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Abstract

We analyze competitive financial economies in which firms make risky in-
vestments. Unlike the classic Arrow–Debreu framing, firms and agents cannot
contract upon the exogenous states of nature underlying production risks. The
only available securities are equities and all possible derivatives written on the
endogenous aggregate output. It is well-known that this financial structure
is rich enough to promote efficient risk sharing across consumers. However,
markets are incomplete from the production perspective, and the absence of
market prices for each primitive state of nature raises the question about the
objective of firms. We show that output-contingent asset prices convey suffi-
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1 Introduction

Following the work by Léon Walras in the 19th century, the general equilibrium

literature focused on understanding how anonymous markets coordinate the pro-

duction and consumption of goods in competitive economies. In this setting, firms’

productive decisions and agents’ consumption choices are taken independently, and

market prices are the only instruments available to coordinate different wishes. ?

supported the view that competitive prices have the capacity of aggregating the nec-

essary social knowledge to induce efficiency of self-interested decisions. This idea

was rigorously formulated and independently proven by Kenneth J. Arrow, Gerard

Debreu, and Lionel W. McKenzie during the 1950’s. They listed conditions for

existence of a competitive equilibrium and proved that, in the absence of external-

ities and other market frictions, competitive markets lead profit-maximizing firms

and utility-maximizing agents to achieve a Pareto optimal allocation of resources.

The information embedded in market prices is sufficient to promote efficient social

coordination across decision makers.

? and ? extended the general equilibrium analysis to economies in which ran-

dom states of nature affect production. They showed that the classic results carry

over to environments with uncertainty whenever decision makers are able to trade

a complete set of contingent claims—each of them promising to deliver goods in

the future contingent to the verification of a given state of nature. However, the

description and verification of primitive states are not simple matters, and most

securities traded in modern financial markets are contingent on observed outcomes

instead of primitive states of nature.

We analyze competitive financial economies in which firms make risky invest-

ments and consumers trade firms’ equities and securities written on firms’ endoge-

nous production. Since our goal is to analyze efficiency of firms’ investment decisions,

we assume that financial markets allow consumers to insure each other against id-

iosyncratic risks and make consumption plans contingent on aggregate output. It

is well-known that this market structure is sufficient to implement Pareto optimal

allocations in exchange economies. We analyze the conditions under which this also

holds for production economies.

This topic was introduced by ??. These papers develop a concept for computing

the shareholder value of large corporations and show that Pareto efficiency does

not always follow from shareholder value maximization. We argue that profit max-
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imization can still be socially justified as a decision criterion if firms are assumed

to behave as perfect competitors. Although output-contingent prices do not a pri-

ori convey all the requisite information to coordinate consumption and investment

decisions, we show that this issue can be overcome if firms and agents anticipate out-

of-equilibrium scenarios in a competitive fashion. In the standard Arrow–Debreu

approach, all relevant information for an efficient investment decision is embedded

in the state-contingent prices. In the output-contingent framing, however, financial

markets do not necessarily distinguish across states of nature that lead to the same

equilibrium aggregate output. This distinction is still relevant for firms’ decisions.

We accommodate the competitive price-taking paradigm by assuming that firms and

agents combine market prices with competitive beliefs about how alternative invest-

ment plans would affect the conditional expectation of each firm’s output given the

economy’s aggregate production.1

We start by stressing the main insights in a simple example with only two possible

production levels. We then describe the general model and define the competitive

financial equilibrium in Section 3. Agents in this economy can only trade securities

written on endogenous production levels. This financial structure is incomplete

with respect to the underlying primitive states of nature but allows consumers to

sell their endowment risks and make consumption plans that are contingent on

the equilibrium aggregate output. In Section 4, we introduce our view on how

firms should compute the net present value of out-of-equilibrium investment plans.

We argue that the financial equilibrium in which firms maximize our definition of

market value is the counterpart of the Arrow–Debreu concept. In particular, we

show that the associated consumption and investment allocation is Pareto optimal.

In Section 5, we discuss some important topics related to our contribution. We

stress how the results depend on our assumptions and then discuss existence of a

competitive equilibrium for different specifications of the productive technology. We

also use this section to compare our competitive notion of shareholder value to the

alternative concepts in which firms exert market power by internalizing parts of the

1This competitiveness assumption on firms is consistent with the literature on the objective of
corporations under incomplete markets—see for instance ?, ?, ?, ?, ?, ?, ?, and ?. Our markets
are also incomplete with respect to exogenous uncertainty, and the spanning condition of ? does
not hold here (in the sense that investments do affect the individual ability to transfer wealth
across primitive states of nature). However, differently from the aforementioned literature, agents
share the same marginal rates of substitution for each given equilibrium aggregate output. Our
contribution is to show that if managers internalize this equilibrium feature when forming their
conjectures on firms’ out-of-equilibrium market values, then efficiency is restored.
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impact of their investment decisions.

Section 6 presents the previous discussion in the CAPM framing. Financial mar-

kets trade only stocks and a risk-free bond. Since agents hold mean-variance pref-

erences, efficient risk sharing among consumers is achieved under this incomplete

financial structure. As before, this guarantees that firms can compute the com-

petitive market value for different out-of-equilibrium investments and that profit-

maximization generates Pareto efficiency. This section is self-contained and is par-

ticularly interesting for the reader who is familiar with the finance literature and

is not concerned about general equilibrium details. Concluding remarks appear in

Section 7. Appendix A is reserved for technical arguments.

2 An illustration

We borrow from ? the following simple example with two periods t ∈ {0, 1}, one

good, one firm, and one agent. At date 0, the firm undertakes one of two possible

investment levels a ∈ {0, 1}. This determines the probability over two possible date-

1 output levels, namely, yl > 0 or yh > yl. The transition a 7→ Qh(a) represents the

probability of producing yh (success) under investment a. Investment is productive

in the sense that Qh(1) > Qh(0).

This technology has an alternative representation with three exogenous states

of nature {ωh, ωm, ωl} and a random production technology

f(a) := (f(ωh, a), f(ωm, a), f(ωl, a))

defined by f(1) := (yh, yh, yl) and f(0) := (yh, yl, yl). Output is high (resp. low)

when the exogenous state is ωh (resp. ωl), regardless of the investment level. When

the primitive state is ωm, the firm’s production is high if, and only if, it has in-

vested a = 1. State probabilities P (ω) are exogenous and satisfy P (ωh) = Qh(0),

P (ωh) + P (ωm) = Qh(1) and, hence, P (ωl) = 1−Qh(1).2

At date 0, the agent owns the firm and receives an initial endowment e0 > 1.

2The probability space (Ω, P ) with Ω := {ωh, ωm, ωl} represents the exogenous uncertainty since
the probability measure P does not depend on endogenous actions of the firm or the agent. The
probability space (Y,Q(a)) with Y := {yh, yl} represents the endogenous uncertainty since the
distribution Q(a) depends on the investment level a.
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Preferences are represented by the expected utility

u0(x0) + E (u1(x1)) ,

where the Bernoulli utility functions u0 and u1 are strictly increasing, continuously

differentiable, strictly concave and satisfy the Inada condition at zero.3 We also

assume that

u′0(e0 − 1) < u′1(yh)(yh − yl) [Qh(1)−Qh(0)] . (2.1)

Since Bernoulli functions are strictly concave, this condition ensures that investing

is Pareto optimal.4

Two assets are traded in the financial markets: the firm’s equity and a riskless

bond. This market structure is incomplete with respect to exogenous uncertainty, as

we have three states of nature but only two assets. Moreover, investment plans affect

the individual ability to transfer wealth across primitive states, i.e., the spanning

property of ? is not satisfied.5 Therefore, we cannot follow the standard approach

of general equilibrium theory to define unambiguously shareholder value for out-of-

equilibrium investment decisions by means of a non-arbitrage argument.

Markets are not complete with respect to exogenous uncertainty, but they are

complete with respect to endogenous uncertainty. Formally, in the pure exchange

economy defined by some arbitrarily given investment level a, trade on the equity

and bond markets allow the agent to perfectly insure against production risks since

we only have two output levels. In particular, the allocation of consumption as-

sociated to any competitive equilibrium is efficient (given the arbitrary investment

decision a). In this simple example, the entire production is consumed by the sin-

gle agent at equilibrium. Since there is only one firm, the aggregate output is

either zh := yh or zl := yl.

The limits of valuation by non-arbitrage Consider the pure exchange econ-

omy where the firm’s investment is ā = 1 and denote by Ē its equilibrium equity

3By that we mean limxt→0 u
′
t(xt) =∞, for t = 0, 1.

4Indeed, we have u0(e0) − u0(e0 − 1) < u′0(e0 − 1) and u′1(yh)(yh − yl) < u1(yh) −
u1(yl). Combining theses inequalities with Equation (2.1) we get that u0(e0) − u0(e0 − 1) <
(u1(yh)− u1(yl)) [Qh(1)−Qh(0)].

5When the equilibrium investment is ā = 1, the equity and bond payoff vectors are re-
spectively (yh, yh, yl) and (1, 1, 1). The production vector (yh, yl, yl) associated with the out-of-
equilibrium investment a = 0 does not belong to the marketed space, in the sense that it cannot
be generated by the assets payoff vectors (yh, yh, yl) and (1, 1, 1) respectively.
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price and by r̄ its equilibrium risk-free interest rate. Since markets are complete

with respect to production risks, the contract paying one unit of the good contingent

to aggregate output being z can be implemented by trading the two available assets.

Denoting by ρ̄(z) the non-arbitrage price of this contract, we have

ρ̄(zh) =
1

zh − zl

(
Ē − zl

1 + r̄

)
and ρ̄(zl) =

1

zh − zl

(
zh

1 + r̄
− Ē

)
.

The standard definition of the competitive market value of the firm for the out-of-

equilibrium investment a = 0 is

Π(0) :=
∑
ω∈Ω

p̄(ω)f(ω, 0) = p̄(ωh)yh + [p̄(ωm) + p̄(ωl)]yl

where p̄(ω) is the non-arbitrage price of the contract paying one unit of the good

contingent to the realization of the primitive state ω. However, since markets are

incomplete with respect to primitive states of nature, the valuation of these contracts

is ambiguous. Formally, we cannot recover all the prices p̄(ω) from the market prices

Ē and r̄ or, equivalently, from ρ̄(zh) and ρ̄(zl). Indeed, non-arbitrage only tells us

that

p̄(ωl) = ρ̄(zl) and p̄(ωm) + p̄(ωh) = ρ̄(zh). (2.2)

The value of a large corporation Building on the market completeness with re-

spect to endogenous uncertainty, ? suggested a definition for the out-of-equilibrium

market value of the firm. They started from the following description of the equi-

librium market value V̄ := Ē − ā of the firm, that is

V̄ = yhρ̄(zh) + ylρ̄(zl)− ā.

In order to make explicit the firm’s investment decision in the above formula, we

denote by χ̄(z) the equilibrium stochastic discount factor defined by the equation

ρ̄(zs) = χ̄(zs)Qs(ā), for all s ∈ {l,h}.6

Therefore, the equilibrium value of the firm takes the following form

V̄ = yhχ̄(zh)Qh(ā) + ylχ̄(zl)(1−Qh(ā))− ā.
6The optimality of consumption implies χ̄(zs) = u′1(ys)/u′0 (e0 − ā), for each s ∈ {l,h}.
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When analyzing the decision of a non-marginal firm, ?? suggest to replace ā = 1 in

the above formula by a = 0. This leads to the following conjecture

M(a) := yhχ̄(zh)Qh(a) + ylχ̄(zl)(1−Qh(a))− a (2.3)

of the firm’s market value for the out-of-equilibrium investment a 6= ā. They show

that the Pareto efficient level ā = 1 does not necessarily maximize M . In our

example, this result follows from the fact that the condition (2.1) (which implies

Pareto efficiency of investment) may hold simultaneously with M(0) > M(1) or,

equivalently,

u′0(e0 − 1) >
[
yhu

′
1(yh)− ylu′1(yl)

]
[Qh(1)−Qh(0)] .7 (2.4)

This inefficiency is due to a particular type of market power exerted by the firm.

When choosingM(0) as its conjecture for the out-of-equilibrium value, the firm takes

into consideration that its investment decision affects the distribution of aggregated

variables.

Remark 2.1. ? analyze the decision of a non-negligible firm which is aware of the

impact of its own production on the level of aggregate output. They assume that

the firm’s manager takes the stochastic discount factor function z 7→ χ̄(z) as given.

They motivate this choice by arguing that “in the setting of capital markets, taking

security prices as given is widely regarded as a good approximation, even for large

corporations”. We take the view that when corporations make their investment

decisions, they take as given not only security prices but also the aggregate output.

A competitive conjecture for market value Defining a competitive conjec-

ture for the out-of-equilibrium market value of the firm is not straightforward for an

economy with output-contingent financial markets. Securities written on the aggre-

gate output do not necessarily distinguish across primitive states of nature. Agents

are aware that the equilibrium prices ρ̄(z) and the theoretical state prices p̄(ω) are

related to each other as stated in condition (2.2). However, market prices alone

do not convey sufficient information for splitting ρ̄(zh) and ρ̄(zl) into p̄(ωh), p̄(ωm),

7Since u1 is strictly concave, we have u′1(yh) < u′1(yl). This implies that[
yhu
′
1(yh)− ylu′1(yl)

]
[Qh(1)−Qh(0)] < u′1(yh)(yh − yl) [Qh(1)−Qh(0)] .

Therefore, we can always choose u0 and e0 such that u′0(e0 − 1) lies between the right-hand side
and the left-hand side of the above inequality.
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and p̄(ωl) in an unambiguous way. To overcome this issue, we ask firms and agents

to anticipate the following important equilibrium feature when analyzing investment

plans out of the equilibrium.

Markets are complete with respect to endogenous uncertainty. For any given

investment level, the equilibrium ratio of marginal utilities are constant across prim-

itive states of nature associated with the same aggregate output. This is to say that

the agent’s valuation of income streams contingent to a specific aggregate output

is risk neutral. We propose to use this equilibrium feature to construct the shadow

prices p̄(ω) from the market prices ρ̄(z). When the investment is ā = 1, we have

p̄(ωl) = ρ̄(zl) and p̄(ωh) + p̄(ωm) = ρ̄(zh).

Under ā = 1, the conditional state probabilities given the aggregate output zh are

P (ωh|{ωh, ωm}) =
P (ωh)

P (ωh) + P (ωm)
and P (ωm|{ωh, ωm}) =

P (ωm)

P (ωh) + P (ωm)
.

Therefore, if we use a risk-neutral pricing conditional on zh, we obtain:

p̄(ωh) = ρ̄(zh)P (ωh|{ωh, ωm}) and p̄(ωm) = ρ̄(zh)P (ωm|{ωh, ωm}) .

This lead us to consider the conjecture Π(a) for the firm’s market value under

investment a ∈ {0, 1} defined by:

Π(0) := yhp̄(ωh) + ylp̄(ωm) + ylp̄(ωl)− 0

= ρ̄(zh) [yhP (ωh|{ωh, ωm}) + ylP (ωm|{ωh, ωm})] + ρ̄(zl)yl

and

Π(1) := yhp̄(ωh) + yhp̄(ωm) + ylp̄(ωl)− 1

= yhρ̄(zh) + ylρ̄(zl)− 1

= V̄ .

It is then simple to verify that the Pareto optimal investment level ā = 1 does in

fact maximize the function a 7→ Π(a). We just need to notice that

Π(1)−Π(0) =
u′1(yh)

u′0 (e0 − 1)
(yh − yl)P (ωm)− 1 > 0,
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where the last inequality follows from assumption (2.1) and the fact that P (ωm) =

Qh(1)−Qh(0).

There is an equivalent way to define price conjectures without relying explicitly

on shadow (or conjectured) prices p̄(ω) for the exogenous states of nature. Indeed,

let ỹ(a|z) := E[f(a)|f(ā) = z] be the firm’s average production, under investment a,

across states of nature for which the equilibrium aggregate output is z. We define

the competitive conjecture for firm’s value as

V (a) := ỹ(a|zh)ρ(zh) + ỹ(a|zl)ρ(zl)− a.

In this illustration, we have that ỹ(0|zh) = yhP (ωh|{ωh, ωm}) + ylP (ωm|{ωh, ωm}),
ỹ(0|zl) = yl, and then

V (0) = ρ̄(zh) [yhP (ωh|{ωh, ωm}) + ylP (ωm|{ωh, ωm})] + ρ̄(zl)yl

= Π(0).

Moreover, we also have ỹ(1|zh) = yh, ỹ(1|zl) = yl, and then V (1) = V̄ = Π(1).

3 General model

Consider an economy with two periods t ∈ {0, 1}, a single good, a finite set K

of firms and a finite set I of consumers. At the initial date (t = 0), each firm k

selects an investment level ak from a set Ak ⊂ R+. Making no investment is always

a possibility—i.e., 0 ∈ Ak, for every k. At date 1, they are exposed to exogenous

shocks ω drawn from a probability space (Ω,F , P ). Events B ∈ F represent prim-

itive causes which odds are represented by the exogenous probability P (B). This

probability is independent of consumers’ and firms’ actions.

3.1 Technology

The initial investment ak and the exogenous shock ω determine firm k’s produc-

tion yk = fk(ω, ak) at date 1 from a set Y k ⊂ R+. The production possibilities of

the economy are represented by the family f := (fk)k∈K of non-decreasing random

production functions

fk(ω, ·) : Ak 7−→ Y k.
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We assume that, for each investment ak, the function ω 7→ fk(ω, ak) is measurable

and essentially bounded on (Ω,F , P ).8

From this standard production-function framework, we derive the following al-

ternative representation of the productive sector. Define the sets A :=
∏

k∈K Ak

and Y :=
∏

k∈K Y k, their respective elements a := (ak)k∈K and y := (yk)k∈K , and

the transition probability a 7→ Q(a) given by

Q(B, a) := P ({f(a) ∈ B}),

for every Borelian set B of Y .9 The investment profile a ∈ A undertaken at date 0

determines the joint probability Q(a) of firms’ random outcomes at date 1.

To represent aggregate production, we define the σ-operator to be

σy :=
∑
k∈K

yk, for all y ∈ Y .

The random aggregate production is then represented by the function ω 7→ σf(ω, a).

We let Z :=
∑

k∈K Y k denote the set of all possible aggregate outputs and derive

the transition probability a 7→ µ(a) by posing

µ(B, a) := P ({σf(a) ∈ B}),

for every Borelian set B of Z. We assume that date-1 output is bounded away from

zero, in the sense that there exists ε > 0 such that µ ([ε,∞), a) = 1, for every a ∈ A.

3.2 Agents

Each agent i has initial resources consisting of an endowment ei0 > 0 at date 0

and the ownership shares δik ∈ [0, 1] of each firm k, where
∑

i∈I δ
i
k = 1. Agents have

no initial endowment at date 1, so that all consumption in that period comes from

the firms’ output. Preferences are represented by a utility function that is separable

across time and has the expected utility form for future risky consumption. Let

8To fix ideas, we can take Ω to be the product space
∏

k∈K(Y k)A
k

and F to be the prod-

uct ⊗k∈KBk of each Borelian σ-algebra Bk defined by the product topology of the space (Y k)A
k

.
The support of the probability P is then assumed to be a subset of

∏
k∈K N(Ak, Y k),

where N(Ak, Y k) is the set of non-decreasing functions from Ak to Y k.
9The set {f(a) ∈ B} stands for {ω ∈ Ω : f(ω, a) ∈ B}. Similar notation omitting ω is used

throughout the paper.
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xi0 > 0 denote agent i’s consumption at date 0 and γi be a probability measure

on R+ that represents random consumption at date 1. Agent i’s expected utility

function is given by

u0(xi0) +

∫
R+

u1(xi1)γi(dxi1),

where u0 and u1 are strictly increasing, continuously differentiable, and strictly

concave functions which map R+ into [−∞,∞) and satisfy the Inada condition at

zero.

Remark 3.1. The time separability of the expected utility and the cross-agent homo-

geneity of the Bernoulli utility functions are only assumed to simplify the notation.

It is straightforward to extend all results in this paper to the case with heterogeneous

Bernoulli utilities (xi0, x
i
1) 7→ νi(xi0, x

i
1).

3.3 Competitive equilibrium for a given investment

For sake of expositional clarity, we first define a competitive equilibrium for our

output-contingent environment by taking the investment level of each firm as given.

After understanding how agents insure each other, we analyze the problem of how

firms choose their investments.

Different from the traditional Arrow–Debreu model, we do not consider contracts

contingent on the realization of the primitive states of nature ω. We assume that the

probabilities and the economic consequences of the events in F are well-understood

by firms and agents, but the costs of describing ex-ante each primitive state of

nature and enforcing ex-post state-contingent contracts are too large. The only

traded contracts are those based on firms’ output. We consider two types of assets:

the equity of each firm k ∈ K traded in positive net supply; and securities in zero

net supply representing bonds and all possible output-contingent derivatives.

Uncertainty only derives from production risks. Hence, an efficient allocation of

risks among consumers (for a given vector of firms’ investments) only requires that

agents trade firms’ equities and claims contingent on date-1 aggregate output. At

date 0, for a given investment profile a, each agent i chooses current consumption

xi0 ∈ R+, new equity holdings ηi ∈ RK and a (Borel-measurable) contract θi : Z → R
contingent on aggregate output such that

xi0 +

∫
Z
θi(z)ρ(dz) + E · ηi 6 ei0 + (E − a) · δi, (3.1)
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where E stands for the vector of equity prices, and ρ is a positive measure on the

Borelian sets of Z such that ρ([0, z]) represents the date-0 price of the contract

delivering one unit of consumption good contingent on the aggregate output being

lower than or equal to z. At date 1, contingent on output profile y, agent i consumes

xi1(y) := θi(σy) + y · ηi > 0. (3.2)

Each agent i maximizes the expected utility

u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, a)

among all individual plans (xi0, x
i
1, η

i, θi) satisfying the budget constraints (3.1)

and (3.2), for Q(a)-almost every y.

A financial equilibrium associated with a given investment profile ā is a

list (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)), where (x̄0, x̄1, η̄, θ̄) := (x̄i0, x̄
i
1, η̄

i, θ̄i)i∈I is a consumption-

portfolio allocation such that:

(i) for every i ∈ I, the plan (x̄i0, x̄
i
1, η̄

i, θ̄i) solves agent i’s optimization problem

given (Ē, ρ̄, ā);

(ii) the consumption markets clear, i.e.,∑
i∈I

(ei0 − x̄i0) =
∑
k∈K

āk (3.3)

and ∑
i∈I

x̄i1(y) = σy, for Q(ā)-almost every y; (3.4)

(iii) the financial markets clear, i.e.,∑
i∈I

η̄i = 1 and
∑
i∈I

θ̄i(z) = 0, for µ(ā)-almost every z.10 (3.5)

An allocation ((x̄0, x̄1), ā) is said to be feasible if the consumption markets clear.

An allocation ((x0, x1), a) is said to Pareto dominate the allocation ((x̄0, x̄1), ā)

10The term 1 represents the K-dimensional vector of ones.
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whenever

u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, a) > u0(x̄i0) +

∫
Y
u1(x̄i1(y))Q(dy, ā),

for every agent i, with strict inequality for at least one agent i. An allocation

((x̄0, x̄1), ā) is Pareto optimal if ((x̄0, x̄1), ā) is feasible and there is no other fea-

sible allocation ((x0, x1), a) that Pareto dominates ((x̄0, x̄1), ā). A consumption

allocation (x̄0, x̄1) is Pareto optimal for a given investment ā if ((x̄0, x̄1), ā)

is feasible and there is no other feasible allocation ((x0, x1), ā) with the same in-

vestment profile that Pareto dominates ((x̄0, x̄1), ā). The next result shows that

our market structure implements a Pareto optimal distribution of resources among

consumers for any given investment profile.11

Proposition 3.1. Fix a financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associated with an

arbitrary investment vector ā. The corresponding consumption allocation (x̄0, x̄1)

is Pareto optimal given ā.

The equilibrium measure ρ̄(dz) is absolutely continuous with respect to µ(dz, ā).

This is to say that there is a Borel-measurable function χ̄ : Z → R+ (called the

stochastic discount factor) such that:

ρ̄(dz) = χ̄(z)µ(dz, ā). (3.6)

Pareto optimality of the consumption allocation (x̄0, x̄1) given ā implies the individ-

ual consumption x̄i1(y) to be constant across output vectors y generating the same

aggregate output σy. Therefore, there exist Borel-measurable functions c̄i1 : Z → R+

such that x̄i1(y) = c̄i1(σy) for all y and i. Since date-1 aggregate production is boun-

ded away from zero, our assumptions on the Bernoulli utilities imply that the ratio

of marginal utilities equals the stochastic discount factor

u′1(x̄i1(y))

u′0(x̄i0)
=
u′1(c̄i1(σy))

u′0(x̄i0)
= χ̄(σy), (3.7)

for every i and y. As a consequence, the market is risk neutral conditional on the

aggregate output, and the equilibrium equity prices can be written as

Ē =

∫
Y
χ̄(σy)yQ(dy, ā). (3.8)

11The proof follows from standard arguments and the details are postponed to Appendix A.1.
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4 The market value of each firm

We now analyze how investment levels are chosen by firms in equilibrium. Each

firm is assumed to be small relative to the aggregate economy and does not seek to

manipulate prices. Under these competitive conditions, a natural objective function

for a firm to maximize is its market value. When markets are complete with respect

to primitive states (like in the standard Arrow–Debreu framework), the Arrow prices

p̄(B) associated with any (F-measurable) primitive event B ⊂ Ω are quoted in the

market. Firm k’s manager can take these prices as given and use them to compute

the following conjectured equity value

Ek(ak) :=

∫
Ω
fk(ω, ak)p̄(dω)

associated with any out-of-equilibrium investment ak. In that case, maximizing the

standard competitive market value

Πk(ak) := Ek(ak)− ak =

∫
Ω
fk(ω, ak)p̄(dω)− ak (4.1)

leads to Pareto optimality.

In the absence of securities whose payoffs are contingent on exogenous events,

a deep issue arises: how firms should assess their equity value for production plans

different from the equilibrium ones? Or equivalently, how can we define the conjec-

ture Ek(ak) when the prices p̄(dω) are not available?

4.1 Competitive conjectures conditional on aggregate production

The equilibrium prices ρ̄(dz) allow us to price by non-arbitrage any (bounded)

contingent claim written on the aggregate output. The non-arbitrage price of a

claim represented by a bounded function h : Z → R is∫
Z
h(z)ρ̄(dz).

However, we are also interested in pricing random variables that are not measurable

with respect to the equilibrium aggregate output.12 The question at issue is then

12 For instance, since the spanning property of ? is not necessarily satisfied, the out-of-equilibrium
production claim fk(ak), may not be σf(ā)-measurable, when ak 6= āk.
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how to extend this pricing formula to the space of bounded random variables.

We recall that markets are incomplete and, then, there are infinitely many

stochastic discount factors on Ω that are consistent with the equilibrium prices

ρ̄. These discount factors, however, do not generate the same value for random

variables that are not σf(ā)-measurable.

We propose to assume that firms and agents rationally anticipate the equilibrium

property that the market is risk neutral conditional on aggregate output—as follows

from Proposition 3.1 and Eq. (3.7). Combining this with standard non-arbitrage

valuation leads to the following definition of conditional risk-neutral valuation S̃:

for any bounded random variable g : Ω→ R on (Ω,F , P ),

S̃(g) :=

∫
Z
h(z)ρ̄(dz),

where h(z) := E[g|σf(ā) = z].13 In other words, among the many possible stochastic

discount factors, we take the one that is constant across states ω that are associated

(at equilibrium) with the same aggregate output z.

Under this conditional risk-neutral valuation, firms and agents hold the following

conjecture for the value of the out-of-equilibrium claim fk(ak):

Ẽk(ak) := S̃(fk(ak)) =

∫
Z
ỹk(ak|z)ρ̄(dz), (4.2)

where

ỹk(ak|z) := E[fk(ak)|σf(ā) = z] (4.3)

is the conditional expected output associated with the out-of-equilibrium invest-

ment ak given the equilibrium aggregate output z. The value of the firm consistent

with this pricing rule is given by

V k(ak) := Ẽk(ak)− ak =

∫
Z
ỹk(ak|z)ρ̄(dz)− ak. (4.4)

The key behavioral assumption behind Eqs. (4.2), (4.3), and (4.4) is that firms

and agents take prices as given and form competitive beliefs about the conditional

expected production under different out-of-equilibrium investment levels. They un-

derstand that firm k’s output becomes the random variable ω 7→ fk(ω, ak) whenever

13 By this we mean that h : Z → R is a Borel function such that E[g|σf(ā)] = h(σf(ā)), almost
everywhere.
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it invests ak. However, they also believe that firm k’s decisions do not affect the likeli-

hood of aggregate production and, therefore, compute expected production ỹk(ak|z)
conditional on the event {σf(ā) = z}. The conditioning event is evaluated at the

equilibrium investment vector, which includes the investment choice of firm k. One

could metaphorically think about this as if there was a continuum of firms so that

the term ỹk(ak|z) represented the conditional expected output when a firm invested

ak while all other infinite firms invested the equilibrium level.

Remark 4.1 (Correctness at equilibrium). Our competitive price conjectures coincide

with the equilibrium prices. Formally, we have

Ẽk(āk) =

∫
Z
ỹk(āk|z)ρ̄(dz)

=

∫
Z
ỹk(āk|z)χ̄(z)µ(dz, ā)

=

∫
Y
χ̄(σy)ỹk(āk|σy)Q(dy, ā)

=

∫
Y
χ̄(σy)ykQ(dy, ā)

= Ēk,

where these equalities follow from Eqs. (3.8), (4.2), and (4.3).

4.2 Efficiency

We turn now to show the Pareto optimality of any allocation ((x̄0, x̄1), ā) derived

from a financial equilibrium in which each investment āk maximizes the competitive

market value V k. We have argued before that the impossibility to trade assets

contingent on primitive states is an essential incompleteness of markets from the

perspective of firms. Although consumers do not need to trade securities contingent

on primitive states to perfectly share idiosyncratic risks, firms need the information

embedded in the state-contingent prices p̄ in order to compute the competitive

present value Πk(ak) associated with out-of-equilibrium investment plans ak 6= āk,

as defined in Eq. (4.1). We show that this incompleteness can be overcome if firms

believe the market is risk neutral conditional on aggregate output, or equivalently,

if they hold the competitive price conjectures Ẽk(ak). To prove this, we first show

that our definition of competitive conjectures provides a connection between the

standard Arrow–Debreu concept of competitive equilibrium and our definition of
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financial equilibrium.

We recall that an Arrow–Debreu equilibrium is a list (p̄, (ξ̄0, ξ̄1), ā) composed

of: (i) a positive measure p̄ on (Ω,F) representing state-contingent prices; (ii) a

consumption plan (ξ̄0, ξ̄1) :=
(
ξ̄i0, ξ̄

i
1

)
i∈I , where ξ̄i0 > 0 and ξ̄i1 : Ω→ R+ is a random

variable; and (iii) an investment vector ā := (āk)k∈K such that:

(a) the allocation ((ξ̄0, ξ̄1), ā) is feasible, in the sense that∑
i∈I

ei0 − ξ̄i0 =
∑
k∈K

āk (4.5)

and ∑
i∈I

ξ̄i1(ω) =
∑
k∈K

fk(ω, āk), for P -almost every ω ∈ Ω; (4.6)

(b) for each firm k, the investment āk maximizes the present-value function

Πk(ak) :=

∫
Ω
fk(ω, ak)p̄(dω)− ak;

(c) for each agent i, the consumption plan (ξ̄i0, ξ̄
i
1) maximizes the expected utility

u0(ξi0) +

∫
Ω
u1(ξi1(ω))P (dω)

subject to the present-value budget constraint

ξi0 +

∫
Ω
ξi1(ω)p̄(dω) 6 ei0 + Π(ā) · δi, (4.7)

where Π(ā) := (Π(āk))k∈K .

Proposition 4.1. There exists an Arrow–Debreu equilibrium (p̄, (ξ̄0, ξ̄1), ā) if, and

only if, there exists a financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associated with the

investment vector ā such that, for each k, āk maximizes the competitive conjec-

ture V k.

The proof of this proposition is given in Appendix A.2. We sketch the arguments

here. It consists in constructing the elements of a given equilibrium concept from the

elements describing the alternative equilibrium. If (p̄, (ξ̄0, ξ̄1), ā) is an Arrow–Debreu

equilibrium, it follows from standard arguments that the consumption allocation at

17



t = 1 only depends on aggregate resources, i.e., there are Borel-measurable functions

c̄i1 : Z → R+ such that ξ̄i1(ω) = c̄i1(σf(ω, ā)), for all ω and i. We define (x̄0, x̄1) by

posing x̄i0 := ξ̄i0 and x̄i1(y) := c̄i1(σy) for each y and i. Since ξ̄i1 is σf(ā)-measurable,

the contingent consumption x̄i1 can be implemented by some portfolio (θ̄i, η̄i). Asset

prices are defined using the standard present value pricing rule:

ρ̄(dz) := χ̄(z)µ(dz, ā) and Ē :=

∫
Ω
f(ω, ā)p̄(dω),

where χ̄(z) = u′1(c̄i1(z))/u′0(ξ̄i0) is the equilibrium stochastic discount factor. Fi-

nally, by the law of iterated expectations, we get that the Arrow–Debreu present

value Πk(ak) of the out-of-equilibrium equity coincides with our definition V k(ak)

of competitive conjecture:

Πk(ak) :=

∫
Ω
fk(ak)p̄(dω)− ak

=

∫
Ω
E[fk(ak)|σf(ā)]p̄(dω)− ak

=

∫
Z
ỹk(ak|z)ρ̄(dz)− ak

=: V k(ak). (4.8)

Conversely, let (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) be a financial equilibrium associated with the in-

vestment vector ā such that, for each k, āk maximizes the competitive conjecture V k.

Recall from Proposition 3.1 that there are Borel-measurable functions c̄i1 : Z → R+

such that x̄i1(y) = c̄i1(σy), for all y and i. We then define the state-contingent con-

sumption allocation (ξ̄0, ξ̄1) by posing ξ̄i0 := x̄i0 and ξ̄i1 := c̄i1(σf(ā)). The novelty of

our approach is to use conditional risk-neutral valuation in order to define the state

prices p̄ by posing
dp̄

dP
(ω) :=

dρ̄

dµ(ā)
(σf(ω, ā)),

or, equivalently, p̄(dω) = χ̄(σf(ω, ā))P (dω), where χ̄(·) is the equilibrium stochastic

discount factor defined by the equation ρ̄(dz) = χ̄(z)µ(dz, ā). This definition of p̄

allows us to go from the bottom to the top in Eq. (4.8).

The First Welfare Theorem holds true in the Arrow–Debreu framework, given

the baseline assumptions of our model. It then follows from Proposition 4.1 that the

allocation composed of an investment vector that maximizes each firm’s competitive

conjecture for out-of-equilibrium market value and the consumption profile from the
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corresponding financial equilibrium is Pareto optimal. This is proven in our next

result.

Theorem 4.1. Let (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) be a financial equilibrium associated with an

investment vector ā. If āk maximizes V k, for all k, then the allocation ((x̄0, x̄1), ā)

is Pareto optimal.

Proof. Take the financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associated with ā. Con-

sider the corresponding Arrow–Debreu equilibrium (p̄, (ξ̄0, ξ̄1), ā) defined by Propo-

sition 4.1. Assume then, by way of contradiction, that there is an alternative output-

contingent feasible allocation ((x0, x1), a) which Pareto dominates ((x̄0, x̄1), ā). For

each i, define the state-contingent consumption plan (ξi0, ξ
i
1) by posing ξi0 := xi0

and ξi1(ω) := xi1(f(ω, a)), for every ω. The state-contingent allocation ((ξ0, ξ1), a)

satisfies the feasibility constraints (4.5) and (4.6). Moreover, we have

u0(ξi0) +

∫
Ω
u1(ξi1(ω))P (dω) = u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, a)

> u0(x̄i0) +

∫
Y
u1(x̄i1(y))Q(dy, ā)

= u0(ξ̄i0) +

∫
Ω
u1(ξ̄i1(ω))P (dω),

where the inequality is strict for at least one agent i. This means that the alloca-

tion ((ξ0, ξ1), a) Pareto dominates ((ξ̄0, ξ̄1), ā), which contradicts the First Welfare

Theorem applied to the Arrow–Debreu equilibrium (p̄, (ξ̄0, ξ̄1), ā).

5 Some important discussions

We use this section to discuss the limits of our results, comment on the existence

of a competitive equilibrium, and compare our definition of competitive valuation

with an alternative concept used in the literature. We start by stressing the impor-

tance of our key assumptions.

5.1 About our assumptions

Since the focus of this paper is the efficiency of firms’ investment decisions,

we restrict attention to security markets that implement an efficient consumption

allocation in a competitive exchange equilibrium for fixed and known investment
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decisions by firms (efficiency of exchange). We have assumed that: (a) agents’

preferences are represented by discounted expected utility with state-independent

Bernoulli functions; (b) their endowments at the second date are deterministic; (c)

agents agree on the probability distribution over the exogenous shocks ω. Under

these assumptions, efficiency of exchange follows through if financial markets allow

consumers to trade firms’ equities and make consumption plans contingent on ag-

gregate output. Consumption risks become only associated with the variability of

the aggregate output.

Efficiency of exchange is maintained if we relax these three assumptions and

assume that financial markets are sufficiently rich to span the uncertainty in the

outcomes of the firms, for each possible investment profile.14 However, our defini-

tion of the competitive conjecture for the value of the firm depends on assumption (c)

and cannot be easily extended to environments in which agents’ have heterogeneous

expectations over the exogenous shocks. This is because using the conditional risk-

neutral valuation to infer shadow prices for exogenous states may lead to heteroge-

neous out-of-equilibrium conjectures among agents with heterogeneous expectations.

We have also focused on a model with a single good and two dates. These

modeling choices are only for the sake of simplicity. Our results can be extended to

environments with finitely many goods and periods as far as the financial structure

ensures efficiency of exchange.

5.2 About existence

The objective of this paper is to investigate whether the maximization of a

suitably defined conjecture of competitive market value leads to efficient investment

decisions by firms, even if investors can only write contracts on observable output

(which distribution of risk is endogenous). An important related issue is existence

of a competitive equilibrium where firms maximize the corresponding competitive

market value.

Given an arbitrary investment profile a, existence of a competitive financial

equilibrium is assured by our assumptions on preferences and positiveness of date-0

endowments and of date-1 production outcomes. In addition to that, if the sets

14This condition is called “complete spanning” in ?. It means that it is possible (at a cost) to
find a portfolio of bonds, equity contracts and derivatives whose payoff is one unit if a given profile
of outcomes for the firms is realized, and nothing otherwise. As ? showed, in a two-period model
this is always possible if a sufficient number of options are introduced.
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Ak were convex and the production functions ak 7→ fk(ω, ak) were continuous and

concave on Ak (for every ω), then we could assure existence of a competitive finan-

cial equilibrium associated with an investment profile ā that maximizes each firm’s

competitive market value V k. This follows from Proposition 4.1 coupled with classic

theorems on existence of Arrow–Debreu equilibrium—see ?.

Remark 5.1 (Finitely many states). When the support of the probability P is finite,

the investment sets Ak are convex, and the production functions fk are concave,

then our assumption that securities’ markets are complete with respect to aggre-

gate output may (generically) yield complete markets with respect to the primitive

states.15 This feature is not generic when Ak is finite and also does not appear

when we have a continuum of primitive states of nature. We refer the reader to

Appendix A.3 for a simple technology for which, given any output profile y and

investment vector a, there is a continuum of states ω satisfying f(ω, a) = y.

Continuum of firms Among the many technologies that do not satisfy the gen-

eral assumptions for existence of an Arrow–Debreu equilibrium, there is one that

deserves particular attention. The benchmark production model in contract the-

ory is such that each firm either succeeds or fails to produce a certain amount of

output, and the probability of success increases with the firm’s investment. This

success-or-failure technology is represented by a non-convex production function and

non-existence problems may arise.

A traditional approach to overcome this issue considers a continuum of ex-ante

identical firms with i.i.d. production draws. In this case, all variation in output

that underlies this particular technology is eliminated and the objective of the firm

ceases to be an issue. In a supplementary material, we present a model with a

continuum of identical firms and perfectly correlated success-or-failure shocks.16

We explicitly compute an equilibrium under specific assumptions and also derive a

general existence result. This illustrates an interesting way to keep variability in the

(average) aggregate output while smoothing non-convexities through a continuum

of firms. Notice also that modelling the productive sector with many small firms is

consistent with the behavioral assumptions used along the paper.

15Indeed, concavity of the production function leads to a continuum of possible outcomes. Com-
pleteness with respect to aggregate output then requires (infinitely) many more securities than
primitive states. We thank Martine Quinzii and Michael Magill for pointing this out.

16For reference, see ?.
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5.3 Strategic conjectures

When analyzing the decision of non-marginal firms, ?? define the following

“competitive” conjecture for the value of a firm:

Mk(ak) :=

∫
Y
χ̄(σy)ykQ(dy, (ak, ā−k))− ak, (5.1)

where (ak, ā−k) represents a vector in which the k-th entry of ā is replaced by ak.

Each firm k takes as given the equilibrium stochastic discount factor χ̄(z) conditional

on each aggregate output z and the investment vector ā−k of all other firms. We have

that V k(āk) = Mk(āk) at any given financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) asso-

ciated with ā. However, Mk(ak) typically differs from our definition of competitive

market value V k(ak) for out-of-equilibrium investments ak 6= āk.

The equilibrium in which each firm k sets an investment ak to maximize Mk(ak)

is not necessarily Pareto optimal. This may be surprising since agents display some

competitive behavior by taking as given stochastic discount factors. However, by

analyzing Eq. (5.1), one realizes that firm k anticipates the impact of the invest-

ment ak over the probability distribution Q, which turns out to affect the value of

all other firms through the probability Q(dy, (ak, ā−k)). To assess this issue from a

different perspective, we use the exogenous shocks to write

Mk(ak) =

∫
Ω
fk(ω, ak)p̃k(dω, ak)− ak, (5.2)

where

p̃k(dω, ak) := χ̄(σf(ω, (ak, ā−k)))P (dω).

Recall that if state-contingent claims were introduced in the market, all consumers

would just be indifferent to buying or selling them if prices satisfied p̄(dω) =

χ̄(σf(ω, ā))P (dω). Therefore, we can interpret p̄(dω) as the competitive market

shadow price for event dω ⊂ Ω. By replacing p̄(dω) with p̃k(dω, ak), firm k’s man-

ager implicitly anticipates the impact of her investment decisions over the aggre-

gate output distribution and manipulates the underlying state prices that affect the

market values of all firms. The inefficiencies associated to the conjecture Mk are

therefore due to the strategic behavior of the firm and are not related to market

incompleteness as in the models analyzed by ?. Actually, even if all state-contingent

claims were available for trade, inefficiency would still arise if firms exerted the same
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market power through its investment decisions—using the price measure p̃k(dω, ak)

instead of the equilibrium price p̄(dω) to compute price conjectures.

6 Presenting the main point in the CAPM setup

Let us now illustrate our main contribution in an environment that is widely used

in financial economics. For this, we adapt the CAPM environment described in ?,

Chapter 3. There are two periods t ∈ {0, 1}, one good, and finitely many firms and

investors. Uncertainty is represented by an objective probability P on a finite set Ω

of primitive states of nature. We consider the simple case where only firm 1 has an

exposure-to-risk decision. In the initial period, this firm chooses an investment level

a ∈ [0, 1] that determines its output next period, according to a bounded random

function f1(a). The production of all other firms is random and not related with

the investment a. We use σf(a) to represent the sum of all productions.17 The

variance var(σf(a)) of the aggregate output is strictly positive, for every a.

Investors hold positive initial endowments and own shares of each firm. The

current earning of investor i is given by a real number ξi0 and the future random

earnings are represented by a random variable ξi1. These earnings are ranked by

υ0

(
ξi0
)

+ E
[
υ1

(
ξi1
)]
,

where the functions υ0 and υ1 are strictly increasing (on the relevant part of the

domain), continuously differentiable, strictly concave, and such that E
[
υ1

(
ξi1
)]

has

a mean-variance representation.18

The only traded assets are a riskless bond in zero net supply and firms’ equities

in positive net supply. Markets are incomplete as there are only three assets and

possibly more than three states in Ω. Nonetheless, thanks to the mean-variance

preference, for any arbitrary investment ā, the competitive equilibrium in the bond-

equity markets ensures a Pareto optimal distribution (ξ̄i)i∈I of the available re-

sources among investors. Moreover, there is also a discount factor χ̄ that is an affine

function of aggregate output. Formally, there exist two strictly positive constants γ̄

17Formally, if we have K firms, then σf(a) := f1(a) + f2 + . . . + fK , where fk is a random
variable, for any k 6= 1.

18That is, there exists a function φ : R × R+ → R such that E
[
υ1
(
ξi1
)]

= φ
(
E
[
ξi1
]
, var

[
ξi1
])

,
where φ is increasing in the first variable and decreasing in the second.
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and λ̄ such that, for every investor i,

υ′1
(
ξ̄i1
)

υ′0
(
ξ̄i0
) = χ̄(σf(ā)),

where

χ̄(z) = γ̄ − λ̄z,

for any possible equilibrium aggregate output z. The market value Ē1 of firm 1 is

then given by the CAPM asset pricing equation

Ē1 =
E
[
f1(ā)

]
1 + r̄

− λ̄ cov
(
f1(ā), σf(ā)

)
, (6.1)

where r̄ is the equilibrium risk-free rate and λ̄ is interpreted as the market price per

unit of risk.19

In this context, we ask how firm 1 should make its investment decision. Will the

objective of this firm lead to Pareto efficiency in the production side? If markets

were complete, then firms and investors could use the information contained in asset

prices to infer the equilibrium Arrow price p̄(ω), for each exogenous state ω. In this

case, any investment that maximizes the Arrow–Debreu present value of firm 1, i.e.,

a 7→ Π1(a) :=
∑
ω∈Ω

p̄(ω)f1(ω, a)− a,

is Pareto efficient and unanimously supported by the stockholders. But how to

compute a 7→ Π1(a) when Arrow prices are not available? Since the bond-equity

markets are incomplete, there are infinitely many stochastic discount factors leading

to the same equilibrium prices but to different evaluations about out-of-equilibrium

investment plans a 6= ā.

We propose to build on the CAPM asset pricing Equation (6.1) to define con-

jectures about how the market would value the firm’s equity under an alternative

investment level a 6= ā. When making out-of-equilibrium price conjectures, we

assume that the manager acts competitively in the following sense: he takes the

risk-free interest rate r̄ and the premium for aggregate risk λ̄ as given, and he does

not internalize the impact of his investment decision on the equilibrium aggregate

production σf(ā). These behavioral assumptions lead to the following definition of

19These results follow from ?, Theorem 17.3.
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“competitive” price conjecture: for each a ∈ [0, 1],

Ẽ1(a) :=
E[f1(a)]

1 + r̄
− λ̄ cov

(
f1(a), σf(ā)

)
. (6.2)

If the firm 1 maximizes the associated “competitive” market value function a 7→
V 1(a) := Ẽ1(a) − a, then the corresponding solution ā is Pareto optimal. To see

this, recall from the Second Welfare Theorem that, after appropriate transfers, the

efficient allocation of consumption (ξ̄0, ξ̄1) can be implemented as the equilibrium

of a pure exchange economy with a complete set of Arrow securities contingent on

primitive states ω. If we let m̄ : Ω→ R+ be the Arrow–Debreu stochastic discount

factor (i.e., m(ω)P (ω) = p(ω), for all ω), then we have

υ′1
(
ξ̄i1
)

υ′0
(
ξ̄i0
) = m̄,

for every investor i. This implies the following relation between the stochastic

discount factor χ̄ from the bond-equity economy and the Arrow-Debreu factor m̄:

χ̄(σf(ā)) = m̄.

As a consequence, we obtain

Ẽ1(a) :=
E[f1(a)]

1 + r̄
− λ̄ cov(f1(a), σf(ā))

= E[f1(a)]E[χ̄(σf(ā))]− cov(f1(a), χ̄(σf(ā)))

= E[f1(a)]E[m̄]− cov(f1(a), m̄)

= E[m̄f1(a)]

= Π1(a) + a.

Therefore, an investment ā maximizes V 1(a) = Ẽ1(a) − a if, and only if, it maxi-

mizes Π1(a). From the First Welfare Theorem for Arrow–Debreu economies, such

an investment level is a Pareto efficient productive decision.
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Relating to our main framing The CAPM price conjecture defined in Eq. (6.2)

could be obtained from our main framing by developing Eq. (4.2) as follows:

Ẽ1(a) =

∫
Z
ỹ1(a|z)ρ̄(dz)

=

∫
Y
χ̄(σy)ỹ1(a|σy)Q(dy, ā)

= E
[
χ̄(σf(ā))f1(a)

]
=

E
[
f1(a)

]
1 + r̄

− λ̄ cov
[
f1(a), σf(ā)

]
,

where [1 + r̄]−1 := E [χ̄(σf(ā))] is the equilibrium risk-free discount factor. This is

the CAPM version of our concept of competitive price conjectures. When making

out-of-equilibrium price conjectures, firms and agents take the risk-free discount

factor r̄ and the premium λ̄ for aggregate risks as given and do not internalize the

impact of the investment decision on aggregate output.

A similar decomposition for the market-value concept proposed by ?? leads to:

M(ak)− ak :=

∫
Y
χ̄(σy)ykQ(dy, (ak, ā−k))

= E
[
χ̄
(
σf(ak, a−k)

)
fk(ak)

]
=

E
[
fk(ak)

]
1 + r(ak, ā−k)

− λ̄ cov

fk(ak), fk(ak) +
∑
k′ 6=k

fk
′
(āk

′
)


where [1 + r(ak, ā−k)]−1 := E

[
χ̄(σf(ak, ā−k)

]
is a modified risk-free discount factor,

and fk(ak) +
∑

k′ 6=k f
k′(āk

′
) is the out-of-equilibrium aggregate output. In this

approach, firm k is aware of its impact over the aggregate output and makes a

conjecture about how its investment decision ak would affect the risk-free discount

factor and the market risk premium.

Alternative strategic concepts for market value have been analyzed in the corpo-

rate finance literature. Important references includes ?, ?, ?, ?, ?, ?, ?, ?, ?, among

others. These papers use the CAPM framing. They assume that firms take as given

the equilibrium risk-free discount but incorporate (in different ways) the impact of

alternative investments over the aggregate output.
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7 Conclusion

There are two alternative traditions in economics to represent the outcome of

risky enterprises. On one hand, the reference model in macroeconomics, finance,

and general equilibrium uses the state-of-nature approach, which relies on random

production functions that map investments and random primitive states of nature

(with fixed objective probabilities) into realized outputs. On the other hand, the

literature on contract theory relies on the probability approach in which produc-

tion is modeled through transition functions mapping investments into probability

measures over the set of possible outcomes.

As far as the description of production possibilities is concerned, the two ap-

proaches are equivalent. However, the two approaches differ on the financial con-

tracts that are used to share risks and direct investments. By keeping states of

nature hidden, the probability approach reminds us that writing contracts on the

primitive states of nature is not realistic. It is sometimes difficult to describe these

states in a contract or to verify them ex-post for execution. This is why most fi-

nancial contracts available in practice are usually written on observed production

outcomes or profits (e.g., stocks and options). It is then natural to ask whether this

market incompleteness—generated by the lack of state-contingent claims—matters

for efficiency.

It is well-known that the ability to contract upon primitive states of nature is not

essential for an efficient allocation of resources in exchange economies with produc-

tion risks only. If agents can sell their endowed stocks and trade claims written on

the aggregate output, then the equilibrium consumption is efficient and only varies

with aggregate risks. The interesting question concerns the ability of financial mar-

kets to efficiently direct firms’ investments. We show that the difficulty raised by

the lack of state prices can be overcome if firms and agents competitively anticipate

out-of-equilibrium scenarios. The corresponding market value conjecture is then

consistent with an appropriate notion of competitive beliefs out of the equilibrium.

It describes the way each firm assesses the impact of alternative out-of-equilibrium

investments without anticipating the effect of this decision over the distribution of

aggregate variables. As a result, we obtain the classic recipe that shareholder value

maximization leads to Pareto efficiency even for the more realistic financial structure

in which all contracts are written on firms’ outcomes.
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A Appendix

A.1 Proof of Proposition 3.1

Assume by way of contradiction that there is a feasible allocation ((x0, x1), ā)

that Pareto dominates ((x̄0, x̄1), ā). Since the consumption market clearing condi-

tion (3.4) only involves aggregate output and agents are risk-averse, the allocation

((x0, x̃1), ā) also Pareto dominates ((x̄0, x̄1), ā), where

x̃i1(y) := ci1(σy) with ci1(z) :=

∫
Y
xi1(y)Q(dy, ā|z)

and Q(B, ā|z) := P ({f(ā) ∈ B}|σf(ā) = z) is the probability that firms’ production

profile belongs to B ⊂ Y under the investment vector ā and conditional on the

aggregate production being z. Since the function x̃i1 only varies with the aggregate

output σy, this consumption level is implemented by the portfolio (θi, ηi) := (ci1, 0),

in the sense that (x̃i1, θ
i, ηi) satisfies Eq. (3.2). Since the plan (x̄i0, x̄

i
1, η̄

i, θ̄i) solves

agent i’s optimization problem given (Ē, ρ̄, ā), we must have

xi0 +

∫
Z
ci1(z)ρ̄(dz) + Ē · 0 > ei0 + (Ē − ā) · δi, (A.1)

for every agent i, with a strict inequality for at least one i. By non-arbitrage, we

know that ∫
Z
zρ̄(dz) = Ē · 1.

Therefore, by adding inequality (A.1) over i, we find∑
i∈I

(xi0 − ei0) + ā · 1 > 0,

which contradicts the date-0 consumption market clearing condition (3.3).

A.2 Proof of Proposition 4.1

From AD to FE Let us take an Arrow–Debreu equilibrium (p̄, (ξ̄0, ξ̄1), ā) and

construct a financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associated with the investment

vector ā. We define the equity and output-contingent prices as

Ē :=

∫
Ω
f(ω, ā)p̄(dω) and ρ̄(B) :=

∫
Ω

1B(σf(ω, ā))p̄(dω),
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for any Borelian set B ⊂ Z. It follows from strict concavity of u1 that ξ̄1(ω)

is constant across states ω associated with the same equilibrium aggregate out-

put σf(ω, ā). This is to say that, for each agent i, there exists a Borel-measurable

function c̄i1 : Z → R+ satisfying c̄i1(z) = ξ̄i1(ω), for every ω such that σf(ω, ā) = z.

We pose

(x̄0, x̄1(y)) := (ξ̄0, c̄1(σy)), for every y.

The individual consumption plan (ξ̄i0, ξ̄
i
1) must satisfy the Arrow–Debreu budget

constraint

ξ̄i0 +

∫
Ω
ξ̄i1(ω)p̄(dω) 6 ei0 + Π(ā) · δi.

Given the equity prices defined before, we have

Πk(āk) = Ēk − āk, for every k. (A.2)

This allows us to rewrite the previous inequality as

x̄i0 +

∫
Z
c̄i1(z)ρ̄(dz) 6 ei0 + (Ē − ā) · δi.

Therefore, by taking η̄i := (1/I)1 and θ̄i(z) := c̄i1(z)−z/I, we have that (x̄i0, x̄
i
1, η̄

i, θ̄i)

satisfies the budget constraints (3.1) and (3.2) at the equilibrium financial prices (Ē, ρ̄).

The consumption plans (x̄i0, x̄
i
1) are optimal among all plans that can be financed

by equity holdings and output-contingent contracts. To see this, let (xi0, x
i
1, η

i, θi)

be an alternative plan satisfying the budget constraints (3.1) and (3.2) at the equi-

librium prices (Ē, ρ̄). We construct the state-contingent plan ξi0 := xi0 and ξi1(ω) :=

xi1(f(ω, ā)) and notice from Eq. (3.2) that∫
Ω
xi1(f(ω, ā))p̄(dω) =

∫
Ω
θi(σf(ω, ā))p̄(dω) + ηi ·

∫
Ω
f(ω, ā)p̄(dω)

=

∫
Z
θi(z)ρ̄(dz) + ηi · Ē.

By replacing this relation into Eq. (3.1) and using Eq. (A.2), we deduce that the con-

sumption plan (ξi0, ξ
i
1) satisfies the present-value budget constraint (4.7). Therefore,
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by optimality of (ξ̄i0, ξ̄
i
1), we have

u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, ā) = u0(ξi0) +

∫
Ω
u1(ξi1(ω))P (dω)

6 u0(ξ̄i0) +

∫
Ω
u1(ξ̄i1(ω))P (dω)

= u0(x̄i0) +

∫
Y
u1(x̄i1(y))Q(dy, ā).

Feasibility of the allocation ((ξ̄0, ξ̄1), ā) as defined by Eq. (4.5) and (4.6) implies

feasibility of the allocation ((x̄0, x̄1), ā) as defined by Eq. (3.3) and (3.4). Since the

portfolio allocation (η̄, θ̄) satisfies the market clearing condition (3.5), we can then

deduce that (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) is a financial equilibrium associated with ā.

To conclude, we recall that āk maximizes Πk and show that the objective func-

tion V k is identical to Πk given the equilibrium prices derived before. Indeed, stan-

dard first-order conditions applied to each agent’s problem in the Arrow–Debreu

equilibrium imply that p̄(dω) = χ̄(σf(ω, ā))P (dω), where χ̄(z) := u′1(c̄i1(z))/u′0(ξ̄i0)

for every z. We have ρ̄(dz) = χ̄(z)µ(dz, ā), by construction, and then

V k(ak) =

∫
Z
ỹk(ak|z)ρ̄(dz)− ak

=

∫
Z
χ̄(z)ỹk(ak|z)µ(dz, ā)− ak

=

∫
Z
χ̄(z)

[∫
Y k

ykQ(dyk, ak|z)
]
µ(dz, ā)− ak

=

∫
Z
χ̄(z)

[∫
Ω
fk(ω, ak)P (dω|σf(ā) = z)

]
µ(dz, ā)− ak

=

∫
Ω
χ̄(σf(ω, ā))fk(ω, ak)P (dω)− ak

= Πk(ak).

From FE to AD We now take a financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associ-

ated with investments ā such that āk that maximizes V k, for every k, and construct

an Arrow–Debreu equilibrium (p̄, (ξ̄0, ξ̄1), ā). Recall from the proof of Proposition 3.1

that there is a Borel-measurable function χ̄ : Z → R+ representing the stochastic

discount factor in the sense that χ̄(σy) = u′1(x̄i1(y))/u′0(x̄i0) for every y and i. We
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then pose

p̄(dω) := χ̄(σf(ω, ā))P (dω), ξ̄i0 := x̄i0, and ξ̄i1(ω) := x̄i1(f(ω, ā)).

The allocation ((ξ̄0, ξ̄1), ā) satisfies the market clearing conditions (4.5) and (4.6).

As for budget feasibility, we notice that, for each i, there is a Borel-measurable func-

tion c̄i1 : Z → R+ satisfying c̄i1(z) = x̄i1(σy), for all y.20 The budget constraints (3.1)

and (3.2) can be consolidated as

x̄i0 +

∫
Z
c̄i1(z)χ̄(z)µ(dz, ā) 6 ei0 + (Ē − ā) · δi.

The definitions of Ē and ρ̄ imply

ξ̄i0 +

∫
Ω
ξ̄i1(ω)p̄(dω) 6 ei0 + Π(ā) · δi

and, then, the plan (ξ̄i0, ξ̄
i
1) satisfies the present-value budget constraint (4.7).

To prove that (ξ̄i0, ξ̄
i
1) is individually optimal, we fix an arbitrary consumption

plan (ξi0, ξ
i
1) satisfying the present-value budget constraint

ξi0 +

∫
Ω
ξi1(ω)p̄(dω) 6 ei0 + Π(ā) · δi. (A.3)

By posing

ci1(z) :=

∫
Ω
ξi1(ω)P (dω|σf(ā) = z),

we get from the definitions of Ē and ρ̄ that (A.3) writes as follows

ξi0 +

∫
Z
ci1(z)ρ̄(dz) 6 ei0 + (Ē − ā) · δi.

By fixing xi0 := ξi0, xi1(y1) := ci1(σy1), θi(z) := ci(z) and ηi := 0, we have that

the plan (xi0, x
i
1, θ

i, ηi) must satisfy the budget restrictions (3.1) and (3.2). The

20See the proof of Proposition 3.1.
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optimality of (x̄i0, x̄
i
1, θ̄

i, η̄i) then implies that

u0(ξi0) +

∫
Ω
u1(ξi1(ω))P (dω) = u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, ā)

6 u0(x̄i0) +

∫
Y
u1(x̄i1(y))Q(dy, ā)

= u0(ξ̄i0) +

∫
Ω
ui1(ξ̄i1(ω))P (dω).

Finally, since āk maximizes V k and V k = Πk, the Arrow–Debreu profit maxi-

mization condition is also satisfied.

A.3 Technology example

We consider the following technology to illustrate that completeness with respect

to aggregate output does not yield (even generically) complete markets with respect

to the states of nature. There is a single firm, and the primitive states ω = (ω1, ω2)

lie in Ω := [1,∞) × [0, 1). The production function maps investment a ∈ [0, 1] to

output f(ω, a) ∈ [0, 1] and displays piece-wise constant returns to scale as follows:

f(ω, a) :=

ω1a if a ∈ [0, aω]

ω2a+ (ω1 − ω2)aω if a ∈ [aω, 1]

where the threshold is defined by aω := (1 − ω2)/(ω1 − ω2). In words, our firm

earns a high marginal productivity ω1 ∈ [1,∞) for low investment levels and a low

marginal return ω2 ∈ [0, 1] for high investment levels.

investment0 1

output

1 f(ω, ·)

aω

a 7→ ω1a

1− ω2
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For each given equilibrium investment ā ∈ [0, 1] and production z > ā, there

are infinitely many possible shocks ω ∈ Ω that generate f(ω, ā) = z. To see this,

take z > ā, ω̄1 := z/ā, and ω̄2 := (1 − z)/(1 − ā). We obtain f(ω, ā) = z for

any ω such that: (a) ω1 = ω̄1 and ω2 6 ω̄2, or (b) ω1 > ω̄1 and ω2 = ω̄2. The

following figures illustrate these cases. We conclude that observing the output z is

not sufficient to pin down exactly the underlying productive shock.

(a) ω1 = ω̄1 and ω2 6 ω̄2

investment0 1

output

1 f(ω̄, ·)

ā

z

a 7→ ω̄1a

1− ω̄2

1− ω2

(b) ω1 > ω̄1 and ω2 = ω̄2

investment0 1

output

1 f(ω̄, ·)

ā

z

a 7→ ω̄1a
a 7→ ω1a

1− ω̄2
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