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Translating HOL to Dedukti

Ali Assaf!? and Guillaume Burel®

L INRIA Paris-Rocquencourt, Paris, France
2 Ecole polytechnique, Palaiseau, France
3 ENSIIE/Cédric, Evry, France

Abstract. Dedukti is a logical framework based on the All-calculus
modulo rewriting, which extends the AI7-calculus with rewrite rules. In
this paper, we show how to translate the proofs of a family of HOL
proof assistants to Dedukti. The translation preserves binding, typing,
and reduction. We implemented this translation in an automated tool
and used it to successfully translate the OpenTheory standard library.

1 Introduction

Following the LF legacy [14], Dedukti is a logical framework for defining logics
and expressing proofs in those logics [7]. It is based on the AIT-calculus mod-
ulo rewriting, which extends the AIT-calculus with rewrite rules. Cousineau and
Dowek [9] showed that functional pure type systems (PTS), a large class of calculi
that are at the basis of many proof systems, can be embedded in the AII-calculus
modulo in a way that is complete and reduction-preserving. This led to propose
Dedukti as a universal proof framework.

In this paper, we focus on translating the proofs of HOL to Dedukti. HOL
refers to a family of theorem provers built on a common logical system known
as higher-order logic or simple type theory [8]. It includes systems such as HOL
Light, HOL4, and ProofPower-HOL. These systems are fairly popular and a
large number of important mathematical results have been formalized in them
[12,13,24].

Universal proof checking Using Dedukti as a logical framework serves two
goals. First, in the short term, it serves as an alternative, independent proof
checker, providing an additional layer of confidence over each system. The sec-
ond, longer term goal, is interoperability. Proof systems are becoming increas-
ingly important, both in the formalization of mathematics and in software en-
gineering. However, they are usually developed separately, with very little in-
teroperability in mind. As a result, it is currently very difficult to reuse a proof
from one system in another one. Embedding these different systems in a single
unified framework is the first step to bring them closer together, and opens the
way for theory management systems [15,22] to combine their proofs in order to
construct and verify larger theories.
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The AIT-calculus as a logical framework The A[l-calculus, also known
as LF, is a typed A-calculus with dependent types. Through the Curry-Howard
correspondence, it can express a wide variety of logics [14]. Several formalizations
of HOL in LF have been proposed [2,23,21].

The main concept behind this correspondence is the “propositions as types”
principle. Typically, we can define a context declaring the types, terms, and judg-
ments of the original logic, in such a way that provability in the logic corresponds
to type inhabitation in the context. For HOL, the signature would be:

type : Type

prop :type

arrow : type — type — type

term : type — Type

lam : (terma — term 3) — term (arrow « 3)
app :term (arrow o 8) — terma — term

proof : term prop
rule_ 1:...
rule 2:...

For each proposition ¢ of the logic, we can assign a type ||¢| in the AII-
calculus. The provability of the proposition ¢ corresponds to the inhabitation of
the type ||¢||. Similarly, we can translate proofs as terms inhabiting those types,
and the correctness of the proof corresponds to the well-typedness of the term.

However, because the AIl-calculus does not have polymorphism, we cannot
translate propositions directly as types, as doing so would prevent us from quan-
tifying over propositions for example. Instead, for each proposition ¢, we have
two translations: one translation |@| as a term, and another ||¢|| = proof |¢| as a
type. This correspondence has been successfully used to embed logics in the LF
framework [14,11], implemented in Twelf [20].

The AIl-calculus vs. the AIT-calculus modulo rewriting An important

limitation of LF is that these encodings do not preserve reductions. For example,

the term (A\x : . x) x is encoded as app (lam (Az : term a. 2)) « which is not con-

vertible to x. This is problematic not only because it makes the representation

larger and hence inefficient but also because conversion proofs may be very long.
By extending the AIl-calculus with rewrite rules such as

term (arrow a 8) ~ term o — term (3 |

we can identify the type term (arrow a8) with the type terma — term 8 and
thus define a translation that is lighter and that preserve reductions. The en-
coding of the terms becomes more compact, as we represent A-abstractions by A-
abstractions, applications by applications, etc. For example, the term (Az : . x)
is encoded as (Az : term . ) . Such an encoding is impossible in LF for higher-
order theories such as system F, HOL, or the calculus of constructions.
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Moreover, our translation is modular enough so that we can extend the notion
of reduction to the proofs of HOL and recover the pure type system nature of
HOL [4]. This might be beneficial for several reasons:

1. It gives a reduction semantics for the proofs of HOL.

2. It allows compressing the proofs further by replacing conversion proofs with
reflectivity.

3. Several other proof systems (Coq, Agda, etc.) are based on pure type sys-
tems, so expressing HOL as a PTS fits in the large scale of interoperability.

HOL and OpenTheory The theorem provers of the HOL family (HOL Light,
HOLA4, ProofPower-HOL, etc.) are built on a common logical formalism known
as higher-order logic, and have fairly similar core implementations.

A recurrent issue when trying to retrieve proofs from these systems is that
they do not keep a trace of their proofs [15,17,19]. Following the LCF architec-
ture, they represent their theorems using an abstract datatype and thus guar-
antee their safety without the need to remember their proofs. This approach
reduces memory consumption but hinders their ability to share proofs.

Fortunately, several proposals have already been made to solve this problem
[15,19]. Among them is the OpenTheory project. It defines a standard format
called the article format for recording and sharing HOL theorems. An article file
contains a sequence of elementary commands to reconstruct the proofs. Import-
ing a theorem requires only a mechanical execution of the commands.

The format is limited to the HOL family, and cannot be used to communicate
the proofs of Coq for example. However, it is an excellent starting point for our
translation. Choosing OpenTheory as a front-end has several advantages:

— We cover all the systems of the HOL family that can export their proofs to
OpenTheory with a single implementation. As of today, this includes HOL
Light, HOL4, and ProofPower-HOL.*

— The implementation of a theorem prover can change, so the existence of this
standard, documented proof format is extremely helpful, if not necessary.

— The OpenTheory project also defines a large common standard theory li-
brary, covering the development of common datatypes and mathematical
theories such as lists and natural numbers. This substantial body of theories
was used as a benchmark for our implementation.

Related work Several formalizations of HOL in LF have been proposed [2,21,23].
To our knowledge, they lack an actual implementation of the translation. Other
translations have been proposed to automatically extract the proofs of HOL to
other systems such as Isabelle/HOL [16,19], Nuprl [18], or Coq [17]. With the
exception of [16], these tools suffer from scalability problems. Our translation is
lightweight and modular enough to be scalable and provides promising results.
The implementation of Kalyszyk and Krauss [16] is the first efficient and scalable

4 Isabelle/HOL can currently read from but not write to OpenTheory.
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translation of HOL Light proofs, but its target is Isabelle/HOL, a system that
is foundationally very close to HOL Light.

A project parallel to ours is Coqine [6], which proposes a translation of the
calculus of inductive constructions (CIC), the formalism behind Coq, to Dedukti.
The translation has been implemented in an automated tool that translates the
proofs compiled by Coq to Dedukti. It can handle most of the features of Coq,
and has been used to translate a part of its standard library.

Contributions We define a translation of the types, terms and proofs of HOL to
Dedukti. We use the rewriting techniques of Cousineau and Dowek [9] to obtain
a shallow embedding that is lightweight and modular. We implemented this
translation in an automated tool called Holide, which automatically translates
the proofs of HOL written in the OpenTheory format to Dedukti. We used it to
successfully translate the OpenTheory standard library.

Outline The rest of this paper is organized as follows. Section 2 presents De-
dukti and the AIT-calculus modulo rewriting. Section 3 presents HOL and the
logical system behind it. Section 4 defines the translation of HOL to Dedukti. We
show that the translation is correct in Section 5. Section 6 discusses the details
of our implementation and the results obtained by translating the OpenTheory
standard library. Section 7 discusses some additional applications of rewriting.
Finally, Section 8 summarizes and considers future work.

2 Dedukti

Dedukti is essentially a type checker for the AIT-calculus modulo rewriting [7],
which extends the AIl-calculus with rewrite rules. We choose a presentation
based on pure type systems [4], which makes no syntactic distinction between
terms, usually denoted by M or N, and types, usually denoted by A or B.

We assume countably infinite sets of variables and constants. There are two
sorts, Type and Kind. The sort Type is the type of types and the sort Kind is the
type of Type. We write Az : A. M for abstractions and M N for applications.
The type of functions is written ITx : A. B, or A — B when x does not appear
free in B. Application is left-associative while the arrow — is right-associative.
Terms are considered up to a-equivalence. Contexts contain the type of variables
while signatures contain the type of constants and their rewrite rules.

Definition 1. The syntaz of the A\II-calculus modulo rewriting is:

variables x,y

constants c

sorts s ::= Type | Kind

terms M,N,AB:=z|c|s|Hx:AB|Xt:AM|MN
contexts I, A w=-|Nz: A

signatures X w=-| X A| X[ TM M~ N
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If R is a set of rewrite rules, we write — i for the reduction relation, —>§
for its tramsitive closure, —% for its reflexive transitive closure, and =g for its
reflexive symmetric transitive closure. Given a signature X', we write X' for the
union of the § rule with the rewrite rules of X.

The typing judgments X' | I' = M : A are accompanied by context formation
judgments X | I' context and signature formation judgments X signature. We
write I' = M : A and I" context instead of ¥ | ' M : A and X | I' context
when the signature is not ambiguous. The rules are presented in Figure 1.

I' context (z:A)erl I' context (c:A)eX
VAR CoNsT
I'kFz:A I'kFc:A
I' context '+ A: Type I''x:AFB:s
———— TYPE ProbD
I' - Type : Kind I'Ilz: A B:s
'+ A: Type Ie:A-M:B I'-M:Ilz: A.B I'EN:A
ABs App
I'FXx:AM:[Izx: A B I'MN:[N/z]B
I'-M:A I't B : Type A=gs B
Conv
I'-M:B
X signature I'H A: Type gl
———— EmpTYCTX VARCTX
- context I'x: A context

Y|-FA:s cg X
EmpPTYSIG

— - ConsTSIG
- stgnature X, c: A signature

S|I'M:A X|T'FN:A

- REWRITESICG
X[l M ~ N signature

Fig. 1. Typing rules of the AIl-calculus

Example 1. Let X be the signature containing
nat : Type, z: nat, s: nat — nat, stream : Type

and the rewrite rule
[[] stream ~ nat — nat .

The term Af : stream.Az : nat.s(fz) is well-typed in X' and has the type
stream — stream. Notice that this term would not be well-typed without the
rewrite rule.
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Dedukti imposes some additional restrictions on the rewrite rules to keep
type-checking decidable. In particular, the left side of a rewrite rule must belong
to the pattern fragment and the free variables of the right side must appear on
the left side. Moreover, the reduction relation — g5 should be confluent and
strongly normalizing. This property is not verified by the system and it is up to
the user to ensure that it is indeed the case. We will do so in Section 5.

3 HOL

There are many different formulations for higher-order logic. The intuitionistic
formulation is based on implication and universal quantification as primitive
connectives, but the current systems generally use a formulation called Qg [1]
based on equality as a primitive connective. We take as reference the logical
system used by OpenTheory [15], which we will now briefly present.

The terms of the logic are terms of the simply typed A-calculus, with a base
type bool representing the type of propositions and a type ind of individuals. The
terms can contain constant symbols such as (=), the symbol for equality, or select,
the symbol of choice. The logic supports a restricted form of polymorphism,
known as ML-style polymorphism, by allowing type variables, such as « or 3, to
appear in types. For example, the type of (=) is @« — a — bool.

Types can be parameterized through type operators of the form p(Ay, ..., A,).
For example, list is a type operator of arity 1, and list(bool) is the type of lists
of booleans. Type variables and type operators are enough to describe all the
types of HOL, because bool can be seen as a type operator of arity 0, and
the arrow — as a type operator of arity 2. Hence the type of (=,) is in fact
— (a, = (a, bool())). We still write A — B instead of — (A, B) for arrow types,
p instead of p() for type operators of arity 0, and M = N instead of (=) M N
when it is more convenient.

Definition 2. The syntax of HOL 1s:

type variables o,

type operators p

types AB =a|p(41,...,4,)

term variables x,y

term constants c

terms M,N:=z|X:AM|MN]|c

The propositions of the logic are the terms of type bool and the predicates are
the terms of type A — bool. We use letters such as ¢ or 1 to denote propositions.
The contexts, denoted by I" or A, are sets of propositions, and the judgments of
the logic are of the form I' - ¢. The derivation rules are presented in Figure 2.
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I'-M=N
——— REFL M ABSTHM x
FM=M I'FXe:AM=MXx:AN
I'-F=G AFM=N
ArrTHM BETA *+ M
F'UArFM=GN FAx:AM)z=M
I'Eo¢= Al
ASSUME o=1 ¢EQMP
{p}F o T'UAFY
I'¢ A I'o¢
DEDUCTANTISYM ——————— SUBST o
I={hHu@A-{sh)Fo=v I'lo] F ¢[o]

Fig. 2. Derivation rules of HOL

Ezxample 2. Here is a derivation of the transitivity of equality: if I'+ 2z = y and
ArFy=zthen TUAF z = 2.

REFL

F((=)) = ((=)) Aby==z
AF(z=y)=(x=2) Appint Fl—as:yEMP
rvArz=z ?

HOL supports mechanisms for defining new types and constants in a con-
servative way. We will not consider them here, as their treatment should be
straightforward. In addition to the core derivation rules, three axioms are as-
sumed:

— m-equality, which states that Ax : A. Mz = M,
— the axiom of choice, with a predeclared symbol of choice called select,
— the axiom of infinity, which states that the type ind is infinite.

It is important to note that from 7-convertibility and the axiom of choice, we
can derive the excluded middle [5], making HOL a classical logic.

4 Translation

In this section we show how to translate HOL to Dedukti. We define a signature
X} which contains the primitive declarations and definitions, and a translation
function assigning, to every construct of the logic, a term that is well-typed in
the signature Y.
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HOL Types To translate the simple types of HOL, we declare a new Dedukti
type called type and three constructors bool, ind and arrow.

type : Type
bool : type
ind :type

arrow : type — type — type

One should not confuse type, which represents HOL types, with Type, the sort of
types of the AII-calculus modulo. The translation as a term is defined inductively
on the structure of the simple type.

Definition 3. For any HOL type A, we define |A|, the translation of A as a
term, to be

|| =«
|bool| = bool
lind| =ind

|A — B| = arrow |A] |B| .

More generally, if we have an n-ary HOL type operator p, we declare a constant
p of type type — ... — type — type, and we translate an instance p (A1, ..., An)

n
of this type operator to the term p|A1| -+ |An|.

HOL Terms We declare a new dependent type called term indexed by type,
and we identify the terms of type term(arrow A B) with the functions of type
term A — term B by adding a rewrite rule. We also declare a constant eq for
HOL equality and a constant select for the choice operator.

term : type — Type
eq :[Ila:type. term (arrow « (arrow a bool))
select : [T : type. term (arrow (arrow abool) «)

[cv : type, B : type] term (arrow o ) ~ term a — term (3

The symbol term can be seen as a decoding function that assigns a Dedukti type
to every HOL type. The translation of a term M of type A will then be a term
of type term|A|.

Definition 4. For any HOL type A, we define | A|| = term |A] .

Definition 5. For any HOL term M, we define |M|, the translation of M as a
term to be

|z| =z

|IMN| = [M]|N]|
Az : A. M| =Xz : |A]. |M|
l(=a)l  =eqlA]

|selecta| = select|A] .
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More generally, for every HOL constant ¢ of type A, if aq,...,a, are the free
type variables that appear in A, we declare a new constant ¢ of type

ITag : type. ... Iay, : type. || Al

and we translate an instance ca, ... a, of this constant by the term c|Aq| -+ |Ay].

.....

Ezample 3. The term (Az : o. x) x is translated to
|(Az: a.z)z| = (Ax : terma. z) @

which is convertible to x.

HOL Proofs We declare a new type proof, to express the proof judgments
of HOL. It is a dependent type, indexed by the proposition it is proving, and
corresponds to the judgment I' F ¢.

proof : term bool — Type

Definition 6. For any HOL proposition ¢, we define ||¢|| = proof |¢|. For any
HOL context I' = ¢1, ..., ¢y, we define

171l = hey < ll@nlls- -5 g, = l[onl

are fresh variables.

n

where hg,, ..., he

We now take care of the derivation rules of HOL (Figure 2). In the following,
we write I1x,y : A. B as a shortcut for [Tz : A. ITy : A. B.

Equality proofs We declare Refl, FunExt, and AppThm:

Refl : Ha : type. Tz : term «v. proof (eqax )
FunExt : ITa, B :type. Il f, g : term (arrow a 3) .

(IIz : term «v. proof (eq B (f z) (gx))) — proof (eq (arrowa B) f g)
AppThm : ITe, B : type. IT f, g : term (arrow  3) . [Tz, y : term .

proof (eq (arrow o 3) f g) — proof (eq vz y) — proof (eq 8 (f x) (9y))

The constant FunExt corresponds to functional extensionality, which states that
if two functions f and g of type A — B are equal on all values z of type A, then
f and g are equal. We can use it to translate both the ABSTHM rule and the 7
axiom. Since our encoding is shallow, -equality can be proved by reflexivity.

Definition 7. The rules REFL, ABSTHM, APPTHM, and BETA are translated
to

REFL

M =M = Refl |A| |M| (where A is the type of M)
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D
I'FXe:AM=MXx:A N

FunExt|A| |B| |Ax : A. M| |Az: A.N| (\z : |4]|. |D|)

ABsSTHM

D, Dy
T'UAFFM=GN

AppTHM| = AppThm [A| |B| |F| |G| [M]| [N [D1| |Ds|

BETA

Ow:A M)z =M = Refl |A| |[M| (where A is the type of M) .

Boolean proofs We declare the constants PropExt and EqMp:

PropExt : IIp, q : term bool.
(proof ¢ — proof p) — (proof ¢ — proof p) — proof (eq bool p )
EqMp : IIp, q : term bool. proof (eqbool p q) — proof p — proof ¢

The constant PropExt corresponds to propositional extensionality and, together
with EqMp, states that equality on booleans in HOL behaves like the connective
“if and only if”.

Definition 8. The rules ASSUME, DEDUCTANTISYM, and EQMP are trans-
lated to

ASSUME

G} F o =hy (where hy is a fresh variable)

D, Dy
(C={pHu(A—{s})Fo=1
PropExt [¢] [/ (A = [[¢]] - [P1]) (AMhg = [|9]] - [D2])

D Dy
————  EqQMPpr
TUAF

DEDUCTANTISYM

= EqMp (9] || |D1] |Da -

Substitution proofs The HOL rule SUBST derives I'[o] F ¢[o] from ' ¢. In
OpenTheory, the substitution can substitute for both term and type variables
but type variables are instantiated first. For the sake of clarity, we split this rule
in two steps: one for term substitution of the form o = M; /x4, ..., M, /x,, and
one for type substitution of the form 8 = Ay/aq,..., Ap/am. In Dedukti, we
have to rely on S-reduction to express substitution. We can correctly translate
a parallel substitution M[M;/x1,..., M, /x,] as

(>\$1ZBl. )\annM)Man

where B; is the type of M;.
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Definition 9. The rule SUBST is translated to

TYPESUBST| = (A : type. ... A, : type. |D|) |A1] ... |Am]

ror - ¢o]

TERMSUBST

= (Azy || B1]l- - Azp | Boll - D)) [My] ... | My

I'lo] F ¢lo]

5 Correctness

The correctness of the translation is expressed by two properties: completeness
and soundness. The first states that all the generated terms have the correct
type. For example, the translation of a term of type A has type ||A|| while the
translation of a proof of ¢ has type ||¢||. The second states that if a proof term
is well-typed in Dedukti, then the proof is correct in the original logic. These
two properties ensure that we can use Dedukti as an independent proof checker.

Completeness Let X be the signature of HOL containing the declarations and
rewrite rules of the previous sections.

Lemma 1. For any HOL type A,
Y| aq :type, ..., type - |A] : type
where aq, ...,q, are the free type variables appearing in A.
Lemma 2. For any HOL term M of type A,
Y| agtype, ... an s type,xy : [[AL]], .o s ||AR|| F M| A

where oy, ..., ay are the free type variables and x1 : Ay, ..., xy : A, are the free
term variables appearing in M.

Theorem 1. For any HOL proof D of I' - ¢,
Yl arctype,. . an stype,xy: |Au]l, oz [[An]]L ([T E (D] |0l

where v, ..., o, are the free type variables and x1 : A1, ..., xy, : A, are the free
term variables appearing in D.

Proof. By induction on the structure of D.

Soundness Proving soundness is less straightforward than proving complete-
ness. In fact, the soundness of the embedding is closely related to the confluence
and normalization properties of the system. We just state the results here and
refer the reader to [3,9,10] for the complete proofs.®

Lemma 3. The reduction relation — gy is confluent.
Lemma 4. The reduction relation —gx; is strongly normalizing.

Theorem 2. If X | ||| F |D] : [|A| then D is a correct proof of A in HOL.

® The terms soundness and completeness are interchanged in paper [9].
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Package Size (KB) Time (s)
OpenTheory Dedukti Translation Verification
unit 26 114 0.2 0.0
function 89 581 0.3 0.2
pair 216 1435 0.8 0.5
bool 305 1782 0.9 0.5
sum 501 3667 2.1 1.1
option 551 3933 2.2 1.2
relation 965 7923 4.6 2.8
list 1444 9891 5.7 3.2
real 1752 11402 6.5 3.1
natural 2112 12248 6.8 3.2
set 2343 17632 10.2 5.8
Total 10304 70608 40.3 21.6

Table 1. Translation of the OpenTheory standard library

6 Implementation

We implemented this translation in an automated tool called Holide®. The pro-
gram works as an implementation of the OpenTheory virtual machine that keeps
track of the corresponding proof terms for the theorems. HOL proofs are known
to be very large [16,17,19], and we needed to implement proof sharing to reduce
them to a manageable size. OpenTheory already provides some form of proof
sharing but we found that it was easier to completely factorize the derivations
into individual intermediary steps.

Holide reads a HOL proof written in the OpenTheory article format (.art)
and outputs a Dedukti file (.dk) containing its translation. We can run Dedukti
on the generated file to verify it. All generated files are linked with a predefined
file hol.dk containing the signature X' that we defined in Section 4.

We used Holide to translate the OpenTheory standard library. The library
is organized into logical packages, each corresponding to a coherent theory such
as lists or natural numbers. We were able to verify all of the generated files. The
results are summarized in Table 1. We list the size of the files generated by the
translation, as well as the time it takes to translate and verify each package.
These tests were done on a 64-bit Intel Xeon(R) CPU @ 2.67GHz x 4 machine
with 4 GB of RAM.

7 Extensions

In this section we show some additional advantages of having a translation which
preserves reductions.

5 The software available at https://www.rocq.inria.fr/deducteam /Holide/ .
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Compressing conversion proofs One of the reasons why HOL proofs are so
large is that conversion proofs have to traverse the terms using the congruence
rules ABSTHM and APPTHM. Since we now prove -reduction using reflexivity,
large conversion proofs could be reduced to a single reflexivity step, therefore
reducing the size of the proofs.”

Ezample 4. The following proof of f(g((Az: A.z)x)) = f(g9(x)),

R B
Fg=g B g FAz:Azx)z==x .
REFL f

Ff=f Fg((Az:Ax)x)=gx
= flg((Ae = Acx)z)) = flg )
can be translated simply as Refl B(f(gx)).

ApPPTHM

HOL as a pure type system It turns out that HOL can be seen as a pure
type system called Agor with three sorts [4]. This formulation corresponds to
intuitionistic higher-order logic. However, this structure is lost in the Qg for-
mulation used by the HOL systems. Our shallow embedding can be adapted to
recover this structure.

Instead of equality, we declare implication and universal quantification as
primitive connectives, and we define what provability means through rewriting.

imp : term (arrow bool (arrow bool bool))
forall : ITax : type. term (arrow (arrow « bool) bool)

[p : term bool, g : term bool] proof (imp p ¢) ~ proof p — proof ¢
[ : type, p : term (arrow a bool)] proof (forall p) ~ IIx : term . proof (px)

However, this time we do not need to declare constants like Refl and AppThm
for the derivation rules, because they are derivable. Here is a derivation of the
introduction and elimination rules for implication for example:

imp_intro : IIp,q : term bool. (proof p — proof q) — proof (imp pq)
= Ap, q : term bool. Ah : (proof p — proof q) . h

imp_elim : IIp,q : termbool. proof (imppgq) — proof p — proof ¢
= A\p, q : term bool. Ah : proof (imppgq) . \x : proof p. hz

By translating the introduction rules as A-abstractions, and the elimination rules
as applications, we recover the reduction of the proof terms, which corresponds
to cut elimination.

As for equality, it is also possible to define it in terms of these connectives.
For example, we could use the Leibniz definition of equality, which is the one
used by Coq:

eq : ITa : type. term (arrow « (arrow a bool))
= o : type. Az : terma. Ay : term .
forall (arrow a: bool) (IIp : term (arrow abool) . imp (px) (py))

7 This also applies to conversions involving constant definitions, which we did not
cover here but are also assumed as an axiom in HOL.
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We would still need to assume some axioms to prove all the rules, namely FunExt
and PropExt [17], but this definition is closer to that of Coq. Since the Agor, PTS
is a strict subset of the calculus of inductive constructions, we could imagine a
translation that injects HOL directly into an embedding of Coq in Dedukti [6].

8 Conclusion

We showed how to translate HOL to Dedukti by adapting techniques from
Cousineau and Dowek [9] to define an embedding that is sound, complete, and
reduction preserving. Using our implementation, we were able to translate the
OpenTheory standard library and verify it in Dedukti.

Future work The translation we have presented can be improved in several
ways. The current implementation suffers from a lack of linking: if a package
makes use of a type, constant, or theorem defined in another package, we do
not have a reference to the original definition. This is due to a limitation of the
OpenTheory article format. In OpenTheory, this problem is resolved by adding a
theory management layer, which is responsible for composing and linking theories
together [15]. It would be beneficial to integrate this layer in our translation so
that we can properly link the resulting files together.

While we used several optimizations including term sharing in our imple-
mentation, there is still room for reducing the time and memory consumption
of the translation and the size of the generated files. The caching techniques of
Kaliszyk and Krauss [16] could be used in this regard to handle larger libraries
and formalizations.

Finally, we can study how to combine the proofs obtained by this translation
with the proofs obtained from the translation of Coq [6]. That will require a
careful examination of the compatibility of the two embeddings. First, the types
of the two theories must coincide, so that a natural number from HOL is the
same as a natural number from Coq for example. Second, we must make sure
that the resulting theory is consistent. For instance, we know that every type
in HOL is inhabited, which is inconsistent with the existence of empty types in
Coq, so we will need to modify the translations to avoid this. A solution is to
parameterize each HOL type variable by a witness ensuring that it is non-empty.
Our translation is modular enough to allow this solution without much trouble.
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