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Fast Solver for Some Computational Imaging Problems:
A Regularized Weighted Least-Squares Approach

B. Zhang®*, S. Makram-Ebeid®, R. Prevost®, G. Pizaine®

®Medisys, Philips Research, Suresnes France

Abstract

In this paper we propose to solve a range of computational imaging problems
under a unified perspective of a regularized weighted least-squares (RWLS)
framework. These problems include data smoothing and completion, edge-
preserving filtering, gradient-vector flow estimation, and image registration.
Although originally very different, they are special cases of the RWLS model
using different data weightings and regularization penalties. Numerically,
we propose a preconditioned conjugate gradient scheme which is particularly
efficient in solving RWLS problems. We provide a detailed analysis of the
system conditioning justifying our choice of the preconditioner that improves
the convergence. This numerical solver, which is simple, scalable and par-
allelizable, is found to outperform most of the existing schemes for these
imaging problems in terms of convergence rate.

Keywords: Regularized weighted least-squares, Preconditioned conjugate
gradient, Preconditioning, Condition number

1. Introduction

In this paper we propose to solve some classical imaging problems with
a unified quadratic optimization perspective. These topics include data
smoothing and completion, edge-preserving filtering, gradient-vector flow es-
timation, and image registration. We are particularly interested in high-
performance numerical solvers for these problems, as they are widely used as
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building blocks of numerous applications in many domains such as computer
vision and medical imaging [1].

Concretely, we look at the framework of the regularized weighted least-
squares (RWLS):

arg min J(u) := / w(x) (u(x) — up(x))* dx + 720‘/ |ILou(x)|?dx (1)
wRP SR RD RD
Here, ug(x) € R represents the observed measurement at point x € R?, and
u(x) the data to estimate. w(x) > 0 are non-negative weights, which can
be considered as confidence levels of the measurements. L,u : RP — R”»
represents some regularization operator L, applying a penalty on u. We will
restrict L, to be a linear fractional differential operator of order a > 0, such
as the gradient and the Laplacian. Further, v > 0 is a trade-off parameter
between the weighted data-fidelity term and the regularity-penalty term.
In this work we will focus on the discrete RWLS problem, or the discrete
counterpart of Eq. (1):

argmin.J(w) = W — wg) [+ Ll 2)
Here, uy € R¥ is the vector of the measurements of length N. For multi-
dimensional measurements, the data are assumed to be vectorized in the
lexicographical order. W € R¥*¥ stands for a diagonal weighting matrix
with the weights on its diagonal W;; = w; > 0 for i = 0,...,N — 1. L,
in the discrete setting will be a matrix representing the differential operator
and we keep the same notation. It will be clear (see Section 4) that each of
our aforementioned imaging problems fits Eq. (2) by choosing a particular
set of weights W and a particular regularization operator L.

Our main contribution here is proposing an efficient preconditioned con-
jugate gradient (PCG) scheme which solves RWLS, and hence the above
imaging problems. We provide a detailed analysis of the system conditioning
justifying our choice of the preconditioner that improves the convergence.
Surprisingly, this simple solver is found to outperform most of the state-of-
the-art numerical schemes proposed for those problems. In particular, the
convergence rate of PCG is spectacular, with a gain up to an order of mag-
nitude observed in some of our experiments. Additionally, the PCG has the
advantages of being easily implementable, scalable and parallelizable.

This paper is organized as follows. Section 2 describes in detail the RWLS
framework, and the proposed PCG solver. Section 3 analyzes the choice of



the preconditioner by showing its potential in reducing the condition number
of the problem and hence improving the convergence rate. Then, Section 4
presents the different imaging problems revisited and solved by the RWLS
approach. We show the superior performance of our method compared to
various existing schemes. We also discuss an extension of the RWLS model
in Section 5. Our conclusions are drawn in Section 6. Finally, mathematical
details are deferred to the appendices.

2. Regularized Weighted Least-Squares and a PCG Solver

2.1. Notations in the 1D case

Let us use an example in the 1-dimensional (1D) RWLS to introduce our
notations and present our main results. The setting can be easily extended
to multi-dimensional cases (Section 2.5).

Consider the following RWLS in the continuous setting where the regu-
larization operator is the first derivative (i.e., L, = d/dx with o = 1):

arg min J(u) = / w(x) (u(z) — up(x))? dz + 42 / u'(z)? dx (3)
u R R

This choice makes Eq. (3) a Dirichlet regularized regression problem. Its
solution is the stationary point to the associated Euler-Lagrange equation:

w(x)u(z) — y*u"(z) = w(z)up(r), = €R (4)

In the discrete version, the operator L; will be represented by a first-
order finite-difference matrix. For example, let L; be the following circulant
matrix (Eq. (5)), which corresponds to a filter g; = [1, —1]/h; with a periodic
boundary condition.

[ -1 1 0 0
X 0 —1 1 0
L1 = — (5)
hy
0 0 -1 1
1 0 0 —1

Here hy > 0 represents the finite-difference spacing.
To solve Eq. (2), one sets the gradient of J(u) to zero, and obtain a linear
system which is no more than the discrete counterpart of Eq. (4):

Au=b, where A :=W ++°LiL; and b := Wu, (6)
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We used Lj to denote the conjugate transpose of L. It follows that (—LjL;)
is a Hermitian matrix which represents a second-order differential filter [2]
g2 = [1,—2,1]/h%. In addition, A is Hermitian and semi-positive definite.

L; is diagonalizable by the fast Fourier transform (FFT) matrix F and
its k-th eigenvalue is A\, = (e 77k — 1)/hy with wy, := 27k/N:

Ll = F*AF, A= diag[)\o, )\1, ey )\N,d

Due to the orthonormality of FFT, one has F*F = I where I is the identity
matrix. Therefore A can be rewritten as:

A =W +°F*AF, A:=|A]?:=A"A

where A is the diagonal matrix of the eigenvalues \j, of LiL; which are given
by A := | \ef* = [h% sin(wg/2)]%

The FFT choice above is clearly due to the assumed periodic boundary
condition. More generally, the Hermitian matrix LiL; always possesses an
orthonormal eigen-decomposition:

LiL; = B*|A”B, |A|? := diag[|Xo|*, M%) [ A1 ]

where B is some orthonormal matrix, and (|Ax|*)r=o..n_1 are the eigenvalues
of LiL; written in the modulus form to emphasize their non-negative nature.
In practice, the basis B will represent trigonometric transforms, i.e. FFT,
DCT (discrete cosine transform), and DST (discrete sine transform), with a
periodic, an even symmetric, and an odd-symmetric boundary conditions [2]
respectively imposed on the matrix LiL;.

Consequently, for any order a > 0 one can define L’ L,, to be a fractional
differential operator such that:

L:L, := B*|A*B, [|A]* := diag[|[X\o]*, M, ..., [Av-_1]*] (7)
We will keep noting the spectrum of L} L, by
A= AP A= [ (8)

In the subsequent presentation, we will concentrate on the periodic boundary
condition (i.e., B=F).

Similar to Eq. (6), for an arbitrary a > 0, the minimizer of Eq. (2) is the
solution to the following linear system:

Au=Db, where A :=W ++**L!L, and b := Wu, (9)
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where A is Hermitian and semi-positive definite, and can be written as:
A =W +1¥F*AF (10)

The k-th eigenvalue of L* L, is given by Ay = | A\x[>* = [h% sin(wg/2)]**. These

definitions will be extended to multi-dimensional case in Section 2.5.

2.2. Case of constant weights: a linear filtering

We keep considering the 1D RWLS problem. If the weights are everywhere
constant (say W = wI for some constant w), A has an explicit inverse. The
solution is given by a linear filtering:

N\ —1
u=A"b=Fu (wI + 72"‘A> Fu, (11)

In plain words, Eq. (11) signifies:

(i) take the Fourier transform of uy;

(ii) weight the spectrum by Sy := w/(w + v**)\;) in a pointwise manner;
(iii) take the inverse Fourier transform.
The weights Sj correspond to the spectrum of a low-pass filter: Sy attains
its maximum at the zero frequency (k = 0) and starts to drop down as k

increases. It attains the half of the maximum at the frequency £ such that
\e = w/v**. Examples of the spectrum for different o are shown in Fig. 1.

1

09

Amplitude

=
.
T

Figure 1: The spectrum S for « =0.5,1,2,3. We set hy =1, w = 0.5, and v = 2.



2.3. Case of non-constant weights: interpretation of a controlled diffusion

Regarding the case of non-constant weights, A no longer has an explicit
inverse in general. However some asymptotic analysis sheds light on the
expected behavior of the solution.

Suppose that the weights are nowhere zero, a = 1 and a sufficiently small
~ such that one can consider the first-order approximation of the solution:

u = A'b= (W +~LiL;)" 'Wu,
= (I + ’}/2W71LTL1)71110
~ (I—~+*W'LiL)uy = up — v¥*W 'LiL;ug (12)

It can be seen that Eq. (12) represents a step of diffusion on ug where the
step length is controlled by v?W . Clearly, a data point associated with a
large weight has a small step length and will undergo little change, while a
point with a small weight (or large step) will tend to be blurred out by the
diffusion process.

2.4. A PCG solver for the RWLS problem

Generally we resort to a PCG scheme for iteratively solving the linear
system Au = b. Let us point out that A is strictly positive definite if the
null space of W and that of L, do not intersect. This is the case in Eq. (10)
as long as the weights are not all zero.

Our preconditioner is formulated as

M = (VI + 726*]?*]\1?>_1 — F*HF (13)

where

H .= (yI n 726%) - (14)

The scalar parameter v > 0 is tunable. Note that Eq. (13) can be interpreted
as a filter with the spectrum defined by Eq. (14). The PCG iteratively solves
the system MAu = Mb which is equivalent to Au = b but has a better
convergence rate when M is properly chosen. The analysis and the choice of
the preconditioner are detailed in Section 3.

In practice, PCG method does not need to explicitly store the huge ma-
trices A and M. Instead, given any vector x one only needs to implement
the matrix-vector applications Ax and Mx. These operations only involve
the FFT, and pointwise additions and multiplications in the Fourier and in
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the signal domains. Moreover, the eigenvalues A can be pre-computed for a
given regularization operator. As a consequence, the PCG solver runs very
fast and is inherently scalable and parallelizable.

2.5. Multi-dimensional extension

There is no unique way of extending Eq. (2) to multi-dimensional situa-
tions. For any extension, we only need to care about the form of L} L, in
Eq. (9). In this paper, we choose L}L, to be any discrete version of the
(negative) fractional Laplacian of order a:

cape (L E Y 5)

where D is the dimension. Note that (—A)® should be understood in the
Fourier sense. It is associated with the spectrum |w,|** where w, is the
spatial frequency in the continuous domain.

The rationale of this choice relies on its consistency with two important
regularization kinds, i.e., the continuous RWLS energy (Eq. (1)) where the
regularization term is either set to: (a) the Dirichlet energy, or to (b) the
thin-plate spline bending energy with a periodic boundary condition. In both
cases, the Laplacian operator shows up in the associated Euler-Lagrange
equations.

For a D-dimension dataset of size N; x Ny X - -+ x Np, the eigenvalues of
L} L, are written in the multi-index form:

D e}
sz(ZMi?P) , ke{(ki koo kp) 1 ka=0,1,...,Ng—1} (16)
d=1

where )\,(3 is the k4-th eigenvalue of the matrix representing the 1D first-order
derivative along the dimension d, i.e., 9/0x4. Under the periodic boundary
condition, one has

M = (i [h% sin (“7’“)} 2>a . wi, = 2mka /N, (17)

d=1

3. Convergence Improvement Through Preconditioning

For a positive-definite linear system Au = b, the condition number of the
matrix A is defined as the ratio between its maximum eigenvalue Apax(A)
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and its minimum one Apin(A), i.e., K(A) := Apax(A)/Amin(A). It is known
that the convergence of a conjugate gradient method is faster if the condition
number is smaller (i.e., closer to 1) [3], or in other words, if the spectrum of
A is more compact. In this sense, x(A) can also be deemed as a measure of
the spectral compactness. The maximal compactness is achieved by a scalar
matrix A = ¢I (¢ > 0) where one has k(A) = 1.

The purpose of a preconditioner is to improve the conditioning of a linear
system. In our case the preconditioner M is written in the form of Eq. (13).
In the subsequent sections, we make detailed analysis of the system condi-
tioning before and after introducing the preconditioner M (Section 3.1), and
provide suggestions of choosing the parameter v (Section 3.2).

3.1. A spectral-compactness measure

Exact computation of the condition number turns out to be prohibitive
for large data, as we have to evaluate the eigenvalues of a huge-size matrix.
Alternatively, we will introduce another spectral compactness measure based
on the coefficient of variation (CV) of the spectrum. Although different from
the condition number, the CV is found to be directly related to a certain
upper bound of the condition number. It is in this sense that the CV can be
deemed as an estimator of the system conditioning. Moreover, this measure
possesses an explicit expression that can be easily evaluated.

3.1.1. Notations and preliminary facts
Let us first establish some notations and preliminary results. Given an
N by N matrix G with real eigenvalues, we define:

1

wG) = Ntr(G) (18)
o*(G) = (G —pu*(G) (19)
_ a(G)

where tr(G) denotes the trace of G. It can be seen that Eq. (18), Eq. (19)
and Eq. (20) represent the average, the variance and the CV of the spectrum
of G.

We recall the form of the preconditioner in Eq. (13). The diagonal matrix
H (Eq. (14)) contains on its diagonal the eigenvalues of M written as

nk:(y—{_’yQaS\k)_l? k:Oa>N_1 (21)
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We use w to denote the average of the weights, and o2 for the sample
variance of the weights:

=,
=0
1 N-1 1 N-1
oh = N (wi—w)QZN ' w} — @ (23)
i=0 =0
We also define A
W = FWF"* = [qo,q1,.-.,9n-1] (24)

where q; is the i-th column vector. We use ¢;; to denote the j-th element of
q;. Note that since W is diagonal, W has a periodic structure such that it
can be written as a Kronecker product of circulant matrices.

Eigenvalues of A are real positive, and so do those of MA since M is a
symmetric positive definite matrix. We note for any m > 0:

wlB)rmoA) e (A) > m - o(A)

Bl 4) 1= { )=o) (2)

+00 otherwise

Bm(A) will become an upper bound of xK(A) as m increases. As a result, one
way to compare the system conditioning before and after preconditioning is
to assess fBn,(A) and §,,(MA) for a certain m. We do not bother to find
the optimal m that results in the tightest bounds as we have the following
relation:

VAl, A27 T(Al) > T(AQ) < ﬁm(Al) > ﬁm(A2> for any m > 0 (26)

Eq. (26) implies that comparing 3,,’s and comparing 7’s are equivalent since
Eq. (26) holds for any m. Comparing the CV’s no longer involves this param-
eter and consequently, to tell that a preconditioner M is potentially effective,
one only needs to verify the relation 7(MA) < 7(A).

3.1.2. CV’s before and after preconditioning

Propositions 1 and 2 show the CV of A and that of MA, respectively.
Reader can find the proofs in the appendices.



Proposition 1 The CV of the matriz A is given by T(A) = % where
pA) = w+y*pd) (27)
o*(A) = og,+9"0*(A) (28)
Proposition 2 The CV of the matric MA is given by T(MA) = Zgﬁig
where

pMA) = 1+ (w0 —v)u(H) (29)

PMA) = 30 3 wylasel? + (0 = )0 (H) — () (30

with H, n; and q;; defined in Eq. (14), Eq. (21) and Eq. (24) respectively.

We also introduce an upper bound of 0?(MA) which is noted as 52(MA)
as precised in Proposition 3. The CV computed from this upper bound is
written as 7(MA) := 6(MA)/u(MA).

Proposition 3 We have the relation 52(MA) > 0?(MA) where
5(MA) = o2 u(H?) + (i — )0’ (H) (31)

The purpose of introducing this approximation is to simplify Eq. (30) by
avoiding computing the high-order harmonics ¢;,. Clearly, any precondi-
tioner M verifying 7(MA) < 7(A) automatically satisfies 7(MA) < 7(A).
One can see that only the first and the second statistical moments of the
weights are involved in the quantities 7(A) and 7(MA).

In practice, we are more interested in the asymptotic behavior of the CV’s
for the case of large datasets. In Eq. (17), if we let Ny — 400 and write

AMw) = <dz]} {h% sin <%)r> , weAd:={(w,ws, +,wp):wg€0,2m)}

(32)
Eq. (27) and Eq. (28) become respectively:

= w 72& \Nw) dw
W) = o+ g [ Sw)a (33)

ﬁ/f‘:\(‘*’)de— ((2;)D/A:\(w)dw)2] (34)

o*(A) = o2+




Likewise, Eq. (29) and Eq. (31) respectively tend to:

p(MA) = 1+ 2P /A(V%—’yh)\(w))ldw (35)
~2 _ opt(@—v)? U4 A2 (w2 dw
na) = 2t | i)

(w—v)?

o [ /A (v + 7" Aw)) ™! dw} 2 (36)

3.2. Choosing the parameter v

To understand the behavior of our preconditioners, we compute the ratio
Rey = 7(MA)/7(A) for the 2D case (derived from Eq. (33) - (36)) as a
function of v/w for different weight moments and for different values of ~y
and a. Without loss of generality, we suppose the weights to be normalized
within [0,1]. The weight mean and variance are uniformly sampled in the
area A = {(w,02) : 0 < w < 1and 0 < 02 < w(l —w)}. Note that the
variance upper bound comes from the Bhatia-Davis inequality [4]. « and
v are sampled within [1,2] and [0.1,5] respectively. Each combination of a
weight mean, a weight variance, a value of v and a value of o produces a
curve of Rey (as a function of v/w). We have about 3 x 10* combinations
in total.

Fig. 2 shows some of them for « = 1 and v = 1, curves for the other cases
being similar. One can see that the highest efficiency of the preconditioners
(i.e., the valleys of Recy) is achieved for v typically ranging from @ up to
several multiples of w. Indeed, the optimal v is found within [w, 5w] for
more than 94% among all cases. For a given RWLS problem, ultimately one
could use some line search methods in this range to find the optimal v which
minimizes 7(MA). Practically, we choose v = w in all our experiments of
Section 4. Out of all the combinations above, this value of ¥ makes 7(MA)
strictly lower than 7(A) (i.e., Roy < 1) for more than 90% cases. In other
words, the preconditioner M is effective in most of the time. We point out
that this choice also makes M ™! the best approximation to the matrix A in
the least squares sense.

4. Applications

4.1. Data smoothing and completion
Data smoothing with missing values refers to filling unobserved pixels
with some estimates computed from the observed pixels. This problem is
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Figure 2: Roy := 7(MA)/7(A) as a function of v/w which ranges from 0.1 to 5. Ry
quantifies the improvement of the system conditioning: the condition number is expected

to decrease for Roy < 1. Weset D =2, hg =1, « =1 and v = 1. In the figure, 60

curves are plotted which correspond to the same number of parameters (@, o2 ) uniformly

sampled in the area A = {(,02):0<w <1 and 0 <02 < w(l —w)}.

straightforwardly addressed by the RWLS (Eq. (2)) where the weights are
typically binary by taking zero values for unobserved areas and values of 1 for
the observed ones. This application is studied in detail by Garcia [5] where
the issues of robustness and of choice of v are emphasized. Numerically,
the author proposed Keller’s preconditioned gradient descent solver [6] for
RWLS.

Fig. 3 compares the performances of Keller’s approach and the PCG on
a 2-dimensional (2D) image smoothing example. The original image (of size
256 x 256) is composed of a mixture of Gaussian functions. The observed
image is generated by first adding a Gaussian noise, followed by dropping off
about 2/3 data points. The missing data are first picked out randomly, then
cropped out by 4 squares of size 50 x 50 each. We set « =2 and v =1. An
even symmetry boundary condition is assumed and the DCT is employed to
be the diagonalization basis of L} L, as in [5].

Compared to the PCG result, the square masks are still partially visible
in the estimate of Keller after 100 iterations. This shows that the PCG
diffuses faster the observed information into the unfilled areas. The energy
evolutions confirm that PCG converges much faster than Keller’s iterations.
The PCG is also more accurate: after 100 replications, the mean squared
error (MSE) of the PCG estimates is evaluated to be 0.015, in comparison
to 0.48 for Keller.
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We also measured the execution time of both methods for indicative pur-
pose. To achieve the same MSE target of 0.2 in this example, our approach
took 0.9 seconds in contrast to Keller’s method which took 11.5 seconds. The
time was measured on a PC with 3.33 GHz Intel Xeon® CPU. Both methods
are implemented in Matlab®.

Fig. 4 shows a more realistic case where we try to restore an image with
1/3 randomly sampled data available. Here the underlying image contains
both low-frequency information and discontinuities. As we have shown in
Section 2.3, one can view the weights in RWLS as actors of boundary condi-
tions in a diffusion process. The boundary conditions are not strictly imposed
but handled in a soft way through these weights. Eq. (12) shows that pixels
receiving large fidelity weights prevent the diffusion induced by the regular-
ity term at those pixels. In this sense, RWLS is very flexible as the weights
automatically manage boundary conditions of any spatial shapes.

Here the observed pixels serve as our boundary condition which are as-
sociated with weights w; = 1, and the unobserved pixels with zero weights.
We set v2 = 0.1. Therefore, our RWLS will interpolate the unobserved areas
while keeping observed values almost unchanged. Note that this procedure is
quite similar to the interpolation based on partial differential equations [7].

4.2. Edge-preserving filtering

In the purpose of regularizing image while preserving discontinuities, one
may apply the RWLS framework by using large fidelity weights on the pixels
with discontinuities and small ones for homogeneous regions. According to
Eq. (12), ¥*W! plays a similar role as the diffusion-rate function in the
Perona-Malik anisotropic diffusion model [8].

Fig. 5 shows a filtering example using RWLS using v = 0.5 and o = 1.
Our weights are defined as follows:

w; =1 — exp(—|VI(x;)|*/ K*)

The parameter K can be considered as a reference edge-saliency level above
which the diffusion will be hampered. Parallely, homogeneous areas encircled
by the salient edges will be associated with small weights closed to zero. It
follows that the remaining Dirichlet regularity term in Eq. (2) favors an
approximation with harmonic functions on those areas!. Consequently, this

!This is due to the fact that Dirichlet penalty leads to Laplace equation as Euler-
Lagrange equation with harmonic functions as solutions.
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(e)

Figure 3: 2D image smoothing with missing values. (a) original image (size: 256 x 256,
range: [—6.5,8.1]); (b) observed image (by adding on the original image a zero-mean
Gaussian noise of ¢ = 0.25, then removing 2/3 data through a random mask with 4
squares of 50 x 50 each); (c) result of Keller’s method with 100 iterations; (d) result of
PCG method with 100 iterations; (e) the evolutions of energy. Parameters: hg = 1, a = 2,
the diagonalization basis is DCT, and v = 1. MSE of the PCG estimates is 0.015 and that
of Keller is 0.48. Targeting the same MSE of 0.2, PCG took 0.9 secs compared to 11.5
secs for Keller’s approach on a 3.33 GHz In{zl Xeon® CPU.



(a) (b) ()

Figure 4: Image restoration with missing values. (a) original image of Lena (size: 512 X
512); (b) observed image (by removing 2/3 data through a random mask); (c) result of
PCG method with 20 iterations; Parameters: hy = 1, o = 1, the diagonalization basis is
DCT, and 72 = 0.1. The weights are set to 1 on observed pixels and 0 elsewhere.

results in piecewise smooth images.

4.3. Gradient-vector flow estimation

The gradient-vector flow (GVF) [9] is widely used in deformable-model
based applications in order to extend the attraction range of external forces
(see [1] and references therein). GVF in 2D continuous setting consists in
solving the following variational problem:

agmin. [ g(VoeDlutx) = Vol Fx-+ 17 [ [V (ol + [Vl dx

u:=[ug,uz|’
(37)

Here Q is the image domain, x = [z1,22)7 € , Vu(x) is the observed
gradient field, and u(x) := [u;(x), uz(x)]? is the sought extended field. ¢
is an “edge” weighting function which is typically monotone increasing and
smooth.

It can be seen that the components u; and u, are decoupled in the opti-
mization problem (37). Solving (37) is equivalent to minimizing for u; and
uy independently:

argmin [ o(Ve0) [ul<x>—§—;<x>} bt [ [VuGoPax @9
with [ = o)

1 2. The Euler-Lagrange equation of Eq. (38) is given by
9(IVux)[)(w

r
(x) — 2% (x)) — y2Awuy(x) = 0. Therefore, it is straightforward

- Bacl
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Figure 5: Edge-preserving filtering by RWLS on the image of Lena (range: [0,255]). (a)
Original Lena image; (b) filtered result with K = 10; (c) filtered result with K = 30;
(d) filtered result with K = 50. From (b) to (d), we set v = 0.5, « = 1, hy =1 and a
maximum number of 20 PCG iterations. The diagonalization basis is DCT.
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to convert Eq. (38) to our discrete RWLS framework of Eq. (2) by setting:

w; = g(|Vou(x[i])]), wgli] := %(XM)’ LL,=-A, a=1

where x[i] is the position of the i-th pixel.

A vast number of schemes have been proposed to solve Eq. (37) such as
the gradient-descent [9], operator-splitting based schemes [10], augmented
Lagrangian method [11], and the alternating-direction methods [12]. Bouk-
erroui [12] also provides a comparative study of the different numerical ap-
proaches.

In our comparative study, we include the alternating direction explicit
scheme (ADES) solver which is recommended in [12], and the augmented
Lagrangian (AL) based approach [11]. For ADES we followed the advice in
[12] by including a left-right domain flipping in our iterations.

Our comparison is based on a synthetic image of a centered disk (Fig. 6(a))
as in [12]. The gradient of this image (i.e., Vv), which is nonzero only in a
local vicinity of the disk boundary, is used to construct the edge-weighting
function:

gty =1—¢"

We set 72 = 1.5 for all three methods. In ADES, the time step in the iteration
scheme is set to 10 (see [12] for details).

As [12], our goal is to compare the orientation accuracy of the estimated
vector fields. To build the ground truth, we compute analytically the ori-
entation at each pixel of the image with respect to the disk center. These
orientations are color-coded for [—7, 7) and shown in Fig. 6(c). The orienta-
tions of u(x) derived from the different GVF estimates are demonstrated in
Fig. 6(d), (e) and (f), as well as their absolute residual in Fig. 6(g), (h) and
(i) for the three approaches at the end of 15 iterations.

Visually, some bias for pixels far from the image center can be seen in
ADES, and some inaccurate estimates in the AL method lie around the
image corners. Generally, we found that more iterations are necessary for
ADES to reduce the bias, and for AL to diffuse the local gradient information
sufficiently far away to the image boundaries and corners. Finally, the PCG
result looks the closest to the ground truth.

Quantitatively, the evolutions of the root mean squared error (RMSE)
of the orientations of u(x) (measured in degrees) for the three methods are
shown in Fig. 7. One can see that the PCG needs very few iterations to
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reduce most of the error. This best performance is followed by ADES, and
then AL. At the end of the iterations, we have RMSE = 0.71 degrees for
PCG, 4.17 degrees for ADES, and 11.1 degrees for AL.

In terms of execution time, in order to attain an RMSE less than 5 degrees,
it took 17.4 seconds for ADES, 1.04 seconds for AL, and 0.16 seconds for
PCG. The time was evaluated on the same PC as in section 4.1.

4.4. Image registration

Registration between two 2D images consists in seeking a smooth defor-
mation field that approximately maps an observed image to a reference. We
are particularly interested in Demons registration algorithm [13], which is
extensively employed in medical imaging [14][15] for its simplicity and fast
performance.

The deformation field is derived as a solution of a variational problem
such that the field is the best tradeoff between an image similarity measure
and a field regularity measure. Here we consider the following minimization
problem using the sum of squared difference (SSD) as our similarity term:

arg min J(u) = Z(v(xi + ;) — vo(x5))? + 72| Loul]? (39)
u .
where v and vy are the observed image and the reference image respectively,
and u the sought deformation field.
We will cast the problem Eq. (39) into our RWLS framework using the
approximation of [14]. For this purpose, we first adopt a first-order approx-
imation of the SSD measure, or in other words the assumption of a small

deformation u.

SD; = (v(x; +w;) —vo(x))? = (Vo(x) T + v(x;) — vo(x;))?
= (v(xi) = vo(x:))* + 2(v(x:) — vo(x:)) Vo (x;) " +
u] Vo(x;)Vo(x;) (40)

We then approximate the Hessian tensor Vou(x;)Vu(x;)T in Eq. (40) by
the optimal scalar matrix in the least squares sense 1Tr(Vu(x;)Vo(x;)")L
Completing the squares in Eq. (40), the problem Eq. (39) is converted into:

arg minz (Vo ()| |Ju; — 4))% 4 2v%¥||Laul|? (41)

vo (%) — v(xi)

v Vo(x,)P

Vo(x;) (42)
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(h)

Figure 6: GVF estimation on a synthetic image. (a) The image of a centered disk (image
size 257x 257, disk radius is 64 pixels); (b) the gradient magnitude of the disk image; (c) the
orientation analytically computed at each pixel w.r.t. the disk center (our ground-truth)
and color-coded for [—m,7); (d) the orientations of u(x) derived from the ADES scheme
(7 = 10); (e) the orientations of u(x) derived from the AL scheme; (f) the orientations
of u(x) derived from the proposed PCG scheme; (g) the absolute residual of the angle
estimates using ADES; (h) the absolute residual of the angle estimates using AL; (i) the
absolute residual of the angle estimates using PCG. (g), (h) and (i) are shown in the scale
of [0,20] degrees. The number of iterations is 15, and we set hqy = 1 and 42 = 1.5. The
diagonalization basis is DCT.
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Figure 7: RMSE of the orientation estimates as a function of number of iterations. Tar-
geting the same RMSE of 5 degrees, it took 17.4 secs for ADES, 1.04 secs for AL, and
0.16 secs for PCG on a 3.33 GHz Intel Xeon® CPU. The PCG method reduces the error
much faster than the competing numerical schemes.

It can be seen that Eq. (41) fits our RWLS framework with the weights given
by w; := |[Vu(x;)[%. This dependency of the weights on the gradient is very
intuitive: the deformation of the image is entirely encoded by the pixels
having high gradients (i.e., discontinuities like contours and edges), while a
small displacement of a pixel inside a homogeneous area is totally invisible.

Let us also point out that the first order approximation in (40) is valid for
small displacement u. In registrating two images with large deformation, we
basically need to solve a sequence of problems (39) where in each step, v is
replaced by the estimate from the previous warped result. Consequently, the
final field is estimated as a successive composition of the small deformation
fields.

In parallel, Demons registration consists first in computing the field Eq. (43)
then followed by a Gaussian smoothing on both & and the cumulated com-
posite deformation field [13][15]. Compared to Eq. (42), Eq. (43) possesses an
additional term in the denominator for preventing instabilities due to small
gradient values. Note that this is not a problem for the RWLS model as
small gradients are weighted by small values in Eq. (41).

o vo(x:) — v(x;)
L V() P+ e(vo(x) — v(xi))?

Vu(x;) (43)
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Fig. 8 shows an example comparing Demons method and the RWLS ap-
proach on a synthetic case where we register a disk onto a peanut shape.
The top three rows correspond to Demons warping progression using three
increasing smoothing Gaussian widths (0 =1, 0 = 3, and o = 6). The value
of € is set to 0.01. The last row demonstrates the warping results given by
RWLS. The corresponding deformation field estimates are presented in Fig. 9.
Fig. 9 clearly shows that Demon requires a large enough Gaussian width to
guarantee the regularity of the warping (in our example o > 3). However, as
the Gaussian width increases the displacement magnitudes shrink implying
that many more warpings are needed and hence can be time consuming.

Fig. 10 presents the evolution of the registration errors (defined as the
norm of the difference between the warped image and the reference) as a
function of the number of warpings. For a fixed error target, considerably
fewer warpings are required in our PCG-based approach. The error reduction
is slow in Demon’s iterations and eventually almost stagnating.

5. Generalization of RWLS and the related works

In this section, we will briefly discuss a generalization of the RWLS frame-
work and its potential in real applications. We will consider its extension by
weighting both the data term and the regularization term. In addition, we
will consider a general linear regularization operator L:

al.“ﬂgDmiﬂg J(u) = /RD w(x) (u(x) — up(x))* dx + v /RD v(x)|Lu(x)|* dx  (44)

Here, v(x) > 0 are the weights applied pointwisely on the regularization
penalty. It follows that the generalized discrete RWLS can be written as:

argmin J(u) := [|[W?2(u —ug)||*> + 7| V>Lul? (45)

ucRN

where the diagonal matrix V- € R¥*¥ bears the weights v; > 0 on its diagonal

elements. The minimizer is the solution to the following linear system:
Au=Db, where A :=(W +~L*VL) and b := Wu, (46)

Mimicking the standard RWLS case, we can solve the system by PCG with
a preconditioner M given by

M := (@I +~y7L*L) " (47)
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(m) (n) (o) ()

Figure 8: Registration by Demons algorithm and the proposed RWLS approach. The first
image of every row (i.e., (a), (e), (i) and (m)) represents the initial state that a disk will
be progressively warped to the shape of peanut. The two shapes are superimposed for
display purpose. (b) to (d): Demons algorithm at 10, 20 and 30 warpings (smoothing
Gaussian standard deviation o = 1); (f) to (h): Demons algorithm at 10, 20 and 30
warpings (smoothing Gaussian standard deviation o = 3); (j) to (1): Demons algorithm
at 10, 20 and 30 warpings (smoothing Gaussian standard deviation ¢ = 6); (n ) to (p):
RWLS approach with PCG at 10, 20 and 30 warpings (hg = 1, « = 1 and v = 1. The
diagonalization basis is FFT). 29



Figure 9: Warping fields of registration. Images are displayed in the same order as in

Fig. 8.
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Figure 10: Evolution of registration error as a function of the number of warpings. The
error drops much faster in our PCG-based RWLS approach, compared to the Gaussian-
filter-based Demons registrations.

where v represents the average value of the weights v;.

The advantage of considering the extended RWLS framework is that, by
properly designing the weights v, one may address other penalties such as L!-
minimization by this quadratic optimization framework. This point has been
exploited by several works in the literature. For example, Daubechies et al.
[16] proposed a sparse solution solver in compressed-sensing applications by
casting an L'-norm minimization into a sequence of weighted L?-norm mini-
mization problems. In [17], a half-quadratic algorithm [18][19] was applied to
solve the total-variation (TV) minimization. The method converts the TV-
regularization term [ |Vu(x)| dx into a weighted quadratic term through the
weights v(x):

. , 1
aisvglén Data-Term (u) +/ {U(X)|VU(X)| + ) dx
At each iterative step, the algorithm first minimizes u by fixing v, and then
solves the weights v while fixing u. Note that the solution of v given u
has a simple form: v(x) = 1/(2|Vu(x)]). The updated v and v serve as
initializations at the next iteration.

The generalized RWLS model allows us to deal with even richer appli-
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cations under this flexible framework. Here we show its potential on a toy
example of texture restoration application in Fig. 11. We simulated a peri-
odic textural pattern by setting random amplitudes on 4 DCT coefficients
and zeroing the rest. This image is shown by Fig. 11(a). Then in the spatial
domain, we added a white noise (PSNR = 30) and randomly kept only 5.6%
of the samples. The sampling mask is presented in Fig. 11(b). Our goal is
to estimate the underlying pattern given the heavily down-sampled image.
This textural restoration problem can be formulated as:

u

argmin/w(x)(u(x) — up(x))? dx+7/|Lu(w)|dw (48)

where L represents the DCT transform, and v, the observed noisy and down-
sampled image. The weights w(x) are binary which take value of 1 only at
the positions of the spatial sampling. The penalty of the L'-norm on Lu
promotes a solution with sparse DCT coefficients. Using the same technique
of half-quadratic algorithm, Eq. (48) is converted into Eq. (49) by introducing
the weights v:

arg min/w(x)(u(x) — up(x))? dx + ’y/ [U(w)Lu(w)2 + ! dw (49)

u,v>0 4’0((.0)
While fixing the weights v, Eq. (49) is a generalized RWLS. The solution of
u can be obtained by our PCG schema. While fixing u, the weights v can
be explicitly computed. Consequently, we alternatively minimize u and v
at each iteration and use the results as initial points for the next iteration.
Fig. 11(d) shows the restored texture pattern despite the heavily degraded
observations.

6. Conclusion

In this paper, we proposed to solve a range of computational imaging
problems under the perspective of a regularized weighted least-squares model
using a PCG approach. We provided a detailed convergence analysis justify-
ing our choice of the preconditioner that improves the system conditioning.
This numerical solver, which is simple, scalable and parallelizable, is found
to outperform most of the competing schemes proposed in the literature in
terms of the convergence rate. We also discussed an extended RWLS formu-
lation by introducing weights on the regularization term, making the model
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(c) (d)

Figure 11: (a) Original image obtained from 4 DCT coefficients with random amplitudes
(image size 256 x 256). (b) The spatial sampling mask which keeps only 5.6% spatial
samples. (c) The down-sampled image is then further degraded by adding a white noise
(PSNR = 30). (d) The restored image from the heavily down-sampled and noisy image
(c). We have set a total of 15 iterations, and v = 0.05. At each iteration, we used the
PCG of the generalized RWLS to solve u while fixing v, and then explicitly compute v
while fixing u by v(w) = 1/(2y/Lu(w)? + €) with e = 10~ for preventing zero-division.
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even more flexible. We believe that a lot more imaging applications could
join this framework and benefit from the efficient PCG scheme. This is the
area of our future investigations.

Appendix A. Proof of Proposition 1

Applying the trace operator on A in Eq. (10), we immediately establish
Eq. (27). To show Eq. (28), we compute p(A?):

u(A?) = p(W?) + 29 (WEF*AF) + 7" u(A?) (A.1)

~

Eq.(24) implies that u(W) = (W) = @w. Due to the circulant structure

~

in W, one can show that the diagonal elements of W are all equal to w.
Therefore, we have

H(WE*RF) = p(WA) = wp(A) (A2)
Inserting Eq. (A.2) into Eq. (A.1) and using the definition Eq. (19), we obtain
Eq. (28). This ends the proof.
Appendix B. Proof of Proposition 2

Recall the definitions of M (i.e., Eq. (13)), of H (i.e., Eq. (14)) and of W
(i.e., Eq.(24)). We have

p(MA) = p[H(W +5%1)]
:Mpm*+W—m}
= 1+ (w—v)u(H) (B.1)

~

where we used the fact that (W — v1I) has all its diagonal elements equal to
(w — v). This shows Eq. (29)
To show Eq. (30), we first show that

HEW) = 30 3 nylasel (5.2)

we can write WH = (090, a1, - - -, Mn—19n—1]. Using the fact that W+ =
W, we have

N-1
WHW = WHW* = Z n:q;
=0
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Therefore, the j-th diagonal element of the matrix WHW is given by

N—
WHW Z 145, ij i Z U |QJ,1‘2
=0

Consequently,

=z

-1

H((EWP?) = p(H(WHW)) = Z oy

J

I\
o

This shows Eq. (B.2).
Now, u((MA)?) can be computed as
u((MA)?) = p((HH™ + W — VI))Q)
= u(I+42HW — 20H + *H?) — 20pu(H*W) + u((HW)?)
20— () + (@ — )2 p(HR) — oP(ER) + u((HW)?)(B.3)

Inserting Eq. (B.2) into Eq. (B.3), we obtain Eq. (30) by the definition
Eq. (19). This ends the proof.

Appendix C. Proof of Proposition 3

First, we point out that for any matrix G with real eigenvalues, we have
tr(G?) < tr(G*G). In effect, if we use g; ; to denote the element of G at the
1-th row and the j-th column, one has

—1N-1 N-1N-1

tr(GQ) < ZZ|9M911|_Zlgm|2+222|gwgﬂ
=0 =0 7
—1 —1N-1 " N—-1N-1
< Z|9m’2+zz |gw|2+’9ﬂ Z|gm|2+ZZ!gw|2
=0 j<u =0 j#i
= tr(G G)

Using this result and replacing G by MA, we have

*(MA) = j((MA)) — u(MA)? < u(A"M"MA) — u(MA)?  (C.1)
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The term p(A*M*MA) is computed as follows:

p(A*MFMA) = p((H? —vI+ W H2H ™ — I+ W))
= 14 2@ — v)u(H) + (* — 2wv0)u(H?) 4+ p(H>W?)
= 1+2(@ - v)p(H) + (@ — v)*w(H?) + ((W?) — @) u(H?)
= 142w —v)u(H) + (0 — v)?u(H?) + 02 u(H?) (C.2)

where we have used W* = W and that W2 = W*W has all diagonal
elements equal to u(W?).

Inserting Eq. (C.2) into Eq. (C.1) we obtain Eq. (31). This ends the
proof.
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