mean curvature). Then S is a compact embedded CMC surface, hence it is a sphere by the Alexandrov reflection argument. Moreover, S is stable and so has index one. Then by Proposition 5.6 there exists a local deformation (S H ) H∈(H 0 -ε,H 0 +ε) for some ε > 0.

Let (H -, H + ) be the largest interval to which we can extend the deformation (S H ). By the same argument as that of the proof of Proposition 5.6, all the spheres S H have index one. Consequently, by Propositions 5.1 and 5.4, they are embedded and symmetric bigraphs in the x 1 and x 2 directions.

We first notice that H -0 since there is no compact minimal surface in Sol 3 . We will prove that H -1/ √ 3 and H + = +∞. Assume that H -> 1/ √ 3. Let (H n ) be a sequence converging to H -and such that H n > H -for all n. Then by (5.5) the second fundamental forms of the spheres S Hn are uniformly bounded. Also, by Lemma 5.6 the diameters of the spheres S Hn are bounded; thus the areas of the spheres S Hn are bounded (by the Rauch comparison theorem), so in particular the spheres S Hn satisfy local uniform area bounds (see for instance [START_REF] Ritoré | The spaces of index one minimal surfaces and stable constant mean curvature surfaces embedded in flat three manifolds[END_REF]). Without loss of generality we will assume that all spheres S Hn contain a certain fixed point. Consequently, by standard arguments [START_REF] Pérez | Properly embedded minimal surfaces with finite total curvature[END_REF][START_REF] Meeks | The CMC dynamics theorem in homogeneous nmanifolds[END_REF] there exists a subsequence, which will also be denoted (H n ), such that the spheres S Hn converge to a properly weakly embedded CMC H -surface S, and S must be compact since the diameters of the spheres S Hn are bounded. (The convergence is the convergence in the C k topology, for every k ∈ N, as local graphs over disks in the tangent planes with radius independent of the point.) Since S is a limit of bigraphs in the x 1 and x 2 directions, it is a sphere (and the convergence is with multiplicity one). Finally, S has index one since the spheres S Hn have index one (having index one is equivalent to λ 2 = 0).

Thus we can apply Proposition 5.6 to S: we obtain the existence of a unique deformation ( S H ) H∈(H --η,H -+η) for some η > 0. Since the spheres S Hn converge to S, there exists some integer m such that S Hm = S Hm , and so we have S H = S H for H in some neighbourhood of H m (here the equalities between spheres are always up to a left translation). This means that we can analytically extend the family (S H ) for H H - by setting S H := S H for all H ∈ (H -η, H -]. This contradicts the fact that (H -, H + ) is the largest interval for which the S H are defined.

Hence we have proved that H - 1/ √ 3. The proof that H + = +∞ is similar (indeed, if H + is finite, then we have the bound on the second fundamental form). ✷ Remark 5.8 Even if S H 0 is stable, it is not clear whether the S H are stable or not. For instance, in S 2 × R, Souam [START_REF] Souam | On stable constant mean curvature surfaces in S 2 × R and H 2 × R[END_REF] proved that among the one parameter family of rotational CMC spheres, the ones with mean curvature less than some constant are unstable.

Conclusion and final remarks

We can now summarize and conclude the proofs of the main theorems. 

Theorem 1 . 2

 12 Let H > 0 such that there exists some immersed CMC H sphere Σ H in Sol 3 verifying one of the properties (a)-(d), where actually (a) ⇒ (b) ⇒ (c) ⇒ (d): (a) It is a solution to the isoperimetric problem in Sol 3 . (b) It is a (weakly) stable surface.

Figure 1 :

 1 Figure 1: The profile curve in the (x 1 , x 3 )-plane when H = 1 (left) and H = 5 (right).

Lemma 4 . 2

 42 Let L : C → C be a global solution of the differential equation

  where A : C → C and B : C → C are given functions satisfying a certain growth condition at ∞, so that the change of function g → i/g induces an equation of the same form. Then using the techniques above we can prove that it admits at most a unique (up to conformal change of parameter) solution g : C → C if the partial differential equations (4.8) and (4.10) admit solutions L, M : C → C satisfying a certain growth condition at ∞ and such that |L/M| < 1.

Let (e 1

 1 , e 2 ) be a local direct orthonormal frame on Σ (hence Je 1 = e 2 and Je 2 = -e 1 ). Then we have dω(e 1 , e 2 ) = e 1 • ω(e 2 )e 2 • ω(e 1 )ω([e 1 , e 2 ]) = -e 1 • F, e 1e 2 • F, e 2 -F, J(∇ e 1 e 2 -∇ e 2 e 1 ) = -F, ∇ e 1 e 1 -F, ∇ e 2 e 2 + F, ∇ e 1 e 1 + F, ∇ e 1 e 1 = -F, B(e 1 , e 1 )N + B(e 2 , e 2 )N = -2H F, N .

Proof of Theorems 1 .1 and 1 . 2 :

 112 In Theorem 1.2, the implications (a) ⇒ (b) ⇒ (c) are explained in Section 5.1 and the implication (c) ⇒ (d) is Proposition 5.1. The embeddedness of Σ H is Proposition 5.4. The uniqueness among immersed spheres is Theorem 4.7, and the uniqueness among compact embedded surfaces is then obtained thanks to the Alexandrov reflection technique. Finally, Theorem 1.1 is a corollary of Theorem 1.2 and Proposition 5.7.✷

  this concludes the proof. ✷ Theorem 4.7 Let H = 0. Assume that there exists an immersed CMC H sphere S H in Sol 3 whose Gauss map is a global diffeomorphism. Then, any other immersed CMC H sphere Σ in Sol 3 differs from S H at most by a left translation.Proof: We view S H as a conformal immersion from C into Sol 3 , whose Gauss map G : C → C is a global diffeomorphism, and G z = 0 at every point.By Proposition 4.3 and Theorem 4.1 we can conclude that if Σ is another CMC H sphere in Sol 3 , and g : Σ ≡ C → C denotes its Gauss map, then the well-defined quadratic differential Q(g) vanishes identically on Σ.Nonetheless, we also have Q(G) = 0. So, as G is a global diffeomorphism, we have from Lemma 4.6 (and real analyticity) that g = G • ψ where ψ : C → C is a conformal automorphism of C. Thus, by conformally reparametrizing Σ if necessary we have two conformal CMC H immersions X 1 , X 2 : C → Sol 3 with the same Gauss map G. From Theorem 3.4, this implies that X 1 and X 2 , i.e. Σ and S H , coincide up to a left translation, as desired. ✷ Remark 4.8 Our proof of Theorem 4.7 has two key ideas. One is to prove that, associated to a sphere S H whose Gauss map is a global diffeomorphism, we can construct a geometric differential Q dz 2 for arbitrary surfaces in Sol 3 such that:

(a) Q dz 2 vanishes identically on S H (this is the meaning of (4.14) and (4.15)), and (b) Q dz 2 vanishes identically only on S H (this is Lemma 4.6).

  . Consequently, λ 2 (S b H ) = 0, H 1 < H, λ 2 (S H ) < 0 for all H ∈ [H 1 , H) and there exists a continuous family of functions(f H ) H∈[H 1 , b H]such that f H is an eigenfunction of λ 2 (S H ), S H f 2 H = 1 and f H is orthogonal to the Jacobi functions on S H coming from ambient Killing fields. This implies in particular that λ 2 (S b H ) has multiplicity at least 4, which contradicts Theorem 3.4 in[START_REF] Cheng | Eigenfunctions and nodal sets[END_REF].

✷ Proposition 5.7 There exists a real analytic family (S H ) H>1/ √ 3 of spheres such that, for all H > 1/ √ 3, S H has CMC H and Ind(S H ) = 1.

Observe that by (4.15) it holds Q(G) = 0.

We will now show that, in these conditions, this CMC H sphere S H is unique (up to left translations) among immersed CMC H spheres in Sol 3 . For that, we shall use the following auxiliary results. Lemma 4. [START_REF] Alexandrov | A characteristic property of spheres[END_REF] We have L(q) M(q) < 1

for all q ∈ C.

Proof: When q ∈ C, this is a consequence of (4.14) and the fact that G is an orientationpreserving diffeomorphism. When q = ∞, we use Remark 3.5. ✷ Lemma 4.5 Let g : Σ → C be a nowhere antiholomorphic smooth map from a Riemann surface Σ such that Q(g) = 0. Then g is a local diffeomorphism.

Proof: Since Q(g) = 0, we have ḡz /g z = -L(g)/M(g) and so

The following lemma states that solutions of the equation Q(g) = 0 are locally unique up to a conformal change of parameter. Lemma 4.6 Let g 1 : Σ 1 → C and g 2 : Σ 2 → C be two nowhere antiholomorphic smooth maps from Riemann surfaces Σ 1 , Σ 2 . Assume that Q(g 1 ) = 0 and Q(g 2 ) = 0 (consequently, g 1 and g 2 are local diffeomorphisms by Lemma 4.5). Assume that there exists an open set U ⊂ Σ 2 and a diffeomorphism ϕ : U → ϕ(U) ⊂ Σ 1 such that g 2 = g 1 •ϕ on U. Then ϕ is holomorphic.

Proof: Since g 1z and g 2z do not vanish, the fact that Q(g 1 ) = 0 and Q(g 2 ) = 0 implies that 0 = L(g 1 )g 1z + M(g 1 )ḡ 1z , (4.16)

We have

Consequently, using (4.17) and then (4.16) at the point ϕ(z), we obtain

Conjugating and applying again (4.16) at the point ϕ(z) gives

We have g 1z = 0 and |M(g 2 )| > |L(g 2 )| by Lemma 4.4. Hence we conclude that ϕ z = 0. ✷

Let us now focus on some consequences for the isoperimetric problem in Sol 3 . First, index one spheres constitute a finite or countable number of real analytic families (S H ) H∈(H -,H + ) parametrized by mean curvature belonging to pairwise disjoint intervals. Hence the solutions to the isoperimetric problem belong to these families. Moreover, in such a family, if A(H) and V (H) denote respectively the area of S H and the volume enclosed by S H , then A ′ (H) = 2HV ′ (H) and the sphere S H 0 is stable if and only if V ′ (H 0 ) 0 (this was proved in [START_REF] Souam | On stable constant mean curvature surfaces in S 2 × R and H 2 × R[END_REF] for S 2 × R but the proof readily extends to Sol 3 ). Proposition 6.1 The following statements hold in Sol 3 .

(a) Every solution to the isoperimetric problem is globally invariant by all isometries fixing some point.

(b) Two different solutions (up to left translations) to the isoperimetric problem cannot have the same mean curvature.

Proof: Item (a) is an immediate consequence of Corollary 4.9 and Proposition 5.1. Item (b) is a particular case of Theorem 1.2. ✷ However, we do not know if, for a given volume, there can exist several solutions (hence with different mean curvatures). Item (a) states that the solutions to the isoperimetric problem are as symmetric as possible; in [START_REF] Nardulli | The isoperimetric profile of a compact Riemannian manifold for small volumes[END_REF] this was proved for small volumes in a general compact manifold. Remark 6.2 One can prove using Propostion 5.6 that for a given volume there exists a finite number of solutions to the isoperimetric problem. Using moreover the above characterization of stable spheres, one can prove that the isoperimetric profile is concave.

The value 1/ √ 3 in Theorem 1.1 does not seem optimal and does not seem to have a geometric signification, as we explain next.

In H 3 , the value 1 is a special value for mean curvature, in the sense that CMC H surfaces in H 3 have very different behaviours if |H| > 1, |H| = 1 or |H| < 1 (for instance, compact CMC H surfaces in H 3 exist if and only if |H| > 1). In the same way, 1/2 is a special value for mean curvature in H 2 × R.

On the contrary, in Sol 3 there exist CMC H spheres with H = 0 and |H| arbitrarily small. Also, in no equation regarding conformal immersions is the fact that H > 1/ √ 3 important. This number 1/ √ 3 only appeared in the Diameter Lemma 5.3, which relies on a stability argument: the fact that H > 1/ √ 3 implies that some quantity in the Jacobi operator is necessarily positive. However it is only a sufficient condition. The same kind of problems have appeared previously in related questions: for instance, it is proved in [START_REF] Souam | On stable constant mean curvature surfaces in S 2 × R and H 2 × R[END_REF] that a stable compact CMC H surface is a sphere if H > 1/ √ 2, but this value of H is conjectured not to be optimal. This is why it is natural to propose the following conjecture.

Conjecture 6.3 For every H > 0 there exists an embedded CMC H sphere S H , which is the unique (up to left translations) immersed CMC H sphere and the unique (up to left translations) embedded compact CMC H surface. Moreover, S H is a solution to the isoperimetric problem, and the family (S H ) H>0 is real analytic.