
HAL Id: hal-01097401
https://hal.science/hal-01097401v1

Preprint submitted on 19 Dec 2014 (v1), last revised 14 Jan 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A calculus of constructions with explicit subtyping
Ali Assaf

To cite this version:

Ali Assaf. A calculus of constructions with explicit subtyping. 2014. �hal-01097401v1�

https://hal.science/hal-01097401v1
https://hal.archives-ouvertes.fr

A calculus of constructions with explicit

subtyping

Ali Assaf

September 16, 2014

Abstract

The calculus of constructions can be extended with an infinite hierar-

chy of universes and cumulative subtyping. In this hierarchy, each uni-

verse is contained in a higher universe. Subtyping is usually left implicit

in the typing rules. We present an alternative version of the calculus of

constructions where subtyping is explicit. This new system avoids prob-

lems related to coercions and dependent types by using the Tarski style

of universes and by introducing additional equations to reflect equality.

1 Introduction

The predicative calculus of inductive constructions (PCIC), the theory behind
the Coq proof system [15], contains an infinite hierarchy of predicative universes
Type0 : Type1 : Type2 : . . . and an impredicative universe Prop : Type1 for
propositions, together with a cumulativity relation:

Prop ⊆ Type0 ⊆ Type1 ⊆ Type2 ⊆

Cumulativity gives rise to an asymmetric subtyping relation ≤ which is used in
the subsumption rule:

Γ ⊢ M : A A ≤ B

Γ ⊢ M : B .

Subtyping in Coq is implicit and is handled by the kernel. Type uniqueness
does not hold, as a term can have many non-equivalent types, but a notion of
minimal type can be defined. While subject reduction does hold, the minimal
type of a term is not preserved during reduction.

The goal of this paper is to investigate whether it is possible to make sub-
typing explicit, by inserting explicit coercions such as

↑0: Type0 → Type1

1

and rely on a kernel that uses only the classic conversion rule:

Γ ⊢ M : A A ≡ B

Γ ⊢ M : B .

In this setting, a well-typed term would have a unique type up to equivalence

and the type would be preserved during reduction.

Coercions and dependent types In the presence of dependent types, coer-
cions can interfere with type checking because ↑0 (A) 6≡ A. As a result, terms
that were well-typed in a system with implicit subtyping become ill-typed after
introducing explicit coercions.

Example 1. In the context

Γ = (a : Type0, b : Type0, f : a → b, g : Π (c : Type1) .c) ,

the term f (g (a)) is well-typed and has type b.

Γ ⊢ f (g (a)) : b

In a system with explicit subtyping, before inserting coercions, this term is
not well-typed because a has type Type0 while g has type Π(c : Type1) .c and
Type0 6≡ Type1. With an explicit coercion ↑0: Type0 → Type1, the term g (↑0 (a))
has type ↑0 (a) but f (g (↑0 (a))) is not well-typed because f has type a → b and
↑0 (a) 6≡ a.

The easiest way to circumvent this problem is to add a new equation

↑0 (A) ≡ A.

In other words, we erase the coercions to check if two terms are equivalent.
While this solution is straightforward, it unfortunately means that we use ill-
typed terms. In a system where equivalence is defined by reduction rules, this
solution amounts to adding a new reduction rule ↑0 (A) −→ A, which would
completely break subject reduction. A calculus of constructions with explicit
subtyping will need to avoid these rules.

Russell vs Tarski There are two ways of introducing universes: the Russell

style and the Tarski style. The first is used in the calculus of constructions and in
pure type systems [1]. The second is mainly used in Martin-Löf’s intuitionistic
type theory [10]. While the Russell style is often regarded as an informal version
of the Tarski style, the two styles are not completely equivalent. Luo [9] already
showed that there is some discrepancy between them. Example 1 confirms this
idea and suggests that explicit subtyping in the Russell style is not possible.

In the Tarski style, we make the distinction between terms and types. Every
sort Typei has a corresponding universe symbol Ui and a decoding function Ti.
If A is a term of type Ui, it is not itself a type, but Ti (A) is its corresponding

2

type. For example, πi (x : A) .B is the term of type Ui that represent the product
type Ti (πi (x : A) .B) ≡ Π(x : Ti (A)) .Ti (B). In this setting, the context Γ of
example 1 becomes

Γ = (a : U0, b : U0, f : T0 (a) → T0 (b) , g : Π (a : U1) .T1 (a))

and with the coercion ↑0: U0 → U1, the term g (↑0 (a)) has type T1 (↑0 (a)):

Γ ⊢ g (↑0 (a)) : T1 (↑0 (a)) .

By introducing the following equation at the level of types:

T1 (↑0 (a)) ≡ T0 (a) ,

we get
Γ ⊢ g (↑0 (a)) : T0 (a)

and therefore
Γ ⊢ f (g (↑0 (a))) : T0 (b) .

Notice that the equation is well-formed because both members are types, not
terms, so they only need to both be well-formed.

Reflecting equalities Within the Tarski style, there are again two main
methods of introducing universes known as universes as full reflections and uni-

verses as uniform constructions [12]. The first method requires reflecting equal-
ities, meaning that codes corresponding to equivalent types must be equivalent:
if Ti (A) ≡ Ti (B) then A ≡ B. In order to achieve that, additional equations
must be introduced such as

↑0 (π0 (A) (λx.B (x))) ≡ π1 (↑0 (A)) (λx. ↑0 (B (x))) . (1)

The second method drops that principle. Instead, ↑0 is used as a constructor
to inject types from U0 into U1. In practice, the usefulness of reflection has not
been shown and uniform constructions have been preferred [8, 9, 12].

While reflecting equality can be hard to achieve, we argue here that, on the
contrary, it is essential in order to preserve the expressivity of the Russell style.
First, we note that a term can have multiple translations with the following
example.

Example 2. With Russell-style universes, in the context

Γ = (a : Type0, b : Type0) ,

the term M = Π(x : a) .b has type Type1.

Γ ⊢⊆ Π(x : a) .b : Type1

With Tarski-style universes, this term can be translated in two different ways
as M1 = ↑0 (π0 (a) (λx.b)) and M2 = π1 (↑0 (a)) (λx. ↑0 (b)).

Γ ⊢↑ ↑0 (π0 (a) (λx.b)) : U1

3

Γ ⊢↑ π1 (↑0 (a)) (λx. ↑0 (b)) : U1

When M1 and M2 are used as types, the problem disappears because T1 (M1) ≡
T1 (M2) ≡ Π(x : T0 (a)) .T0 (b). The problem appears when we prove higher-
order statements about these two terms.

If p is an abstract predicate of type Type1 → Type1 then T1 (p (M1)) 6≡
T1 (p (M2)). As a result, we lose some of the expressivity of the Russell-style
universes with implicit subtyping.

Example 3. In the context

Γ = p : Type1 → Type1,

q : Type1 → Type1,

f : Π (c : Type0) . p (c) → q (c) ,

g : Π (a : Type1) .Π(b : Type1) . p (Π (x : a) .b)

a : Type0,

b : Type0,

the term f (Π (x : a) .b) (g (a) (b)) has type q (Π (x : a) .b)

Γ ⊢ f (Π (x : a) .b) (g (a) (b)) : q (Π (x : a) .b)

but the corresponding Tarski-style term

f (π0 (x : a) .b) (g (↑0 (a)) (↑0 (b)))

is ill-typed because T1 (p (π1 (x : ↑0 (a)) . ↑0 (b))) 6≡ T1 (p (↑0 (π0 (x : a) .b))).
Reflecting equality with Equation 1 solves this problem by ensuring that

any well-typed term has a single representation up to equivalence. While the
equations needed for the predicative universes Typei have been known for some
time [8, 12], the equations for the impredicative universe Prop are less obvious
and have not been studied before.

Related work Geuvers and Wiedijk [4] presented a dependently typed system
with explicit conversions. In that system, every conversion is annotated inside
the term and there is no implicit conversion rule. Terms have a unique type
instead of a unique type up to equivalence. To solve the issue of dependent types
mentioned above, they simply use an erasure equation similar to ↑0 (A) ≡ A.
They also present a variant of the system which does not go through ill-typed
terms, but that uses typed heterogeneous equality judgments. The meta-theory
of the variant system has not been investigated.

In Martin-Löf’s intuitionistic type theory, Palmgren [12] and Luo [8] for-
malized systems with a cumulative hierarchy of predicative universes Ui and an
impredicative universe Prop. They both use the Tarski style of universes, which
distinguishes between a term A of type Ui and the type Ti (A) that it represents,
and which allows them to introduce well-typed equations such as Equation 1.

4

However, they only show how to reflect equality for the predicative universes.
As a result, these systems lose some of the expressivity of Russell-style universes
with implicit subtyping and are therefore incomplete.

Cousineau and Dowek [3] showed how to embed functional pure type systems
in the λΠ-calculus modulo, a logical framework that can be seen as a subset of
Martin-Löf’s framework where equations are expressed as rewrite rules. When
the rewrite system is confluent and strongly normalizing, the λΠ-calculus mod-
ulo becomes a decidable version of Martin-Löf’s framework. Burel and Boespflug
[2] used this embedding to formalize and translate Coq proofs to Dedukti [13],
a type-checker based on the λΠ-calculus modulo rewriting, but they handle
neither the universe hierarchy nor cumulativity.

Contribution We present a formulation of the cumulative calculus of con-
structions where subtyping is explicit. By using Tarski-style universes, we are
able to solve the problems related to coercions and dependent types. Our sys-
tem also fully reflects equality. By introducing additional equations between
terms, we ensure that every well-typed term in the original system has a unique
representation up to equivalence in the new system.

To our knowledge, this is the first time such work has been done for the full
cumulative calculus of constructions, which includes both a cumulative hierarchy
of predicative universes and an impredicative universe. We also show how to
orient the equations into rewrite rules so that equivalence can be defined as a
congruence of reduction steps. The resulting system can be used to embed Coq
in logical frameworks.In summary, this paper answers the question:

What is the system that corresponds to the question mark

in Figure 1?

Outline In Section 2, we present a subset of the original PCIC that we call
the cumulative calculus of constructions (CC⊆). It will serve as the reference
to which systems with explicit subtyping should be compared. In Section 3,
we present our system with explicit subtyping called the explicit cumulative

calculus of constructions (CC↑). We show exactly which equations are needed
to reflect equality. In Section 4, we show that it is complete with respect to
CC⊆ by defining a translation and proving that it preserves typing. Finally, in
Section 5, we show how to transform the equations into rewrite rules so that
the system can be implemented in practice.

2 The cumulative calculus of constructions

We consider a subset of PCIC that does not contain inductive types so that
we can focus entirely on universes and subtyping. It is related to the extended

calculus of constructions (ECC) [7] but it does not contain sum types. It is also
related to the generalized calculus of constructions (CCω) [5, 6] but that one is

5

PTS

STLC System F
impredicative
polymorphism

LF

dependent types

CC

LF∞

infinite hierarchy

CC∞

(Russell)
ITT

cumulativity

CC⊆

(Tarski)
ITT

annotations erasure

? PCIC

ind
uct

ive
typ

es

STLC simply typed λ-calculus
LF dependently typed λ-calculus
CC calculus of constructions
ITT intuitionistic type theory

Figure 1: Type theory zoo

not fully cumulative as it lacks the Prop ⊆ Type0 inclusion1. For lack of a stan-
dard name in the literature, we call it the cumulative calculus of constructions

(CC⊆).

Syntax The syntax is defined as usual for type theories based on pure type
systems. For further background, we refer the reader to [1, 15].

Definition 4 (Syntax).

variables x, y, α, β ∈ V

sorts s ∈ S = {Prop} ∪ {Typei | i ∈ N}

terms M,N,A,B ∈ T ::= x | s | Π(x : A) .B | λ (x : A) .M | M (N)

contexts Γ,∆ ∈ C ::= . | Γ, x : A

Subtyping Since the pure type system at the core of CC⊆ is functional, we
can define its axiom relation (s1 : s2) ∈ A as a function A(s1) and its prod-
uct rule relation (s1, s2, s3) ∈ R as a function R(s1, s2). The cumulativity

1Perhaps unsurprisingly, we found that Prop ⊆ Type0 greatly complicates our problem.

6

relation ⊆ can be defined as the reflexive transitive closure of Prop ⊆ Type0
and Typei ⊆ Typei+1. In order to give a uniform presentation, we define the
following operations on sorts.

Definition 5 (Sort operations). The unary operations A and N and the binary
operation R are defined as follows.

A(Prop) = Type1

A(Typei) = Typei+1

N (Prop) = Type0

N (Typei) = Typei+1

R(Prop,Prop) = Prop

R(Typei,Prop) = Prop

R(Prop,Typej) = Typej

R(Typei,Typej) = Typemax(i,j)

The cumulativity relation ⊆ is the reflexive transitive closure of N .

Definition 6 (Subtyping). A term A is a subtype of B when the relation A ≤ B
can be derived from the following rules where ≡ is the usual β-equivalence
relation.

A ≡ B

A ≤ B
reflexivity

A ≤ B B ≤ C

A ≤ C
transitivity

s1 ⊆ s2

s1 ≤ s2
cumulativity

B ≤ C

Π(x : A) .B ≤ Π(x : A) .C
covariance

Typing To simplify the presentation, we drop covariance from the typing
rules and we split the subsumption rule into a conversion and cumulativity rule.
This modification is justified because η-expansion can be used as a coercion
for product covariance and, unlike ↑0, it naturally reflects equality since two
translations of a same term are equivalent:

(λ (x : A) . ↑0 (M (x))) (x) ≡ ↑0 (M (x))

≡ ↑0 ((λ (x : A) .M (x)) (x)) .

We also decouple the context well-formedness judgment from the typing
judgment to break the mutual dependency between the two. This formulation
is equivalent to the original one but is better suited for proofs by induction. For
more information on this common technique, we refer the reader to [16].

Definition 7 (Typing). A term M has type A in the context Γ when the
judgment Γ ⊢⊆ M : A can be derived from the following rules.

(x : A) ∈ Γ

Γ ⊢⊆ x : A
variable

Γ ⊢⊆ s : A(s)
sort

Γ ⊢⊆ A : s

Γ ⊢⊆ A : N (s)
cumulativity

7

Γ ⊢⊆ A : s1 x 6∈ Γ Γ, x : s2 ⊢⊆ B : Prop

Γ ⊢⊆ Π(x : A) .B : R(s1, s2)
product

Γ ⊢⊆ A : s x 6∈ Γ Γ, x : A ⊢⊆ M : B

Γ ⊢⊆ λ (x : A) .M : Π (x : A) .B
abstraction

Γ ⊢⊆ M : Π (x : A) .B Γ ⊢⊆ N : A

Γ ⊢⊆ M (N) : {N/x}B
application

Γ ⊢⊆ M : A Γ ⊢⊆ B : s A ≡ B

Γ ⊢⊆ M : B
conversion

A context Γ is well-formed when the judgment WF⊆ (Γ) can be derived from
the following rules.

WF⊆ (.)
empty

WF⊆ (Γ) x 6∈ Γ Γ ⊢⊆ A : s

WF⊆ (Γ, x : A)
declaration

We write Γ ⊢ M : A and WF (Γ) instead of Γ ⊢⊆ M : A and WF⊆ (Γ) when
there is no ambiguity.

Remark 8. The system CC⊆ is not equivalent to a non-functional PTS [1].
Indeed, even if the PTS had Prop : Typei for all i ∈ N as axioms, the term
λ (a : Prop) . (λ (a : Type0) .a) (a) would not be well-typed, while it has type
Prop → Type0 in CC⊆.

Minimal typing The system CC⊆ does not satisfy the uniqueness of types
because a term can have multiple non-equivalent types. However, it does have
a notion of minimal type.

Definition 9. A term M has minimal type A in the context Γ if Γ ⊢ M : A
and if for all B, Γ ⊢ M : B implies A ≤ B. We write Γ ⊢m M : A.

Fact 10 (Existence of minimal types). If Γ ⊢⊆ M : B then there is an A such

that Γ ⊢m M : A.

This notion will be useful when we define our translation. However, note
that while minimal types always exist, they are not preserved by substition and
β-reduction, as is shown by the following example.

Example 11. In the context Γ = (a : Type0, x : Type1), the term x has minimal
type Type1

a : Type0, x : Type1 ⊢m x : Type1

but the term {a/x}x = a has minimal type Type0 6≡ {a/x}Type1.

a : Type0 ⊢m a : Type0

8

3 Explicit subtyping

In this section, we define the explicit cumulative calculus of constructions (CC↑)
where subtyping is explicit. The syntax is extended to include coercions and
to make the distinction between terms and types. We introduce additional
equations in the equivalence relation ≡ and give the typing rules based on the
rules of CC⊆.

Syntax For each sort s, we introduce the universe symbol Us. A term A of
type Us is a code that represents a type in that universe. The decoding function
Ts (A) gives the corresponding type. We extend the syntax with the codes us
and πs1,s2 (x : A) .B that represent the type Us in the universe UA(s) and the
product type in the universe UR(s1,s2) respectively. The universe hierarchy
being cumulative, each universe contains codes for all the types of the previous
universe using the coercion ↑s (A) 2.

Definition 12 (Syntax).

terms M,N,A,B ∈ T ::= x | λ (x : A) .M | M (N)

| Us | Ts (A) | Π(x : A) .B

| us | ↑s (A) | πs1,s2 (x : A) .B

contexts Γ,∆ ∈ C ::= . | Γ, x : A

We write Ui, Ti (A), ui, ↑i (A), and πi,j (x : A) .B instead of UTypei
, TTypei

(A),
uTypei , ↑Typei (A), and πTypei,Typej (x : A) .B respectively. When s1 ⊆ s2 and

s2 = N i(s1), we write ↑s2s1 (A) for the term

↑N i−1(s)

(

· · · ↑N (s) (↑s (A))
)

.

For example, ↑31 (A) = ↑2 (↑1 (A)) and ↑1Prop (A) = ↑1

(

↑Prop (A)
)

.

Equivalence Because we are using Taski-style universes, we need to consider
additional equations besides β-equivalence. For now, we just state the equa-
tions that are needed and assume a congruence relation ≡ that satisfies those
equations. We do not worry about the algorithmic aspect. Later in Section 5,
we show how to define ≡ as the usual congruence induced by a set of reduction
rules.

In addition to β-equivalence:

(λ (x : A) .M) (N) ≡ {N/x}M,

we need equations to describe the behaviour of the decoding function Ts (A).

2One can also view ↑
s
(A) as the code representing Ts (A) in the universe UN (s).

9

These are the same as in intuitionistic type theory:

TA(s) (us) ≡ Us

TN (s) (↑s (A)) ≡ Ts (A)

TR(s1,s2) (πs1,s2 (x : A) .B) ≡ Π(x : Ts1 (A)) .Ts2 (B) .

Finally, we also need equations that reflect equality to ensure that each term of
a given type has a unique representation.

Which equations are needed to reflect equality? The answer relies in the
multiplicity of typing derivations in CC⊆. For example, the product Π(x : A) .B
of minimal type Type0 can be typed at the level Type1 in two different ways,
each giving a different term in CC↑:

A : Type0 x : A ⊢ B : Type0
Π(x : A) .B : Type0
Π(x : A) .B : Type1

↑1 (π0,0 (x : A) .B)

A : Type0
A : Type1

x : A ⊢ B : Type0
x : A ⊢ B : Type1

Π(x : A) .B : Type1

π1,1 (x : ↑0 (A)) . ↑0 (B)

The equivalence relation must therefore take this multiplicity into account. Ta-
ble 1 lists some of the different typing derivations that can occur for product
types. A careful analysis yields the following equations:

πN (s),Prop (x : ↑s (A)) .B ≡ πs,Prop (x : A) .B

πProp,N (s) (x : A) . ↑s (B) ≡ ↑s (πProp,s (x : A) .B)

π0,j

(

x : ↑Prop (A)
)

.B ≡ πProp,j (x : A) .B

πi,0 (x : A) . ↑Prop (B) ≡ ↑iProp (πi,Prop (x : A) .B)

πi+1,j+1 (x : ↑i (A)) .B ≡ πi,j+1 (x : A) .B when i ≤ j

πi+1,j+1 (x : ↑i (A)) .B ≡ ↑i (πi,j+1 (x : A) .B) when i > j

πi+1,j+1 (x : A) . ↑j (B) ≡ πi+1,j (x : A) .B when i ≥ j

πi+1,j+1 (x : A) . ↑j (B) ≡ ↑j (πi+1,j (x : A) .B) when i < j.

It turns out we can express these concisely using the ↑s2s1 (A) notation:

πN (s1),s2

(

x : ↑s1 (A)
)

.B ≡ ↑
R(N (s1),s2)
R(s1,s2)

(πs1,s2 (x : A) .B)

πs1,N (s2) (x : A) . ↑s2 (B) ≡ ↑
R(s1,N (s2))
R(s1,s2)

(πs1,s2 (x : A) .B) .

10

CC⊆ typing derivation CC↑ term representation

A : Typei x : A ⊢ B : Typei
Π(x : A) .B : Typei
Π(x : A) .B : Typei+1

↑i (πi,i (x : A) .B)

A : Typei
A : Typei+1

x : A ⊢ B : Typei
x : A ⊢ B : Typei+1

Π(x : A) .B : Typei+1

πi+1,i+1 (x : ↑i (A)) . ↑i (B)

A : Typei x : A ⊢ B : Prop

Π(x : A) .B : Prop
πi,Prop (x : A) .B

A : Typei
A : Typei+1 x : A ⊢ B : Prop

Π(x : A) .B : Prop

πi+1,Prop (x : ↑i (A)) .B

A : Typei

x : A ⊢ B : Prop

x : A ⊢ B : Type0
Π(x : A) .B : Typei

πi,0 (x : A) . ↑Prop (B)

A : Typei x : A ⊢ B : Prop

Π(x : A) .B : Prop

Π(x : A) .B : Type0
...

Π(x : A) .B : Typei

↑iProp (πi,Prop (x : A) .B)

Table 1: Different typing derivations for same terms

11

Definition 13 (Equivalence). The equivalence relation ≡ is the smallest con-
gruence relation that satisfies the following equations:

(λ (x : A) .M) (N) ≡ {N/x}M

TA(s) (us) ≡ Us

TN (s) (↑s (A)) ≡ Ts (A)

TR(s1,s2) (πs1,s2 (x : A) .B) ≡ Π(x : Ts1 (A)) .Ts2 (B)

πN (s1),s2

(

x : ↑s1 (A)
)

.B ≡ ↑
R(N (s1),s2)
R(s1,s2)

(πs1,s2 (x : A) .B)

πs1,N (s2) (x : A) . ↑s2 (B) ≡ ↑
R(s1,N (s2))
R(s1,s2)

(πs1,s2 (x : A) .B) .

Typing To make the distinction between types and terms, we introduce an
additional judgment Γ ⊢↑ type (A) to capture the property that a type is well-
formed. The derivation rules mirror the rules of CC⊆.

Definition 14 (Typing). A term M has type A in the context Γ when the
judgment Γ ⊢↑ M : A can be derived from the following rules, and a term A is

a type in the context Γ when the judgment Γ ⊢↑ type (A) can be derived from
the following rules:

(x : A) ∈ Γ

Γ ⊢↑ x : A
variable

Γ ⊢↑ type (Us)
sort − type

Γ ⊢↑ A : Us

Γ ⊢↑ type (Ts (A))
decode − type

Γ ⊢↑ type (A) x 6∈ Γ Γ, x : A ⊢↑ type (B)

Γ ⊢↑ type (Π (x : A) .B)
product − type

Γ ⊢↑ us : UA(s)

sort
Γ ⊢↑ A : Us

Γ ⊢↑ ↑s (A) : UN (s)

cumulativity

Γ ⊢↑ A : Us1 x 6∈ Γ Γ, x : Ts1 (A) ⊢↑ B : Us2

Γ ⊢↑ πs1,s2 (x : A) .B : UR(s1,s2)

product

Γ ⊢↑ type (A) x 6∈ Γ Γ, x : A ⊢↑ M : B

Γ ⊢↑ λ (x : A) .M : Π (x : A) .B
abstraction

Γ ⊢↑ M : Π (x : A) .B Γ ⊢↑ N : A

Γ ⊢↑ M (N) : {N/x}B
application

12

Γ ⊢↑ M : A Γ ⊢↑ type (B) A ≡ B

Γ ⊢↑ M : B
conversion

A context Γ is well-formed when the judgment WF↑ (Γ) can be derived from the
following rules:

WF↑ (.)
empty

WF↑ (Γ) x 6∈ Γ Γ ⊢↑ type (A)

WF↑ (Γ, x : A)
declaration

We write Γ ⊢ M : A, Γ ⊢ type (A), and WF (Γ) instead of Γ ⊢↑ M : A,
Γ ⊢↑ type (A), and WF↑ (Γ) when there is no ambiguity.

Remark 15. The equations of Definition 13 are well-formed because the left and
right side of each equation are either both types or both terms of the same type.
In particular, the last two are well-typed because R(s1, s2) ⊆ R(N (s1), s2) and
R(s1, s2) ⊆ R(s1,N (s2)) for all s1, s2 ∈ S.

Proposition 16 (Type uniqueness). If Γ ⊢↑ M : A and Γ ⊢↑ M : B then

A ≡ B.

Proof. By induction on the structure of M .

Erasure Systems with Tarski-style universes are related to systems with Russell-
style universes in a precise sense: we can define an erasure function |M | such
that the erasure of a well-typed term in the Tarski style is well-typed in the
Russell style. In our setting, this function shows that CC↑ is sound with respect
to CC⊆.

Definition 17 (Erasure). The term erasure |M |, the type erasure ‖A‖, and the
context erasure ‖Γ‖ are defined as follows.

|x| = x

|us| = s

|↑s (A)| = |A|

|πs1,s2 (x : A) .B| = Π(x : |A|) . |B|

|λ (x : A) .M | = λ (x : ‖A‖) . |M |

|M (N)| = |M | (|N |)

‖Us‖ = s

‖Ts (A)‖ = |A|

‖Π(x : A) .B‖ = Π(x : ‖A‖) . ‖B‖

‖.‖ = .

‖Γ, x : A‖ = ‖Γ‖ , x : ‖A‖

13

Theorem 18 (Soundness). If Γ ⊢↑ M : A then ‖Γ‖ ⊢⊆ |M | : ‖A‖. If Γ ⊢↑

type (A) then ‖Γ‖ ⊢⊆ ‖A‖ : s for some sort s. If WF↑ (Γ) then WF⊆ (‖Γ‖).

Proof. The erasure of the typing rules of CC↑ are derivable in the typing rules of
CC⊆. By induction, the erasure of each derivation of CC↑ is a valid derivation
of CC⊆.

4 Completeness

In this section, we show that the new system is complete with respect to the
original system, meaning that it can express all well-typed terms. We define a
function that translates any well-typed term of CC⊆ into a term of CC↑ and we
prove that this translation preserves typing.

Translation When translating terms, we want to choose the representation
that has the minimal type. However, we sometimes need to lift some sub-terms,
such as the argument of applications, in order to get a well-typed term. We
therefore define two translations: [M]Γ which translates M according to its
minimal type and [M]Γ⊢A which translates M as a term of type A. Finally,
since we distinguish between terms and types, we also need to define JAKΓ, the
translation of A as a type.

Definition 19 (Translation). Let Γ be a well-formed context, A and B be well-
formed types in Γ, and M be a well-typed term in Γ such that Γ ⊢m M : A and
Γ ⊢⊆ M : B. The term translation [M]Γ, the cast translation [M]Γ⊢B , and the
type translation JAKΓ are mutually defined as follows.

Term translation

[s]Γ = us

[x]Γ = x

[Π (x : A′) .B′]Γ = πs1,s2 (x : [A′]Γ) . [B
′]Γ,x:A

where Γ ⊢m A′ : s1

and Γ, x : A′ ⊢m B′ : s2

[λ (x : A′) .M ′]Γ = λ (x : JA′KΓ) . [M
′]Γ,x:A′

[M ′ (N ′)]Γ = [M ′]Γ ([N ′]Γ⊢A)

where Γ ⊢m M ′ : Π (x : A′) .B′

Cast translation

[M]Γ⊢B = [M]Γ
when A ≡ B

[M]Γ⊢B = ↑s2s1 ([M]Γ)

when A ≡ s1 ⊆ s2 ≡ B

14

Type translation

JAKΓ = Ts ([A]Γ)

where Γ ⊢m A : s

The context translation JΓK where WF⊆ (Γ) is defined as follows.

Context translation

J.K = .

JΓ, x : AK = JΓK , x : JAKΓ

We will write [M], [M]⊢C , and JAK instead of [M]Γ, [M]Γ⊢C , and JAKΓ when
the context is not ambiguous.

Substitution preservation A key property for proving the typing preserva-
tion of the translation is that it preserves substitution. If Γ, x : A ⊢⊆ M : B and
Γ ⊢⊆ N : A then the translation of the substitution is the same as the substitu-
tion of the translation. However, the naive statement {[N] /x} [M] ≡ [{N/x}M]
is not true. First, x has type A while N has type C so we need to use the cast
translation [N]⊢A. Second, the minimal typing is not preserved by substitution,
as we showed in Example 11. Therefore we also need to fix the type of M and
{N/x}M using the cast translations [M]⊢B and [{N/x}M]⊢{N/x}B .

Lemma 20 (Translation distributivity). The translation satisfies the following

properties:

• For all s ∈ S, JsK ≡ Us.

• If Γ ⊢⊆ A : s1 and Γ, x : A ⊢⊆ B : s2 then

JΠ(x : A) .BK ≡ Π(x : JAK) . JBK .

• If Γ ⊢⊆ A : s1 and Γ, x : A ⊢⊆ B : s2 then

[(Π (x : A) .B)]⊢R(s1,s2)
≡ Π

(

x : [A]⊢s1
)

. [B]⊢s2 .

• If Γ ⊢⊆ A : s1 and Γ, x : A ⊢⊆ M : B then

[λ (x : A) .M]⊢Π(y:A).B ≡ λ (x : JAK) . [M]⊢B .

• If Γ ⊢⊆ M : Π (x : A) .B and Γ ⊢⊆ N : A then

[M (N)]⊢{N/x}B ≡ [M]⊢Π(x:A).B ([N]⊢A) .

Proof. Follows from the definition of the equivalence relation ≡ and of the trans-
lations JAK and [M]Γ⊢A. Note that this proposition would not be true if ≡ did
not reflect equality.

15

Lemma 21 (Substitution preservation). If Γ, x : A,Γ′ ⊢⊆ M : B and Γ ⊢⊆ N :
A then

{[N]Γ⊢A /x} [M]Γ,x:A,Γ′⊢B ≡ [{N/x}M]Γ,{N/x}Γ′⊢{N/x}B .

If Γ, x : A,Γ′ ⊢⊆ M : s and Γ ⊢⊆ N : A then

{[N]Γ⊢A /x} JBKΓ,x:A,Γ′ ≡ J{N/x}BKΓ,{N/x}Γ′ .

Proof. By induction on M , using Lemma 20. The second statement derives
from the first.

• Case x. Then we must have {N/x}A ≡ A ≡ B ≡ {N/x}B. Therefore

{[N]⊢A /x} [x]⊢B ≡ [N]⊢A
≡ [N]⊢{N/x}B

≡ [{N/x}x]⊢{N/x}B .

• Case y 6= x. Then

{[N]⊢A /x} [y]⊢B ≡ y

≡ [{N/x}y]⊢{N/x}B .

• Case s. Then

{[N]⊢A /x} [s]Γ,x:A,Γ′⊢B ≡ s

≡ [{N/x}s]⊢{N/x}B .

• Case Π(y : C) .D. Then B ≡ s3 where Γ, x : A,Γ′ ⊢⊆ C : s1 and Γ, x :
A,Γ′, y : C ⊢⊆ D : s2 and s3 = R(s1, s2). Therefore

{[N]⊢A /x} [Π (y : C) .D]⊢s3 ≡ Π
(

y : {[N]⊢A /x} [C]⊢s1
)

.{[N]⊢A /x} [D]s2

≡ Π
(

y : [{N/x}C]⊢s1
)

. [{N/x}D]⊢s2
≡ [{N/x} (Π (y : C) .D)]⊢s3

• Case λ (y : C) .M ′. Then B ≡ Π(x : C) .D where Γ, x : A,Γ′ ⊢⊆ C : s1
and Γ, x : A,Γ′, y : C ⊢⊆ M ′ : D. Therefore

{[N]⊢A /x} [λ (y : C) .M ′]⊢Π(x:C).D ≡ λ (y : {[N]⊢A /x} JCK) .{[N]⊢A /x} [M ′]D

≡ λ (y : J{N/x}CK) . [{N/x}M ′]⊢{N/x}D

≡ [{N/x} (λ (y : C) .M ′)]⊢{N/x}(Π(y:C).D)

• Case M ′ (N ′). Then B ≡ {N ′/y}D where Γ, x : A,Γ′ ⊢⊆ M ′ : Π (y : C) .D
and Γ, x : A,Γ′ ⊢⊆ N ′ : C. Therefore

{[N]⊢A /x} [M (N)]⊢{N ′/y}D ≡ {[N]⊢A /x} [M ′]⊢Π(y:C).D ({[N]⊢A /x} [N ′]⊢C)

≡ [{N/x}M ′]⊢{N/x}(Π(y:C).D)

(

[{N/x}N ′]⊢{N/x}C

)

≡ [{N/x}M ′ (N ′)]⊢{N/x}{N ′/y}D

16

Equivalence preservation Having proved substitution preservation, we prove
that the translation preserves equivalence: if two well-typed terms are equivalent
in CC⊆ then their translation are equivalent in CC↑.

Lemma 22 (Equivalence preservation). If Γ ⊢⊆ M : B and Γ ⊢⊆ N : B and

M ≡ N then [M]Γ⊢B ≡ [N]Γ⊢B. If Γ ⊢⊆ A : s and Γ ⊢⊆ B : s and A ≡ B then

JAK ≡ JBK.

Proof. By induction on the derivation of M ≡ N . The second statement derives
from the first. We show the base case (λ (x : C) .M ′) (N ′) ≡ {N ′/x}M ′. Then
B ≡ {N ′/y}D where Γ ⊢⊆ λ (x : C) .M ′ : Π (x : C) .D and Γ ⊢⊆ N ′ : C.
Therefore

[(λ (x : C) .M ′) (N ′)]⊢{N ′/x}D ≡
(

λ
(

x : [C]⊢s1
)

. [M ′]⊢D
)

([N ′]⊢C)

using Proposition 20

≡ {[N ′]⊢C /x} [M ′]⊢D
by β-equivalence

≡ [{N ′/x}M ′]⊢{N ′/x}D

using Lemma 21

Typing preservation With substitution preservation and equivalence preser-
vation at hand, we can finally prove the main theorem, namely that the trans-
lation preserves typing.

Lemma 23. The translation satisfies the following properties:

• For all s ∈ S, Γ ⊢↑ us : JA(s)K .

• If Γ ⊢↑ [A]⊢s : JsK then Γ ⊢↑ [A]⊢N (s) : JN (s)K .

• If Γ ⊢↑ [A]⊢s1 : Js1K and Γ, x : JAK ⊢↑ [B]⊢s2 : Js2K then

Γ ⊢↑ [Π (x : A) .B]⊢R(s1,s2)
: JR(s1, s2)K .

• If Γ ⊢↑ type (JAK) and Γ, x : JAK ⊢↑ [M]⊢B : JBK then

Γ ⊢↑ [λ (x : A) .M]⊢Π(x:A).B : JΠ(x : A) .BK .

• If Γ ⊢↑ [M]⊢Π(x:A).B : Π (x : JAK) . JBK and Γ ⊢↑ [N]⊢A : JAK then

Γ ⊢↑ [M (N)]⊢{N/x}B : J{N/x}BK .

• If Γ ⊢↑ [M]⊢A : JAK and Γ ⊢↑ type (B) and JAK ≡ JBK then JΓK ⊢↑ [M]⊢B :
JBK .

Proof. Using Lemmas 20, 21, and 22.

17

Theorem 24 (Typing preservation). If Γ ⊢⊆ M : A then JΓK ⊢↑ [M]Γ⊢A : JAKΓ.

If Γ ⊢⊆ A : s then JΓK ⊢↑ type (JAK).

Proof. By induction on the derivation of Γ ⊢⊆ M : A, using Lemma 23. The
second statement derives from the first.

• Case variable. Then (x : JAK) ∈ JΓK so JΓK ⊢↑ x : JAK.

• Case sort . By Lemma 23, JΓK ⊢↑ us : JA(s)K .

• Case cumulativity . By induction hypothesis, JΓK ⊢↑ [A]⊢s : JsK. By
Lemma 23, JΓK ⊢↑ [A]⊢N (s) : JN (s)K .

• Case product . By induction hypothesis, JΓK ⊢↑ [A]⊢s1 : Js1K and JΓK , x :
JAK ⊢↑ [B]⊢s2 : Js2K. By Lemma 23,

JΓK ⊢↑ [Π (x : A) .B]⊢R(s1,s2)
: JR(s1, s2)K .

• Case abstraction. By induction hypothesis, JΓK ⊢↑ type (JAK) and JΓK , x :
JAK ⊢↑ [M]⊢B : JBK. By Lemma 23,

Γ ⊢↑ [λ (x : A) .M]⊢Π(x:A).B : JΠ(x : A) .BK .

• Case application. By induction hypothesis, JΓK ⊢↑ [M]⊢Π(x:A).B : Π (x : JAK) . JBK

and JΓK ⊢↑ [N]⊢A : JAK. By Lemma 23,

JΓK ⊢↑ [M (N)]⊢{N/x}B : J{N/x}BK .

• Case conversion. By induction hypothesis, JΓK ⊢↑ [M]⊢A : JAK and JΓK ⊢↑

type (JBK). By Proposition 23, JΓK ⊢↑ [M]⊢B : JBK .

Corollary 25. If WF⊆ (Γ) then WF↑ (JΓK).

Proof. By induction on Γ.

5 Operational semantics

We presented CC↑ assuming the equivalence relation ≡ satisfies the equations
of Definition 13. In practice, such equivalence relations are defined as the con-
gruence closure of a set of reduction rules. In the case of CC⊆, it is the closure
of β-reduction −→β , which enjoys confluence, subject reduction, and strong
normalization. We now do the same for CC↑.

18

Rewrite rules The equations for the decoding function Ts (A) are easily ori-
ented into rewrite rules:

TA(s) (us) −→ Us

TN (s) (↑s (A)) −→ Ts (A)

TR(s1,s2) (πs1,s2 (x : A) .B) −→ Π(x : Ts1 (A)) .Ts2 (B) .

With these rules, we can view Ts (A) as a recursively defined function that
decodes terms of type Us into types by traversing their structure.

Orienting the equations for ↑s is more delicate. In Martin-Löf’s intuitionistic
type theory, a single equation is needed to reflect equality:

↑i (πi,i (x : A) .B) ≡ πi+1,i+1 (x : ↑i (A)) . ↑i (B) .

In that case, it seems natural to orient the equation from left to right and see
↑i as a function that recursively transforms codes in Ui into equivalent codes in
Ui+1:

↑i (πi,i (x : A) .B) −→ πi+1,i+1 (x : ↑i (A)) . ↑i (B) .

While elegant, that solution does not behave well with the impredicative
universe Prop. The equation

πi+1,Prop (x : ↑i (A)) .B ≡ πi,Prop (x : A) .B

requires the rewrite rule

πi+1,Prop (x : ↑i (A)) .B −→ πi,Prop (x : A) .B

which would break confluence with the previous rule.
Fortunately, we can still orient the equations in the other direction and

obtain a well-behaved system. Again, we can express this concisely using the
↑s2s1 (A) notation.

Definition 26. The equivalence relation ≡ in CC↑ is defined as the congruence
induced by the following set of rewrite rules:

(λ (x : A) .M) (N) −→β {N/x}M

TA(s) (us) −→τ Us

TN (s) (↑s (A)) −→τ Ts (A)

TR(s1,s2) (πs1,s2 (x : A) .B) −→τ Π(x : Ts1 (A)) .Ts2 (B)

πN (s1),s2

(

x : ↑s1 (A)
)

.B −→σ ↑
R(N (s1),s2)
R(s1,s2)

(πs1,s2 (x : A) .B)

πs1,N (s2) (x : A) . ↑s2 (B) −→σ ↑
R(s1,N (s2))
R(s1,s2)

(πs1,s2 (x : A) .B) .

In this formulation, the coercions ↑s propagate upwards towards the root of the
term. This behavior matches the idea that, when computing minimal types, the
cumulativity rule must be delayed as much as possible.

19

Properties We show that the rewrite system −→βτσ enjoys the usual prop-
erties of confluence, subject-reduction, and strong normalization. The last one
follows from the strong normalization of CC⊆.

Proposition 27 (Normalization of −→τσ). The rewrite system −→τσ is ter-

minating.

Proof. The relation −→τ strictly decreases the total height of Ts symbols and
the relation −→σ strictly decreases the total depth of ↑s symbols (while leaving
the height of Ts unchanged), therefore −→τσ is terminating.

Proposition 28 (Confluence). The rewrite system −→βτσ is locally confluent.

Proof. The rewrite rules of −→τσ are left-linear and the critical pairs are conver-
gent, therefore −→τσ is locally confluent. By Proposition 27, it is terminating
and hence confluent. Therefore its union with −→β is confluent [11].

Proposition 29 (Subject reduction). If Γ ⊢↑ M : A and M −→βτσ M ′ then

Γ ⊢↑ M ′ : A.

Proof. By induction on M .

Proposition 30 (Strong normalization). The rewrite system −→βτσ is strongly

normalizing for well-typed terms.

Proof. By Proposition 27, −→τσ is terminating. Hence, any infinite sequence
of reductions must have an infinite number of −→β steps. If M −→τ M ′ or
M −→σ M ′ then |M | = |M ′|. If M −→β M ′ then |M | −→β |M ′|. An infinite
reduction sequence in CC↑ would therefore lead to an infinite reduction sequence
in CC⊆. Moreover, according to Theorem 18 and Proposition 29, the sequence
would be well-typed. Since CC⊆ is strongly normalizing, this is impossible.

6 Conclusion

We presented a formulation of the cumulative calculus of constructions with
explicit subtyping. We used the Tarski style of universes to solve the issues
related to dependent types and coercions. We showed that by reflecting equality,
we were able to preserve the expressiveness of Russell-style universes.

A thorough and definitive study of the two styles remains to be done. Are
the two styles always equivalent? Can we always define an equivalence relation
that reflects equality? Can it always be oriented into well-behaved rewrite rules?
Finally, how does this solution interact with other extensions of the theory, such
as inductive types?

Our results connect work done in pure type systems to work done in Martin-
Löf’s intuitionistic type theory. While the two theories have a clearly related
core (namely the λ-calculus with dependent types), it is less obvious if they
can still be unified or if they have diverged. Pure type systems allow for a
wide variety of specifications while intuitionistic type theory has a clear and

20

intuitive interpretation for cumulativity. We feel that this problem deserves to
be studied as the two theories form the basis for many logical frameworks and
proof assistants. The work of Herbelin and Siles [14], and van Doorn et al [17]
already showed some progress in this direction.

An obstacle to the aforementioned program is the lack of a standard no-
tion of cumulativity in pure type systems. We can imagine extending the PTS
specification with a cumulativity relation. However, it is unclear if such an ex-
tension is meaningful on its own, or if it only makes sense in CC⊆ (which is
both a full and functional PTS). In particular, the equations of CC↑ rely on
the fact that lifting inside a product cannot decrease the type of the product:
R(s1, s2) ⊆ R(N (s1), s2) and R(s1, s2) ⊆ R(s1,N (s2)). Whether this condi-
tion is essential or whether it can be avoided is unclear. The meta-theory of
pure type systems with cumulativity remains to be studied.

Finally, while our system allowed us to get rid of the implicit subsumption
rule, it did so at the expense of some complexity in the conversion rule. Whether
this trade-off is beneficial in an actual implementation remains to be discussed.
Nevertheless, this presentation is better suited for logical frameworks such as
Dedukti, which usually do not support subtyping as a built-in. Our work opens
the way for exporting Coq proofs to such frameworks.

Acknowledgments The author thanks Gilles Dowek and Raphaël Cauderlier
for the discussions leading to the ideas behind this paper and their feedback
throughout its lengthy writing process.

References

[1] Henk Barendregt. Lambda calculi with types. In Samson Abramsky,
Dov M. Gabbay, and Thomas S. E. Maibaum, editors, Handbook of Logic

in Computer Science, volume 2, pages 117–309. Oxford University Press,
1992.

[2] Mathieu Boespflug and Guillaume Burel. CoqInE: Translating the cal-
culus of inductive constructions into the λΠ-calculus modulo. In Proof

Exchange for Theorem Proving–Second International Workshop, PxTP,
page 44, 2012.

[3] Denis Cousineau and Gilles Dowek. Embedding pure type systems in the
lambda-Pi-calculus modulo. In Simona Ronchi Della Rocca, editor, Typed

Lambda Calculi and Applications, number 4583 in Lecture Notes in Com-
puter Science, pages 102–117. Springer Berlin Heidelberg, 2007.

[4] Herman Geuvers and Freek Wiedijk. A logical framework with explicit
conversions. Electronic Notes in Theoretical Computer Science, 199:33–47,
February 2008.

[5] Robert Harper and Robert Pollack. Type checking, universe polymorphism,
and typical ambiguity in the calculus of constructions draft. In J. Díaz

21

and F. Orejas, editors, TAPSOFT ’89, number 352 in Lecture Notes in
Computer Science, pages 241–256. Springer Berlin Heidelberg, 1989.

[6] Robert Harper and Robert Pollack. Type checking with universes. Theo-

retical Computer Science, 89(1):107–136, October 1991.

[7] Zhaohui Luo. ECC, an extended calculus of constructions. In Fourth An-

nual Symposium on Logic in Computer Science, 1989. LICS ’89, Proceed-

ings, pages 386–395, June 1989.

[8] Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer

Science. Oxford University Press, Inc., New York, NY, USA, 1994.

[9] Zhaohui Luo. Notes on universes in type theory. Lecture notes for a talk
at Institute for Advanced Study, Princeton (http://www.cs.rhul.ac.uk/
home/zhaohui/universes.pdf), 2012.

[10] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 17.
Bibliopolis Naples, 1984.

[11] Fritz Müller. Confluence of the lambda calculus with left-linear algebraic
rewriting. Information Processing Letters, 41(6):293–299, April 1992.

[12] Erik Palmgren. On universes in type theory. In Twenty-five years of

constructive type theory, pages 191–204. Oxford University Press, October
1998.

[13] Ronan Saillard. Dedukti: a universal proof checker. In Foundation of

Mathematics for Computer-Aided Formalization Workshop, 2013.

[14] Vincent Siles and Hugo Herbelin. Pure type system conversion is always
typable. Journal of Functional Programming, 22(02):153–180, 2012.

[15] The Coq Development Team. The Coq Reference Manual, version 8.4.
August 2012. Available electronically at http://coq.inria.fr/doc.

[16] L. S. van Benthem Jutting, J. McKinna, and R. Pollack. Checking algo-
rithms for pure type systems. In Henk Barendregt and Tobias Nipkow,
editors, Types for Proofs and Programs, number 806 in Lecture Notes in
Computer Science, pages 19–61. Springer Berlin Heidelberg, 1994.

[17] Floris van Doorn, Herman Geuvers, and Freek Wiedijk. Explicit convert-
ibility proofs in pure type systems. In Proceedings of the Eighth ACM SIG-

PLAN International Workshop on Logical Frameworks & Meta-languages:

Theory & Practice, LFMTP ’13, pages 25–36, New York, NY, USA, 2013.
ACM.

22

http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf
http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf
http://coq.inria.fr/doc

	Introduction
	The cumulative calculus of constructions
	Explicit subtyping
	Completeness
	Operational semantics
	Conclusion

