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ON THE ESTIMATION OF PARETO FRONTS FROM THE POINT
OF VIEW OF COPULA THEORY

MICKAËL BINOIS †‡ , DIDIER RULLIÈRE § , AND OLIVIER ROUSTANT ‡

Abstract. Given a first set of observations from a design of experiments sampled randomly
in the design space, the corresponding set of non-dominated points usually does not give a good
approximation of the Pareto front. We propose here to study this problem from the point of view of
multivariate analysis, introducing a probabilistic framework with the use of copulas. This approach
enables the expression of level lines in the objective space, giving an estimation of the position of
the Pareto front when the level tends to zero. In particular, when it is possible to use Archimedean
copulas, analytical expressions for Pareto front estimators are available. Several case studies illustrate
the interest of the approach, which can be used at the beginning of the optimization when sampling
randomly in the design space.
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1. Introduction. Multi-objective optimization (MOO) received a lot of atten-
tion recently, especially in evolutionary optimization [8], [42] and surrogate-based
optimization [39]. Since no solution usually minimizes every objective at once, the
definition of a solution for a multi-objective optimization problem is generally defined
as a compromise: a solution is said to be optimal in the Pareto sense if there exists
no other solution which is better for every component. All the optimal points in
the objective space form the Pareto front. As a result, optimizers provide a set of
non-dominated points to approximate the Pareto front. Methods are then designed
to seek some properties for these sets, such as uniformity and coverage.

Usually an optimization process starts with random sampling, either to generate
an initial population or as a basis to construct a metamodel. The current Pareto
front estimated from this first sample may be highly variable, especially when only a
small number of function evaluations is available, corresponding to time-consuming
functions. This is illustrated in Figure 1 for the bi-objective problem ZDT1 [43], with
five 50-points initial samples. However, the stochastic nature of sampling provides a
probabilistic framework that can be exploited to quantify this variability and to give
a better initial localization of the Pareto front. More precisely, if X = (X1, . . . , Xd) is
a d-dimensional random vector representing the inputs, and f1, . . . , fm the objective
functions, then the Pareto front should be connected to the extreme level lines of the
distribution of Y = (f1(X), . . . , fm(X)). To investigate such connection is the aim of
the paper.

In the mono-objective situation, a similar probabilistic connection is studied by
[37] to estimate the value of the extremum. Considering a small sample of n obser-
vations (y1, . . . , yn) of Y, the minimum of Y is approximated using concepts from
extreme order statistics. In multi-objective optimization, the connection seems to be
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new. Uncertainty quantification around the Pareto front has been recently consid-
ered by [5], using conditional simulations of Kriging metamodels and concepts from
random sets theory. Whereas such approach is relevant in a sequential algorithm, it
may be inappropriate in the initial stage that we consider here, due to a potentially
large model error in metamodelling.

In this paper, we give a theoretical framework in which the Pareto front appears
as a zero level line of the multivariate distribution FY of Y. This problem is known
in the probabilistic literature as support curve estimation (see e.g. [20], [21], [18]).
However, the existing methods rely on assumptions, such as domain of attraction or
polynomial rate of decrease, that can hardly be checked in an optimization context.
As an alternative, we propose to take advantage of copulas [32] which are multivariate
probability distributions with uniform marginals, allowing to consider separately the
estimation of the marginals and the dependence structure. This allows estimating ex-
treme level lines, without making specific assumptions about domain of attractions.
Copulas have already been used in optimization, mainly in the variable space to es-
timate distribution in evolutionary algorithms, see e.g. [40], [15], [14], while here we
focus on the objective space. We propose a first estimation of the Pareto front relying
on the empirical copula. Then, we consider the case where the copula belongs to
the class of Archimedean copulas, parameterized by a function. This assumption can
be checked visually or statistically with specific tests of the literature. If relevant, a
better localization of the Pareto front is found. Furthermore, a parametric expression
of the approximated Pareto front is available.

The paper is structured as follows. Section 2 proposes alternative definitions
of the Pareto front from the point of view of the cumulative distribution function,
presents some background about copulas and describes the estimation procedure in
the Archimedean case. Section 3 discusses the applicability of the model and more
specifically the consequences of the Archimedean copula model. Section 4 illustrates
in several configurations the application of the proposed approach to Pareto front
localization. Section 5 concludes and describes possibilities for further improvements.
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Figure 1: Non-dominated points obtained with 5 different random samples (one color
and type of line per sample) of 50 points for the bi-objective problem ZDT1. The
true Pareto front is the black solid line.
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2. Methodology. The present section describes the interest of using a proba-
bilistic framework in multi-objective optimization by establishing the link between
both domains. Based on the resulting theorem, the expression of level lines of the
multivariate cumulative distribution functions FY using copulas is described as well
as a procedure for their estimation. Empirical and parametric model are discussed,
with emphasis on Archimedean models.

2.1. Link between Pareto front and level curves. For a variety of methods
ranging from evolutionary optimization [8] to surrogate-based methods [36], optimiza-
tion starts with random sampling in the design space, with uniform sampling or with
a random Latin Hypercube. In this case, it is possible to study the resulting ob-
servations in the objective space as a set of points. Specifically, assuming that the
outputs can be considered as independent and identically distributed (i.i.d.) random
variables, they enter the scope of multivariate analysis.

Let us start with a definition of Pareto front. For two points y = (y1, . . . , ym)
and z = (z1, . . . , zm) of Rm, m ≥ 2, we first define the respective weak and strict
dominance operators 4 and ≺ as:{

z 4 y ⇔ ∀i = 1, . . . ,m, zi ≤ yi ,
z ≺ y ⇔ ∀i = 1, . . . ,m, zi < yi .

Consider a subset G of Rm. We define here the Pareto front P of the set G as
the subset of G of all points that are weakly dominated only by themselves:

(2.1) y ∈ P ⇔ {z ∈ G, z 4 y} = {y}

Now assume that G = f(E) is the image of a set E ⊆ Rd by a vector-valued objec-
tive function f : E → Rm, with f(x) = (f1(x), . . . , fm(x)), x ∈ E. Then, the Pareto
front of f is defined as the Pareto front of the image set G. In this case we retrieve the
usual interpretation that a solution in the objective space is Pareto-optimal if there
exists no other solution which is better in every component: for y ∈ G, there exists
no z ∈ G such that z 4 y and z 6= y.

Assume that X is a random vector with values in E and denote Y = (Y1, . . . , Ym)
with Yi = fi(X). Then if Y has an absolutely continuous distribution with respect
to the Lebesgue measure in G, one easily gets y ∈ P ⇒ P [Y ∈ {z ∈ G, z 4 y}] = 0.
As a direct consequence, denoting FY(y) = P [Y 4 y] the multivariate cumulative
distribution function of Y,

y ∈ P ⇒ FY(y) = 0 .(2.2)

The Pareto front thus belongs to the zero level set of FY, {y ∈ G, FY(y) = 0}, which
enlightens the connection between Pareto front and level sets of FY.

Define the upper level set LFα = {y ∈ Rm, FY(y) ≥ α} with α ∈ (0, 1), and the
corresponding level line ∂LFα = {y ∈ Rm, FY(y) = α}. The following main result is
that the upper level set LFα converges towards the area dominated by the Pareto front,
when α tends to 0. This seems quite natural, as illustrated in Figure 2. However, the
rigorous proof involves topological arguments that are different in the continuous and
discrete case. Some pitfalls are that for α > 0, LFα is not necessarily included in Y,
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as illustrated in Figure 2, and that all points of Y are not necessarily dominated by
the Pareto front, as when Y = Rm for some unbounded objective functions.

Theorem 2.1. Consider a random vector Y which admits a probability density
function fY with respect to the Lebesgue measure on Rm, and denote by Y its support
(i.e. the essential support of the function fY). Let P be the Pareto front of the set Y.
Define the respective weak and strict dominated sets:

P< =
⋃

y∈P
{z ∈ Rm , y 4 z} and P� =

⋃
y∈P
{z ∈ Rm , y ≺ z} .

If all points of Y are dominated by the Pareto front, i.e. Y ⊆ P<, then the dominated
area is obtained as the union of all upper level sets :

P� =
⋃
α>0

LFα .

As a consequence we have lim
α→0

P
[
Y ∈ LFα

]
= P [Y ∈ P�] = 1.

Proof. We want to prove that the dominated area is equal to the area dominated
by the set L0 =

⋃
α>0

LFα .

• L0 ⊆ P�: It is sufficient to prove that if y /∈ P�, then FY(y) = 0.
– Assume first that y /∈ P<, FY(y) = P [Y 4 y] = P [Y ∈ {z ∈ Y , z 4 y}] .

One can show that if y /∈ P< and if z 4 y then z /∈ P<, so that
{z ∈ Rm , z 4 y} ∩ P< = ∅. Finally {z ∈ Rm , z 4 y} ∩ Y = ∅, since by
assumption Y ⊆ P<, and FY(y) = P [Y ∈ ∅] = 0.

– Now assume that y ∈ P< \ P�. One can show that the Lebesgue
measure µ(P< \ P�) = 0: Otherwise, there would exist an hyper-
cube

∏m
i=1[ai, bi] included in P< \ P� such that for all i = 1, . . . ,m,

bi > ai; This would be in contradiction with b = (b1, . . . , bm) ∈ P�.
Now, FY(y) = P [Y 4 y] = P

[
Y 4 y and Y ∈ P<

]
since by assump-

tion Y ⊆ P<. This probability is equal to P
[
Y 4 y and Y ∈ P< \ P�

]
because y /∈ P� and Y 4 y ⇒ Y /∈ P�. Thus this probability is 0 by
absolute continuity of Y since µ(P< \ P�) = 0.

• P� ⊆ L0: Recall that the complementary set YC of the support Y is defined
as the union of all open sets Ω such that fY(.) = 0 almost everywhere on Ω.
Let y ∈ P�, ∃y∗ ∈ P such that y∗ ≺ y. Denote Dy = {z ∈ Rm , z 4 y}.
There exists an open set By∗ ⊆ Dy which contains y∗. Now, we show that we
cannot have P [Y 4 y] = 0. Otherwise, by assumption of absolute continuity
of Y, this would imply that almost everywhere fY(.) = 0 on Dy. Then By∗

would be an open set belonging to YC . This would be in contradiction with
P ⊆ Y, by definition of P, which implies that the non-empty set P∩By∗ ⊆ Y.
Thus necessarily P [Y 4 y] > 0, and there exists α > 0 such that y ∈ LFα .
Therefore P� ⊆ L0.

Given that P
[
Y ∈ P<

]
= 1 and P

[
Y ∈ P< \ P�

]
= 0, the last part of the

proposition is obtained by considering a decreasing sequence αn and LFαn and using
Proposition 1.27 in [6].

The case when G is discrete is also of practical interest and the corresponding
result is detailed in Remark 1. Notice that the result is slightly different than the
previous Theorem 2.1.
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Figure 2: Level lines ∂LFα with α = 0.0001, 0.01, 0.1 of the empirical cumulative
distribution function of f(X) obtained with sampled points (in black), showing the
link between the level line of level α and the Pareto front P (apart from the vertical
and horizontal components), as α tends to zero.

Remark 1. Let Y be a discrete random vector with support Y. Let P be the
Pareto front of the set Y. Assume that all points of the support Y are dominated, i.e.,
Y ⊆ P<. Then

P< =
⋃
α>0

LFα .

Proof. Denote L0 =
⋃
α>0 L

F
α . As Y is a discrete random vector, for any y ∈ Y,

by definition of the support P [Y = y] > 0. Now let us show that P< = L0.
• P< ⊆ L0: For any z ∈ P<, there exists y ∈ P such that y 4 z. Now for any

y ∈ P, as P ⊆ Y by definition of the Pareto front, then P [Y = y] > 0. Then
P [Y 4 z] ≥ P [Y 4 y] > 0 and P< ⊆ L0.

• L0 ⊆ P<: Let y ∈ LFα , α > 0, then P [Y 4 y] ≥ α. As P [Y 4 y] =∑
y0∈Y,y04y P [Y = y0] > 0, there exists y0 ∈ Y such that y0 4 y. Since

by assumption Y ⊆ P<, y0 ∈ P< and since y0 4 y, one gets y ∈ P<.

2.2. Expression of level curves using copulas. The m-dimensional distribu-
tion function FY contains all the information about the problem at hand, in partic-
ular about the Pareto front. The copula framework offers the possibility to study
the dependence on the level lines separately from the univariate marginal distri-
butions. Furthermore, under the Archimedean hypothesis, the level lines have a
parametric expression. To distinguish between the objective space and the copula
space, we denote by y = (y1, . . . , ym) ∈ Rm vectors in the objective space and by
u = (u1, . . . , um) ∈ [0, 1]m vectors in the copula space.

2.2.1. General case. Supposing that the multivariate distribution function FY
is continuous, from Sklar theorem [38], there is a unique copula function C such that:

FY(y1, . . . , ym) = C(F1(y1), . . . , Fm(ym)) ,
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where the Fi, 1 ≤ i ≤ m are the univariate marginals, i.e. the cumulative distribution
function (cdf) of Yi = fi(X). Note that C is a cdf defined on [0, 1]m with uniform
marginals.

From now on, we consider that the Fi’s are continuous and invertible functions.
Thus we can write for u ∈ [0, 1]m:

C(u1, . . . , um) = FY(F−1
1 (u1), . . . , F−1

m (um)) .

Let α ∈ (0, 1). The α-level lines of C, i.e. {u ∈ [0, 1]m, C(u1, . . . , um) = α} are
denoted ∂LCα . They are connected to the level lines ∂LFα of FY by the following
relationship:

∂LFα =
{

(y1, . . . , ym) = (F−1
1 (u1), . . . , F−1

m (um)) ∈ Rm , u ∈ ∂LCα
}
.

It follows that given a model of the copula and given the marginals, the levels
lines of FY are obtained without additional effort. We describe next a specific model
of copula which allows a parametric expression of those level lines. The methods to
estimate both the copula model and the marginals will be detailed in Section 2.3.

2.2.2. Parametric form in the Archimedean case. A parametrization of
the Pareto front has sometimes been proposed based on a metamodel of one output
in function of the others [19] or using B-splines [3]. It seems that in both cases the
results do not necessarily follow the Pareto dominance, which might cause problems
when dealing with Pareto fronts. Here we propose a method usable with any number
of points, after sampling randomly in the design space, and respecting (weak) Pareto
dominance for the proposed results.

Among other available parametric models of copulas (see e.g. [33]), a practical
class of copula is the class of Archimedean copula, see e.g. [31]. The family of
Archimedean copulas is a flexible family that depends on a real function φ : R+ →
[0, 1], called the generator of the copula. An Archimedean copula is defined by

Cφ(u1, . . . , um) = φ
(
φ−1(u1) + . . .+ φ−1(um)

)
,

where the function φ−1 is the generalized inverse of the generator φ:

φ−1(t) = inf
{
x ∈ R+, φ(x) ≤ t

}
.

The generator φ is supposed to be continuous, m-monotone (see [31], which im-
plies convexity), strictly decreasing on [0, φ−1(0)] with φ(0) = 1 and lim

x→+∞
φ(x) = 0.

If φ(x) > 0 for all x ∈ R+, the generator and the corresponding Archimedean copula
are said to be strict, otherwise they are called non-strict.

Also φ can be seen as a particular univariate survival function, so that in the fol-
lowing we will say that ψ0 = φ−1(0) is the end-point of the generator, with ψ0 < +∞
for non-strict generators, and ψ0 = +∞ for strict generators. A list of bivariate Ar-
chimedean copulas with parametric generator functions is given in [32], with strict
and non-strict examples.
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The interest of representing C with an Archimedean copula (or a transformed
copula [2]) is that we know how to express parametrically the level curves of such
copulas, and consequently those of FY.

Proposition 2.1 (Level curves for an Archimedean copula). Let S denotes the
simplex S = {s ∈ [0, 1]m , s1 + . . .+ sm = 1}. If Cφ is an Archimedean copula with
generator φ then for all α ∈ (0, ψ0), we have

∂L
Cφ
α =

{
u ∈ [0, 1]m , ui = φ

(
siφ
−1(α)

)
, 1 ≤ i ≤ m, s ∈ S

}
,

and the level lines of FY are expressed as:

∂LFα =
{
y ∈ Rm , yi = F−1

i (ui) , ui = φ
(
siφ
−1(α)

)
, 1 ≤ i ≤ m, s ∈ S

}
.

Proof. For an Archimedean copula with generator φ, the level curve of level
α > 0 is ∂LCφα = {u ∈ [0, 1]m , Cφ(u1, . . . , um) = α}. Let u ∈ [0, 1]m, u ∈ ∂LCφα ⇔
Cφ(u1, . . . , um) = α⇔ φ

(
φ−1(u1) + . . .+ φ−1(um)

)
= α.

Suppose that in addition α ∈ (0, ψ0), then u ∈ ∂LCφα ⇔ φ−1(u1)+...+φ−1(um)
φ−1(α) = 1.

By re-parameterizing with si = φ−1(ui)/φ−1(α), 1 ≤ i ≤ m (equivalent to ui =
φ
(
siφ
−1(α)

)
), we obtain that those si belongs to the simplex S. Hence ∂L

Cφ
α ={

u ∈ [0, 1]m , ui = φ
(
siφ
−1(α)

)
, 1 ≤ i ≤ m, s ∈ S

}
.

The expression of ∂LFα follows from the connection between ∂LFα and ∂L
Cφ
α .

Other parameterizations of level curves of FY can be found in the literature (see
e.g. [2], Proposition 2.4.).

A difference between strict and non-strict generators lies in the behaviour of the
level lines when α tends to 0:

Definition 2.1 (zero set, from [32, 27] and extended in the general case). The
zero set of a copula C is the set

S0 = {u ∈ [0, 1]m , C(u1, . . . , um) = 0} .

The Lebesgue measure on Rm of this zero set S0 will be denoted mS0 .

As recalled in [27], based on [32], the zero set is of Lebesgue measure zero if and
only if the copula is strict. In the other case, for non-strict generators, the boundary
of the zero set,

{
u ∈ [0, 1]m , φ−1(u1) + . . .+ φ−1(um) = ψ0

}
is called the zero curve

of Cφ. For such a non-strict Archimedean copula and with m = 2, the zero curve can
be expressed with ∂LCφ0 =

{
(u1, u2) ∈ [0, 1]2 , u2 = φ(φ−1(0)− φ−1(u1))

}
. This form

can be extended to any dimension m by writing the mth output as a function of the
m− 1 first ones. Still when m = 2, setting ψ = φ−1, the probability mass of the zero
curve is equal to − ψ(0)

ψ′(0+) (cf. i.e. Theorem 4.3.3. in [32]).

Figure 3 illustrates the different cases described on the level lines of the copu-
las. With strict generators, the level lines converge towards the axis [0,∞) × {0}
and {0} × [0,∞) as α tends to zero. This is not the case for non-strict generators,
where zero sets have a strictly positive Lebesgue measure mS0 , as visible on lower left
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Figure 3: Scatterplots of samples of a thousand points U1, . . . ,U1000 from Archime-
dean copulas with different generators and level lines with α = {0, 0.01, 0.25, 0.5, 0.8}.
Left : strict generator (Gumbel copula with θ = 2). Center : non-strict generator
(Clayton copula with θ = −0.8). Right: non-strict generator with a probability mass
on the zero curve (copula No.2 from [32] with θ = 5).

corners of center and right panels of Figure 3.

As a summary, the Archimedean family of copulas has the advantage to be very
flexible (it is indexed by a whole real function), to provide simple parametric expres-
sions of the level curves, and to distinguish naturally degenerated or non degenerated
Pareto front (via strict or non-strict generators). In the next section, we explain
how to get an approximation of the Pareto front P from this parametric expression of
∂L

Cφ
α . The relevance of this Archimedean model in practice is the subject of Section 3.

2.3. Estimation of the level lines. When working with black-box functions
in order to find Pareto optimal solutions, the marginal distribution functions and
copulas of the output Y must be estimated from the data. In the general case, only
empirical estimation is possible while supposing that the copula is Archimedean gives
parametric expressions for the level lines.

We aim here at proposing estimators of the level lines ∂LFα for small values of α.
In particular, when α tends to 0, ∂LFα is directly related to the Pareto front P (see
Theorem 2.1). As shown in Section 2.2.1, ∂LFα can be expressed as a function of ∂LCα
and F1, . . . , Fm. For α ∈ (0, 1), the proposed plug-in estimators of the α-level lines
are thus of the form

∂̂L
F

α =
{

(y1, . . . , ym) = (F̂−1
1 (u1), . . . , F̂−1

m (um)) ∈ Rm,u ∈ ∂LĈα
}
,

where Ĉ and F̂1, . . . F̂m are respective estimators of C and F1, . . . Fm, and where
F̂−1

1 , . . . , F̂−1
m are generalized pseudo inverse of F̂1, . . . F̂m.

The proposed estimator of the Pareto front will be

(2.3) P̂ = ∂̂L
F

α∗

where α∗ ∈ [0, 1) is a small level value whose choice will be discussed hereafter. In
the following, we first investigate the case where Ĉ is an empirical copula, and then
the case where Ĉ is an Archimedean copula with generator φ.
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2.3.1. Empirical copula. Several estimators of an empirical copula can be
proposed, see for example [9] and [34]. Consider a set of n observations in Rm :{

Yk = (Y k1 , . . . , Y km)
}
k=1,...,n

. The corresponding pseudo-observations are defined as{
Uk = (Uk1 , . . . , Ukm)

}
k=1,...,n

, with

Uki = 1
n+ 1

n∑
j=1

1{Y ji ≤Y ki }, i ∈ {1, . . . ,m} ,

where 1 is the indicator function.
The empirical copula can be estimated using the following formula:

Ĉn(u1, . . . , um) = 1
n

n∑
k=1

1{Uk1≤u1,...,Ukm≤um}.

This is in fact the empirical distribution of the (normalized) ranks of the data. More
details can be found in [9] and [34].

The empirical copula Ĉn being a step function, we mostly consider its level sets:
LĈnα =

{
u ∈ [0, 1]m, Ĉn(u1, . . . , un) ≥ α

}
. In this case, different values of α may lead

to the same level sets. An estimator of the level lines can be obtained by considering
the frontiers of these upper level sets. This operation may be computationally costly,
especially in large dimension. Furthermore, no simple analytical expression is available
for these frontiers, justifying the use of parametric models when they are relevant.

2.3.2. Estimation in the Archimedean case. We consider here the case
where the copula C is estimated by an Archimedean copula Ĉφ, having a genera-
tor φ. There exists a vast litterature on the estimation of Archimedean copulas, see
for example [17] or [25]. In the case of parametric estimation, methods to fit an
Archimedean copula Cφ rely for instance on Maximum Likelihood estimation or on
dependence measures. A review of these methods can be found e.g. in [26].

In the case of non-parametric estimation, among other different possible estima-
tion procedures, one can cite [11] or [16]. Under what is called Frank’s condition
(see [13]), the Archimedean copula is uniquely determined by its diagonal section
δ(u) = C(u, . . . , u), u ∈ [0, 1]. In this paper, for strict generators, we use a non-
parametric estimator of the generator φ, based on an initial estimator of the diagonal
section of the empirical copula, as detailed in Algorithm 2 in [10].

Another important choice is about non-strict Archimedean copula, for which one
has to estimate the end-point of the generator ψ0 = φ−1(0) = inf {x ∈ R+, φ(x) = 0}.
In parametric estimation, a recent method has been proposed in [27]. Among ad-
missible parameters leading the zero curve to dominate all pseudo-observations, the
choice is based on the functional form of the zero curve of the copula. The selected
parameter is the one giving the closest zero curve to the pseudo-observations, under
the assumption that the Lebesgue measure of the zero set is monotone with respect
to the parameter. More formally, considering that the generator depends on ψ0 and
other parameters θ ∈ Θ, selected parameters are:

(2.4) (ψ∗0 , θ∗) = argmax
(ψ0,θ)∈R∗+×Θ

mS0(ψ0, θ) s.t. Uk /∈ S0, 1 ≤ k ≤ n ,
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where mS0(ψ0, θ) represents the Lebesgue measure of the zero set S0 of the copula
(see Definition 2.1).

2.3.3. Choice of the level α∗. Depending on the copula model: empirical
copula or Archimedean with strict/non-strict generator, the behavior of LCα when α
tends to zero differs. Consider an estimator Ĉ of the copula C. Notice that any
admissible level α∗ for the Pareto front estimator P̂ should dominate all pseudo-
observations (i.e. be such that ∀k ∈ {1, . . . , n} ,Uk ∈ LĈα∗). Otherwise, pseudo-
observations of the data would have a zero likelihood. Inspired by the method in
[27], we also want to select the level α giving the closest zero curve to the pseudo-
observations:

α∗ = sup
{
α ∈ [0, 1] : ∀k ∈ {1, . . . , n} ,Uk ∈ LĈα

}
.

It follows directly that:
Lemma 2.1 (conservative threshold α∗).

If α∗ = sup
{
α ∈ [0, 1] : ∀k ∈ {1, . . . , n} ,Uk ∈ LĈα

}
, then α∗ = min

k=1,...,n
Ĉ(Uk).

Proof. Let α1 ≤ α2, for any u ∈ LĈα2
, u is also in LĈα1

by definition of the upper
level sets. Hence by taking α = min

i=1...n
Ĉ(Ui), all Uk ∈ LĈα , k ∈ {1, . . . , n}. Further-

more, there exists k∗ ∈ {1, . . . , n} such that Ĉ(Uk∗) = α, so that for any α′ > α,
Uk∗ /∈ LĈα′ .

We discuss here consequences of this choice of the level α∗ on the estimated
copulas considered in this paper:

• For empirical copulas, the conservative threshold is almost surely α∗ = 1
n

since any inferior value results in a zero set included in the axis [0,∞)× {0}
and {0} × [0,∞).

• For strict Archimedean copulas, this choice leads to α∗ > 0 as soon as pseudo-
observations are all strictly positive. It thus avoids setting α∗ = 0 which
would lead to a degenerated zero set included in the axis [0,∞) × {0} and
{0} × [0,∞).

• For non-strict Archimedean copulas, the choice of ψ∗0 as in Equation (2.4)
leads to α∗ = 0 by construction. It would be possible to set smaller values of
ψ∗0 leading to admissible parameter α∗ ≥ 0, but for the sake of simplicity, we
have considered here only the case where ψ∗0 was given by Equation (2.4).

2.3.4. Estimation of the marginals. The univariate marginals and their in-
verses also need to be estimated. This can be performed with the empirical quantiles
or any method using truncated or non-truncated kernel density estimation. The choice
of the method relates to the need to smooth and/or extrapolate the result. In some
experiments with scarce data, we use the method proposed in [37] to estimate the
support of the cumulative distribution function and its inverse, based on a catalog
of beta distributions. Increasing the number of objectives usually implies to sample
more points in the variable space to cover the objective space, providing more points
to estimate each of the univariate marginals.

At last, the expression of the estimated level lines of the multivariate distribution
also depends on the inverse functions of the marginal distributions, see Equation (2.3).
Some parametric methods has been proposed in order to fit univariate distributions
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and to obtain straightforward simple expressions for their inverse functions, see e.g. [4].

We recapitulate the general procedure for estimating level lines in Algorithm 1.

Algorithm 1 Estimation of the level curve of FY

1: Get the univariate marginal distributions F̂1, . . . , F̂m of Y1, . . . ,Ym empirically,
with kernel density estimation and/or as in [37] and select the best solution.

2: Compute the pseudo-observations
{

Uk
}
k=1,...,n

from the data and compute the

empirical copula Ĉ.
3: if Archimedean model too inaccurate or Archimedean hypothesis rejected (See

Section 3 for more details.) then
4: Estimate ∂LĈα with the empirical copula.
5: else
6: Select the generator φ giving the best result, based on prior knowledge or

depending on a comparison with the empirical copula.
7: Estimate ∂LCφα with the best generator.
8: end if
9: Estimate the level lines of FY with Proposition 2.1.

10: Select the level α∗ depending on the chosen copula as prescribed in Section 2.3.3.

3. Pertinence of the Archimedean model. The interest of such a model,
if appropriate, lies in the fact that if the dependency is accurately modeled, every
observation gives information about the whole Pareto front, providing a continuous
and smooth estimation. The parametric expression for the level curve of FY, written in
Proposition 2.1, requires the assumption that the copula describing the dependency
structure can be approximated by an Archimedean copula. This section provides
a discussion of the associated restrictions in practice and about the choice of an
Archimedean copula model from the alternatives presented in Section 2.3.2.

3.1. Properties of Archimedean copulas: convexity, symmetry and as-
sociativity. The Archimedean model is convenient and tractable even with many
objectives, but it imposes symmetry and associativity, e.g. with m = 2, (u1, u2, u3) ∈
[0, 1]3, C(u1, u2) = C(u2, u1) and C(C(u1, u2), u3) = C(u1, C(u2, u3)). In addition
the level lines of the copula are convex.

Proposition 3.1 (Convexity of ∂LCφα ). The level curves of an Archimedean
copula of dimension m are convex.

Proof. This proposition is demonstrated in the case m = 2 in [32]. In the case
m > 2, the result is still valid.
Given u = (u1, . . . , um) and v = (v1, . . . , vm) two points of ∂LCφα . Given λ ∈ [0, 1],
we denote w = λu + (1 − λ)v. In dimension m, the generator φ is a m-monotone
function, implying in particular that φ−1 is a decreasing convex function. Hence for
all i ∈ {1, . . . ,m}, φ−1(wi) = φ−1(λui+(1−λ)vi) ≤ λφ−1(ui)+(1−λ)φ−1(vi). Then
φ−1(w1) + . . .+ φ−1(wm) ≤ λ

(
φ−1(u1) + . . .+ φ−1(um)

)
+ (1− λ)

(
φ−1(v1) + . . .+ φ−1(vm)

)
.

Since u and v belongs to ∂LCφα ,(
φ−1(u1) + . . .+ φ−1(um)

)
=
(
φ−1(v1) + . . .+ φ−1(vm)

)
= φ−1(α).

Then φ−1(w1) + . . .+ φ−1(wm) ≤ φ−1(α) , which is equivalent to w ∈ LCφα .
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Note that having convex level lines does not imply that the level lines in the ob-
jective space will also be convex since it depends on the marginals. In the case when it
is known that the Pareto front is convex, a sufficient condition to ensure the convexity
of the Pareto front is to have concave marginals with an Archimedean copula.

Proposition 3.2 (Convexity of ∂LFα ). If the marginals F1, . . . , Fd are concave,
then the level lines of ∂LFα are also convex.

Proof. Given y = (y1, . . . , ym) and z = (z1, . . . , zm) two points of ∂LFα . Given
λ ∈ [0, 1], we denote w = λy + (1 − λ)z. The Fi’s are concave, hence for all
i ∈ (1, . . . ,m), λFi(yi) + (1 − λ)Fi(zi) ≤ Fi(wi). Since the generator φ−1 is a de-
creasing convex function, λφ−1(Fi(yi)) + (1− λ)φ−1(Fi(z)) ≥ φ−1(Fi(wi)). And thus
by summation λ(φ−1(F1(y1)) + · · · + φ−1(Fm(ym))) + (1 − λ)(φ−1(F1(z1)) + · · · +
φ−1(Fm(z2))) ≥ φ−1(F1(w1)) + · · ·+ φ−1(Fm(wm)). Now, φ is a decreasing function:
φ
(
λ(φ−1(F1(y1)) + · · ·+ φ−1(Fm(ym))) + (1− λ)(φ−1(F1(z1)) + · · ·+ φ−1(Fm(zm)))

)
≤ φ

(
φ−1(F1(w1)) + · · ·+ φ−1(Fm(wm))

)
= FY(w). Since y and z are in ∂LFα ,

φ−1(F1(y1)) + · · · + φ−1(Fm(ym)) = φ−1(F1(z1)) + · · · + φ−1(Fm(zm)) = φ−1(α).
Then FY(w) ≥ α, which means that w ∈ ∂LFα .

If the level curves must be concave, then the use of survival copulas (associated
with 1− FY) can be a solution.

It is important to mention that even if the hypothesis of Archimedeanity is re-
strictive, it can still cover a great variety of situations, as illustrated in Figure 4 with
varying copulas and marginals. The assessment of this hypothesis is detailed in the
next paragraph.
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Figure 4: Scatterplots with a thousand of sample points Y1, . . . ,Y1000 generated
from Archimedean copulas models and further applying inverse of beta distribution
functions as univariate marginals. Left: Clayton copula, θ = −0.8, F1 = Beta(1, 3)
and F2 = Beta(1.5, 3.5). Center: Clayton copula, θ = −0.8, F1 = Beta(0.5, 0.5)
and F2 = Beta(2.5, 2.5). Right: Frank copula, θ = −12, F1 = Beta(2, 2) and F2 =
Beta(2, 2).

3.2. Archimedeanity tests - Choosing between the different options.
An immediate solution is to test whether the hypothesis of Archimedeanity holds or
not. Recent work exist in the bivariate case, see e.g. [7]. Otherwise a simple test is
to compare visually the level curves of the empirical copula with those of the fitted
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Archimedean copula in the same spirit as the normal probability plot in dimension one.

It remains to decide which Archimedean model is the best to estimate the Pareto
front, by trying the different possibilities: parametric strict and non-strict models
or non-parametric strict models. Non-strict parametric models seem best suited to
estimate Pareto fronts due to the presence of the zero set but in certain circumstances
non-parametric strict models perform better. For parametric families with analytical
strict generator function, one can mention for instance the Clayton family (θ > 0),
Gumbel family or Frank families of Archimedean copulas. The parameters are evalu-
ated using Maximum Likelihood.

Estimating a non-parametric generator from the data gives more flexibility when
the Archimedean hypothesis is too strong, as illustrated in the applications. Even if
it cannot capture the dissymmetry of the empirical copula, the fitted model is often
more accurate with this non-parametric generator.

Apart from visual assessment, it is possible to estimate a distance between the
empirical copula Ĉ and a fitted copula Cφ, based on an integrated mean squared error
(IMSE):

∫
[0,1]m

(Ĉ(u)−Cφ(u))2du1 . . . dum or with a root mean squared error (RMSE):√
1
n

∑n
i=1 (Ĉ(Ui)− Cφ(Ui))2.

Non-strict Archimedean copulas play a particular role for modeling the Pareto
front, due to their non degenerated zero-sets. A generator of such a copula can be
linked to a non-observable univariate random variable (e.g. the radial part of the
copula, see [31]). The maximum value of such random variable is directly related to
the location of the Pareto front, and using end-point probabilistic literature would be
an interesting perspective (see e.g. [29], [22], [28], [18], and references therein).

4. Applications. To illustrate the benefits of the approach proposed in Algo-
rithm 1 we take three classical bi-objective f1, f2 problems from the MOO literature:
the ZDT1, ZDT6 [43] and Poloni [35] test problems. They have respectively con-
vex, concave and disconnected Pareto fronts. The variable dimension is two in all
the examples, but it could be much higher since the estimation procedure only deals
with the objective space. Note that with an increasing variable dimension, it becomes
necessary to increase the sample size. We use R packages copula [41, 26, 30, 23] for
estimating strict Archimedean copulas and ks [12] for kernel density estimation.

4.1. Estimation of the Pareto front for the ZDT1 test problem. The
first test problem, ZDT1 is a relatively simple benchmark problem:

ZDT1. Let x ∈ [0, 1]d and g(x) = 1 + 9
d−1

d∑
i=2

xi. Consider:

f1(x) = x1, f2(x) = g(x)
(

1−

√
f1(x)
g(x)

)
.

Here we choose d = 2 and draw a sample of size n = 100, uniformly in [0, 1]2.

The first step is to estimate the marginals. As one can see from Figure 5, the
parametric estimation based on beta distribution gives a good fit of the empirical
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inverse of the marginals while non-parametric estimation is clearly too optimistic on
the range of the ZDT1 test problem : [0, 1] for f1 and [0, 10] for f2. Then we select
the model with the best fit for the copula, which is the non-parametric copula model
in this case, based on Figure 6. Here several models would be acceptable, since all the
other Archimedean models look close to the empirical copula, except the non-strict
model No. 2. However, the RMSE error on the pseudo-observations is the lowest with
the non-parametric generator.

Finally we obtain the estimation of the position of the Pareto front, cf. Figure
7. While being slightly too optimistic on the right side, it is more accurate than the
Pareto front approximation from the non-dominated points of the observations. Also
a comparison with what would have been obtained using only the empirical copula
illustrates that the Archimedean hypothesis brings a smoother and better localization.
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Figure 5: ZDT6 test problem: comparison between three estimation methods of the
marginals F1 and F2 – empirical (black solid line), kernel density (blue dashed line)
and fit of a generalized beta distribution (red dotted line) – for the objectives f1 (left)
and f2(right).

4.2. Estimation of the Pareto front for the ZDT6 test problem. The
second test problem has a concave Pareto front and is harder due to a very low
density around the Pareto optimal area:

ZDT6. Let x ∈ [0, 1]d and g(x) = 1 + 9
(

d∑
i=2

xi
i

)1/4

. Consider:

f1(x) = 1− exp(−4x1) sin6(6πx1), f2(x) = g(x)
(

1−
(
f1(x)
g(x)

)2
)
.

Again, we choose d = 2 and we draw a sample of size n = 100 uniformly in [0, 1]2,
giving observations farther away from the true Pareto front.

This time non-parametric estimation gives the best fit of the marginal distribu-
tions, see Figure 8. The best copula model is given by the non-parametric copula
model, see Figure 9. Here again only the non-strict model No.2 is clearly not rele-
vant. For all the models the level lines with α∗ closely approximate the corresponding
level line of the empirical copula, indicating that the Archimedean hypothesis is ac-
ceptable. Note that the lowest RMSE error is also in this case obtained with the
non-parametric generator, taking advantage of the higher flexibility offered by this
option.
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Figure 6: Levels lines ∂LCφα of the different fitted Archimedean models based on the
pseudo-data Uk, k = 1, . . . , n, from test problem ZDT1. The level lines correspond
in each case to α∗, 0.1, 0.2, 0.3 and 0.4.
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Figure 7: Estimated level line ∂LFα∗ with the best Cφ for the ZDT1 test problem (green
dashed line), compared to the Pareto front approximation from the observations Pn
(black line), the result with the empirical copula Ĉ (blue dashed-dotted line) and the
true Pareto front P (violet solid line). Other level lines with levels 0.1, 0.2, 0.3 and
0.4 are also displayed with thinner lines.
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The estimation of the position of the Pareto front is presented in Figure 10,
showing that the model can extend the information of the extremal observations to
improve estimation in the center of the attainable image space, where no observations
are available. In this case, knowing the range of the objectives, for instance by mini-
mizing each objective separately would help selecting the best estimation of marginals.
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Figure 8: ZDT6 test problem: comparison between three estimation methods of the
marginals F1 and F2 – empirical (black solid line), kernel density (blue dashed line)
and fit of a generalized beta distribution (red dotted line) – for the objectives f1 (left)
and f2 (right).

4.3. Estimation of the Pareto front for the Poloni test problem. This
last problem has a disconnected Pareto front with concave and convex parts. A math-
ematical description of the problem can be found in [35].

The estimation of marginals suggest the use of non-parametric estimation for f1
and the estimation from the catalog of beta distribution for f2, as visible in Figure
11. Concerning the copula model, it appears in Figure 12 that the level lines α∗ from
the Archimedean models do not approximate well the shape of the Pareto front. In
particular, the lowest level of the empirical level lines are highly non-symmetric. Thus
we discard the Archimedean assumption and we keep the empirical copula, getting
the extrapolation from the marginals.

The estimation of the position of the Pareto front is shown in Figure 13, showing
that the proposed approach is also suited when the Archimedean model hypothesis
does not hold. Even if the approximation cannot be improved on the lowest part of
the Pareto front due to the absence of observations in this area, it effectively gives a
better estimation of the Pareto front in the other parts.
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Figure 9: Levels lines ∂LCφα of the different fitted Archimedean models based on the
pseudo-data Uk, k = 1, . . . , n, from test problem ZDT6. The level lines correspond
in each case to α∗, 0.1, 0.2, 0.3 and 0.4
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Figure 10: Estimated level line ∂LFα∗ with the best Cφ for the ZDT6 test problem
(green dashed line), compared to the Pareto front approximation from the observa-
tions Pn (black line), the result with the empirical copula Ĉ (blue dashed-dotted line)
and the true Pareto front P (violet solid line). Other level lines with levels 0.1, 0.2, 0.3
and 0.4 are also displayed with thinner lines.
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Figure 11: Poloni test problem: comparison between three estimation methods of the
marginals F1 and F2 – empirical (black solid line), kernel density (blue dashed line)
and fit of a generalized beta distribution (red dotted line) – for the objectives f1 (left)
and f2 (right).
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Figure 12: Levels lines ∂LCφα of the different fitted Archimedean models based on the
pseudo-data Uk, k = 1, . . . , n, from test problem Poloni. The level lines correspond
in each case to α∗, 0.1, 0.2, 0.3 and 0.4.
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Figure 13: Estimated level line ∂LFα∗ for the Poloni test problem (green dashed line),
compared to the Pareto front approximation from the observation Pn (black line) and
the true Pareto front P (violet solid line). Other level lines with levels 0.1,0.2,0.3 and
0.4 are also displayed with thinner lines.
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5. Conclusions and perspectives. In this paper, we addressed the problem
of estimating the Pareto front in an initial phase of multiobjective problems when an
i.i.d. sample is available.
At the theoretical level, we established a connection between Pareto fronts and upper
level lines of the outputs sample. The approximation of these level lines can be done
with very few natural assumptions by using the theory of copulas. An interesting
particular case is for Archimedean copulas, for which analytical expressions are avail-
able. This assumption can be checked visually or statistically with specific tests of
the literature.
The benefits of this methodology are illustrated on some common bi-objective prob-
lems from multi-objective optimization literature.

There are several perspectives of this research. Though the Archimedean as-
sumption corresponds to a large range of copulas, it is sometimes inappropriate. As
an intermediate solution to the general alternative proposed here – i.e. usage of em-
pirical copula –, it may be interesting to consider nested Archimedean copulas, see
e.g. [30] and references therein, or other families of copulas. Further developments
about non-strict generators have also been evocated in Section 3.
Secondly, the restriction to i.i.d. samples can be mitigated since in some particular
cases random search performs relatively well, see e.g. [1]. However, it might be pos-
sible to extend the approach of [24] to deal with non independent observations.
Finally, this methodology relies on the estimated distribution of the outputs. In the
context of time-consuming objective functions, such estimation could be improved by
using surrogate models.
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