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On the estimation of Pareto fronts from the point
of view of copula theory

Mickaël Binois †‡ Didier Rullière § Olivier Roustant ‡

Abstract

Given a first set of observations from a design of experiments sam-
pled randomly in the design space, the corresponding set of non-dominated
points usually does not give a good approximation of the Pareto front. We
propose here to study this problem from the point of view of multivari-
ate analysis, introducing a probabilistic framework with the use of copulas.
This approach enables the expression of level lines in the objective space,
giving an estimation of the position of the Pareto front when the level
tends to zero. In particular, when it is possible to use Archimedean copu-
las, analytical expressions for Pareto front estimators are available. Several
case studies illustrate the interest of the approach, which can be used at the
beginning of the optimization when sampling randomly in the design space.

Keywords: Multi-objective optimization, Pareto front, copulas, Archime-
dean copulas

1 Introduction
Multi-objective optimization (MOO) received a lot of attention recently, includ-
ing in particular developments on scalarization [22], hybrid approaches [25], evo-
lutionary optimization (see e.g. [7], [10], [52]) or surrogate-based optimization
[48]. Since no solution usually minimizes every objective at once, the definition
of a solution for a multi-objective optimization problem is generally defined as a
compromise: a solution is said to be optimal in the Pareto sense if there exists
no other solution which is better for every component. All the optimal points
in the objective space form the Pareto front. As a result, optimizers provide a
set of non-dominated points to approximate the Pareto front. Methods are then
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designed to seek some properties for these sets, such as uniformity and coverage.

Usually an optimization process starts with random sampling, either to gen-
erate an initial population or as a basis to construct a metamodel. The current
Pareto front estimated from this first sample may be highly variable, especially
when only a small number of function evaluations is available, corresponding to
time-consuming functions. This is illustrated in Figure 1 for the bi-objective prob-
lem ZDT1 [53], with five 50-points initial samples. However, the stochastic nature
of sampling provides a probabilistic framework that can be exploited to quantify
this variability and to give a better initial localization of the Pareto front. More
precisely, if X = (X1, . . . , Xd) is a d-dimensional random vector representing the
inputs, and f1, . . . , fm the objective functions, then the Pareto front should be con-
nected to the extreme level lines of the distribution of Y = (f1(X), . . . , fm(X)).
To investigate such connection is the aim of the paper.

In the mono-objective situation, a similar probabilistic connection is studied
by [46] to estimate the value of the extremum. Considering a small sample of n
observations (y1, . . . , yn) of Y, the minimum of Y is approximated using concepts
from extreme order statistics. In multi-objective optimization, the connection
seems to be new. Uncertainty quantification around the Pareto front has been
recently considered by [4], using conditional simulations of Kriging metamodels
and concepts from random sets theory. Whereas such approach is relevant in a
sequential algorithm, it may be inappropriate in the initial stage that we consider
here, due to a potentially large model error in metamodeling.

In this paper, we give a theoretical framework in which the Pareto front ap-
pears as a zero level line of the multivariate distribution FY of Y. This problem
is known in the probabilistic literature as support curve estimation (see e.g. [23],
[26], [28]). However, the existing methods rely on assumptions, such as domain
of attraction or polynomial rate of decrease, that can hardly be checked in an
optimization context. As an alternative, we propose to take advantage of copulas
[41] which are multivariate probability distributions with uniform marginals, al-
lowing to consider separately the estimation of the marginals and the dependence
structure. This allows estimating extreme level lines, without making specific
assumptions about domain of attractions. Copulas have already been used in op-
timization, mainly in the variable space to estimate distribution in evolutionary
algorithms, see e.g. [18], [19], [49], while here we focus on the objective space.
We propose a first estimation of the Pareto front relying on the empirical copula.
Then, we consider the case where the copula belongs to the class of Archimedean
copulas, parameterized by a function. This assumption can be checked visually or
statistically with specific tests of the literature. If relevant, a better localization
of the Pareto front is found. Furthermore, a parametric expression of the approx-
imated Pareto front is available.
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The paper is structured as follows. Section 2 proposes alternative definitions
of the Pareto front from the point of view of the cumulative distribution function,
presents some background about copulas and describes the estimation procedure
in the Archimedean case. Section 3 discusses the applicability of the model and
more specifically the consequences of the Archimedean copula model. Section 4
illustrates in several configurations the application of the proposed approach to
Pareto front localization. Section 5 concludes and describes possibilities for fur-
ther improvements.
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Figure 1: Non-dominated points obtained with 5 different random samples (one
color and type of line per sample) of 50 points for the bi-objective problem ZDT1.
The true Pareto front is the black solid line.

2 Methodology
The present section describes the interest of using a probabilistic framework
in multi-objective optimization by establishing the link between both domains.
Based on the resulting theorem, the expression of level lines of the multivariate
cumulative distribution functions FY using copulas is described as well as a pro-
cedure for their estimation. Empirical and parametric model are discussed, with
emphasis on Archimedean models.

2.1 Link between Pareto front and level curves
For a variety of methods ranging from evolutionary optimization [10] to surrogate-
based methods [45], optimization starts with random sampling in the design space,
with uniform sampling or with a random Latin Hypercube. In this case, it is pos-
sible to study the resulting observations in the objective space as a set of points.

3



Specifically, assuming that the outputs can be considered as independent and
identically distributed (i.i.d.) random variables, they enter the scope of multivari-
ate analysis.

Let us start with definitions of Pareto dominance and Pareto front, in a min-
imization context. For two points y = (y1, . . . , ym) and z = (z1, . . . , zm) of Rm,
m ≥ 2, we first define the respective weak, strict and strong dominance operators
4, ň and ≺ as:


z 4 y ⇔ ∀i = 1, . . . ,m, zi ≤ yi ,
z ň y ⇔ ∀i = 1, . . . ,m, zi ≤ yi and ∃i ∈ {1, . . . , k} , zi < yi ,
z ≺ y ⇔ ∀i = 1, . . . ,m, zi < yi .

The expression weak dominance is used here as in [54], section 14.2, or [36],
strict dominance as in [8], Definition 2.1, and strong dominance as in [9], section
2.4.5. Strict dominance is usually referred simply as dominance or Pareto domi-
nance. Notice that the terminology or symbols employed differ among authors.

Consider a subset G of Rm. We define here the Pareto front P of the set G
as the subset of G of all points that are weakly dominated only by themselves:

y ∈ P ⇔ {z ∈ G, z 4 y} = {y} (1)

This definition coincides with the more classical definition of Pareto front using
strict dominance. The Pareto front is the set of Pareto optimal points, that are
not strictly dominated:

y ∈ P ⇔ ∀z ∈ G, ¬ (zňy) , (2)

where ¬ is the logical not operator. The link with Equation (1) can be shown
using the fact that from Equation (2), if y ∈ P , {z ∈ G, z ň y} = ∅ and using
z ň y ⇔ (z 4 y and z 6= y). This link has also been noticed, e.g. in [50].
Definitions of weak Pareto front exist in the literature, using strong dominance,
where y ∈ Pweak ⇔ ∀z ∈ G, z 6≺ y, implying that P ⊂ Pweak.

Now assume that G = f(E) is the image of a set E ⊆ Rd by a vector-valued
objective function f : E→ Rm, with f(x) = (f1(x), . . . , fm(x)), x ∈ E. Then, the
Pareto front of f is defined as the Pareto front of the image set G. In this case we
retrieve the usual interpretation that a solution in the objective space is Pareto-
optimal if there exists no other solution which is better in every component: for
y ∈ G, there exists no z ∈ G such that z 4 y and z 6= y.

Assume that X is a random vector with values in E and denote Y = (Y1, . . . , Ym)
with Yi = fi(X). Then if Y has an absolutely continuous distribution with respect
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to the Lebesgue measure in G, one easily gets y ∈ P ⇒ P [Y ∈ {z ∈ G, z 4 y}] =
0. As a direct consequence, denoting FY(y) = P [Y 4 y] the multivariate cumu-
lative distribution function of Y,

y ∈ P ⇒ FY(y) = 0 . (3)

The Pareto front thus belongs to the zero level set of FY, {y ∈ G, FY(y) = 0},
which enlightens the connection between Pareto front and level sets of FY.

Define the upper level set LFα = {y ∈ Rm, FY(y) ≥ α} with α ∈ (0, 1), and
the corresponding level line ∂LFα = {y ∈ Rm, FY(y) = α}. The following main
result is that the upper level set LFα converges towards the area dominated by
the Pareto front, when α tends to 0. This seems quite natural, as illustrated in
Figure 2. However, the rigorous proof involves topological arguments that are
different in the continuous and discrete case. Some pitfalls are that for α > 0, LFα
is not necessarily included in Y , as illustrated in Figure 2, and that all points of
Y are not necessarily dominated by the Pareto front, as when Y = Rm for some
unbounded objective functions.

Theorem 2.1. Consider a random vector Y which admits a probability density
function fY with respect to the Lebesgue measure on Rm, and denote by Y its
support (i.e. the essential support of the function fY). Let P be the Pareto front
of the set Y. Define the respective weakly and strongly dominated sets:

P< =
⋃

y∈P
{z ∈ Rm , y 4 z} and P� =

⋃
y∈P
{z ∈ Rm , y ≺ z} .

If all points of Y are dominated by the Pareto front, i.e. Y ⊆ P<, then the
dominated area is obtained as the union of all upper level sets:

P� =
⋃
α>0

LFα .

As a consequence we have lim
α→0

P
[
Y ∈ LFα

]
= P [Y ∈ P�] = 1.

Proof. We want to prove that the dominated area is equal to the area dominated
by the set L0 = ⋃

α>0
LFα .

• L0 ⊆ P�: It is sufficient to prove that if y /∈ P�, then FY(y) = 0.

– Assume first that y /∈ P<, FY(y) = P [Y 4 y] = P [Y ∈ {z ∈ Y , z 4 y}] .
One can show that if y /∈ P< and if z 4 y then z /∈ P<, so that {z ∈ Rm ,
z 4 y} ∩ P< = ∅. Finally {z ∈ Rm , z 4 y} ∩ Y = ∅, since by assumption
Y ⊆ P<, and FY(y) = P [Y ∈ ∅] = 0.
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– Now assume that y ∈ P< \ P�. One can show that the Lebesgue measure
µ(P< \ P�) = 0: Otherwise, there would exist an hypercube ∏m

i=1[ai, bi]
included in P< \ P� such that for all i = 1, . . . ,m, bi > ai; This would be
in contradiction with b = (b1, . . . , bm) ∈ P�. Now, FY(y) = P [Y 4 y] =
P [Y 4 y and Y ∈ P<] since by assumption Y ⊆ P<. This probability is
equal to P [Y 4 y and Y ∈ P< \ P�] because y /∈ P� and Y 4 y ⇒ Y /∈
P�. Thus this probability is 0 by absolute continuity of Y since µ(P<\P�) =
0.

• P� ⊆ L0: Recall that the complementary set YC of the support Y is defined as
the union of all open sets Ω such that fY(.) = 0 almost everywhere on Ω. Let
y ∈ P�, ∃y∗ ∈ P such that y∗ ≺ y. Denote Dy = {z ∈ Rm , z 4 y}. There
exists an open set By∗ ⊆ Dy which contains y∗. Now, we show that we cannot
have P [Y 4 y] = 0. Otherwise, by assumption of absolute continuity of Y,
this would imply that almost everywhere fY(.) = 0 on Dy. Then By∗ would
be an open set belonging to YC . This would be in contradiction with P ⊆ Y ,
by definition of P , which implies that the non-empty set P ∩ By∗ ⊆ Y . Thus
necessarily P [Y 4 y] > 0, and there exists α > 0 such that y ∈ LFα . Therefore
P� ⊆ L0.

Given that P [Y ∈ P<] = 1 and P [Y ∈ P< \ P�] = 0, the last part of the
proposition is obtained by considering a decreasing sequence αn and LFαn and
using Proposition 1.27 in [5].

f1

f 2
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Figure 2: Level lines ∂LFα with α = 0.0001, 0.01, 0.1 of the empirical cumulative
distribution function of f(X) obtained with sampled points (in black), showing
the link between the level line of level α and the Pareto front P (apart from the
vertical and horizontal components), as α tends to zero.

The case when G is discrete is also of practical interest and the corresponding
result is detailed in Remark 1, slightly differing from Theorem 2.1.
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Remark 1. Let Y be a discrete random vector with support Y. Let P be the
Pareto front of the set Y. Assume that all points of the support Y are dominated,
i.e., Y ⊆ P<. Then

P< =
⋃
α>0

LFα .

Proof. Denote L0 = ⋃
α>0 L

F
α . As Y is a discrete random vector, for any y ∈ Y ,

by definition of the support P [Y = y] > 0. Now let us show that P< = L0.

• P< ⊆ L0: For any z ∈ P<, there exists y ∈ P such that y 4 z. Now for
any y ∈ P , as P ⊆ Y by definition of the Pareto front, then P [Y = y] > 0.
Then P [Y 4 z] ≥ P [Y 4 y] > 0 and P< ⊆ L0.

• L0 ⊆ P<: Let y ∈ LFα , α > 0, then P [Y 4 y] ≥ α. As P [Y 4 y] =∑
y0∈Y,y04y P [Y = y0] > 0, there exists y0 ∈ Y such that y0 4 y. Since by

assumption Y ⊆ P<, y0 ∈ P< and since y0 4 y, one gets y ∈ P<.

2.2 Expression of level curves using copulas
The m-dimensional distribution function FY contains all the information about
the problem at hand, in particular about the Pareto front. The copula framework
offers the possibility to study the dependence on the level lines separately from the
univariate marginal distributions. Furthermore, under a particular Archimedean
hypothesis detailed hereafter, the level lines have a parametric expression. To
distinguish between the objective space and the copula space, we denote by y =
(y1, . . . , ym) ∈ Rm vectors in the objective space and by u = (u1, . . . , um) ∈ [0, 1]m
vectors in the copula space.

2.2.1 Short summary on copulas

Consider some continuous random variables Y1, ..., Ym, and write Fi(yi) = P [Yi ≤ yi]
the univariate cumulative distribution functions (cdf) of Yi, i = 1, . . . ,m.

For independent random variables, the joint distribution of (Y1, . . . , Ym) is
FY(y1, . . . , ym) = P [Y1 ≤ y1, . . . , Ym ≤ ym] = P [Y1 ≤ y1] · . . . ·P [Ym ≤ ym], so that
FY(y1, . . . , ym) = C⊥(F1(y1), .., Fm(ym)), where the product function C⊥(u1, ..., um) =
u1 . . . um is called the independence copula.
More generally, for possibly dependent random variables, Sklar’s theorem [47]
states that for any continuous multivariate distribution function FY, there is a
unique copula function C such that:

FY(y1, . . . , ym) = C(F1(y1), . . . , Fm(ym)) .
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Copulas are essential tools for separating the univariate marginal distributions
and the dependence structure of a random vector: first, a random vector has in-
dependent components if and only if C = C⊥ (See [16], Th. 2.5), making copulas
more reliable than other dependence measures such as linear correlation coeffi-
cients. Moreover, strictly increasing transformations g1, . . . , gm of the underlying
random variables Y1, ..., Ym do not change the copula of the joint random vector
(g1(Y1), . . . , gm(Ym)) (See [16], Th. 2.6). At last, by Sklar’s theorem, a copula
uniquely determines the joint distribution with given margins.

There naturally exist some constraints on copula functions. For continuous
distributions, a function C : [0, 1]m → [0, 1] is a m-dimensional copula if C is
a joint cumulative distribution function of a m-dimensional random vector on
the unit cube [0, 1]m with uniform marginals, i.e. if there exist random variables
U1, . . . , Um, uniformly distributed on [0, 1], such that

C(u1, . . . , ud) = P [U1 ≤ u1, . . . , Um ≤ um] .

Other classical properties like bounds on C(u1, . . . , ud) are given in [41].

2.2.2 Level curve expressions

Consider the Pareto front associated with the vector-valued objective function
f : E→ Rm, with f(x) = (f1(x), . . . , fm(x)), x ∈ E. We have seen in Theorem 2.1
that it was directly linked with level curves of the random vector Y = (Y1, . . . , Ym)
where Yi = fi(X), i = 1, . . . ,m. We now use the copula framework to express
these level curves.

From now on, we consider that the Fi’s are continuous and invertible functions.
Recall that the marginal distribution of Yi is denoted Fi and that from Sklar’s
theorem [47], there is a unique copula function C such that:

FY(y1, . . . , ym) = C(F1(y1), . . . , Fm(ym)) ,

thus we can write for u ∈ [0, 1]m:

C(u1, . . . , um) = FY(F−1
1 (u1), . . . , F−1

m (um)) .

Let α ∈ (0, 1). The α-level lines of C, i.e. {u ∈ [0, 1]m, C(u1, . . . , um) = α} are
denoted ∂LCα . They are connected to the level lines ∂LFα of FY by the following
relationship:

∂LFα =
{

(y1, . . . , ym) = (F−1
1 (u1), . . . , F−1

m (um)) ∈ Rm , u ∈ ∂LCα
}
.

It follows that given a model of the copula and given the marginals, the levels
lines of FY are obtained without additional effort. We describe next a specific
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model of copula which allows a parametric expression of those level lines. The
methods to estimate both the copula model and the marginals will be detailed in
Section 2.3.

2.2.3 Parametric form in the Archimedean case

A parametrization of the Pareto front has sometimes been proposed based on a
metamodel of one output in function of the others [24] or using B-splines [2]. It
seems that in both cases the results do not necessarily follow the Pareto dom-
inance, which might cause problems when dealing with Pareto fronts. Here we
propose a method usable with any number of points, after sampling randomly
in the design space, and respecting (weak) Pareto dominance for the proposed
results.

Among other available parametric models of copulas (see e.g. [42]), a practical
class of copula is the class of Archimedean copula, see e.g. [39]. The family of
Archimedean copulas is a flexible family that depends on a real function φ : R+ →
[0, 1], called the generator of the copula. An Archimedean copula is defined by

Cφ(u1, . . . , um) = φ
(
φ−1(u1) + . . .+ φ−1(um)

)
,

where the function φ−1 is the generalized inverse of the generator φ:

φ−1(t) = inf
{
x ∈ R+, φ(x) ≤ t

}
.

Note that depending on the author, φ and φ−1 are sometimes swapped. The
generator φ is supposed to be continuous, m-monotone (see [39], which implies
convexity), strictly decreasing on [0, φ−1(0)] with φ(0) = 1 and lim

x→+∞
φ(x) = 0. If

φ(x) > 0 for all x ∈ R+, the generator and the corresponding Archimedean copula
are said to be strict, otherwise they are called non-strict.

Also φ can be seen as a particular univariate survival function, so that in the
following we will say that ψ0 = φ−1(0) is the end-point of the generator, with
ψ0 < +∞ for non-strict generators, and ψ0 = +∞ for strict generators. Exam-
ples of generators of Archimedean copula models are given in Table 1. Clayton,
Gumbel and Frank families are respectively numbered No. 1, No. 4 and No. 5 in
[41], along with more examples of strict and non-strict copulas.

The interest of representing C with an Archimedean copula (or a transformed
copula [12]) is that we know how to express parametrically the level curves of such
copulas, and consequently those of FY.
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φ(t) Θ strict
Independent exp(−t) yes
Clayton (1 + θt)−1/θ [−1,∞)\{0} θ > 0
Gumbel exp

(
−t1/θ

)
[1,∞) yes

Frank −1
θ

log(1 + exp(−t)(exp(−θ)− 1)) R\{0} yes
No. 2 in [41] 1− t1/θ [1,∞) no

Table 1: Example of generators of classical Archimedean copulas from [35, 41],
with Θ the definition domain of the parameter θ.

Proposition 2.1 (Level curves for an Archimedean copula). Let S denotes the
simplex S = {s ∈ [0, 1]m , s1 + . . .+ sm = 1}. If Cφ is an Archimedean copula
with generator φ then for all α ∈ (0, ψ0), we have

∂LCφα =
{
u ∈ [0, 1]m , ui = φ

(
siφ
−1(α)

)
, 1 ≤ i ≤ m, s ∈ S

}
, (4)

and the level lines of FY are expressed as:

∂LFα =
{
y ∈ Rm , yi = F−1

i (ui) , ui = φ
(
siφ
−1(α)

)
, 1 ≤ i ≤ m, s ∈ S

}
(5)

Proof. For an Archimedean copula with generator φ, the level curve of level α > 0
is ∂LCφα = {u ∈ [0, 1]m , Cφ(u1, . . . , um) = α}. Let u ∈ [0, 1]m, u ∈ ∂L

Cφ
α ⇔

Cφ(u1, . . . , um) = α⇔ φ (φ−1(u1) + . . .+ φ−1(um)) = α.
Suppose that in addition α ∈ (0, ψ0), then u ∈ ∂LCφα ⇔ φ−1(u1)+...+φ−1(um)

φ−1(α) = 1.
By re-parameterizing with si = φ−1(ui)/φ−1(α), 1 ≤ i ≤ m (equivalent to ui =
φ (siφ−1(α))), we obtain that those si belongs to the simplex S. Hence ∂LCφα =
{u ∈ [0, 1]m , ui = φ (siφ−1(α)) , 1 ≤ i ≤ m, s ∈ S}.
The expression of ∂LFα follows from the connection between ∂LFα and ∂L

Cφ
α .

Other parameterizations of level curves of FY can be found in the literature
(see e.g. [12], Proposition 2.4.).

A difference between strict and non-strict generators lies in the behavior of
the level lines when α tends to 0:

Definition 2.1 (zero set, from [35, 41], extended to m ≥ 2). The zero set of a
copula C is the set

S0 = {u ∈ [0, 1]m , C(u1, . . . , um) = 0} .

The Lebesgue measure on Rm of this zero set S0 will be denoted mS0.
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As recalled in [35], based on [41], the zero set is of Lebesgue measure zero if
and only if the copula is strict. In the other case, for non-strict generators, the
boundary of the zero set, {u ∈ [0, 1]m , φ−1(u1) + . . .+ φ−1(um) = ψ0} is called
the zero curve of Cφ. For such a non-strict Archimedean copula and with m = 2,
the zero curve can be expressed with

∂L
Cφ
0 =

{
(u1, u2) ∈ [0, 1]2 , u2 = φ(φ−1(0)− φ−1(u1))

}
.

This form can be extended to any dimension m by writing the mth output as a
function of the m−1 first ones. Still when m = 2, setting ψ = φ−1, the probability
mass of the zero curve is equal to − ψ(0)

ψ′(0+) (cf. Theorem 4.3.3. in [41]).

Figure 3 illustrates the different cases described on the level lines of the copu-
las. With strict generators, the level lines converge towards the axis [0,∞)× {0}
and {0}× [0,∞) as α tends to zero. This is not the case for non-strict generators,
where zero sets have a strictly positive Lebesgue measure mS0 , as visible on lower
left corners of center and right panels of Figure 3.
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Figure 3: Scatterplots of samples of a thousand points U1, . . . ,U1000 from
Archimedean copulas with different generators and level lines with α =
{0, 0.01, 0.25, 0.5, 0.8}. Left: strict generator (Gumbel copula with θ = 2). Center:
non-strict generator (Clayton copula with θ = −0.8). Right: non-strict generator
with a probability mass on the zero curve (copula No.2 from [41] with θ = 5).

As a summary, the Archimedean family of copulas has the advantage to be
very flexible (it is indexed by a whole real function), to provide simple parametric
expressions of the level curves, and to distinguish naturally degenerated or non
degenerated Pareto front (via strict or non-strict generators). Note that other
quantities related to the level curves, such as Kendall distributions, are derivable
in the Archimedean case ([40], Section 2). In the next section, we explain how
to get an approximation of the Pareto front P from this parametric expression
of ∂LCφα . The relevance of this Archimedean model in practice is the subject of
Section 3.
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2.3 Estimation of the level lines
When working with black-box functions in order to find Pareto optimal solutions,
the marginal distribution functions and copulas of the output Y must be esti-
mated from the data. In the general case, only empirical estimation is possible
while supposing that the copula is Archimedean gives parametric expressions for
the level lines.

We aim here at proposing estimators of the level lines ∂LFα for small values of
α. In particular, when α tends to 0, ∂LFα is directly related to the Pareto front P
(see Theorem 2.1). As shown in Section 2.2.2, ∂LFα can be expressed as a function
of ∂LCα and F1, . . . , Fm. For α ∈ (0, 1), the proposed plug-in estimators of the
α-level lines are thus of the form

∂̂L
F

α =
{

(y1, . . . , ym) = (F̂−1
1 (u1), . . . , F̂−1

m (um)) ∈ Rm,u ∈ ∂LĈα
}
, (6)

where Ĉ and F̂1, . . . F̂m are respective estimators of C and F1, . . . Fm, and where
F̂−1

1 , . . . , F̂−1
m are generalized pseudo inverse of F̂1, . . . F̂m.

The proposed estimator of the Pareto front will be

P̂ = ∂̂L
F

α∗

where α∗ ∈ [0, 1) is a small level value whose choice will be discussed hereafter.
In the following, we first investigate the case where Ĉ is an empirical copula, and
then the case where Ĉ is an Archimedean copula with generator φ.

2.3.1 Empirical copula

Several estimators of an empirical copula can be proposed, see e.g. [11] and [43].
Consider a set of n observations in Rm :

{
Yk = (Y k

1 , . . . , Y
k
m)
}
k=1,...,n

. Corre-

sponding pseudo-observations are defined as
{
Uk = (Uk

1 , . . . , U
k
m)
}
k=1,...,n

, with

Uk
i = 1

n+ 1

n∑
j=1

1{Y ji ≤Y ki }, i ∈ {1, . . . ,m} , (7)

where 1 is the indicator function such that 1A = 1 if the event A occurs and
1A = 0 otherwise. The empirical copula can be estimated using the following
formula:

Ĉn(u1, . . . , um) = 1
n

n∑
k=1

1{Uk1≤u1,...,Ukm≤um}. (8)

This is in fact the empirical distribution of the (normalized) ranks of the data.
More details can be found in [11] and [43].
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The empirical copula Ĉn being a step function, we mostly consider its level
sets: LĈnα =

{
u ∈ [0, 1]m, Ĉn(u1, . . . , un) ≥ α

}
. In this case, different values of α

may lead to the same level sets. An estimator of the level lines can be obtained by
considering the frontiers of these upper level sets. This operation may be compu-
tationally costly, especially in large dimension. Furthermore, no simple analytical
expression is available for these frontiers, justifying the use of parametric models
when they are relevant.

2.3.2 Estimation in the Archimedean case

We consider here the case where the copula C is estimated by an Archimedean
copula Ĉφ, having a generator φ. There exists a vast literature on the estimation
of Archimedean copulas, see for example [20] or [33]. In the case of parametric es-
timation, methods to fit an Archimedean copula Cφ rely for instance on Maximum
Likelihood estimation or on dependence measures. A review of these methods and
associated parameters estimators can be found e.g. in [34].

An important option is to consider a non-strict Archimedean copula, for which
one has to estimate the end-point of the generator ψ0 = φ−1(0) = inf{x ∈ R+,
φ(x) = 0}. In parametric estimation, a recent method has been proposed in [35].
Among admissible parameters leading the zero curve to dominate all pseudo-
observations, the choice is based on the functional form of the zero curve of the
copula. The selected parameter is the one giving the closest zero curve to the
pseudo-observations, under the assumption that the Lebesgue measure of the zero
set is monotone with respect to the parameter. More formally, considering that
the generator depends on ψ0 and other parameters θ ∈ Θ, selected parameters
are:

(ψ∗0, θ∗) = argmax
(ψ0,θ)∈R∗+×Θ

mS0(ψ0, θ) s.t. Uk /∈ S0, 1 ≤ k ≤ n , (9)

where mS0(ψ0, θ) represents the Lebesgue measure of the zero set S0 of the copula
(see Definition 2.1).

In the case of non-parametric estimation, among other different possible esti-
mation procedures, one can cite [14] or [21]. Under what is called Frank’s con-
dition (see [17]), the Archimedean copula is uniquely determined by its diagonal
section δ(u) = C(u, . . . , u), u ∈ [0, 1]. For more details about the diagonal sec-
tion of a copula, we refer to [32]. In this paper, for strict generators, we use a
non-parametric estimator of the generator φ, based on an initial estimator of the
diagonal section of the empirical copula, as detailed in Algorithm 2 in [13].

We summarize in Algorithm 1 a possible framework for estimating an Archi-
medean copula. One assumes that a catalog of methods is available along with
the corresponding estimation procedures of the generators from the data. It may
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include parametric strict and non-strict estimators, and non-parametric strict es-
timators . In our applications examples, we used strict generators Clayton, Gum-
bel, Frank, non-strict generators of copula No. 1 and No. 2 (see Table 1) with
parametric estimation and in addition the non-parametric generator estimation
from [13]. As discussed above, for each method an estimation procedure giving
parameters from a data is available. The user has to select methods he wants
to try. In order to select the best candidate model, it is possible to estimate a
distance between the empirical copula Ĉn and a fitted copula Cφ, based on an
integrated mean squared error (IMSE):

∫
[0,1]m

(Ĉn(u)− Cφ(u))2du1 . . . dum or with

a root mean squared error (RMSE):
√

1
n

∑n
i=1 (Ĉn(Ui)− Cφ(Ui))2. Notice that if

the resulting distance is too high or if the Archimedean assumption seems irrele-
vant (see further Section 3), one may keep the empirical copula.

Algorithm 1 Estimation of the Archimedean copula
Input: Select candidates methods among a given catalog of generators (e.g. para-

metric strict and non strict, non-parametric).
1: Compute the pseudo-observations

{
Uk
}
k=1,...,n

from the data, using Equa-
tion (7).

2: Compute the empirical copula Ĉn as in Equation (8).
3: for each selected candidate method do
4: Estimate parameters of the candidate method (see the corresponding lit-

erature).
5: Compute distance to empirical copula (e.g. RMSE).
6: end for

Output: Copula candidate Ĉφ having smallest computed distance and corre-
sponding distance.

Note that the storage of the copula is depending on the chosen method. A
parametric copula can be characterized by a function for the generator and the
value of its parameter whereas a non-parametric copula may be defined from a
set of values of the generator together with an interpolation function.

2.3.3 Choice of the level α∗

Depending on the copula model: empirical copula or Archimedean with strict/non-
strict generator, the behavior of LCα when α tends to zero differs. Consider an
estimator Ĉ of the copula C. Notice that any admissible level α∗ for the Pareto
front estimator P̂ should dominate all pseudo-observations (i.e. be such that
∀k ∈ {1, . . . , n} ,Uk ∈ LĈα∗). Otherwise, pseudo-observations of the data would
have a zero likelihood. Inspired by the method in [35], we also want to select the
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level α giving the closest zero curve to the pseudo-observations:

α∗ = sup
{
α ∈ [0, 1] : ∀k ∈ {1, . . . , n} ,Uk ∈ LĈα

}
.

It follows directly that:

Lemma 2.1 (conservative threshold α∗). Let us consider the threshold α∗ =
sup

{
α ∈ [0, 1] : ∀k ∈ {1, . . . , n} ,Uk ∈ LĈα

}
, then α∗ = min

k=1,...,n
Ĉ(Uk).

Proof. Let α1 ≤ α2, for any u ∈ LĈα2 , u is also in LĈα1 by definition of the upper
level sets. Hence by taking α = min

i=1...n
Ĉ(Ui), all Uk ∈ LĈα , k ∈ {1, . . . , n}.

Furthermore, there exists k∗ ∈ {1, . . . , n} such that Ĉ(Uk∗) = α, so that for any
α′ > α, Uk∗ /∈ LĈα′ .

We discuss here consequences of this choice of the level α∗ on the estimated
copulas considered in this paper:

• For empirical copulas, the conservative threshold is almost surely α∗ = 1
n

since any inferior value results in a zero set included in the axis [0,∞)×{0}
and {0} × [0,∞).

• For strict Archimedean copulas, this choice leads to α∗ > 0 as soon as
pseudo-observations are all strictly positive. It thus avoids setting α∗ = 0
which would lead to a degenerated zero set included in the axis [0,∞)×{0}
and {0} × [0,∞).

• For non-strict Archimedean copulas, the choice of ψ∗0 as in Equation (9)
leads to α∗ = 0 by construction. It would be possible to set smaller values
of ψ∗0 leading to admissible parameter α∗ ≥ 0, but for the sake of simplicity,
we have considered here only the case where ψ∗0 was given by Equation (9).

2.3.4 Estimation of the marginals

The univariate marginals and their inverses also need to be estimated. This can
be performed with the empirical quantiles or any method using truncated or non-
truncated kernel density estimation. In some experiments with scarce data, we
use the method proposed in [46] to estimate the support of the cumulative distri-
bution function and its inverse, based on a catalog of beta distributions.

We summarize in Algorithm 2 a general methodology for estimating a marginal
distribution: one assumes that a catalog of classical parametric and non-parametric
estimators is available. The user has to select the estimators he wants to try, the
algorithm selecting the best one using a chosen distance to the empirical distri-
bution, e.g. Kolmogorov-Smirnov (K.-S.) distance.
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Algorithm 2 Estimation of one marginal
Input: Select candidates estimators among a given catalog (including classical

parametric or kernel-based estimators).
1: Compute empirical distribution function of selected marginal from data.
2: for each selected candidate do
3: Estimate parameters (e.g. by maximum likelihood estimation).
4: Compute distance to empirical marginal distribution (e.g. K.-S. distance).
5: end for

Output: Candidate distribution having smallest computed distance and corre-
sponding distance.

Notice that if the resulting distance is too high, the user can try other members
of the catalog or keep the empirical distribution function (thus losing the ability
of smoothing and extrapolating).

Increasing the number of objectives usually implies to sample more points in
the variable space to cover the objective space, providing more points to estimate
each of the univariate marginals.

At last, the expression of the estimated level lines of the multivariate distri-
bution also depends on the inverse functions of the marginal distributions, see
Equation (6). Some parametric methods has been proposed in order to fit uni-
variate distributions and to obtain straightforward simple expressions for their
inverse functions, see e.g. [3].

2.3.5 General algorithm

We recapitulate the general procedure for estimating level lines of an Archimedean
copula in Algorithm 3. If one would rather use the empirical copula, as discussed
in the next Section, it is sufficient to compute the empirical copula and to estimate
level lines from Equations (6) and (8).

Algorithm 3 Estimation of the level curves of FY and of the Pareto front with
an Archimedean copula
Input: Set of levels A = {α1, . . . , αn} .

1: Get estimation of the Archimedean copula, Ĉφ, from Algorithm 1.
2: Compute threshold α∗ as prescribed in Section 2.3.3.
3: Compute levels lines of the copula, ∂LĈφα , α ∈ A ∪ α∗, with Equation (4).
4: Get estimations of univariate marginal distributions by Algorithm 2.
5: Compute levels lines of the cdf of FY, ∂LFα , α ∈ A ∪ α∗, with Equation (5).

Output: Pareto front estimation P̂ = ∂LFα∗ and levels lines ∂LFα , α ∈ A.
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3 Pertinence of the Archimedean model
The interest of such a model, if appropriate, lies in the fact that if the dependency
is accurately modeled, every observation gives information about the whole Pareto
front, providing a continuous and smooth estimation. The parametric expression
for the level curve of FY, written in Proposition 2.1, requires the assumption
that the copula describing the dependency structure can be approximated by
an Archimedean copula. This section provides a discussion of the associated
restrictions in practice and about the choice of an Archimedean copula model
from the alternatives presented in Section 2.3.2.

3.1 Properties of Archimedean copulas: convexity, sym-
metry and associativity

The Archimedean model is convenient and tractable even with many objectives,
but it imposes symmetry and associativity. This corresponds, when m = 2, to
C(u1, u2) = C(u2, u1) and C(C(u1, u2), u3) = C(u1, C(u2, u3)) for any (u1, u2, u3) ∈
[0, 1]3. In addition the level lines of the copula are convex.

Proposition 3.1 (Convexity of ∂LCφα ). The level curves of an Archimedean copula
of dimension m are convex.

Proof. This proposition is demonstrated in the case m = 2 in [41]. In the case
m > 2, the result is still valid.
Given u = (u1, . . . , um) and v = (v1, . . . , vm) two points of ∂LCφα . Given λ ∈ [0, 1],
we denote w = λu + (1− λ)v. In dimension m, the generator φ is a m-monotone
function, implying in particular that φ−1 is a decreasing convex function. Hence
for all i ∈ {1, . . . ,m}, φ−1(wi) = φ−1(λui+(1−λ)vi) ≤ λφ−1(ui)+(1−λ)φ−1(vi).
Then
φ−1(w1) + . . .+ φ−1(wm) ≤ λ (φ−1(u1) + . . .+ φ−1(um)) + (1− λ) (φ−1(v1) + . . .+ φ−1(vm)).
Since u and v belongs to ∂LCφα ,(

φ−1(u1) + . . .+ φ−1(um)
)

=
(
φ−1(v1) + . . .+ φ−1(vm)

)
= φ−1(α).

Then φ−1(w1) + . . .+ φ−1(wm) ≤ φ−1(α) , which is equivalent to w ∈ LCφα .

Note that having convex level lines does not imply that the level lines in the
objective space will also be convex since it depends on the marginals. In the case
when it is known that the Pareto front is convex, a sufficient condition to ensure
the convexity of the Pareto front is to have concave marginals with an Archime-
dean copula.

Proposition 3.2 (Convexity of ∂LFα ). If the marginals F1, . . . , Fd are concave,
then the level lines of ∂LFα are convex.
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Proof. Given y = (y1, . . . , ym) and z = (z1, . . . , zm) two points of ∂LFα . Given
λ ∈ [0, 1], we denote w = λy + (1 − λ)z. The Fi’s are concave, hence for all
i ∈ (1, . . . ,m), λFi(yi) + (1 − λ)Fi(zi) ≤ Fi(wi). Since the generator φ−1 is a
decreasing convex function, λφ−1(Fi(yi))+(1−λ)φ−1(Fi(zi)) ≥ φ−1(Fi(wi)). And
thus by summation λ(φ−1(F1(y1)) + · · · + φ−1(Fm(ym))) + (1− λ)(φ−1(F1(z1)) +
· · · + φ−1(Fm(zm))) ≥ φ−1(F1(w1)) + · · · + φ−1(Fm(wm)). Now, φ is a decreasing
function:
φ
(
λ(φ−1(F1(y1))+ · · ·+φ−1(Fm(ym)))+(1−λ)(φ−1(F1(z1))+ · · ·+φ−1(Fm(zm)))

)
≤ φ (φ−1(F1(w1)) + · · ·+ φ−1(Fm(wm))) = FY(w).

Since y and z are in ∂LFα , φ−1(F1(y1)) + · · · + φ−1(Fm(ym)) = φ−1(F1(z1)) +
· · ·+ φ−1(Fm(zm)) = φ−1(α). Then FY(w) ≥ α, which means that w ∈ ∂LFα .

If the level curves must be concave, then the use of survival copulas (associated
with 1− FY) can be a solution.

It is important to mention that even if the hypothesis of Archimedeanity is
restrictive, it can still cover a great variety of situations, as illustrated in Figure 4
with varying copulas and marginals. The assessment of this hypothesis is detailed
in the next paragraph.
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Figure 4: Scatterplots with a thousand of sample points Y1, . . . ,Y1000 gener-
ated from Archimedean copulas models and further applying inverse of beta dis-
tribution functions as univariate marginals. Left: Clayton copula, θ = −0.8,
F1 = Beta(1, 3) and F2 = Beta(1.5, 3.5). Center: Clayton copula, θ = −0.8,
F1 = Beta(0.5, 0.5) and F2 = Beta(2.5, 2.5). Right: Frank copula, θ = −12,
F1 = Beta(2, 2) and F2 = Beta(2, 2).

3.2 Archimedeanity tests—choosing between the different
options

An immediate solution is to test whether the hypothesis of Archimedeanity holds
or not. Recent works exist in the bivariate case, see e.g. [6]. Otherwise a simple
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test is to compare visually the level curves of the empirical copula with those of
the fitted Archimedean copula in the same spirit as the normal probability plot
in dimension one.

It remains to decide which Archimedean model is the best to estimate the
Pareto front, by trying the different possibilities: parametric strict and non-strict
models or non-parametric strict models. Non-strict parametric models seem best
suited to estimate Pareto fronts due to the presence of the zero set but in certain
circumstances non-parametric strict models perform better. For parametric fam-
ilies with analytical strict generator function, one can mention for instance the
Clayton family (θ > 0), Gumbel family or Frank families of Archimedean copulas.
The parameters are evaluated using Maximum Likelihood.

Estimating a non-parametric generator from the data gives more flexibility
when the Archimedean hypothesis is too strong, as illustrated in the applications.
Even if it cannot capture the dissymmetry of the empirical copula, the fitted
model is often more accurate with this non-parametric generator.

Non-strict Archimedean copulas play a particular role for modeling the Pareto
front, due to their non degenerated zero-sets. A generator of such a copula can be
linked to a non-observable univariate random variable (e.g. the radial part of the
copula, see [39]). The maximum value of such random variable is directly related
to the location of the Pareto front, and using end-point probabilistic literature
would be an interesting perspective (see e.g. [23], [27], [37], [38], and references
therein).

4 Applications
To illustrate the benefits of the approach proposed in Algorithm 3 we take three
classical bi-objective f1, f2 problems from the MOO literature: the ZDT1, ZDT6
[53] and Poloni [44] test problems. They have respectively convex, concave and
disconnected Pareto fronts. The variable dimension is two in all the examples,
but it could be much higher since the estimation procedure only deals with the
objective space. Note that with an increasing variable dimension, it becomes
necessary to increase the sample size. We use R packages copula [29, 30, 34, 51]
for estimating strict Archimedean copulas and ks [15] for kernel density estimation.

4.1 Estimation of the Pareto front for the ZDT1 test prob-
lem

The first test problem, ZDT1, is a relatively simple benchmark problem:
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ZDT1. Let x ∈ [0, 1]d and g(x) = 1 + 9
d−1

d∑
i=2

xi. Consider:

f1(x) = x1, f2(x) = g(x)
1−

√√√√f1(x)
g(x)

 .
Here we choose d = 2 and draw a sample of size n = 100, uniformly in [0, 1]2.

The first step is to estimate the marginals. As one can see from Figure 5, the
parametric estimation based on beta distribution gives a good fit of the empirical
inverse of the marginals while non-parametric estimation is clearly too optimistic
on the range of the ZDT1 test problem : [0, 1] for f1 and [0, 10] for f2. Then we se-
lect the model with the best fit for the copula, which is the non-parametric copula
model in this case, based on Figure 6. Here several models would be acceptable,
since all the other Archimedean models look close to the empirical copula, except
the non-strict model No. 2. However, the RMSE error on the pseudo-observations
is the lowest with the non-parametric generator.

Finally we obtain the estimation of the position of the Pareto front, cf. Figure
7. While being slightly too optimistic on the right side, it is more accurate than the
Pareto front approximation from the non-dominated points of the observations.
Also a comparison with what would have been obtained using only the empirical
copula illustrates that the Archimedean hypothesis brings a smoother and better
localization.
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Figure 5: ZDT1 test problem: comparison between three estimation methods of
the marginals F1 and F2 – empirical (black solid line), kernel density (blue dashed
line) and fit of a generalized beta distribution (red dotted line) – for the objectives
f1 (left) and f2(right).

4.2 Estimation of the Pareto front for the ZDT6 test prob-
lem

The second test problem has a concave Pareto front and is harder due to a very
low density around the Pareto optimal area:
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Figure 6: Levels lines ∂LCφα of the different fitted Archimedean models based
on the pseudo-data Uk, k = 1, . . . , n, from test problem ZDT1. The level lines
correspond in each case to α∗, 0.1, 0.2, 0.3 and 0.4.

ZDT6. Let x ∈ [0, 1]d and g(x) = 1 + 9
(

d∑
i=2

xi
i

)1/4

. Consider:

f1(x) = 1− exp(−4x1) sin6(6πx1), f2(x) = g(x)
1−

(
f1(x)
g(x)

)2
 .

Again, we choose d = 2 and we draw a sample of size n = 100 uniformly in [0, 1]2,
giving observations farther away from the true Pareto front.

This time kernel-based estimation gives the best fit of the marginal distribu-
tions, see Figure 8. The best copula model is given by the non-parametric copula
model, see Figure 9. Here again only the non-strict model No.2 is clearly not
relevant. For all the models the level lines with α∗ closely approximate the cor-
responding level line of the empirical copula, indicating that the Archimedean
hypothesis is acceptable. Note that the lowest RMSE error is also in this case
obtained with the non-parametric generator, taking advantage of the higher flex-
ibility offered by this option.
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Figure 7: Estimated level line ∂LFα∗ with the best Cφ for the ZDT1 test prob-
lem (green dashed line), compared to the Pareto front approximation from the
observations Pn (black line), the result with the empirical copula Ĉn (blue dashed-
dotted line) and the true Pareto front P (violet solid line). Other level lines with
levels 0.1, 0.2, 0.3 and 0.4 are also displayed with thinner lines.

The estimation of the position of the Pareto front is presented in Figure 10,
showing that the model can extend the information of the extremal observations
to improve estimation in the center of the attainable image space, where no ob-
servations are available. In this case, knowing the range of the objectives, for
instance by minimizing each objective separately would help selecting the best
estimation of marginals.
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Figure 8: ZDT6 test problem: comparison between three estimation methods of
the marginals F1 and F2 – empirical (black solid line), kernel density (blue dashed
line) and fit of a generalized beta distribution (red dotted line) – for the objectives
f1 (left) and f2 (right).
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Figure 9: Levels lines ∂LCφα of the different fitted Archimedean models based
on the pseudo-data Uk, k = 1, . . . , n, from test problem ZDT6. The level lines
correspond in each case to α∗, 0.1, 0.2, 0.3 and 0.4.

4.3 Estimation of the Pareto front for the Poloni test
problem

This last problem has a disconnected Pareto front with concave and convex parts.
A mathematical description of the problem can be found in [44].

The estimation of marginals suggest the use of non-parametric estimation for
f1 and the estimation from the catalog of beta distribution for f2, as visible in
Figure 11. Concerning the copula model, it appears in Figure 12 that the level
lines α∗ from the Archimedean models do not approximate well the shape of the
Pareto front. In particular, the lowest level of the empirical level lines are highly
non-symmetric. Thus we discard the Archimedean assumption and we keep the
empirical copula, getting the extrapolation from the marginals.

The estimation of the position of the Pareto front is shown in Figure 13,
showing that the proposed approach is also suited when the Archimedean model
hypothesis does not hold. Even if the approximation cannot be improved on the
lowest part of the Pareto front due to the absence of observations in this area, it
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Figure 10: Estimated level line ∂LFα∗ with the best Cφ for the ZDT6 test prob-
lem (green dashed line), compared to the Pareto front approximation from the
observations Pn (black line), the result with the empirical copula Ĉn (blue dashed-
dotted line) and the true Pareto front P (violet solid line). Other level lines with
levels 0.1, 0.2, 0.3 and 0.4 are also displayed with thinner lines.

effectively gives a better estimation of the Pareto front in the other parts.
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Figure 11: Poloni test problem: comparison between three estimation methods of
the marginals F1 and F2 – empirical (black solid line), kernel density (blue dashed
line) and fit of a generalized beta distribution (red dotted line) – for the objectives
f1 (left) and f2 (right).
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Figure 12: Levels lines ∂LCφα of the different fitted Archimedean models based
on the pseudo-data Uk, k = 1, . . . , n, from test problem Poloni. The level lines
correspond in each case to α∗, 0.1, 0.2, 0.3 and 0.4.
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Figure 13: Estimated level line ∂LFα∗ for the Poloni test problem (green dashed
line), compared to the Pareto front approximation from the observation Pn (black
line) and the true Pareto front P (violet solid line). Other level lines with levels
0.1, 0.2, 0.3 and 0.4 are also displayed with thinner lines.
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5 Conclusions and perspectives
In this paper, we addressed the problem of estimating the Pareto front in an initial
phase of multiobjective problems when an i.i.d. sample is available.
At the theoretical level, we established a connection between Pareto fronts and
upper level lines of the outputs sample. The approximation of these level lines
can be done with very few natural assumptions by using the theory of copulas.
An interesting particular case is for Archimedean copulas, for which analytical
expressions are available. This assumption can be checked visually or statistically
with specific tests of the literature.
The benefits of this methodology are illustrated on some common bi-objective
problems from multi-objective optimization literature.

There are several perspectives of this research. Though the Archimedean as-
sumption corresponds to a large range of copulas, it is sometimes inappropriate.
As an intermediate solution to the general alternative proposed here – i.e. us-
age of empirical copula –, it may be interesting to consider nested Archimedean
copulas, see e.g. [29] and references therein, or other families of copulas. Further
developments about non-strict generators have also been evocated in Section 3.
Secondly, the restriction to i.i.d. samples can be mitigated since in some particu-
lar cases random search performs relatively well, see e.g. [1], and has convergence
properties [36]. However, it might be possible to extend the approach of [31] to
deal with non independent observations.
Finally, this methodology relies on the estimated distribution of the outputs. In
the context of time-consuming objective functions, such estimation could be im-
proved by using surrogate models.
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